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ABSTRACT
The escape process of particles accelerated at supernova remnant (SNR) shocks is one
of the poorly understood aspects of the shock acceleration theory. Here we adopt a phe-
nomenological approach to study the particle escape and its impact on the gamma-ray
spectrum resulting from hadronic collisions both inside and outside of a middle-aged
SNR. Under the assumption that in the spatial region immediately outside of the rem-
nant the diffusion coefficient is suppressed with respect to the average Galactic one,
we show that a significant fraction of particles are still located inside the SNR long
time after their nominal release from the acceleration region. This fact results into a
gamma-ray spectrum that resembles a broken power law, similar to those observed
in several middle-aged SNRs. Above the break, the spectral steepening is determined
by the diffusion coefficient outside of the SNR and by the time dependence of maxi-
mum energy. Consequently, the comparison between the model prediction and actual
data will contribute to determining these two quantities, the former being particularly
relevant within the predictions of the gamma-ray emission from the halo of escaping
particles around SNRs which could be detected with future Cherenkov telescope facil-
ities. We also calculate the spectrum of run-away particles injected into the Galaxy by
an individual remnant. Assuming that the acceleration stops before the SNR enters
the snowplow phase, we show that the released spectrum can be a featureless power
law only if the accelerated spectrum is ∝ p−α with α > 4.

Key words: acceleration of particle - shock waves - cosmic rays - ISM: supernova
remnants

1 INTRODUCTION

Understanding the escape of accelerated particles from ex-
panding spherical shocks is a key ingredient to establishing
a connection between SNRs and the origin of Galactic cos-
mic rays (CRs). It is often assumed that the spectrum of
particles released into the Galaxy by a single SNR resem-
bles the instantaneous spectrum of particles accelerated at
the shock. According to the predictions of diffusive shock
acceleration theory (DSA), such a spectrum is a feature-
less power law in energy E−α with slope α ≈ 2 over a very
broad energy interval (see, e.g., reviews by Malkov & Drury
2001; Blasi 2013). The validity of such assumption depends
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on several subtleties of the acceleration process, i.e. i) the
amount of time that particles spend inside the SNR, during
which they would suffer severe adiabatic losses, ii) the rate
at which particles of different energy are released from the
SNR at each time, and iii) the temporal evolution of the
acceleration efficiency during the remnant evolution.

In a scenario where particles are confined inside the rem-
nant until it dissolves into the interstellar medium (ISM),
these would lose a substantial fraction of their energy be-
cause of the adiabatic expansion of the shocked plasma.
On the other hand, the observation of the knee in the CR
spectrum at a particle energy of few PeV suggests that the
sources of Galactic CRs should be able to inject in the ISM
particles up to at least such energies. This implies that, in
order to compensate for adiabatic energy losses, SNR shocks
should in fact be able to accelerate particles well beyond the
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2 Celli, Morlino, Gabici & Aharonian

PeV domain, which seems so prohibitive (Lagage & Cesarsky
1983) that this scenario does not appear to be realistic.

A more realistic, though still qualitative picture for the
particle escape emerges from the fact that SNR shocks slow
down as the mass of the ISM swept up by the shock in-
creases. During the Sedov-Taylor (adiabatic or ST) phase
(Taylor 1950; Sedov 1959), the shock radius expands with
time as t0.4, which is slower than the t0.5 root mean square
displacement of CRs expected if their transport is governed
by spatial diffusion. In such a scenario, particles start to
diffuse away from the shock and the probability that they
might return to it from upstream is gradually reduced (see,
e.g. Drury 2011). The dilution of particles over large vol-
umes also reduces their capability of exciting magnetic tur-
bulence upstream of the shock due to various plasma insta-
bilities. Less turbulence means less confinement of particles
at shocks, and therefore at some point CRs will become com-
pletely decoupled from the shock and will escape the SNR.
Even though there is a broad consensus on the fact that the
escape should be energy dependent – higher energy particles
escaping the shock earlier – the details of such a process are
still not well understood.

In fact, a similar reasoning may be applied also to de-
scribe particle escape during the ejecta-dominated phase,
which precedes the Sedov one and is characterised by a very
mild deceleration of the SNR shock (Chevalier 1982; Tru-
elove & McKee 1999). While in this case the expansion rate
of the SNR shell is larger than the spatial diffusion rate of
CRs (the shock radius scales as ts with s > 0.5), particles
of very high energy might still escape the SNR. This is be-
cause even a mild deceleration of the shock suffices to reduce
appreciably the effectiveness of CR streaming instability. In
addition, also the non-resonant instability, often invoked as
the main mechanism for the magnetic field amplification in
the ejecta dominated phase, requires that a sizeable fraction
of particles at the highest energy should escape in order for
the instability to be effective (Bell 2004; Bell et al. 2013;
Schure & Bell 2014; Amato & Blasi 2009). Nevertheless, the
behavior of particle escape during this phase is not particu-
larly relevant to the objectives of this paper, as a very minor
fraction of particles is expected to escape the shock in this
way.

After the decoupling from the SNR, the transport of
particles will be determined by the properties of the ambi-
ent magnetic turbulence. In fact, the same particles that are
escaping from the SNR could generate the magnetic turbu-
lence by means of plasma instabilities such as the stream-
ing instability (Skilling 1971) as well as the non-resonant
instability (Bell 2004). In such a scenario, the diffusion co-
efficient outside of the remnant Dout might be suppressed
in the transition region between the shock and the unper-
turbed ISM with respect to the average Galactic coefficient
DGal(p) ' 1028(pc/10 GeV)1/3 cm2 s−1 (e.g. Maurin et al.
2014). It is hence clear that one of the main uncertainty of
modeling the escape process concerns the value of Dout. In
principle, there is no reason why Dout should be equal to
DGal: in fact, the latter is usually inferred from secondary
over primary CR ratios and it represents an average value
over the particle propagation time within the whole mag-
netic halo of the Galaxy, hence it could be very different from
the diffusion coefficient inside the Galactic Plane. Given that
a theoretical determination of Dout is challenging, one may

wonder whether it could be possible to constrain this phys-
ical quantity by means of observations, particularly in the
high-energy (HE) and very-high-energy (VHE) gamma-ray
domain, and to provide some understanding concerning how
the escape mechanism works by means of a phenomenologi-
cal approach towards the existing gamma-ray measurements
of SNRs. Indeed, gamma-ray emission is expected from the
vicinity of SNRs due to the interactions of escaping particles
with ambient gas, especially (but not only) if the gas is struc-
tured in massive molecular clouds (Gabici et al. 2009). The
study of such emission is of paramount importance because
it allows us to directly observe a manifestation of particle es-
cape from shocks, and to constrain this poorly understood
aspect of particle acceleration at SNRs.

Particle escape from SNR shocks has been the subject of
several works, exploring either the connection between run-
away particles from the SNR shock and the CR spectrum
observed at Earth (Ptuskin & Zirakashvili 2003; Bell et al.
2013; Malkov et al. 2013; Cardillo et al. 2015) or studying
the signatures of escaping particles in terms of gamma-ray
emission from nearby molecular clouds (Gabici et al. 2009;
Ohira et al. 2010). Note that a proper treatment of the es-
cape process is extremely relevant in the search for PeV
particle accelerators (Gabici & Aharonian 2007), as obser-
vationally high-energy particles are more likely to be found
outside of the SNR shock than inside or in its shell (Aha-
ronian 2013). On the other hand, we are mostly interested
in the very initial stages of the escape, when the run-away
particles are still located in the close vicinity of the shock, in
order to explore the escape conditions through the gamma-
ray spectrum detected from the SNR. Given the large un-
certainties of current theoretical models aimed at describing
particle escape from shocks (Malkov et al. 2013; Nava et al.
2016; D’Angelo et al. 2018), here we will adopt a phenomeno-
logical approach. The transport of particles that decoupled
from the SNR shock will be described by means of a dif-
fusion coefficient which is both isotropic and spatially ho-
mogeneous. Though deviations from this simplest scenario,
such as anisotropies and/or spatial variations in the trans-
port of particles, may play an important role (Giacinti et al.
2013; Nava & Gabici 2013; D’Angelo et al. 2018), we will
neglect them in this work as we aim at describing the radia-
tive signatures from SNRs produced by escaping particle in
the most simple scenario. The present study will be limited
to middle-aged SNRs, namely remnants evolving through
the adiabatic phase, mainly because of two reasons: i) the
amount of escaping particles should be large enough to pro-
duce more evident observational effects in secondary gamma
rays, and ii) the remnant hydrodynamical evolution can be
well approximated by the ST solution, which allows to pro-
vide a simple analytical model for the description of particle
propagation. Therefore, the treatment presented does not
apply to young SNRs that are still evolving in the ejecta-
dominated phase.

Within a simplified description of the particle transport
in spherical symmetry, we obtain a time-dependent analyti-
cal solution for the density distribution of both the particles
confined by the shock, undergoing acceleration and adiabatic
losses, as well as the escaping particles still diffusing in the
remnant region. Note that, in order to derive an analyti-
cal solution to the particle transport equation, we assume a
homogeneous diffusion coefficient and neglect non-linear ef-
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fects. The obtained solutions depend on the SNR temporal
evolution and on the diffusive regime operating at the time
when the particles start to escape the shock. It is therefore
possible to quantify the density of particles located within
the shock radius and outside of it. Consequently, we derive
both the morphology and the spectral energy density of the
secondary gamma rays produced at the interaction between
the accelerated protons and the target gas, in order to ex-
plore the possibility of constraining the regime of operation
of particle escape by means of HE and VHE observations.
Moreover, as the same escaping particles will eventually con-
tribute to the Galactic cosmic-ray flux, we quantify the flux
of run-away particles from middle-aged SNRs, investigating
several different acceleration spectra.

The paper is structured as follows. In § 2 a simplified
model that describes the particle propagation within and
around a middle-aged SNR is presented. Though the model
is not intended to provide a complete description of the par-
ticle escape mechanism, it predicts interesting features on
the particle spectrum, which are discussed in § 3. The pre-
dicted fluxes of secondary gamma rays produced in hadronic
collisions between run-away particles and ambient gas are
presented in § 4, where the presence of extended TeV halos
around SNRs is discussed and their detectability by future
generation instruments such as CTA is investigated. In ad-
dition, since the escape process is a key ingredient to un-
derstand the formation of the Galactic CR flux detected at
Earth, the contribution of the run-away particle flux from
middle-aged SNRs to the flux of Galactic CRs is evaluated
and discussed in § 5. The results obtained are summarized
in § 6, where conclusions are also derived.

2 A SIMPLIFIED MODEL FOR PARTICLE
PROPAGATION

In this Section, we model the propagation of accelerated par-
ticles inside and outside a middle-aged SNR in order to prop-
erly calculate the spectrum of protons contained in these
regions. For the sake of simplicity, we assume spherical sym-
metry both inside and outside the remnant. We note that
the assumption of spherical symmetry outside the SNR is
justified in case of highly turbulent medium, like core col-
lapse supernovae (CC-SNe) which expand in the wind-blown
bubble produced by their progenitor (Zirakashvili & Ptuskin
2018) or in superbubbles, like e.g. the complex Cygnus re-
gion (Parizot et al. 2004). Indeed, simulations of stellar wind-
blown bubbles show that the variation of the wind properties
during the stellar evolution causes the termination shock to
be non stationary and to inject vorticity in the shocked wind
(Dwarkadas 2008). On the other hand, if a regular magnetic
field is present, a cylindrical symmetry would be more suit-
able (for this scenario the reader is referred to Nava & Gabici
(2013); D’Angelo et al. (2018)). The transport equation in
spherical coordinates describing the evolution of the phase
space density f (t, r, p) of accelerated protons reads as

∂ f
∂t
+ u

∂ f
∂r
=

1
r2

∂

∂r

[
r2D

∂ f
∂r

]
+

1
r2
∂(r2u)
∂r

p
3
∂ f
∂p

, (1)

where u(t, r) is the advection velocity of the plasma and
D(t, r, p) is the effective spatial diffusion coefficient experi-
enced by particles. In the following, we will solve Eq. (1) by

adopting two different approximations, tailored at describing
the propagation of respectively i) the particles confined in-
side the remnant, tightly attached to the expanding plasma,
and ii) the non-confined particles, which freely diffuse in the
space after having escaped the shock region. In order to solve
analytically Eq. (1), several assumptions will be introduced,
concerning: i) the evolutionary stage of the remnant, as de-
scribed in § 2.1, ii) the particle spectrum accelerated at the
shock, which is discussed in § 2.2, and iii) the temporal evo-
lution of the particle maximum momentum produced at the
shock, that is explored in § 2.3. Consequently, the results
derived in § 2.4 and § 2.5 apply within the range of validity
of the aforementioned assumptions.

2.1 Evolution of middle-aged SNRs

We define middle-aged SNRs as those evolving in the ST
phase, when the shock slows down as the swept-up matter
becomes larger than the mass of the ejecta Mej while radia-
tive losses are still not significant. Their characteristic age
is TSNR & 104 yr). During this evolutionary stage, the shock
position Rsh and the shock speed ush evolve in time accord-
ing to the adiabatic solution (Sedov 1959; Truelove & McKee
1999; Matzner & McKee 1999), that in the case of a shock
expanding through a uniform medium with density ρ0 reads
as

Rsh(t) =
(
ξ0

ESN
ρ0

)1/5
t2/5 , (2)

ush(t) =
2
5

(
ξ0

ESN
ρ0

)1/5
t−3/5 , (3)

where ξ0 = 2.026 and ESN represents the kinetic energy re-
leased at the supernova (SN) explosion. The time that marks
the transition between the ejecta-dominated phase and the
ST phase is the so-called Sedov time, namely

tSed ' 1.6×103 yr

(
ESN

1051 erg

)−1/2 (
Mej

10 M�

)5/6 (
ρ0

1 mp/cm3

)−1/3

(4)

where mp is the proton mass. The internal structure of the
SNR is determined by the hydrodynamical evolution of the
moving plasma: in the following, we will adopt the linear
velocity approximation introduced by Ostriker & McKee
(1988), in which the plasma velocity profile for r ≤ Rsh is
given by

u(t, r) =
(
1 − 1

σ

)
ush(t)
Rsh(t)

r , (5)

σ being the compression ratio at the shock (σ = 4 for strong
shocks).

2.2 CR distribution at the shock

Following Ptuskin & Zirakashvili (2005), we assume that the
efficiency in converting the shock bulk kinetic energy into
relativistic particles, ξCR, is constant in time. The distribu-
tion function of CR accelerated at the shock is determined
by DSA and it is predicted to be a featureless power law
in momentum with slope α. A maximum value of the parti-
cle momentum pmax, though not naturally embedded in the
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4 Celli, Morlino, Gabici & Aharonian

DSA theory, has to exist in order to limit the spectral en-
ergy density of accelerated particles. Such a value is either
connected with the accelerator age, that implies a finite time
for acceleration, or with the particle escape from the system.
In a simplified form, we can write the particle spectrum at
the shock as

f0(t, p) =
3 ξCRu2

sh(t)ρ0

4π c(mpc)4Λ(pmax,0(t))

(
p

mpc

)−α
Θ

[
pmax,0(t) − p

]
,

(6)

where c is the speed of light. We leave the slope α as a free
parameter of the model. It is worth to recall, however, that
DSA predicts α to be equal or very close to 4. The function
pmax,0(t) represents the maximum momentum accelerated at
the shock at the time t, as will be discussed in the next Sec-
tion, while Λ(pmax,0) is required to normalize the spectrum

such that the CR pressure at the shock is PCR = ξCRρ0u2
sh.

We thus have

Λ(p) =
∫ p/mpc

pmin/mpc
y4−α

(
1 + y2

)−1/2
dy . (7)

The fact that the efficiency ξCR is constant in time is a key el-
ement of the whole problem, including the calculation of the
final CR spectrum injected by SNRs into the ISM (see § 5).
Such assumption is usually connected with the idea that the
acceleration efficiency should saturate at roughly the same
level, regardless of the shock speed, provided that the shock
is strong. Though a proof of this conjecture is still missing,
hints in this direction are provided by particle-in-cell simu-
lations (Caprioli & Spitkovsky 2014). In addition, analytical
models which implement the thermal leakage recipe and ac-
count for non-linear effects have shown that the efficiency
remains constant as long as the condition M � 1 is fulfilled
(see e.g. Fig. 1 in Caprioli (2012)).

2.3 Maximum energy at the shock

A self-consistent description of the maximum energy achiev-
able in the acceleration mechanism in a non-stationary
framework requires the correct modeling of the evolution
of the magnetic turbulence, which is supposed to be self-
generated by the same accelerated particles and possibly
damped through frictional effects and wave cascade. Since
such a complete description does not exist yet, we will here
use a quite general recipe, often adopted in the literature,
which assumes that the maximum momentum increases with
time during the free expansion phase, when the shock is ac-
tively accelerating particles, and then it decreases during
the Sedov-Taylor phase according to a power law in time
(see e.g. Gabici et al. 2009), namely

pmax,0(t) =
{

pM (t/tSed) if t 6 tSed
pM (t/tSed)−δ if t > tSed ,

(8)

where pM represents the absolute maximum momentum,
achieved at t = tSed. The reason for considering a transi-
tion for pmax at the Sedov time is connected with the fact
that during the free-expansion phase the particles achieve
a maximum momentum generally higher than during the
adiabatic phase. However, as at this stage the number of
accelerated particles is rather low, the average spectrum of

escaping particles will result steeper than during the adia-
batic phase (Ptuskin & Zirakashvili 2005). Hence, the fact
that more particles are accelerated during the Sedov stage
(the remnant is more extended) has the net effect of produc-
ing a peak in pmax right at the Sedov time. Note that the
evolution of pmax(t) during the ED phase is largely uncer-
tain: for this reason, we also explored the case of pmax = pM
for t 6 tSed, and observed that it produces marginal differ-
ences in the gamma-ray spectrum of middle-aged SNRs. In
Eq. (8), δ is a free parameter of the model, bounded to be
positive. The value of this parameter strongly depends on
the temporal evolution of the magnetic turbulence. In the
simple stationary test-particle approach δ = 1/5. This value
should be regarded purely as a lower limit, since in a more
realistic scenario the strength of the magnetic turbulence
is expected to be proportional to some power of the shock
speed, which decreases in time (see Appendix A for more
details).

By inverting Eq. (8), we can also define the escape time
for particles of given momentum p, corresponding to the
time when these particles cannot be confined anymore by the
turbulence and start escaping from the shock. The particle
escape time reads as

tesc(p) = tSed (p/pM)−1/δ . (9)

It is also useful to define the escape radius as

Resc(p) = Rsh (tesc(p)) . (10)

The onset of the escape process in the acceleration scenario
introduces a unique feature in the evolution of the parti-
cle distribution, that will behave differently before and after
tesc(p). In fact, at times smaller than tesc(p), particles closely
follow the shock evolution as they are strictly tightened to
the turbulence. On the other hand, at later times, when the
turbulence starts to fade out, particles behave disconnected
by the shock. Particles evolving in these two regimes will be
named respectively confined particles and non-confined par-
ticles, as described in § 2.4 and § 2.5. Note that, while con-
fined particles are only located inside the remnant radius (by
definition), the non-confined population can be located both
inside and outside the radius, depending on the diffusion
conditions operating there. In fact, even if non-confined par-
ticles have nominally escaped the shock, they can possibly
be scattered towards the remnant interior, and reside there
for some time after the escape time, thus producing observ-
able effects in the secondary radiation emitted at hadronic
interactions. Later, once the turbulence has reduced signif-
icantly, these particles are able to leave the source region,
propagate through the ISM and eventually reach the Earth,
contributing to the diffuse flux of CRs.

Though Eq. (8) may appear too simplistic, it allows to
explore the escape mechanism independently on the micro-
physics of the process. However, we will also explore a situ-
ation where a more refined calculation of pmax,0 is adopted.
In particular we will use the description derived by Schure &
Bell (2013, 2014) and also adopted in Cardillo et al. (2015),
who considered the possibility that the escaping CRs excite
plasma instabilities, leading to the growth of both resonant
and non-resonant modes, thus achieving efficient magnetic
field amplification and particle scattering. Both the insta-
bility channels are driven by the fact that CRs stream at
super-alfvenic speed, thus inducing a reaction in the back-
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ground plasma to restore a null net current. The essential
difference between the resonant and non-resonant linear in-
stability is that non-resonant modes result from a collective
effect of CRs, namely from their strong drift, while indi-
vidual CRs are responsible for resonant modes. Considering
the non-resonant instability developed by the CR streaming
from a remnant expanding into a homogeneous medium, in
the assumption that a constant fraction of the shock kinetic
energy is instantaneously transferred to the escaping parti-
cle flux, one derives the following implicit equation in the
maximum energy Emax,0(t)

Emax,0(t) ln
(

Emax,0(t)
Emin

)
=

e
√

4πρ0
10c

ξCRu2
sh(t)Rsh(t) , (11)

where Emin is the minimum energy produced by accelera-
tion during the Sedov phase, which does not depend on time,
and e is the electron charge. Note that the maximum energy
is connected to the maximum momentum by the relation

Emax,0(t) =
√

p2
max,0(t)c2 + m2

pc4. Eq. (11) holds whenever

the differential energy spectrum produced during the accel-
eration is ∝ E−2, since it was derived by combining Eq. (2)
and Eq. (9) of Cardillo et al. (2015) (and setting m = 0, cor-
responding to expansion into a homogeneous medium). The
approach defined by Eq. (11) implies that the maximum mo-
mentum produced at the shock varies with time according
to the remnant evolutionary stage: as already discussed in
§ 2.1, in the following we will only consider remnants evolv-
ing through the ST stage. Correspondingly, within this sce-
nario, the escape time of particles with energy E would be
dictated by

tesc(E) =
[
4√πρ0e

125c
ξCR

(
ξ0ESN
ρ0

)3/5 1
E ln(E/Emin)

]5/4

. (12)

On the other hand, in the case of an acceleration spectrum
∝ E−(2+β) (with β , 0), the equation regulating Emax,0(t)
reads as

Emax,0(t)
[(

Emax,0(t)
Emin

)β
− 1

]
=

(
β

1 + β

)
e
√

4πρ0
10c

ξCRu2
sh(t)Rsh(t) ,

(13)

while the escape time is

tesc(E) =
[
4√πρ0e

125c
ξCR

(
ξ0ESN
ρ0

)3/5 (
β

1 + β

)
1
E

(
Eβ
min

Eβ − Eβ
min

)]5/4

.

(14)

Note that Eqs. (11) and (13) show explicitly the fact that
the maximum energy depends on the acceleration efficiency,
since the higher is the efficiency, the larger is the current of
escaping particles. In addition, these are implicit equations
for Emax,0(t), which can be solved with standard numerical
techniques.

2.4 Distribution of confined particles

When t < tesc(p) particles with momentum p are confined
inside the SNR and do not escape the shock, due to the wall

of turbulence generated at the shock itself. A reasonable ap-
proximation for the distribution of these confined particles,
that we call fconf(t, r, p) from here on, can be obtained by
solving Eq. (1) in the approximation that the diffusion term
can be neglected (Ptuskin & Zirakashvili 2005). This is a
good approximation if the typical diffusion length is much
smaller than the SNR size, namely if

√
Dint � Rsh(t), which

in the ST phase translates into the following condition on
the diffusion coefficient inside of the shock

Din � 1028
(

ESN
1051erg

) 1
2
(

M�
Mej

) 1
6
(

n0
cm−3

)− 1
3
(

t
tSed

)− 1
5

cm2s−1 .

(15)

The above condition depends only weakly on t and it is
satisfied if Din(p) is suppressed with respect to the av-
erage Galactic diffusion coefficient by at least a factor
∼ (p/10 GeVc−1)−1/3. The simplified transport equation for
confined particles reads as

∂ fconf
∂t

+ u
∂ fconf
∂r

=
1
r2
∂(r2u)
∂r

p
3
∂ fconf
∂p

(16)

and its solution can be easily obtained by using the method
of characteristics, where the plasma speed inside the SNR
is approximated by Eq. (5). The solution can be written in
the terms of the acceleration spectrum f0 (see Eq. (6)) as
follows:

fconf(t, r, p) = f0

((
Rsh(t)
Rsh(t ′)

)1− 1
σ

p, t ′(t, r)
)

(17)

(see Ptuskin & Zirakashvili 2005), where t ′(t, r) represents
the time when the plasma layer, that at the time t is located
at the position r, has been shocked. Such quantity can be
obtained from the equation of motion of a plasma layer, i.e.
dr/dt = u(t, r), where the velocity profile is given by Eq. (5):
integrating this equation by parts from t ′ to t, and using
Eq. (2), one obtains

t ′(t, r) =
(

ρ0
ξ0ESN

)σ/2
r5σ/2 t1−σ . (18)

We can recast Eq. (17) in a simpler form, by using Eqs. (2),
(3) and (6) and neglecting the mild dependence of Λ(pmax)
on t, thus getting

fconf(t, r, p) = f0(p, t)
(

t ′

t

)ε
Λ(t)
Λ(t ′) Θ [pmax(t, r) − p] , (19)

where Λ(t) is a shortcut for Λ
(
pmax,0(t)

)
, while the exponent

ε is defined as

ε =
2α(σ − 1)

5σ
− 6

5
. (20)

The function pmax(t, r) is the maximum momentum of par-
ticles located at position r and time t, and it is equal to the
maximum momentum of particles accelerated at time t ′ di-
minished by adiabatic losses occurred between t ′ and t, i.e.

pmax(t, r) = pmax,0(t ′)
(

Rsh(t ′)
Rsh(t)

)1− 1
σ

= pmax,0(t)
(

t ′

t

) 2(σ−1)
5σ −δ

,

(21)

where the last step has been obtained by using Eq. (8) for
t > tSed. The latter equation implies that, for δ < δ∗ ≡
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6 Celli, Morlino, Gabici & Aharonian

2(σ − 1)/(5σ) (namely δ∗ = 3/10 for strong shocks), the de-
crease of the maximum energy at the shock is slower than
the decrease of the maximum energy in the remnant interior,
as due to adiabatic losses. In such a case, at any given time
t, particles with momentum pmax,0(t) are only located close
to the shock. On the contrary, for δ > δ∗, at every position
r the distribution function is f (t, r, pmax,0(t)) > 0. In other
words, the condition δ > δ∗ is a necessary requirement in
order to have particles with p = pmax,0(t) in the whole SNR.

It is interesting to note that under the assumption
of test-particle DSA, where α = 3σ/(σ − 1), the distribu-
tion function of confined particles as reported in Eq. (19)
becomes almost independent on r. In fact it results that
ε = 0 and the function Λ(t ′) has a very mild dependence
on r. In such a case neglecting diffusion is justified because
∂r fconf ' 0.

2.5 Distribution of escaping particles

As soon as t > tesc(p), particles with momentum p cannot
be confined anymore by the turbulence operating in the
shock region and they start escaping. Note that in several
works, the escape is treated as an instantaneous process,
in the sense that all non-confined particles are assumed to
be located outside the remnant right after tesc(p), without
accounting for the fact that the particles can still be propa-
gating inside the SNR for some time. While this assumption
can be considered a good approximation for studying the to-
tal particle spectrum released into the Galaxy, it is no more
valid when attempting a description of the early phase of
the escape process in the region close to the SNR, in partic-
ular in the estimate of the gamma-ray flux from that region.
In fact, if the propagation outside of the SNR is diffusive,
escaping particles have a finite probability to be scattered
back and re-enter the SNR, even if they do not feel the shock
discontinuity anymore and do not undergo any further ac-
celeration. This process will be especially important if the
level of turbulence in the vicinity outside of the SNR is much
higher than the average Galactic one, in such a way that the
confinement time in that region would be significantly en-
hanced. As discussed in § 1, there are several reasons to think
that such an increase of the turbulence might be realized,
including the CR self-generated turbulence. In Appendix C
we show that such effect can, under certain conditions, be
important especially in the close proximity of SNRs.

In order to describe the particle evolution at early times
after the escape, namely for t > tesc(p), an approximate so-
lution is obtained by assuming that particles decouple from
the SNR and their evolution is governed by pure diffusion.
The particle evolution is hence described by the same Eq. (1)
but dropping the terms including ush, which gives

∂ fesc
∂t
=

1
r2

∂

∂r

[
r2D(p) ∂ fesc

∂r

]
, (22)

where from now on we will address fesc(t, r, p) as the dis-
tribution of non-confined particles. Since the particles will
start escaping after they have been confined by the turbu-
lence, this equation will be solved with an initial condition
given by the distribution function of confined particles at
t = tesc(p). By defining fconf(tesc(p), r, p) ≡ fconf,0(r, p), the ini-

tial condition reads as{
fesc(tesc(p), r, p) = fconf,0(r, p) r < Rsh(tesc(p))
fesc(tesc(p), r, p) = 0 elsewhere .

(23)

The diffusion coefficient in the region outside the SNR,
Dout, is assumed to be spatially constant. Such assumption
is made in order to derive an approximate analytic solution
of Eq. (22), by using the method of Laplace transforms. As
Dout is an unknown of the model, it might possibly be con-
strained by HE and VHE gamma-ray observations. Unless
specified differently, we will assume a Kolmogorov-like dif-
fusion, namely

Dout(p) ≡ χDGal(p) = χ1028
( pc
10 GeV

)1/3
cm2 s−1 , (24)

where the parameter χ quantifies the difference with respect
to the average Galactic diffusion coefficient. Inside the SNR
the diffusion coefficient Din is in general different from the
one outside, nevertheless for the sake of simplicity we will
assume a homogeneous diffusion coefficient D(p), such that
Din(p) = Dout(p) ≡ D(p). Note that the analytical solution is
only obtained for some values of the slope α: we show here
only two cases of interest, namely α = 4 and α = 4+1/3, both
assuming σ = 4. The case α = 4 corresponds to the standard
case for DSA in the test-particle limit and the solution reads
as (see Appendix B for the full derivation)

fesc(t, r, p) =
fconf,0(p)

2

{
Rd√
π r

[
e
−
(
R+
Rd

)2

− e
−
(
R−
Rd

)2 ]
+

+Erf
(

R+
Rd

)
+ Erf

(
R−
Rd

)}
× Θ [t − tesc(p)] , (25)

where R±(p) ≡ Resc(p) ± r, Rd(t, p) ≡
√

4D(p) (t − tesc(p)) is

the diffusion length and Erf(x) = 2/
√
π
∫ x

0 e−z
2
dz is the er-

ror function. The spatial behavior of fesc(r), as derived from
Eq. (25), is shown in Fig. 1 for different times after the es-
cape time and different normalizations χ of the diffusion
coefficient. Note that typical values of the parameters de-
scribing the evolution of a middle-aged SNR and the accel-
eration process have been adopted to obtain the plots, as
indicated in Tab. 1. The results clearly show that, if χ is as
small as 0.01, roughly half of the escaped particles are still
located inside the SNR at a time twice the escape time.
The second case considered, i.e. α = 4 + 1/3, represents a
steeper acceleration spectrum, close to the values inferred
from the gamma-ray observations of several SNRs (like Ty-
cho and Cas A) which have α ' 4.2 ÷ 4.3. It is worth re-
membering that, to date, there is no consensus yet on the
physical reason that would produce spectra steeper than p−4.
Some possibilities invoke the role of the speed of the scatter-
ing centers (Zirakashvili & Ptuskin 2008; Morlino & Caprioli
2012), or the modification produced onto the shock structure
by the presence of neutral hydrogen (Morlino & Blasi 2016),
while a recent work ascribes the steepening to a combina-
tion of effects, including the shock spherical expansion, its
temporal deceleration and the tilting of the magnetic field at
the shock surface (Malkov & Aharonian 2019). Regardless
of the physical reason producing such a steeper spectrum,
we have chosen α = 4 + 1/3 because an analytical solution
for the non-confined particle density can be obtained, which
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is (see Appendix B for the full derivation)

fesc(t, r, p)
k(tesc)

=

{
Rd√
π

e
−
(

r
Rd

)2

+
Rd

2
√
π

(
R−
r

)
e
−
(
R+
Rd

)2

+

− Rd

2
√
π

(
R+
r

)
e
−
(
R−
Rd

)2

+

(
r +

R2
d

2r

)
Erf

[
r

Rd

]
+

+
1
2

(
r +

R2
d

2r

)
Erfc

[
R+
Rd

]
−

(
1 − Erf

[
R−
Rd

] ) (
r
2
+

R2
d

4r

)}
×

× Θ[t − tesc(p)] ,
(26)

where Erfc(x) = 1 − Erf(x) and the function k(t) reads as

k(t) = 3ξCRρ0
25πc(mpc)4−αΛ(t)

(
ξ0ESN
ρ0

)1/5
t−8/5 . (27)

The spatial behavior of the non-confined distribution func-
tion of Eq. (26) is plotted in Fig. 2(a) for different times after
tesc(p), where we fixed p = 10 TeV/c and χ = 0.01. The main
difference with respect to the solution presented in Eq. (25)
resides in the initial distribution function fconf(r), which is
flat in r for the case α = 4, while it increases linearly with r
for α = 4+ 1/3. The difference at later times just reflects the
different initial condition.

2.6 The precursor region

An additional contribution to the CR escaping density func-
tion comes directly from the shock precursor region (see
Ptuskin & Zirakashvili 2005; Schure & Bell 2014). We can
estimate such contribution by adopting the steady state so-
lution of the transport equation in the plane shock approx-
imation, which reads as

fp(t, r, p) = f0(t, p) exp
[
− ush(t)

Dp(p)
(r − Rsh)

]
, (28)

where Dp(p) represents the diffusion coefficient within the
precursor. In order to simplify the description of particle
escaping from the precursor region, we approximate the ex-
ponential function in Eq. (28) with a δ-function centered on
the shock position r = Rsh such that it conserves the total
number of particles contained in the precursor itself, namely

fp,conf(t, r, p) ' f0(t, p)
Dp(p)
ush(t)

δ(r − Rsh) . (29)

As before, the temporal evolution of the particle density es-
caping the precursor region at t > tesc(p) is described by
Eq. (22), provided that Eq. (29) is adopted as its initial
condition. The solution so obtained is found to be1 (see Ap-

1 Note that Eq. (30) is formally identical to the solution found by
Ohira et al. (2010) (their Eq. (6)). Nevertheless, there is a funda-

mental difference between their work and ours: Ohira et al. (2010)

assume that all particles accelerated by the SNR are located only
at the shock when they start escaping, while we account for two

different contributions, the one from the particle distribution in-

side the SNR (Eq. (25)) plus the one from the precursor. Both
contributions are needed to correctly model the gamma-ray spec-

trum as explained in §4.

pendix B)

fp,esc(t, r, p)
f0(tesc, p) =

1
√
π

Resc

Rd

Dp(p)
ush(tesc)r

[
e
−
(
R−
Rd

)2

− e
−
(
R+
Rd

)2 ]
×

× Θ[t − tesc(p)] .
(30)

This is shown in Fig. 2(b) as a function of the radial co-
ordinate for p = 10 TeV/c and assuming χ = 0.01 for the
diffusion coefficient. The initial δ-function rapidly expands,
filling both the interior and the exterior of the remnant. For
the chosen value of the parameters, at t = 2tesc(p) the major-
ity of the particles are still located inside the remnant also
because the shock keeps moving. We will show in the next
two Sections that the presence of particles escaped from the
precursor and still located inside the shock radius can in
principle produce a peculiar feature in the gamma-ray spec-
trum resulting from hadronic collisions occurring inside the
remnant.

3 THE PROTON SPECTRUM

The key result of this work is that the escape process can
produce a particle spectrum inside the remnant different
from the one accelerated at the shock. A general believe
is that the escape should produce an exponential sup-
pression of the particle spectrum at the highest energies.
Nevertheless, if the diffusion coefficient is small enough, the
contribution from non-confined particles in the remnant
interior makes the final spectrum resembling rather a
broken power-law distribution, as we will show in this
Section, where we are going to derive the spectrum of
particles located both inside and outside the SNR.

The average proton spectrum resulting from all the par-
ticles contained inside the remnant radius, including both
confined and non-confined ones, as well as the contribution
from particles released through time by the precursor, is
computed as

Jin
p (t, p) = 4π

VSNR

∫ Rsh(t)

0
[ fesc(t, r, p)+

+ fp,esc(t, r, p) + fconf(t, r, p)
]

r2dr , (31)

where VSNR = 4πR3
sh
(t)/3 is the remnant volume. The re-

sult of this computation is shown in Fig. (3), where we have
assumed an acceleration spectrum f0(p) ∝ p−4 and a max-
imum momentum scaling with time given by Eq. (8) with
pM = 1 PeV/c. Different values of the slope δ and of the
diffusion coefficient normalization χ are explored, while the
remaining parameters are fixed to the values given in Ta-
ble 1.

In all the plotted spectra a break is clearly visible
at pbr = pmax,0(TSNR), that is the maximum momentum
achieved in correspondence of the shock position at the ob-
servation time (the remnant age). Its value depends on the
parameter δ which regulates how fast the maximum mo-
mentum decreases with time, as shown in Tab. 2. Below and
above the break the spectrum is contributed by confined
and non-confined particles, respectively. At any given time,
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Figure 1. Distribution of escaping particles as in Eq. (25), at the arbitrary fixed momentum p = 10 TeV/c, as a function of the radial

coordinate normalized to Resc(p). For both panels we used pM = 1 PeV/c, δ = 4 and α = 4. Left: Different thick lines refer to different
times, as labelled, and the vertical thin lines with the same color correspond to the shock position at those times. The diffusion coefficient

is Kolmogorov-like, normalized to χ = 0.01. Right: Different lines refer to different value of the diffusion coefficient, as labelled. The time

is fixed to t = 2tesc and the vertical black line marks the shock position at that time.
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Figure 2. Distribution of escaping particles at the arbitrary fixed momentum p = 10 TeV/c, as a function of the radial coordinate

normalized to Resc(p). Different thick lines refer to different times, as labelled, and vertical thin lines represent the shock position at those
times. The model here assumes pmax(t) regulated by pM = 1 PeV/c and δ = 4. The diffusion coefficient is Kolmogorov-like, normalized

to χ = 0.01. Left: Escaping particles from the remnant interior, for an acceleration spectrum with slope α = 4+ 1/3, as in Eq. (26). Right:

Escaping particles from the shock precursor, as in Eq. (30).

Table 1. Benchmark values for the set of parameters describing

the SNR evolution and the particle acceleration: ESN is the kinetic

energy released at the SN explosion, Mej the mass of the ejecta, n0
the upstream density, TSNR the remnant age, ξCR the acceleration

efficiency and pM the maximum momentum at the Sedov time.

ESN Mej n0 TSNR ξCR pM

1051 erg 10 M� 1 cm−3 104 yr 10% 1 PeV/c

the spectral trend above the momentum break strongly de-
pends on δ and on the energy dependence of the diffusion
coefficient assumed. On the other hand, the number of par-
ticles contributing above the break is regulated by the nor-

Table 2. Values for the momentum break in the spectrum of pro-

tons confined within a middle-aged SNR, in the parametrization

of Eq. (8). Benchmark values adopted from Tab. 1.

δ pbr (GeV/c)

1 1.6 × 105

2 2.5 × 104

3 4.1 × 103

4 6.5 × 102

malization value of the diffusion coefficient: by comparing
Figs. 3(a) and 3(b), where respectively χ = 0.1 and χ = 1
were adopted, one can derive that by increasing the value
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Figure 3. Total proton spectrum inside a SNR, contributed by confined plus non-confined particles. Different curves refer to different

values of the index δ, which regulates the time-dependence of the maximum momentum at the shock (see Eq. (8)). The acceleration
spectrum is assumed ∝ p−4 and the diffusion coefficient is normalized to χ = 0.1 (left panel) and χ = 1 (right panel). The remaining

parameters are given in Tab. 1 for both panels. The particle distributions without the contribution from shock precursor are always

shown as dashed lines.

of the diffusion coefficient, the amount of non-confined par-
ticles located inside the SNR is reduced and the spectral
break rather becomes a sharp cut-off. In addition, a flatten-
ing is visible at the highest energies, where the contribution
of particles escaping prom the precursor becomes important.
In fact the spectrum of particles contained in the precursor
is harder than that of particles located inside the SNR, being
proportional to f0(p)Dp(p).

It is now worth comparing the results obtained above
with the case of a different recipe for the time dependence
of the maximum energy at the shock. We will use the cal-
culation from Cardillo et al. (2015) as summarized in § 2.3
(Eqs. (11) and (12) for the case with α = 4, and Eqs. (13)
and (14) for the case with α = 4 + 1/3). In this scenario, by
adopting the same parameter values as in Fig. 3(a), we ob-
tain a systematically softer spectrum above the break with
respect to what was obtained with the power-law depen-
dence of pmax. Concerning the energy break, in the scenario
described by Cardillo et al. (2015) we derive pbr(α = 4) '
5.9× 103 GeV/c and pbr(α = 4+ 1/3) ' 1.3× 103 GeV/c. The
results are reported in Fig. 4(a), for the two aforementioned
values of the acceleration spectrum slope α.

The spectrum of protons located outside of the SNR
includes only non-confined particles. Considering a spherical
corona between the radii R1 and R2 (with Rsh ≤ R1 < R2),
the average spectrum is given by

Jout
p (t, p) = 3

R3
2 − R3

1

∫ R2

R1

[
fesc(t, r, p) + fp,esc(t, r, p)

]
r2dr .

(32)

Such a spectrum is shown in Fig. 4(b) for two positions of
R1 and R2, where a Kolmogorov-like diffusion coefficient
normalized to χ = 0.1 is assumed. A low-energy threshold
is visible at p = pbr, while the peak of the distribution
is regulated by the amount of particles with propagation
length equal to the radial extension of the corona, i.e.
Rd(p) ≈ R2 − R1. The contribution from the precursor is well
visible at the highest energies, where the spectrum flattens

like in the case shown in Fig. 3. The different line styles
refer to different spatial integration regions: solid lines refers
to a corona between Rsh(TSNR) and 2Rsh(TSNR), while dashed
lines are spectra calculated for particles located between
2Rsh(TSNR) and 3Rsh(TSNR). It can be noted that, towards
the outer regions of the accelerator, the low-energy cut-off
of the spectrum is moved to highest energies since only the
most energetic particles can reach the farther regions. As a
consequence, also the spectrum normalization is affected,
and it decreases moving outwards. The peculiar bump-like
shape of the primary spectrum in the external regions of
the shock implies that, in the presence of a dense target
of gas, the secondary radiation resulting from hadronic
collisions will show a similar feature. It is thus timely to
investigate the expected gamma-ray emission connected
with hadronic collisions of accelerated protons both within
the shock radius and outside of it, in order to understand
whether next-generation instruments could be able to detect
the VHE gamma-ray halos possibly surrounding SNRs as
generated by escaping particles. In fact, an SNR population
study might shed light on how diffusion operates in these
sources and even provide information on how the escape
process works, by constraining the slope of the maximum
momentum with time from a statistical point of view.

4 GAMMA RAYS FROM HADRONIC
COLLISIONS

In this Section we will evaluate the gamma-ray flux resulting
from hadronic collisions occurring both inside and outside a
middle-aged SNR, by calculating i) the volume integrated
emission in the remnant itself, ii) the volume integrated
emission in different annular regions immediately outside the
shock radius, and iii) the projected radial profile, which is an
extremely relevant information when dealing with extended
objects. Note that the shock of a middle-aged remnant is ex-
pected to expand outside of the wind termination shock, but
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Figure 4. Left: Total proton spectrum inside a SNR, calculated by adopting the time evolution of the maximum momentum as in Cardillo

et al. (2015): solid lines refer to acceleration slope α = 4, while dashed ones refer to α = 4 + 1/3. The diffusion coefficient is normalized

with χ = 0.1 for grey lines and χ = 1 for black lines. Right: Spectrum of non-confined protons located outside of the remnant shell at
TSNR = 104 yr and for different values of the slope δ as labelled. The particle spectrum is integrated inside a spherical corona extending

either between Rsh(TSNR) and 2Rsh(TSNR) (solid lines) or between 2Rsh(TSNR) and 3Rsh(TSNR) (dashed lines). The diffusion coefficient is

normalized to χ = 0.1. The remaining parameters are given in Tab. 1 for both panels.

still inside the cavity of hot and rarified medium blown by
the stellar progenitor (Castor et al. 1975; Dwarkadas 2005).
In such a region, the medium has a homogeneous density, as
we will consider in the following.

4.1 Volume integrated emission

We have shown in § 3 that a characteristic energy break
appears in the spectrum of protons contained in the SNR
interior right at the maximum momentum that particles
achieve through the shock acceleration process at the SNR
age. Analogously, the spectrum of secondaries resulting from
proton collisions with the target gas (the so-called pp inter-
action) will reflect this feature. For a remnant expanding into
a homogeneous medium with number density n0 = ρ0/mp,
the density profile of the plasma nin, that is expanding with
the SNR evolving during the ST phase, can be well approx-
imated by the following polynomial expression

nin(t, r) = n0σ
[
a1Xα1 + a2Xα2 + a3Xα3

]
, (33)

where X = r/Rsh(t). The parameters in Eq. (33) have been
derived by fitting the radial density profile of the SNR in-
terior as presented in Sedov (1959), thus obtaining the fol-
lowing values: a1 = 0.353, a2 = 0.204, a3 = 0.443, α1 = 4.536,
α2 = 24.18 and α3 = 12.29.

Convolving the differential energy spectrum of protons
residing in the remnant interior with the density profile
of Eq. (33), and considering the differential cross section
for pp collisions, one derives the differential energy flux
of secondary gamma rays expected at different times.
We parametrized the differential cross section following
Kafexhiu et al. (2014), adopting the parameter values they
obtained from SYBILL 2.1. The resulting gamma-ray flux
is shown in Fig. 5, where an SNR located at a distance of
d = 1 kpc is considered. The two panels show the integrated
emission from the SNR interior (Fig. 5(a)) and from a
spherical corona around it (Fig. 5(b)). The same parameter
values as in Fig. 3(a) have been used. The gamma-ray

spectrum reflects the behavior of the proton distribution,
namely the emission from the remnant interior shows a
break at an energy ∼ 0.1pbrc that depends on the value of
δ, in that also the break in the proton spectrum depends
on it, as shown in Tab. 2. Below the break the flux is
dominated by confined particles, while above it is due only
to the non-confined particles. The relative intensity of the
two contributions, and hence the shape of the transition, is
primarily determined by the diffusion coefficient Dout as can
be seen in Fig. 6: the smaller the diffusion coefficient, the
larger the confinement time, implying that a larger amount
of particles will be still residing within the remnant at a
fixed remnant age. On the other hand, Dout does not affect
the emission from the confined particles, as expected from
Eq. (19).

It is worth to discuss here few aspects of the model. In
the presence of massive gas clouds embedded in the shock
environment, the CR propagation might result affected
(Celli et al. 2019) and consequently a simple rescaling of
the gamma-ray emission with the gas density does not
apply. On the other hand, the main conclusion derived
here, namely the presence of a break in the gamma-ray
spectrum due to escaping CR, is not affected by a possible
time dependence of CR acceleration efficiency (provided the
dependence is smooth), though quantitative results may
change. In particular, the slope of the gamma-ray spectrum
beyond the break is expected to become harder (softer) if
ξCR is a decreasing (increasing) function of time.

It is interesting to note that high-energy observations
point towards the presence of a break in the spectrum of
middle-aged SNRs, like W 44 and IC 443 (Ackermann et al.
2013), located respectively at 22± 8 GeV and 279± 34 GeV.
To this respect, the recent results by Zeng et al. (2019) are
of special interest: using a spectral fitting procedure, the
authors inferred the presence of a break in the gamma-ray
spectrum of the majority of SNRs in a sample of ∼ 30
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Figure 5. Gamma-ray flux from hadronic collisions in a middle-aged remnant SNR located at a distance of d = 1 kpc. The acceleration

spectrum has been fixed with slope α = 4 and the diffusion coefficient normalized to χ = 0.1. The maximum momentum temporal
dependence has been parametrized according to Eq. (8), for different values of δ, as labelled. The remaining parameters are given in

Tab. 1 for both panels. Left: Emission by confined (dashed lines) and non-confined particles (dotted lines) located inside the SNR, where
solid lines refer to the sum of the two contributions. Right: Emission from escaped particles located in an annulus extending from RSNR

to 2RSNR outside of the SNR.
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Figure 6. Gamma-ray flux from hadronic collisions in a middle-

aged SNR located at a distance of d = 1 kpc. The acceleration

spectrum has been fixed with slope α = 4, while the maximum
momentum temporal dependence has been parametrized accord-

ing to Eq. (8), with δ = 2 (green lines) and δ = 3 (pink lines).

Different normalizations of the diffusion coefficient are explored,
as labelled. The remaining parameters are given in Tab. 1 for both

panels.

objects. The energy break is observed to decrease with the
remnant age, ranging from ∼ 10 TeV for younger SNRs (age
of ∼ 103 yr) down to few GeV at ages of few 104 yr. This
is compatible with our assumption of a maximum energy
which decreases in time and assuming a slope δ roughly in
between 2 and 3, which is needed to reproduce the spectral
break observed in the gamma-ray spectrum at few tens
of GeV for TSNR ' 104 yr. Note that a more quantitative
constraint on the value of δ requires a detailed analysis
of each individual SNRs in the sample, accounting for a
correct evaluation of their evolutionary stage, the density
and spatial distribution of the circumstellar medium, the
possible presence of IC emission, as well as the presence of
PWN associated with the remnants. In a forthcoming paper
we will apply our model to few selected middle-aged SNRs,
in order to derive constraints on the time dependence of
particle escape as well as on the diffusion coefficient in the

circumstellar region.

The gamma-ray spectrum emitted from a coronal region
outside the SNR between Rsh and 2Rsh is shown in Fig. 5(b),
corresponding to the proton spectrum shown in Fig. 4(b).
The photon emission peaks at Epeak ' 0.1p̂c, where p̂ is the
momentum of particles that at t = TSNR have reached the
external boundary of the corona and, hence, have completely
filled this region. Epeak ranges from ∼ 100 GeV up to tens of
TeV for the chosen values of the parameters.

It is worth stressing that a distinctive signature of the
escape scenario, as presented in this work, is that the break
energy of the spectrum from the SNR interior is tightly con-
nected to the peak energy of the spectrum from the outside
regions. Next-generation gamma-ray instruments, as CTA,
would possibly investigate such connection in middle-aged
SNRs. Nonetheless, a correct evaluation of the instrument
performances requires to account for the spatial extent of
the region under investigation: e.g., a remnant with age
TSNR = 104 yr at a distance d = 1 kpc would cover an
angular area of radius ∼ 0.8 deg, resulting into an even
more extended halo of escaping particles. Because the large
amount of background coincident with such large angular
search window tends to degrade the instrument sensitivity
level (Ambrogi et al. 2018), it is likely that only bright Galac-
tic emitters will show gamma-ray fluxes large enough to ex-
plore both the contribution from inside the shock radius and
that from the closer outer regions.

4.2 The gamma-ray radial profile

The volume-integrated emission is not always the best quan-
tity to compare with the observations if the object under
exam is spatially extended. In this case, precious informa-
tion can be derived from the remnant morphology, especially
from the radial profile of the emissivity. In order to compare
the observed radial profiles with the model predictions, one
has to project the radial emission along the line of sight
l. Under the assumption of spherical symmetry, the spa-
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tial dependence of the gamma-ray emissivity at energy Eγ
can be summarized uniquely through its radial dependence,
S(Eγ, t, r). As a consequence, the projected emission expected
at a distance ρ from the remnant center, namely the surface
brightness Sp(Eγ, t, ρ), can simply computed by integrating
the radial emission along the line of sight, as

Sp(Eγ, t, ρ) = 2
∫ √R2

max−ρ2

0
S(Eγ, t, r =

√
ρ2 + l2)dl (34)

where Rmax defines the radial extension of the region con-
sidered in the projection. Fig. 7 provides an example of
the expected gamma-ray surface brightness profile arising
from pp interactions at different photon energies, namely
at Eγ = 1 TeV and Eγ = 10 TeV, and for different slopes
δ. Here, the instrumental performances are also accounted
for, in that a Gaussian smearing of the angular resolu-
tion is applied to the profile model of Eq. (34). A point
spread function with values of σ(Eγ = 1 TeV) = 0.051◦ and
σ(Eγ = 10 TeV) = 0.037◦ is adopted in the following, as these
represent the performances that next generation of imaging
atmospheric Cherenkov telescopes, as CTA2, are expected
to achieve. A drop of the surface brightness is visible be-
yond the shock position, as expected in the case of shell-like
SNRs. However, the jump strongly depends on the value of
δ, in that it appears that the larger is δ the smaller is the
jump: this is connected with the fact that a faster decrease in
the maximum momentum temporal dependence implies that
even low-energy particles have escaped the shock and popu-
late the region beyond the remnant shell. Moreover, the drop
appears to shrink with increasing photon energy, as parent
particles are able to reach larger distances. As the emission
profile drop ranges from about one to two orders of magni-
tude, it appears likely that the next-generation instruments
will achieve the sensitivity level necessary for detecting such
an emission from outside of the shell of bright emitters.

5 THE CR SPECTRUM INJECTED INTO THE
GALAXY

In the last years, the escape problem has received much at-
tention by several authors (Caprioli et al. 2010; Ohira et al.
2010; Drury 2011; Malkov et al. 2013; Schure & Bell 2014;
Cardillo et al. 2015). However, because this process depends
on several subtleties of the acceleration process, there is not
yet a consensus about what is the most realistic approach
to model it. Ohira et al. (2010) found that the spectrum of
run-away particles during the Sedov stage can be both softer
and harder than that at the acceleration site, depending on
the assumptions for the injection process as well as the spec-
trum of accelerated particles. In particular, under the condi-
tion that the CR acceleration efficiency is constant in time,
they found that a particle spectrum that is accelerated at
the source flatter than E−2 will result in an E−2 escape spec-
trum, whereas a steeper acceleration spectrum will result in
an escape spectrum with equal steepening. This result was
also obtained by Schure & Bell (2014), who clearly formu-
lated it by using a more physically motivated framework
which links the escaping process to the level of magnetic

2 https://www.cta-observatory.org/science/cta-performance/

field amplification, under the same assumption that a fixed
fraction of energy is transferred to CRs. Later Cardillo et al.
(2015) confirmed the result, and discussed its implications in
the context of maximum energy achievable in both type Ia
and type II SNe. A different assumption was considered by
Brose et al. (2019), who used a time-dependent code to com-
pute the accelerated spectrum assuming a constant fraction
of particle injected into the accelerator. In such a case they
obtained a spectrum of escaping particles steeper than p−4

(in the hypothesis that the diffusion coefficient at the shock
is self generated). In this Section, we will calculate the total
particle spectrum released by a single SNR evolving during
the ST phase, according to the modeling developed in § 2.
Since we assumed that for t > tesc particles are completely
decoupled from the SNR evolution, the total density of CR
with momentum p injected into the Galaxy by an individual
SNR is given by the integral of all particles contained inside
the radius of the SNR at the time of escape, i.e.

finj(p) = 4π
∫ Resc(p)

0
r2 fconf (tesc(p), r, p) dr . (35)

In this expression we omitted the contribution due to parti-
cles located in the precursor ahead of the shock. In fact, this
contribution can be neglected if one assumes that the dif-
fusion coefficient inside the precursor is much smaller than
Resc(p)ush(tesc) at all times t < tesc(p).

The confined density function fconf was given in
Eq. (19), where the spatial dependence was hidden in t ′(t, r),
given by Eq. (18). Using also Eq. (2), the following relation
is derived

t ′(tesc, r)
tesc

=

[
r

Resc(p)

]5σ/2
(36)

so that the confined function at the escape time can be ex-
pressed as

fconf(tesc, r, p) = f0(tesc, p) Rα(σ−1)−3
esc

Λ(p)
Λ(pmax,0(t ′))

. (37)

Introducing this expression into Eq. (35), one obtains

finj(p) = 4π f0(tesc(p), p)R3
esc(p)

∫ 1

0
yα(σ−1)−1 Λ(t)

Λ(t ′) dy , (38)

where we recall that Λ(t) is a shortcut for Λ(pmax,0(t)). As
explained in § 2.2, the acceleration spectrum produced at
every time is assumed to scale as a fixed fraction of the
ram pressure (see Eq. (6)), namely f0(p) ∝ u2

esc(p)p−α/Λ(p),
where uesc(p) = ush(tesc(p)). Therefore

finj(p) ∝
u2
esc(p)R3

esc(p)
Λ(p) p−αI(p) , (39)

I(p) being the integral in Eq. (38). Under the assump-
tion that tesc(p) ∝ p−1/δ (see Eq. (9)) and that the rem-
nant is undergoing the ST phase, then Resc(p) ∝ p−2/5δ and
uesc(p) ∝ p3/5δ . Hence, the momentum dependence enclosed
in the term u2

esc(p) perfectly balances that of R3
esc(p), and

the spectrum injected in the Galaxy is simply given by

finj(p) ∝
I(p)
Λ(p) p−α . (40)

Neglecting the dependency on particle momentum provided
by I(p)/Λ(p), one would derive that the the spectrum in-
jected in the Galaxy coincides with the acceleration spec-
trum. But, the inclusion of these additional terms makes
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Figure 7. Radial profile of the (a) 1 TeV and (b) 10 TeV gamma-ray surface brightness projected along the line of sight according to

Eq. (34) with Rmax = 2Rsh(t). Hadronic collisions are considered in a middle-aged SNR located at a distance of d = 1 kpc. The acceleration

spectrum has been fixed with slope α = 4, while the diffusion coefficient is normalized to χ = 0.1. The maximum momentum temporal
dependence has been parametrized according to Eq. (8), with slope δ as labelled. The remaining parameters are given in Tab. 1 for both

panels. The vertical black line represents the shock position. Arbitrary units are adopted for the surface brightness.

the solution more involved. The integral I(p) reduces to a
pure number in both the relativistic and the non-relativistic
limit, but it has a tiny dependence on p for trans-relativistic
energies. Λ(p), on the contrary, reads in the relativistic limit
(p � mpc) as ∝ p4−α

min for α > 4 and ∝ p4−α for α < 4. In

the non-relativistic limit, however, Λ(p) ∝ p5−α
min α > 5 and

∝ p5−α for α < 5, respectively. Given these limits, we derive
that the injected spectrum is, for p � mpc,

finj(p) ∝
{

p−α α > 4

p−4 α < 4 ,
(41)

while for particles with p � mpc it rather holds

finj(p) ∝
{

p−α α > 5

p−5 α < 5 .
(42)

In summary, for particles with p � mpc, we find a result
analogous to what already found by Ohira et al. (2010),
Schure & Bell (2014) and Cardillo et al. (2015), namely: i) if
the acceleration spectrum is steeper than p−4, the spectrum
injected in the Galaxy will show the same steepness, thus
coinciding with the acceleration spectrum; ii) if the accel-
eration spectrum is flatter than p−4, the spectrum injected
in the Galaxy will be a p−4 power law, regardless of the ac-
celeration spectrum. This behavior is shown in Fig. 8 where
we compare p−α/Λ(p) versus p−αI(p)/Λ(p). The inclusion of
the function I(p) does not modify the asymptotic behavior
of finj, as it only shifts the transition towards smaller en-
ergies. Note that, similarly to the implications derived for
the gamma-ray spectrum of an individual SNR, the time-
dependency of ξCR might modify the final spectrum released
in the Galaxy: if ξCR decrease (increase) with time, then the
injected spectrum results harder (softer).

At this point it is worth stressing that the result ob-
tained in Eq. (41) for relativistic energies coincides with past
calculations by Schure & Bell (2013, 2014) and Cardillo et al.
(2015), obtained under the same assumption that a fixed
fraction of the shock energy is transferred to CRs. However,
the definition of escaping particles adopted here is different

Figure 8. Spectrum injected into the Galaxy for three different

cases of acceleration spectrum f0(p) ∝ p−α with α = 4.3, 4.0 and
3.5 (solid lines from top to bottom). The corresponding dashed

lines show the approximate solution given by p−α/Λ(p) for the
same values of α. The maximum momentum temporal dependence

has been parametrized according to Eq. (8), with slope δ = 3.

from what has been assumed in the cited works. In fact, in
Schure & Bell (2013, 2014) and Cardillo et al. (2015), the
escaping spectrum at time t is modeled as a δ-function in en-
ergy which carries a fixed fraction of the kinetic energy that
the shock has at the same moment t, namely Eesc ∝ ρ0u2

sh
(t).

On the contrary, in the model presented here, the escaping
flux at each fixed time t includes particles that have been
accelerated in the past when the shock speed was faster than
ush(t), and have also suffered adiabatic losses. In other words,
the energy carried by the particles escaping at time t is not
a fixed fraction of ρ0u2

sh
(t). The definition used by Schure &

Bell (2013, 2014) and Cardillo et al. (2015) is probably more
suitable to describe the escape process during the initial
phase of the remnant life. Nonetheless, the results obtained
in the relativistic regime are consistent with each other.

The result for non-relativistic energies, as expressed in
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Figure 9. Spectrum injected into the Galaxy for δ = 3 and α =

4.3, 4.0 and 3.5 (from top to bottom) with an increasing maximum
energy during the free expansion phase. Dashed lines show the

result when the acceleration is stopped at t = 50tSed and particles

still inside the SNR are instantaneously released.

Eq. (42), predicts a spectral steepening for p � mpc if α < 5.
This result is at odd with the observed CR spectrum (Cum-
mings et al. 2016), where a hardening is rather observed.
The disagreement is not surprising, in that two strong as-
sumptions were set, which likely are not realized in reality:
i) the shock keeps accelerating particles always maintaining
the same efficiency, and ii) the remnant evolution proceeds
all the way through the ST stage.

A consistent description of the particle spectrum in-
jected in the Galaxy requires to account for the moment
when the shock stops accelerating particles. Such a condition
could be fulfilled when the SNR transits towards the snow-
plough phase or even before it, e.g. if the shock impacts on
a neutral cloud where the ion-neutral friction destroys the
magnetic turbulence, making it impossible for particles to
keep diffusing around the shock.

In any case, the end of the acceleration could produce
some kind of signature in the injected spectrum. We recall
that the observed CR spectrum is a straight power-law in
momentum down to ∼ few GeV, where a hardening is ob-
served, but it is usually attributed to Galactic propagation
effects, rather than processes occurring at the accelerator.
Another interesting feature has been identified in the Voy-
ager 1 data (Cummings et al. 2016), where a hardening of
the spectrum is observed at E . 200 MeV. Such a harden-
ing cannot be explained only through ionization losses in the
ISM, but it is rather the slope of the injection spectrum that
has to be range from p−4.3 to ∼ p−3.75 respectively for pro-
tons and Helium (with heavier elements showing a harder
trend) (Tatischeff & Gabici 2018).

Given the complex phenomenology of observations, it
is worth investigating more in details the effect of the end
of the acceleration mechanism on the particle spectrum in-
jected in the Galaxy. To this purpose, we will calculate the
spectrum produced by a SNR assuming that the accelera-
tion suddenly stops at the beginning of the snowplow phase,
which is reached at a time tsp when the temperature of the

shocked gas drops below 106 K. For the parameter values
assumed in Tab. 1, this condition is realized when ush . 200

km s−1, corresponding to an age of tsp = 47 kyr. The resulting
finj is shown in Fig. 9 and compared with the case of end-
less acceleration (solid lines). Three possible values of α are
assumed, while δ is fixed to 3. When the acceleration stops,
all those particles still located inside the SNR (namely with
p < pmax,0(tsp) ' 40 GeV/c) are instantaneously released
into the ISM without suffering further adiabatic losses. As
a consequence, the spectrum below 40 GeV/c is ∝ p−α and,
interestingly, if α < 4 a break appears right at this energy,
while for α > 4 the final spectrum does not show any feature.
The case α = 4 is somewhat border line, because the slope
at high energies is slightly steeper than 4 (i.e. ∼ 4.1) and a
small spectral break is still visible.

In summary, the spectrum injected into the Galaxy is
a featureless power law under two conditions: i) the accel-
eration spectrum has to be steeper than p−4, and ii) the
acceleration should stop when the maximum energy is still
in the relativistic domain. The latter condition also trans-
lates into an upper bound for δ which, for the parameter
values adopted here, has to be . 4.

A final comment concerns the cut-off present in the
spectra shown in Fig. 9. Such a cut-off is not due to the
shock acceleration process, which we assumed to produce a
straight power law up to its maximum momentum, but is
rather due to the increase of the maximum energy for times
smaller than tSed (see Eq. (8)). In Fig. 8, on the contrary,
the cut-off is absent because we assumed that the relation
pmax,0 ∝ t−δ holds even for t ≤ tSed to better show the asymp-
totical behavior of the spectra.

6 DISCUSSION AND CONCLUSIONS

The deviation observed in the HE and VHE gamma-ray
spectra of SNRs, particularly in middle-aged ones, with re-
spect to the simple spectral shape predicted by the DSA
theory, might possibly be connected to the particle escape
from the shock region. The escape process of particles ac-
celerated at SNR shocks remains one of the less understood
pieces of the shock acceleration theory. As a consequence,
this aspect is often neglected, though it represents a funda-
mental part of the process, needed to explain the CR spec-
trum observed at Earth. In this paper, we presented a phe-
nomenological model for the description of particle escape
from a SNR shock aimed at evaluating the effects produced
by the escape process on the spectrum of particles contained
in the remnant and those located immediately outside of the
shock region. In particular, when particles are not confined
any more by the shock, they start to freely diffuse in the
CSM, eventually escaping the accelerator. Within the as-
sumption that the particle diffusion in the region outside
of the remnants is suppressed with respect to the average
Galactic diffusion, the escape process is not instantaneous
and a relevant fraction of high-energy particles can still be
located inside the SNR or close to it even once they are
not confined anymore by the shock turbulence, producing
diffuse gamma-ray halos around the remnant. Note that a
one-dimensional anisotropic diffusion model could mimic the
effect of a suppression of the diffusion coefficient (see, e.g.,
Nava & Gabici 2013) and perhaps the spectral break dis-
cussed in this paper could result even without requiring a
strong suppression of the external diffusion.
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The escape process has at least two important conse-
quences on the gamma-ray emission: i) the spectrum from
the SNR interior observed at a fixed time presents a steep-
ening above the maximum energy of particles accelerated
at that time, and ii) the spectrum emitted from the halo
around the remnant shows a low-energy cut-off at the en-
ergy corresponding to that of the escaping particles at the
remnant age. While the second aspect could be tested with
future gamma-ray telescopes (for instance CTA), the former
could have already been detected.

In fact, several SNRs show a spectral break in the
gamma-ray spectrum. This founding has been summarized
in a recent paper by Zeng et al. (2019), who showed that the
majority of SNRs in a sample of ∼ 30 objects presents ev-
idence for a spectral break. Interestingly, the energy break
decreases with increasing age, ranging from ∼ 10 TeV for
younger SNRs (age of ∼ 103 yr) down to few GeV at ages of
few 104 yr. This result is in agreement with our interpreta-
tion of the energy break as due to the escape process where
the maximum energy decreases like Emax ∝ t−δ with δ be-
tween 2 and 3. Note, however, that the result found by Zeng
et al. (2019) should be taken as indicative, in that in order
to derive a more reliable constraint a careful analysis object-
by-object is needed to account for the correct evolutionary
stage as well as a possible role of leptonic contribution. To
this extent, in a forthcoming paper we will apply our model
to some selected cases of middle-aged SNRs, in order to de-
rive constraints on both the particle escape process and the
diffusion coefficient in the circumstellar region of each spe-
cific remnant.

Finally, the total CR spectrum injected into the Galaxy
by an individual SNR, evolving in the ST phase, has been
computed. For an acceleration spectrum ∝ p−α, under the as-
sumption that a fixed fraction of the shock kinetic energy is
converted into accelerated particles at every time, the spec-
trum injected into the Galaxy by a single SNR turns out to
be: i) at p � mpc, finj(p) ∝ p−4 if α < 4 or finj(p) ∝ p−α

if α > 4, and ii) at p � mpc, finj(p) ∝ p−5 if α < 5 and
finj(p) ∝ p−α if α > 5. This result is independent on the
temporal behavior of the maximum energy at the shock,
but it relies on the assumption that the acceleration never
stops and that the SNR always evolves in the ST phase. Fur-
thermore, we also showed that the final injected spectrum
can be a straight power law in momentum if the acceleration
stops before the remnant enters the snowplough phase and
if the slope is α > 4. If these two conditions are not fulfilled,
in general a spectral change at lower energy is expected.
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APPENDIX A: THEORETICAL ESTIMATE OF
δ

The temporal dependence of the maximum momentum as
described in Eq. (8) can be estimated from a simple theoret-
ical argument which is often used to estimate the maximum
energy in the test-particle DSA, namely by equating the ac-
celeration time with the age of the remnant TSNR = tacc(p).
Using tacc(p) = D(p)/u2

sh for the acceleration time and writing
the diffusion coefficient in terms of the magnetic turbulence,
D = DBF −1, where DB = pc/(3B0) is the Bohm diffusion
coefficient (B0 being the regular background magnetic field)
and F is the turbulent magnetic energy density per unit log-
arithmic bandwidth of waves (normalized to the background
magnetic energy density), we can write:

pmax,0(t) ∝ F (t) u2
sh(t) t . (A1)

If there is no magnetic field amplification, the diffusion is de-
termined by the pre-existing magnetic turbulence which is
stationary. As a consequence the time dependence is only de-
termined by the shock speed which evolves ∝ t−3/5 in the ST
phase, resulting in pmax,0(t) ∝ t−1/5. Such a result represents
a minimum value for δ, that applies when neither amplifica-
tion nor damping of magnetic turbulence are taking place.
Conversely, if the turbulence is amplified, a steeper time de-
pendence is expected. In the case of resonant streaming in-
stability, for instance, F ∝ PCR ∝ u2

sh, hence pmax,0(t) ∝ t−7/5.
A similar result holds even in the case of non-resonant insta-
bility, which, according to Bell et al. (2013), gives F ∝ u2

sh.
Note, however, that in previous works (Bell 2004) it is ar-
gued that tension in the field lines limits amplification when
∇ ×B ∼ µ0 jCR, which results in a saturated turbulence with
F ∝ u3

sh, leading to δ = 2 from Eq. (A1). In addition, if
any magnetic damping mechanism is effective in the shock
region, like MHD cascade or ion-neutral friction, an even
larger value of δ is foreseen.

APPENDIX B: ANALYTICAL SOLUTION OF
DIFFUSIVE TRANSPORT EQUATION
WITHOUT ADVECTION

If the diffusion coefficient is constant in space, Eq. (22) can
be reduced to a one-dimensional cartesian problem for the
function g = r fesc, namely

∂g(t, r, p)
∂t

= D(p) ∂
2g(t, r, p)
∂r2 , (B1)

with the boundary condition g(t, r = 0, p) = 0 and the initial
condition g(t = 0, r, p) = r fconf(tesc(p), r, p) ≡ r fconf,0(r, p). In
the following we drop the dependence on p. Now we can use
the Laplace transform, G(s, r) =

∫ ∞
0 e−stg(t, r)dt, to rewrite

Eq. (B1) as an ordinary second order differential equation,
i.e.

∂2G(s, r)
∂r2 =

s
D
G(s, r) −

r fconf,0(r)
D

, (B2)

with the boundary conditions G(s, 0) = G(s,∞) = 0. Because
of the boundary conditions, the solution of the associate ho-
mogeneous equation is identically zero while the particular
solution can be found using standard techniques, by solving:

G(s, r) = e−ωr
∫ r

0
dr ′e2ωr′

∫ ∞
r′

dr ′′
r ′′ fconf,0(r ′′)

D
e−ωr′′ , (B3)

where ω =
√

s/D. The radial dependence of the confined
density function is provided in Eq. (19), as it is enclosed
in t ′(t, r). Three different situations have been explored in
§ 2.5, namely:

i) α = 4, σ = 4 =⇒ fconf,0(r) = const (see Eq. 19):

G(s, r) =
fconf,0

s

[
Me(M−r)ω − 1 + ωR

2ω

(
e(2M−R−r)ω − e−(R+r)ω

)]
,

(B4)

where R ≡ Resc(p) and M = min(r, R). Performing the inverse
Laplace transform of the latter expression, we finally get

fesc(t, r) = g(t, r) r−1 = (B5)

=
fconf,0

r

{
M

(
Erfc

[
r − M

Rd

]
− 1

)
+

+
Rd

2
√
π

(
e
−
(
r+R
Rd

)2

− e
−
(
r+R−2M

Rd

)2 )
+

+
r + R

2
Erf

[
r + R

Rd

]
− (r + R − 2M)

2
Erf

[
r + R − 2M

Rd

]
+

+
R
2

Erfc
[
r + R

Rd

]
− R

2
Erfc

[
r + R − 2M

Rd

]}
.

With a little algebra, the above solution can be simplified
giving the expression in Eq. (25), valid for both r < R and
r > R.

ii) α = 4 + 1/3, σ = 4 =⇒ fconf,0(r) ∝ r (see Eq. 19):

G(s, r)
k(tesc)

=
1

ω3D
e−ωr

[
− 2
ω
+ eωM

(
2
ω
+ ωM2

)
+

+e2ωM

(
− 1
ω
− ω

2
R2 − R

)]
,

(B6)
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and the inverse Laplace transform yields

r fesc(t, r)
k(tesc)

= 2M2 − 2Mr +
Rd√
π

re
− r2

R2
d + (M − r)e

− (M−r )
2

R2
d

 +
+

Rd√
π
(r − 2M + R)e

− (r−2M+R)2

R2
d

[
1
2
− R
|r − 2M + R|

]
+

+ (r2 +
R2
d

2
)Erf

[
r

Rd

]
+

Rd

2
√
π
(R − r)e

− (r+R)
2

R2
d +

+ (2M2 − 2Mr + r2 +
R2
d

2
)Erf

[
M − r

Rd

]
+

+
1
2
(r2 +

R2
d

2
)Erfc

[
r + R

Rd

]
− 1

2(r − 2M + R)×

×
(
4M2 + r2 + 2rR + R2 − 4M(r + R) +

R2
d

2

)
×

×
(
|2M − r − R| − (2M − r − R)Erf

[
2M − r − R

Rd

] )
+

+ RErfc

[
|r − 2M + R|

Rd

] (
1 − R

2
1

|r − 2M + R|

)
×

× (r − 2M + R) ,
(B7)

which can be also formulated as in Eq. (26).

iii) for the precursor fconf,0(r) ∝ δ(r − Rsh) (see Eq. 29):

G(s, r) = f0(p, tesc)
Dp(p)
D(p)

R
ush(tesc)

1
2ω

e−ω(r+R)(e2ωM − 1) ,

(B8)

and finally its inverse Laplace transform reads as

fesc(t, r) =
f0(p, tesc)√

π

R
Rd

Dp(p)
ush(tesc)r

[
exp−(

r+R−2M
Rd

)2 − exp−(
r+R
Rd
)2
]
,

(B9)

which is identical to the expression reported in Eq. (30).

APPENDIX C: SELF-GENERATED
TURBULENCE

At this point it is worth discussing in more details the value
of the diffusion coefficient expected to be operating outside
of the sources. The assumption that the diffusion coefficient
in the region around an SNR should be the same as the
average Galactic one, as derived from direct measurement
of secondary/primary CR ratios (Maurin et al. 2014), does
not have a strong justification. Indeed, the latter one mainly
measures the diffusion as it occurs in the Galactic magnetic
halo whose transport properties can be remarkably different
from the regions around SNRs. On the other hand, it is easy
to imagine mechanisms able to enhance the magnetic turbu-
lence around an SNR, especially when it originates from a
core-collapse (CC) explosion. First of all, the circumstellar
environment can be modified by the pressurized bubble pro-
duced by the progenitor wind. In addition, many CC-SNRs

Table C1. Escape times for particles of different momentum from
a SNR evolving according to the benchmark values in Tab. 1. The

parametrization of escape time adopted here follows Eq. (9), with
δ = 3.

p (GeV/c) tesc (yr)

10 7.4 × 104

102 3.4 × 104

103 1.6 × 104

104 7.4 × 103

105 3.4 × 103

explode in OB associations, where frequent SN explosions,
as well as winds from massive stars, can easily enhance the
local magnetic turbulence in a region of tens of parsecs, re-
sulting in a suppressed diffusion coefficient.

Beyond those mechanisms, also instabilities produced
by run-away CRs can amplify the magnetic turbulence,
suppressing the diffusion coefficient by orders of magni-
tudes. In particular, the role of resonant instability produced
by escaping particles has been studied by several authors
(Ptuskin et al. 2008; Yan et al. 2012; Malkov et al. 2013;
Evoli et al. 2018; Nava et al. 2019), showing that a suppres-
sion by one to two orders of magnitude is possibly achieved in
the energy range below ∼ 1 TeV, inside a region up to tens of
parsecs from the SNR. Nevertheless, in the case that a large
fraction of neutral Hydrogen is populating the CSM, the am-
plification effect can be reduced by the ion-neutral friction
(Kulsrud & Pearce 1969) resulting in a much smaller level
of turbulence as shown by Nava et al. (2016) and D’Angelo
et al. (2018). A close comparison between those results and
our findings is not obvious, mainly because, their recipes for
particle escape is different from ours. Moreover, our model
is spherically symmetric, while they both assume a diffusion
along a one dimensional flux tube. Nevertheless, we can use
the spatial CR gradient obtained with a given assumption
on Dout to estimate a posteriori the level of self-generated
turbulence due to streaming instability. Such a procedure is
very similar to the one already used by Yan et al. (2012).
Even if such a calculation is not a self-consistent one, it can
show whether or not the streaming instability can be respon-
sible for the reduction of Dout. It is worth stressing that one
should account for the duration of the wave amplification
process: on a general ground, one can expect that a suppres-
sion of the diffusion coefficient with respect to the average
Galactic value is achieved within few escape times, but later
on, when the CR density diminishes, also the amplification
of the magnetic turbulence fades. In order to facilitate the
comparison among the remnant age and the escape time
of particles at different energy, we report in Tab. C1 the
expected escape time, computed according to Eq. (9) and
benchmark values reported in Tab. 1.

In order to estimate the level of self-generated turbu-
lence, we need to compare the amplification rate by reso-
nant streaming instability with the damping rate of Alfvén
waves. The amplification rate of waves with wavenumber k
in resonance with particles of Larmor radius rL as due to
streaming instability is (Skilling 1971)

ΓCR(k) =
16π2

3
vA

B2
0F (k)

[
p4v(p) ∂ f

∂r

]
p=pres

, (C1)
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where B0 is the intensity of the background magnetic field
and vA = B0/

√
4πnimi is the Alfvén speed (mi and ni being

respectively the mass and density of the ions in the CSM).
Here, F (k) is the normalized energy density of magnetic
turbulence per unit logarithmic wavenumber k, calculated
at the resonant wavenumber kres = 1/rL(pres). An useful
way to write F (k) is by using the Bohm diffusion coefficient,
F (k) = DB/D̂, where D̂ is the self-generated diffusion
coefficient.

Concerning the damping mechanisms in a completely
ionized plasma, several processes might affect the propa-
gation of magnetic waves, as turbulent cascading, wave-
particle interactions (e.g. non-linear Landau damping (Kul-
srud 1978)) and wave-wave interactions (e.g. the interaction
among self-generated waves and background turbulent per-
turbations (Farmer & Goldreich 2004; Lazarian 2016)). For
the sake of simplicity, we will limit the following analysis to
the cascade damping, namely the Kolmogorov-type energy
cascade towards large wavenumbers. As a consequence, the
resulting turbulence should be considered as a rough esti-
mate of that actually developing in the plasma. Within the
cascade process, the damping of Alfvénic waves occurs non-
linearly (NLD) at a rate (Ptuskin & Zirakashvili 2003)

ΓNLD(k) = (2ck )−3/2 kvA
√
F (k) , (C2)

where ck = 3.6 is called Kolmogorov constant. Now, by
equating ΓCR with ΓNLD one gets

F (k) = DB

D̂
= 2ck

[
16
3
π2

B2
0

(
p4v(p) ∂ fesc

∂r

)
p=pres

rL

]2/3

. (C3)

Assuming the same benchmark values for the parameters
as in Tab. 1 with a background magnetic field B0 ' 3 µG
and α = 4, we calculated the ratio Dout/D̂ for χ = 0.1 and
χ = 0.01. Results are shown in the top panel of Fig. C1. As
visible, in both cases, the level of self-generated turbulence
is such that D̂ . Dout for pc . 100 TeV in a region of few
times the size of the SNR. On the other hand, the timescale
to excite the instability, reported in the bottom panel of
the same Figure, is smaller, or comparable, to the SNR age
only for energy lower than ∼ 10 TeV. As a consequence,
below such energy the resonant streaming instability is able
to reduce the diffusion coefficient, but only in a spatial region
close to the SNR radius.

Figure C1. Top: spatial dependence of self-generated diffusion
coefficient D̂(p, r) divided by Dout(p) for χ = 0.1 (thin lines) and

χ = 0.01 (thick lines), calculated by setting an acceleration spec-

trum with slope α = 4 for the benchmark parameter values re-
ported in Tab. 1. The parametrization of escape time adopted

here follows Eq. (9), with δ = 3. The three sets of lines corre-

spond to three different particle energies: 5 TeV (solid), 10 TeV
(dashed) and 100 TeV (dot-dashed). Bottom: corresponding exci-

tation time for the streaming instability in unit of SNR age (104

yr) and for the same energy values as the left panel.
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