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New blazar candidates from the 9Y-MST catalogue
detected at energies higher than 10 GeV

R. Campana • E. Massaro

Abstract We present a list of 24 new blazar candidates
selected in a search for possible counterparts of spatial
clusters of γ-ray photons in the recent 9Y-MST cata-
logue, at energies higher than 10 GeV and at Galactic
latitudes higher than 20◦. 13 of these clusters are also
included the preliminary release of the 4FGL catalogue
of γ-ray sources. The search for possible counterparts
is based on the possible associations of the clusters with
radio sources within a circle having a radius of 6′. We
then investigated the possible optical or mid-IR asso-
ciations of these sources, checking if they show some
properties typical of new blazar candidates.

Keywords γ-rays: observations – γ-rays: source de-
tection

1 Introduction

The use of spatial clustering algorithms in the γ-ray
sky allows to extract photon concentrations out of the
diffuse background, which can be then associated with
high energy cosmic sources. The multiwavelength anal-
ysis of the fields surrounding these photon clusters is
useful to identify new sources that were missed in other
surveys based on different selection criteria.

In a previous paper, we used the Minimum Span-
ning Tree (hereafter MST, Campana et al. 2008, 2013)
method to produce a new catalogue of 1342 photon clus-
ters, at Galactic latitudes |b| > 20◦ in the Fermi -Large
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Area Telescope (LAT) dataset above 10 GeV and cov-

ering a 9 years time interval from the beginning of the

mission (9Y-MST, Campana et al. 2018). The large

majority of them correspond to sources already de-

tected in previous searches, and generally were found

to be closely associated with known BL Lac objects,

Flat Spectrum Radio Quasars (FSRQ) and other Ac-

tive Galactic Nuclei (AGN).

The 9Y-MST includes also 249 clusters without

any correspondence with previously known high energy

sources. As discussed in Campana et al. (2018) it is

possible that a fraction of these unassociated photon

clusters may be spurious, i.e. random fluctuations in

the photon density, not related to any physical coun-

terpart. However, many of these clusters were found

having characteristic parameters quite close to those of

the associated ones and therefore they may be actually

related to cosmic sources not yet studied and classified.

We searched for possible counterparts and obtained a

sample of 24 spatial clusters of photons whose centroids

have an angular separation from radio sources com-

parable to those found for clusters already associated

with optical/IR objects exhibiting properties typical of

blazars. In a series of papers (Bernieri et al. 2013; Cam-

pana et al. 2015, 2016a,b,c, 2017) we described the re-

sults of similar searches of possible new blazar counter-

parts of γ-ray clusters found by means of MST, which

were, with a very few exceptions, confirmed by subse-

quent analyses.

In February 2019 the Fermi-LAT collaboration re-

leased a preliminary version of the 4FGL catalogue

(The Fermi-LAT collaboration 2019), including 5098

γ-ray sources and reporting confirmed and candidate

counterparts. In our selected sample of photon clus-

ters, there are 13 out of 24 that correspond to 4FGL

sources. Although they can be considered as bona fide

γ-ray sources, we mantained them in the sample to al-
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low for a comparison of their observational properties

with respect to other candidate sources.

The outline of this paper is as follows. In Section 2

and 3 we describe the criteria adopted for selecting the

counterparts and present the resulting sample of new

blazar candidates, in Section 4 the main properties of

individual sources are given and in Section 5 the results

are summarized and discussed.

2 Cluster parameters and counterpart

selection criteria

For the preparation of the 9Y-MST catalogue we con-

sidered LAT data (Pass 8R2) above 10 GeV, covering

the whole sky in the 9 years time range from the start

of mission (2008 August 04) up to 2017 August 04, were

downloaded from the FSSC archive1. Standard cuts on

the zenith angle, data quality and good time intervals

were applied.

MST application and cluster selection criteria are de-

scribed in the 9Y-MST paper (Campana et al. 2018),

and therefore we describe here only the cluster parame-

ters useful for source association and the search of possi-

ble counterparts. MST starts from considering the pho-

ton arrival directions in a given field as points (nodes)

in a 2-D reference frame, and constructs a particular

graph, the minimum spanning tree, connecting them

with weighted edges. The edge weight is the angular

distance between a pair of photon. Then, all the edges

with a length below a threshold Λcut (expressed as a

fraction of Λm, i.e. the average of all the edge lengths

in the whole graph) are removed, as well as the remain-

ing sub-trees with a number of nodes below a threshold

Ncut. We refer to Campana et al. (2008, 2013) for de-

tails.

The main parameters of a cluster are its photon num-

ber n and the clustering factor g. The latter is defined

as the ratio between the mean photon distance in the

whole field Λm to the mean distance in the cluster it-

self (Λm,k, i.e. the average of all the edge lengths in

the specific k-th sub-tree). This is a measure of the

“clumpiness” of the cluster in consideration. The de-

rived parameter M , the so called magnitude (Campana

et al. 2013), is defined as the product M = ng and

was found to be related to the statistical significance of

clusters.

Another parameter is the cluster centroid whose co-

ordinates are computed as a weighted mean of the co-

ordinates of the photons in the cluster. According to

Campana et al. (2013), applying as a weight the inverse

1http://fermi.gsfc.nasa.gov/ssc/data/access/

of the square of the distance to the closest photon, it

results a better agreement with the positions given by

maximum likelihood (ML, Mattox et al. 1996) analysis.

However, in the case of clusters with a low number of

photons the weighted centroid may be biased if in the

cluster there is a pair of photons much closer than the

others: the centroid will be then located very close to

this pair and the use of the unweighted mean can be

more reliable.

Two other useful parameters are the maximum ra-

dius Rmax, defined as the angular distance between the

centroid and the farthest photon, that gives information

on the overall extension of the cluster, and the mean ra-

dius Rm, the radius of the circle centred at the centroid

and containing 50% of photons in the cluster, that for a

point-like source should be smaller than or comparable

to the 68% containment radius of instrumental Point

Spread Function (PSF, see Ackermann et al. 2013).

The search for possible counterparts of unassociated

clusters was aimed to select a sample of objects exhibit-

ing one or more interesting properties to be considered

blazar candidates. On the basis of a positional match-

ing between the 9Y-MST and the 3FHL (Ajello et al.

2017) catalogues, Campana et al. (2018) found that

more than 99% of associations are within an angular

separation δ < 6′, computed using the cluster centroid

and the 3FHL coordinates, and this figure was used for

searching other associations with lists of known blazars

or candidates. In the present work we adopted the same

criterion and defined a search region having a radius of

6′ within to select new candidates.

Our first step was to extract from the NVSS2 (1.4

GHz) and SUMSS213 (0.835 GHz) catalogues — which

together cover the entire sky — all the radio sources

found in the searching region, to investigate if at least

one of them would exhibit typical blazar features. For

the association we used also the more severe positional

criterion δ < Rmax. However, in the case of low g clus-

ters this choice could be problematic because Rmax may

have large variations depending on the selection param-

eters. A more detailed analysis of the cluster structure

was therefore performed to obtain a good association.

We also extended the search for data to optical and

X-ray bands in order to verify whether radio counter-

parts might be associated with sources exhibiting some

blazar properties. We thus obtained a sample of 24

γ-ray clusters that is listed in Table 1 together with

the coordinates and names of selected candidate coun-

terparts. In the next Section 4 the properties of these

candidates are presented individually.

2https://www.cv.nrao.edu/nvss/

3http://www.astrop.physics.usyd.edu.au/sumsscat/

http://fermi.gsfc.nasa.gov/ssc/data/access/
https://www.cv.nrao.edu/nvss/
http://www.astrop.physics.usyd.edu.au/sumsscat/
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3 WISE colours

After the selection of radio candidates, we searched for

possible optical and mid-IR (AllWISE catalogue, Cutri

et al. 2013) counterparts having coordinates within

their uncertainty radii, typically few arcseconds, and

tested if their photometric data are compatible with a

blazar nature. More specifically, a very useful test is

to check if the mid-IR colours are located within the

WISE Gamma-ray Strip according to the definition of

Massaro and D’Abrusco (2016).

We obtained three-band infrared photometric data

from the AllWISE catalogue: for 18 out of 24 clus-

ter candidate counterparts in the three bandpasses W1

[3.4 µm], W2 [4.6 µm] and W3 [12 µm], while in the

lowest frequency band W4 [22 µm] photometric data

is available only for five of these sources. The re-

maining 6 sources were detected only in the W1 and

W2 bands and therefore only one colour is available.

Note also that the uncertainty of the W3 magnitude of

SDSS J174402.91+463740.7 is not given in the VIZIER

database, and therefore the reported magnitude should

be considered as an upper limit. We computed the

W1−W2 and W2−W3 colours without reddening cor-

rection, since all the considered sources have a Galactic

latitude higher than 20◦. In any case, its largest effect

on the colours is of only a few hundredths of magnitude,

quite lower than typical uncertainties. The resulting

two WISE colour plot that is shown in Figure 1. In this

plane γ-ray blazars are essentially concentrated within

the two coloured areas, defined in the figures reported

in Massaro et al. (2013), D’Abrusco et al. (2014), and

Massaro and D’Abrusco (2016): BL Lac objects are

mainly concentrated in the blue area, while FSRQ are

mostly found in the red one. In their data there is no

definite boundary between BL Lac and FSRQ regions,

and the given separation is only indicative. All our

candidates have colours matching very well the BL Lac

region. Note, in particular, the very close similarity be-

tween our plot and the one given in Figure 2 of Massaro

et al. (2013).

Recently, two new catalogues of blazar candidates

has been published (D’Abrusco et al. 2019) based on

WISE infrared data. WIBRaLS2 contains sources with

4-band photometric data, spatially matched to radio-

loud sources, while KDEBLLACS collects radio-loud

sources with 3-band WISE data only, with mid-infrared

colors similar to γ-ray confirmed BL Lacs. Association

of some of the clusters on our selected samples to those

two catalogues are discussed in the following Section.
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Fig. 1 Plot of the infrared colours of 18 new candi-
date blazars with data from the AllWISE catalogue. The
shaded regions define the WISE Blazar locus (Massaro and
D’Abrusco 2016) in which γ-ray loud blazars are present.
The blue-shaded region represents the locus where there is
a concentration of BL Lac objects, while the red-shaded re-
gion correspond to FSRQ objects.

4 Properties of counterparts to individual
clusters

4.1 9Y-MST J0013−3222

There are three NVSS radio sources, two of them are
also in SUMSS21, within 6′. The brightest, at the clos-
est angular distance to the γ-ray postion equal to 2.′71,
is NVSS J001339−322445. It is associated with the X-
ray counterpart 1RXS J001338.8−322442.

The ESO DSS4 R-band image (Figure 2) is rather
peculiar, showing two knots, or galactic nuclei, about
12′′ apart, of similar brightness embedded in an elon-
gated nebular structure. A fainter weaker knot is in
the middle the main two. The nebular structure has an
extended straight feature, aligned in the same direction
of the line connecting the knots, resembling a faint jet.

2dF5 spectra of both knots are available: the spec-
trum of quality Q = 4 is typical of an elliptical galaxy
without emission lines and a rather low Ca H+K break
ratio; the reported redshift is z = 0.2598. The radio
spectrum is clearly steep at low frequencies: the spec-
tral index from SUMSS21 (0.843 GHz) and NVSS (1.4

4http://archive.eso.org/dss/dss

5http://www.2dfgrs.net

http://archive.eso.org/dss/dss
http://www.2dfgrs.net
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Fig. 2 ESO DSS R-band image of the field surrounding
NVSS J001339−322445 (white cross).

GHz) is equal to −1.2, rather close to the value of −1.0

reported at frequencies between 72 and 231 MHz in the

GLEAM EGC catalogue (Hurley-Walker et al. 2017)

However, there is an indication of a flattening at high

frequencies since between 1.4 and 4.85 GHz the spectral

index is −0.34.

This source is also present in the ROXA sample (Tur-

riziani et al. 2007) and its classification is uncertain Ra-

dio Galaxy or BL Lac object.

4.2 9Y-MST J0024+2401

This cluster has a well established correspondence

at a distance of 0.′8 with the γ-ray source 4FGL

J0024.1+2402, for which no possible counterpart is re-

ported.

There are a few nearby NVSS sources, but the clos-

est and brightest is at 2.′97 and has the interesting op-

tical counterpart SDSS J002406.10+240438.3: its spec-

trum (Figure 3) has some features detected by the au-

tomatic SDSS procedure with an estimated z = 0.151,

however with small significance (low ∆χ2). It ap-

pears as a featureless flat continuum with a blue ex-

cess with respect to the typical spectrum of an ellip-

tical galaxy. Furthermore, it corresponds to the mid-

IR source AllWISE J002406.10+240438.6, having the

colours W1 −W2 = 0.87 and W2 −W3 = 2.22, close

to the centre of the WISE Gamma-ray Strip (Massaro

and D’Abrusco 2016) and it is included in the KDE-

BLLACS sample (D’Abrusco et al. 2019).

The association with a new BL Lac object can be

considered as a robust result.
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Fig. 3 Sloan Digital Sky Survey optical spectrum (plate
no. 7661, fiber no. 398) of SDSS J002406.10+240438.3.
Vertical blue segments mark the position of possible Balmer
emission lines found by the SDSS automatic analysis.

4.3 9Y-MST J0122+1033

There is only one NVSS source within a distance of 6′,

that has a very likely optical counterpart in SDSS, a

starlike source, but unfortunately no spectrum is avail-

able. The colour u − r = 0.63 is, however, rather blue

and well compatible with a quasar. Richards et al.

(2015) and Brescia et al. (2015) included this object in

their catalogues of candidate quasars, the former also

based on the mid-IR WISE data (Cutri et al. 2013).

It is therefore a likely blazar candidate, but more

information is necessary to confirm the nature of this

object.

4.4 9Y-MST J0127+1737

This is a “poor” cluster, having only 4 photons, but

with a quite high g that implies a significant M value.

There is only one rather faint NVSS radio source within

a distance of 6′. At about 5′′, compatible with the

NVSS positional uncertainty, there is a possible faint

counterpart in SDSS with u − r = 0.64, but no spec-

trum is available. This source has an interesting mid-

IR counterpart in the WISE sky with the colours

W1−W2 = 0.78 and W2−W3 = 2.35 placing it in the

middle of the Gamma-ray blazar strip (Massaro and

D’Abrusco 2016) in the BL Lac object section and and

satisfying the criteria for inclusion in the KDEBLLACS

sample (D’Abrusco et al. 2019).

It is reported in the quasar candidate lists by Brescia

et al. (2015) and Richards et al. (2015), who give a

photometric redshift estimate around 0.5.
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It is therefore a good High Energy Peaked BL Lac

(HBL) candidate at high redshift which must be con-

firmed by spectral data.

4.5 9Y-MST J0143−0122

There are several radio sources within a distance of 6′

and therefore the possibility of a multiple association

cannot be excluded. The brightest radio source is NVSS

J014317−011858, also reported as PKS J0143−0119

and 4C −01.09. It appears in NVSS but results frag-

mented in several components of different brightness in

FIRST. VLA images (Reid et al. 1999; Roberts et al.

2015) have a core-jet structure with some central bright

knots and the peak at extreme west was associated with

the optical counterpart by Lacy (2000), a faint object at

z = 0.5194, confirmed by a SDSS spectrum and exhibit-

ing several broad emission lines (Figure 4). As noticed

by Roberts et al. (2015), the nature of this object is still

unclear. In particular, it is not established whether it

has or not a flat spectrum component embedded in a

steep spectrum extended emission. An indication for

this possibility is provided by the NRAO VLBA6 cali-

bration data and images at 2.3 and 8.6 GHz having only

a single compact component with a possibly inverted

spectrum. The search in the AllWISE catalogue gives a

poorly resolved source J014316.73−011900.6 with mid-

IR colours W1−W2 = 0.61 and W2−W3 = 2.38 well

located in the BL Lac section of the WISE Gamma-ray

Strip (Massaro and D’Abrusco 2016).

For the sake of completeness we mention the presence

at 6.′6 of another blazar candidate, the source 2WHSP

J014347.1−01260, located just outside the Rmax circle,

which has an AllWISE counterpart with only the W1−
W2 = 0.18 that places it in a marginal position of the

WISE strip.

4.6 9Y-MST J0202+2942

This cluster corresponds to 4FGL J0202.4+2943, but

no counterpart is given. There is only one NVSS ra-

dio source in its environment which has a clear opti-

cal starlike counterpart. Unfortunately, no spectrum

is available in SDSS but DR15 photometric data give

u− r = 0.86. It was reported in the quasar samples by

Brescia et al. (2015) and Richards et al. (2015). The

AllWISE counterpart has the colours W1−W2 = 0.73,

W2 − W3 = 2.44, W3 − W4 = 2.04 which locate it

well within the BL Lac segment of the WISE blazar

strip used for selecting the WIBRaLS and WIBRaLS2

samples (D’Abrusco et al. 2014; D’Abrusco et al. 2019).

6http://www.vlba.nrao.edu/cgi-bin/vlba calib.cgi
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Fig. 4 Sloan Digital Sky Survey optical spectrum (plate
no. 4350, fiber no. 783) of the optical counterpart associ-
ated to NVSS J014317−011858. Vertical blue lines mark
some of the emission features automatically detected in
SDSS.

It is therefore likely that this source is a good HBL

candidate, whose proper classification requires an opti-

cal spectrum.

4.7 9Y-MST J0332+8227

This cluster corresponds to 4FGL J0333.1+8227 and

was related to 1RXS J033208.6+822654, classified as

‘bcu’ (i.e. blazar candidate of uncertain type). There

is only one NVSS radio source within 6′ that is at a

very close angular distance. The corresponding optical

source is very faint and there is no spectral information;

however there is a mid-IR counterpart with the colours

W1−W2 = 0.81, W2−W3 = 1.64, W3−W4 = 3.15,

that place this object in a rather marginal position with

respect to the WISE blazar strip, but compatible when

the errors are taken into account.

4.8 9Y-MST J0557+7705

This cluster corresponds to the preliminary source

FL8Y J0557+7705 but it is not included in the final

4FGL catalogue. There are two NVSS radio sources

within 6′: one is at the close angular distance of 0.′9,

while the other is at 5.′9, close to Rmax but quite higher

than Rm. We thus selected the former one as the most

likely counterpart. There is no clear source in POSS,

but the GAIA DR27 reports an object at about 1′′ hav-

ing a Gmag of 19.2. There is a much brighter counter-

7https://gea.esac.esa.int/archive/

http://www.vlba.nrao.edu/cgi-bin/vlba_calib.cgi
https://gea.esac.esa.int/archive/
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part in the mid-IR, AllWISE J055721.46+770443.2, de-
tected in three of the four bands and having the colours
W1−W2 = 0.96, W2−W3 = 2.26, which locate it close
the centre of the WISE Gamma-ray Strip in the transi-
tion region between BL Lac objects and FSRQ, but it is
also included in the KDEBLLACS sample (D’Abrusco
et al. 2019).

This source was included in the AGN catalogue
based on mid-IR data by Secrest et al. (2015).

The available data do not allow a safe classification
of the proposed counterpart and more information is
necessary to confirm its blazar nature.

4.9 9Y-MST J0650−5146

This cluster corresponds to 4FGL J0650.2−5144, but
no counterpart is reported. It lies at a low Galac-
tic latitude in a rather crowded field. There are two
SUMSS21 radio sources within 6′: the brighter one is
at 1.′8 and the other at 4.′5. The former has a rea-
sonable optical counterpart, while the latter does not
correspond to any bright enough source in POSS. No
spectral data are available for this source, but it has a
well established counterpart in the mid-IR with 3 band
photometric data (Figure 5). The resulting colours
(W1−W2 = 0.61, W2−W3 = 2.11) place it among the
BL Lac segment of the WISE Gamma-ray Strip and it
is included in the KDEBLLACS catalogue.

We notice also that there is a 3FGL source at about
32′, without a correspondent cluster in the 9Y-MST
catalogue, but that is likely associated with the blazar
candidate 2WHSPJ064710.0-51354. Moreover, this lat-
ter source corresponds to 4FGL J0647.0−5138, different
from the one associated with our cluster.

4.10 9Y-MST J0752+7120

Several NVSS sources are in the surroundings of this
cluster. Considering that it is the most compact one
in the sample with Rmax = 2.′9 and, therefore, if we
limit the search radius to this value, the number of
radio sources is reduced to 2, of which only one has an
interesting optical counterpart. This source has a good
positional correspondence with the X-ray source 1RXS
J075225.0+712048 classified a quasar by Flesch (2016).
The only available WISE colour W1 − W2 = 0.5 is
compatible with the BL Lac portion of the blazar strip
Massaro and D’Abrusco (2016).

It appears an interesting blazar candidate, but more
data are necessary for a correct classification.

4.11 9Y-MST J0947+1120

There are four NVSS sources with fluxes ranging from
3 to 48 mJy, and all are within the Rmax = 4.′2 cir-
cle. The brightest source is the elliptical galaxy SDSS
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Fig. 5 WISE band 1 (3.4 µm) image of the field surround-
ing 9Y-MST J0650−5146 (whose centroid is marked by the
cross). The circle marks its most likely counterpart, as dis-
cussed in the main text.

J094745.91+112021.9 at z = 0.187, and its spectrum

(Figure 6) presents some clear absorption lines; this

object was already included in the sample of BL Lac

candidates by Plotkin et al. (2008). It is also associ-

ated with the X-ray source 2RXS J094746.1+112030.

Unfortunately, a close very bright star makes difficult a

good mid-IR photometry, thus there is no information

on its position in the WISE colour plot useful for the

blazar classification.

None of the other radio sources has optical counter-

parts useful for unraveling their nature and thus they

are not further considered in the present work.

4.12 9Y-MST J1003−2139

This cluster corresponds to 4FGL J1003.6−2137 which

is associated with the ‘bcu’ source 1RXS J100342.0-

213752. There is only one NVSS source close to the

cluster centroid corresponding to this RASS counter-

part, also detected by XMM. The associated optical

object is peculiar because of its elongated shape, unre-

solved in the available images (Figure 7); it is classified

as ‘extended’ in the HYPERLEDA database (Makarov

et al. 2014). It is possible that it is a very close pair

of starlike objects and for this reason its optical mag-

nitude might be brighter than the real value. It has

a relatively bright AllWISE counterpart having colours

W1 − W2 = 0.31, W2 − W3 = 1.47, that place this

object at the lower end of the WISE BL Lac strip.
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Fig. 6 Sloan Digital Sky Survey optical spectrum (plate
no. 1742, fiber no. 37) of SDSS J094745.91+112021.9.
Vertcal red lines indicate some of the absorption features
reported in SDSS. No significant emission line is apparent.
Balmer series location is marked by blue vertical lines.

4.13 9Y-MST J1636−0456

This cluster corresponds to 4FGL J1636.5−0454, which
is associated to a NVSS source classified as ‘bcu’. There
are two NVSS sources close to the cluster centroid, but
only one is at an angular distance lower than Rmax, the
same reported in the 4FGL catalogue, which has also
the optical counterpart SDSS J163632.084−045506.0,
a galaxy without available spectral data. The u − r
colour is equal to 2.41, large for a blazar-like object
according to Massaro et al. (2012). It has a mid-IR
counterpart whose colours (W1 − W2 = 0.56, W2 −
W3 = 2.06) place it well among BL Lac objects in
the WISE Gamma-ray Strip and in the KDEBLLACS
sample.

4.14 9Y-MST J1646−0942

This cluster corresponds to 4FGL J1646.0−0942 and
the RASS source 1RXS J164602.3−094113 is indicated
as counterpart. There are three possible correspon-
dences with NVSS: the closest one, at a separation of
1.′29, is also the most interesting because it can be asso-
ciated with the above X-ray source. The WISE coun-
terpart has only W1 and W2 photometry, thus it is not
possible to verify if it lies within the strip.

4.15 9Y-MST J1714+3227

There are 2 NVSS and 4 FIRST sources in the 6′ re-
gion around this cluster. The source closest to the cen-
troid has very clear optical and mid-IR counterparts:

150.88◦150.90◦150.92◦150.94◦150.96◦

Right Ascension (J2000)

−21.66◦

−21.64◦

−21.62◦

−21.60◦

D
ec

lin
at

io
n

(J
20

00
)

Fig. 7 ESO DSS R-band image of the field surrounding
1RXS J100342.0−213752. The peculiar optical counterpart
discussed in the text is marked by the white circle.

an elliptical galaxy without a particularly bright and

blue nucleus, but with the colours W1 −W2 = 0.49,

W2 − W3 = 1.65 that place it at the lower end of

the WISE Gamma-ray Strip, and it is included in the

KDEBLLACS catalogue.

The other and brighter NVSS source does not have

an optical counterpart, but there is a WISE source with

a positional correspondence detected only in the W1

and W2 bandpasses. The former one is therefore the

most likely candidate, but spectral data are required to

confirm its blazar nature.

4.16 9Y-MST J1744+4636

Three NVSS sources are within the angular distance

of 6′. However, because it is a compact cluster with

Rmax = 3.′5, only the closest source could be a reli-

able candidate. It has a RASS and XMM counter-

part, and the optical one in SDSS is a starlike ob-

ject with u − r = 0.80, but without spectral infor-

mation. The mid-IR counterpart has peculiar colours:

W1−W2 = 0.45, W2−W3 = 1.93 locating it in the BL

Lac portion of the WISE strip, whereas the very high

W3 −W4 = 3.74 does not confirm its position in the

3-colour strip. It is in the Brescia et al. (2015) list of

candidate quasars. The Spectral Energy Distribution

appears dominated by the X-ray emission in the keV

band, around 10−12 erg cm−2 s−1, higher than the op-

tical emission by a factor of about 3, typical of extreme

HBL objects (Costamante et al. 2001).
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4.17 9Y-MST J2024−2234

This is a rather peculiar low-g cluster likely correspond-
ing to 4FGL J2025.3−2231 which has not any reported
counterpart. The analysis in a smaller region with
Λcut = 0.7 confirms the same structure, while using
Λcut = 0.5 a cluster with 8 photons and g = 2.908 is
found, as reported in Table 1. The position of the lat-
ter cluster is much closer to two 4FGL sources and in
the 6′ radius there are two NVSS sources. The faintest
and more distant has a weak mid-IR possible counter-
part and no more information is available. The closest
has a possible optical-mid IR counterpart at about 4′′,
moreover it is in the low frequency flat spectrum radio
sources LORCAT (Massaro et al. 2014) catalogue. The
WISE colours W1 − W2 = 0.76, W2 − W3 = 1.98,
W3−W4 = 2.68 locate it in the BL Lac region defined
by D’Abrusco et al. (2014). Unfortunately no optical
spectrum is available to support this classification.

4.18 9Y-MST J2030−1622

This cluster corresponds to 4FGL J2030.9−1621 for
which no counterpart is given. There are three NVSS
sources in its environment. The brightest of them, at
an angular distance from the centroid of 2.′5, does not
have counterparts either in the optical nor in the mid-
IR sky. Therefore, no more indications on its nature
can be inferred. The closest source, at a distance of 49′′,
has a faint optical counterpart in the POSS correspond-
ing to a mid-IR object with colours W1 −W2 = 0.71,
W2−W3 = 1.91, locating it in the BL Lac segment of
the WISE strip and it is included in the KDEBLLACS
sample.

Finally, also the third and faintest NVSS source is
without counterparts in the optical and mid-IR. The
second one is therefore currently the most interesting
candidate, but spectral data will be useful for confirm-
ing its nature.

4.19 9Y-MST 2046−5410

This cluster corresponds to 4FGL J2046.9−5409 source
for which no counterpart was reported. There are two
SUMSS21 radio sources in its neighborhood at about
the same angular distance: the fainter source does not
have a clear optical or mid-IR counterpart, while the
brighter one (angular distance of 3.′3) can be associated
with a faint optical object also detected in the mid-IR.
Its WISE colours areW1−W2 = 0.42, W2−W3 = 2.09
which are in the BL Lac section of the WISE strip.
Close to this position there is a PMN source, that, if
associated with our candidate, has a flux density that
gives a marginally flat radio spectral index equal to
−0.55.

4.20 9Y-MST J2115−4938

This cluster has the highest g in the sample and corre-
sponds to 4FGL J2115.6−4938. The proposed counter-
part is MRSS 235-024179, a galaxy in the Muenster Red
Sky Survey including about 5.5 million galaxies with
Galactic latitudes less than −45◦ (Ungruhe et al. 2003)
There are two SUMSS21 sources within the search re-
gion: one of them is at a distance of 5.′5, well outside the
Rmax ≈ 3′ circle. The closer source, at 1.′1, has a pos-
sible relatively bright optical counterpart well detected
in the WISE sky with the colours W1 −W2 = 0.48,
W2 −W3 = 2.10 that place it in the BL Lac segment
of the strip. Its position agree with that of the above
galaxy. Considering the radio flux density reported in
PMN, it has a flat spectrum. Thefore, it appears as a
reliable blazar candidate.

4.21 9Y-MST J2135−5759

There are three SUMSS21 sources near the centroid
position of this object: the closest is at the angular
distance of only 0.′4, and another and brighter object,
reported also in the CRATES catalogue, is at 2.′3. Un-
fortunately, the latter source does not have a possible
optical counterpart, and, taking into account the radio
position uncertainty, there is a high source confusion in
the WISE mid-IR images. Thus, the poor information
on this object prevents any reliable identificaton, al-
though it cannot be excluded as a possible counterpart
of the high energy source.

The closer radio source has a possible optical and
mid-IR counterpart at an angular distance of about 4′′,
that is higher than the SUMMSS21 position uncertainty
of about 2′′. This object has the mid-IR colours W1−
W2 = 0.40, W2 −W3 = 2.02 placing it close to end
of the BL Lac segment of the WISE strip. The third
SUMSS21 source, much fainter than the other two, is
without possible counterparts. The occurrence of two
possible counterparts requires a deeper investigation to
disentangle this ambiguity.

4.22 9Y-MST J2240−1244

This cluster corresponds to 4FGL J2240.3−1246, that
is associated with the RASS source 1RXS J224014.7-
124736. Three NVSS sources are within the 6′ search
radius and all are at distances from the centroid higher
than 4′. Only one has a possible optical counterpart
and appears closely associated with the above X-ray
source. A local analysis with the much shorter Λcut =
0.3Λm gives a more compact cluster closer to this coun-
terpart and marginally satisfying its Rmax limit. There
is a mid-IR counterpart detected only in two bands and



9

the resulting colour W1−W2 = 0.43 is compatible with
a BL Lac object.

4.23 9Y-MST J2240−4747

This cluster corresponds to 4FGL J2240.7−4746 and
the reported ‘bcu’ counterpart is the radio source
SUMSS J224042−474733. This is only one SUMSS21
source in our search circle. The possible optical coun-
terpart has a distance offset of 3.′′8, higher than the
nominal mean positional error of 1.′′8; it has a bright
WISE counterpart detected in all the four bands. Its
mid-IR colours are W1−W2 = 0.43, W2−W3 = 2.04,
W3−W4 = 2.57 well compatible with the BL Lac seg-
ment of blazar strip.

4.24 9Y-MST J2321−2606

Two NVSS sources are within the search radius: the
brighter one is at a distance of 1.′2 and the other at 4.′9.
The former source has a radio flux density brighter by
about a factor of 6 and is included in the HMQ cata-
logue (Flesch 2015) as a photometric quasar candidate
with an estimated z of 0.7. It is well detected in the
mid-IR and the WISE colours are W1 −W2 = 0.73,
W2−W3 = 2.56, locating the source near the centre of
the WISE strip in the mixed FSRQ and BL Lac objects
region, but it is included in the KDEBLLACS sample
(D’Abrusco et al. 2019).

5 Summary and discussion

The extragalactic γ-ray sky appears dominated by
blazar sources (Massaro et al. 2016) and therefore the
discovery of new blazars can be driven by the search for
counterparts of new high energy sources. In the new γ-
ray catalogues there are several sources not yet associ-
ated with extragalactic objects. We extracted from the
9Y-MST catalogue a sample of 24 unassociated clusters
for which there is at least a radio source at an angular
separation from the centroid lower than 6′. For each
of these sources we extended the search to other wave-
length ranges to verify if they exhibit some properties
allowing a classification as blazar candidates.

Unfortunately, optical spectra were available for only
three sources, while two WISE colours were obtained
for 18 sources, which are located in the BL Lac por-
tion of the blazar strip. We also verified if these pos-
sible counterparts are in the most recent catalogues
based on mid-IR data and found that only one is in the
WIBRaLS2, while other 8 are in the KDEBLLACS. In
any case, more observations to definitely confirm their
nature are needed.

13 of these clusters were also found to be in the re-

cent preliminary version of the 4FGL catalogue (The

Fermi-LAT collaboration 2019), confirming the validity

of MST findings.

It is interesting that about all objects are BL Lac

candidates and the only one with a FSRQ bordeline

position has a featureless SDSS spectrum. This find-

ing agrees with the results of a previous blazar search

(Campana et al. 2016c) in which only three objects in

a sample of 30 exhibited mid-IR colours in the FSRQ

region. A possible explanation is that our cluster se-

lection at energies higher than 10 GeV is biased to ex-

tract BL Lacs, and particularly HBL sources, rather

than FSRQs. HBL objects, in fact, have the Compton

component in their Spectral Energy Distribution peak-

ing in the GeV range, while for the other blazars it is

at lower energies (Abdo et al. 2010; Fan et al. 2016)

and therefore faint hard sources are preferentially de-

tected against a softer background. Only the bright ra-

dio source PKS J0143−0119 (see Section 4.5), for which

an optical spectrum is available, exhibits some emission

lines typical of FSRQs but its WISE colours are in the

BL Lac region, indicating that it could be an outlier.

The main aim of the present work is to contribute to

the knowledge of the BL Lac population, in particular

for what concerns low brightness objects which are eas-

ily detected at high energies. Following this approach,

a possibility to be explored is to verify the existence of

a subclass of BL Lacs too faint in radio band (Massaro

et al. 2017) to be marginally detected at the sensitivity

level of the available surveys.
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