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Abstract
The evolution of the content of heavy elements in galaxies, the relative chemical abun-
dances, their spatial distribution, and how these scale with various galactic properties,
provide unique information on the galactic evolutionary processes across the cosmic
epochs. In recent years major progress has been made in constraining the chemi-
cal evolution of galaxies and inferring key information relevant to our understanding
of the main mechanisms involved in galaxy evolution. In this review we provide an
overview of these various areas. After an overview of themethods used to constrain the
chemical enrichment in galaxies and their environment, we discuss the observed scal-
ing relations betweenmetallicity and galaxy properties, the observed relative chemical
abundances, how the chemical elements are distributed within galaxies, and how these
properties evolve across the cosmic epochs. We discuss how the various observational
findings compare with the predictions from theoretical models and numerical cosmo-
logical simulations. Finally, we briefly discuss the open problems and the prospects
for major progress in this field in the nearby future.
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1 Introduction

The evolution of the chemical properties of stellar populations and of the interstellar
and intergalactic medium across the cosmic epochs provides unique information on
the evolutionary processes driving the formation and evolution of galaxies. Theory and
cosmological simulations give a relatively simple scenario on how dark matter evolve
from the primeval perturbations, forming dark matter halos and large scale structures
that accrete within their gravitational potential (e.g., Springel et al. 2018). However,
the evolution of the baryonic component is much more complex as baryons interact
with radiation and are subject to dissipative processes. The evolution of the baryonic
component and how this results into the formation of stars and in the properties of
galaxies as we see them in the local universe and across the cosmic epochs, has
been subject to numerous models and cosmological simulations, which use different
prescriptions and assumptions. The investigation of the evolution of the content of
chemical elements provides tight constraints on such models. Indeed, the content of
metals gives a measure of not only the integrated star formation in galaxies, but also
on the fraction of metals lost through outflows and stripping. The metallicity, i.e., the
content of metals relative to hydrogen and helium, is also sensitive to dilution resulting
from inflow of pristine gas. Therefore, the investigation of the metal content and of
the metallicity in galaxies provides truly crucial information on the key mechanisms
involved in the evolution of galaxies. In addition, different chemical elements are
enriched on different timescales by different populations of stars; therefore, the relative
abundance of elements enables us to obtain unique constraints on the star formation
history and on the late stages of the evolutions of single and multiple stars, stages
which dominate the production of heavy elements.

The analysis of themetallicity and chemical abundances on spatially resolved scales
(gradients) gives additional information on the processes that have regulated the growth
and assembly of galaxies (e.g., inside-out or outside-in formation and/or quenching),
as well as information on other internal phenomena such as galactic fountains, stellar
migration and radial gas inflows.

Major advances of several observational techniques and the advent of new major
observing facilities have recently enabled astronomers to probe the chemical evolution
in the early cosmic epochs, by directly probing the early enrichment process of galaxies
and of the intergalactic/circumgalactic medium, hence setting tight constraints on the
models of early galaxy formation.

In this review we primarily provide an overview of the chemical properties of
galaxies in the local universe and at high-redshift from an observational perspective,
but by also discussing how such properties give important constraints on the galaxy
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evolutionary processes, including extensive comparisons with theoretical models and
numerical simulations.

We will generally discuss the overall statistical properties of galaxies rather then
focusing on individual galaxies, although we will unavoidably open some themes by
quickly discussing the Milky Way (MW) or some nearby well-studied targets.

In the first part we also give a more technical overview of the methods, definitions
and techniques adopted to measure the metallicity and chemical enrichment in stellar
populations and in the interstellar medium, also discussing the strengths and weak-
nesses of the various methods. A large fraction of the review will be dedicated to the
metallicity scaling relations, i.e., the trends of the stellar/gas metallicity with other
galaxy properties, such as mass, star formation rate, gas content, environment, etc.
We will then discuss how these properties on resolved scales, i.e. the investigation of
metallicity gradients, which has recently been a steadily growing field. The relative
chemical abundances of various elements is another major topic that, as mentioned
above, provide key information, and to which we dedicate an entire major section;
however, we cannot realistically review all chemical elements; hence we will mostly
focus on some specific abundances ratios that are particularly useful to constrain the
star formation history and galaxy evolution, and which have been measured across
large samples of galaxies. In all of these major topics we discuss the finding both in
the local universe and the evolution of these properties at high-redshift. We will dedi-
cate a section to the current constraints of the metallicity in the host galaxies of Active
Galactic Nuclei (AGN), while we only provide very brief discussions about resolved
stellar populations and absorption systems associated with the intergalactic medium
(IGM). Finally, we give an overview of the current understanding of the global metal
content of galaxies and discuss their metal budget.

1.1 Expressingmetallicity and chemical abundances

Different definitions are adopted to measure the abundance of metals and of the indi-
vidual chemical elements. In contrast to other scientific disciplines (Agricola 1556),
in astrophysics the term “metals” refers to the all elements heavier than helium. The
“metallicity” Z indicates the mass of all metals relative to the total mass of baryons
(dominated by hydrogen and helium):

Z ≡ Mmetals/Mbaryons. (1)

The relative abundance of two generic chemical elements X and Y is generally
expressed in terms of relative number densities N , relative to the solar value, with the
following notation:

[X/Y ] ≡ log (NX/NY ) − log (NX/NY )�. (2)

When expressing the abundance of chemical elements relative to hydrogen, the fol-
lowing expression is also often used:

12 + log (X/H) ≡ 12 + log (NX/NH ), (3)
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where the value 12 was introduced so that any element, even the most rare, has a Solar
positive value of the expression 3.

Since oxygen is generally the most abundant heavy element in mass, often the
“metallicity” is expressed in terms of oxygen abundance, generally under the implicit
assumption that the abundance of all other chemical elements scale proportionally
maintaining the solar abundance ratios. Therefore, often the metallicity is indicated as

12 + log (O/H) ≡ 12 + log (NO/NH). (4)

The Solar (photospheric) reference is still not completely settled. The review by
Asplund et al. (2009) gives 12+log (O/H)� = 8.69±0.05 based on three-dimensional
(3D), time-dependent hydrodynamical model of the solar atmosphere. However, for
instance,Delahaye andPinsonneault (2006) give 12+log (O/H)� = 8.86±0.05based
on helioseismology. However, it should be clear that in the context of this review the
Solar metallicity (or Solar chemical abundances) does not have a particular meaning,
at most being representative of the chemical enrichment of the (pre-)Solar Neighbour-
hood, i.e., a specific region of the Milky Way disc. The Solar metallicity/abundances
should only be considered as reference values. What is important is that when com-
paring different studies they should be scaled to the same Solar reference value.

However, it should be clear that using the O/H abundance is only an approximation
of the real metallicity of the gas, as the relative abundance of the chemical elements
can vary in a drastic way with respect to the solar value.

1.2 The origin of the elements

While primordial nucleosynthesis accounts for the origin of hydrogen, deuterium,
the majority helium and a small fraction of lithium (e.g., Cyburt et al. 2016), all
other elements are produced by stellar nucleosynthesis or by the explosive burning
and photodisintegration associated with the late stages of stellar evolution. Boron,
beryllium and a small fraction of lithium are exceptions because they are produced by
cosmic rays spallation of heavier elements.

Extensive reviews have been published on the origin of chemical elements through
stellar processes (e.g., Rauscher and Patkós 2011; Matteucci 2012; Nomoto et al.
2013); therefore, in this sectionweonly provide a quick overviewof the basic processes
associated with the production of heavy elements and a short summary of the primary
sources of some key element, as well as the associated production timescales.

Stars on the main sequence burn hydrogen atoms, producing 4He atoms, either
through the proton–proton nuclear reaction chain (pp-chain), or through the CNO-
cycle; the relative role of these two processes depends on the stellar mass (the latter
dominates at masses larger than about 1.3 M�) and, of course, metallicity.

At later stages, when hydrogen is exhausted in the core and this becomes hotter,
helium burning starts, which produces 12C through the triple-alpha reaction, and 16O is
also produced through the capture of an additional helium nucleus. During this phase
hydrogen burning continues around the helium burning core.

If the initial stellar mass is less than 8 M� no additional burning phases take place.
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If the stellar mass is less than about 2 M�, the star undergoes the so-called core
helium flash, a runaway process which results in an explosive expansion of the outer
core. This results in a white dwarf surrounded by a planetary nebula.

Stars between 2 and 8 M� after leaving the main sequence enter the red giant
phase and, once the helium burning core is exhausted, they go trough the so-called
Asymptotic Giant Branch (AGB), characterized by both a hydrogen- and a helium-
burning shell. Thermonuclear runaway of the latter results in a sequence of several
He-shell flashes, with increased mass losses and strong stellar winds, which eject a
large fraction of the previous burning products (in particular carbon and nitrogen).
Such flashes are also responsible for producing large convection zones (which mix the
product of nuclear reactions) and for the production of s-process nuclei. Eventually
these stars also end their life as white dwarfs surrounded by planetary nebulae.

It should be noted that during the CNO-cycle, hence for stars more massive than
about 1.3 M�, while the primary reaction chain leaves unaffected the “catalytic”
nuclei, secondary branches of the reaction produce 14N at expenses of 16O and 12C.
The result is a strong enrichment of 14N and also a drastic reduction of the 12C/13C
ratio. These effects are obviously strongly dependent on the stellar metallicity, which
boosts the role of the CNO cycle and explains the “secondary” nature of nitrogen, i.e.,
whose production is greatly enhanced in metal-rich environments.

In stars more massive than 8 M�, after helium burning, the core shrinks and
increases the temperature to ignite carbon burning into 20Ne or 23Na. Then heav-
ier elements are subsequently burned as the lighter elements in the core are exhausted
and, consequently, the core temperature increases. This process in particular results
in the production and burning of elements such as oxygen, magnesium and silicon.
During this sequential process occurring in the stellar core, the burning of lighter ele-
ments occurs in stratified shells around the core that, in themeantime, have reached the
adequate temperature for igniting the associated nuclear reactions. The process ends
when the core is primarily composed of iron and nickel. At this stage no more energy
is gained by further nuclear reactions; the energy released can no longer sustain the
hydrostatic equilibriumwith theweight of the outer layer and collapse begins, yielding
to a core-collapse supernova (type II, or Ib–Ic). The outward propagating shock wave
results in the stellar material undergoing shock heating and explosive nucleosynthe-
sis. The latter affects the abundance pattern of the outer layers, and especially the
distribution of α elements and the production of Fe-peak elements. Supernovae also
produce elements heavier than iron through neutron rapid capture of iron-seed nuclei
(r-process), followed by (slower) β-decay. The resulting yield of the various chemi-
cal elements implies complex calculations (e.g., Nomoto et al. 2013, and references
therein) and, in particular, depends on the location of the “mass-cut”, i.e., the boundary
between the core remnant that retain metals and the envelope that is expelled.

Type Ia supernovae are an additional important source of elements. SNIa are ther-
monuclear explosions ofC–Owhite dwarfs that accretemass either as a consequence of
mass exchange in a close binary systemwith a non-degenerate star (“single degenerate
scenario”) or as a consequence of the merging of two white dwarfs (“double degen-
erate scenario”) (see Maoz et al. 2014, for a review). SNIa explosions are thought to
arise from the ignition of carbon burning in the C–O core, which results in the total
disruption of the white dwarf (as the nuclear energy released by the dwarf is higher
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Fig. 1 Timescales of production of various elements after a single episode of star formation (a single stellar
population, SSP) of solar metallicity, based on the model by Vincenzo et al. (in prep.), see text for details.
The upper panel shows the production rate in M� Gyr−1 normalized to 1 M� of formed stars. The lower
panel shows the cumulative mass produced, normalized to the amount after 1 Hubble time. Oxygen (red
line) is mainly produced by CC SNe and, therefore, has the shortest formation timescales. Iron (blue line) is
dominated by type Ia SNe, Carbon (black) has contributions from both kinds of SNe and from AGB stars.
The production of Nitrogen (green) is dominated by AGB stars. In this plot, the production of elements
before 30 Myr is due to CC SNe, type Ia SNe are described by a power-law t−1 after 40 Myr and up to
the Hubble time, and AGB stars give additional contributions above this power-law at intermediate ages of
∼ 0.04 to 5 Gyr

than its gravitational binding energy, Leibundgut 2001). The resulting nucleosynthesis
produces elements primarily not only around the iron peak, but also silicon, argon,
sulfur, and calcium. Clearly, since SNe Ia require first the formation a white dwarf
from a low-mass (less than 8 M�) star, and then a significant mass transfer from a
companion star, the production of the SNIa is delayed with respect to the onset of
star formation. Specifically, the first SNe requires a minimum timescale of 30 Myr
(Greggio and Renzini 1983), although the bulk of SNIa explodes on longer timescales,
due to the longer timescales associated with lower-mass stars and mass transfer, see
Maoz and Mannucci (2012) and Fig. 1.

Finally, the merging of binary neutron stars is an additional source of elements
beyond the iron peak, driven by the r-process.
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Clearly, each of these processes, and the associated release of chemical elements
into the interstellar medium, is linked to the terminal stages of stars with a specific
stellar mass on the main sequence and, therefore, with different timescales.

The amount of metals injected into the interstellar medium (ISM) by each star at
the end of its lifetime is quantified by the so-called stellar yield, pi , which is defined
as the fractional mass of newly formed i th chemical element, injected into the ISM,
relative to the mass of the stellar progenitor on the main sequence. The computation
of the stellar yields is quite complex and often subject to large uncertainties, as they
also depend on the assumed mass loss and stellar rotation. The yields also depend on
the progenitor metallicity, and in some cases the dependence is very strong (such as in
the case of nitrogen, as discussed above). Compilations of stellar yields are given in
Romano et al. (2010) and Nomoto et al. (2013). Here we only qualitatively summarize
the main production channels of some of the key elements.

Figure 1 summarizes the production timescales of a few critical elements (O, C,
N, and Fe) after a single episode of star formation, i.e., for a single population of
stars (SSP) created together along a given initial mass function (IMF). Most of the
α elements (e.g., O, Ne, Mg) are thought to be produced by stars more massive than
8 M� and by the associated core-collapse SNe and, therefore, released into the ISM
promptly, soon after the beginning of the star formation. Iron peak elements (e.g., Fe,
Ni) are partly produced bymassive stars, but most of them are produced by type Ia SNe
and hence are released into the ISM with a delay ranging from ∼ 40–50 Myr to a few
Gyr, depending on the stellar initial mass function (IMF) and on the star formation
history. It should be noted that zinc is often referred to as an iron-peak element,
but it also seems to have an α-like enrichment component and not always closely
follow iron (e.g., Berg et al. 2016b). Elements such as carbon and nitrogen are partly
produced by massive stars, but most of the production is due to intermediate mass
stars (2 M� < Mstar < 8M�), primarily through their AGN winds (or Wolf Rayet
stars).], and, therefore, these elements are also subject to a delayed enrichment. The
results in Fig. 1 are obtained by Vincenzo et al. (in prep.) for stars of solar metallicity,
with the IMF from Kroupa et al. (1993), stellar lifetimes from Kobayashi (2004),
stellar yields from Nomoto et al. (2013), SNe Ia yields from Iwamoto et al. (1999),
and a t−1 delay-time distribution for the type Ia SNe (Maoz and Mannucci 2012).
In Sect. 7, we will see that the different enrichment mechanisms and timescales of
these different elements provide a powerful tool to constrain the evolution of the star
formation history in galaxies.

2 Measuringmetallicities of stellar populations

UV, optical and infrared spectra of galaxies contain a wealth of information about
their stellar populations. Except for a number of galaxies in the local group where
single stars can be resolved, galaxy spectra consist of the integrated light of the stellar
populationwhich is virtually always a composition of different generations. The broad-
band colours and the continuum of the spectra are dominated by the distribution of
stellar ages and metallicity, modulo dust reddening. The emission lines reflect the
ionizing properties of the most-massive stars (and of the AGN, when present), the
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absorption features reveal the properties of stellar photospheres, stellar winds, and
interstellar gas.

Several methods have been developed during the years to derive the chemical abun-
dances from galaxy spectra. Two are the components that are usually considered, stars
and the interstellar medium (ISM). This section deals with the former component, the
next section with the latter one.

2.1 Rest-frame optical spectra

Extracting information about the metallicity of stellar populations is subject to an
ongoing effort. A complete discussion of this topic is far beyond the scope of this
review. Here we summarize the two main techniques that are often used to “invert”
the spectra and derive the physical properties of the stellar population. Both are based
on comparing observed with synthetic spectra.

The first tool to be developed was a set of standardized indices, calibrated on
model spectra, aimed at maximizing the sensitivity to some parameters (e.g., age, or
metallicity) while minimizing the dependence on the other parameters. These indices,
including the “Lick indexes” (see, e.g., Fig. 2), were introduced in the 1970s and
later refined and re-calibrated, and are still widely used, especially when only low-
resolution spectra are available (e.g., Faber 1973; Worthey et al. 1994; Worthey and
Ottaviani 1997; Trager et al. 1998, 2000b; Thomas et al. 2003, 2011; Schiavon 2007).
Each index is defined either by a central bandpass whose flux is compared with those
of two adjacent wavelength ranges intended to estimate a “pseudo-continuum”, or
by the flux ratio in two nearby bandpasses to measure a break. The Lick indices use
relatively large bandpasses, of the order of 50Å; this is useful to increase the S/N
when needed but it is not optimal to derive individual abundances. Some indices, such
as the depth of the 4000 Å break Dn(4000) (Hamilton 1985; Balogh et al. 1999)

Fig. 2 The wavelength ranges covered by the set of Lick indices (grey rectangles) used by Onodera et al.
(2015) are overplotted on a stacked spectrum of a sample of quenched galaxies at z ∼ 1.6. The red line is
the stacked spectrum, with orange lines showing the ± 1σ uncertainties. The green line is the best-fitting
model stellar spectrum. Image reproduced with permission from Onodera et al. (2015), copyright by AAS
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and the depth of the Balmer absorption lines, are mainly sensitive to age and to the
fraction of young stars relative to old ones. Other indices are defined to be sensitive
to abundances of particular elements, such as Fe and Mg in case of the [MgFe]′ and
[Mg2Fe] indices defined by Thomas et al. (2003) and Bruzual and Charlot (2003).
The results often depend on the particular set on indices available or used, but these
indices are at the base of most studies about unresolved stellar populations in nearby
galaxies (see Sect. 5.1.1).

More recently, spectro-phometric models of the stellar population have been devel-
oped aimed at reproducing the full observed spectra with a combination of input stellar
populations with different properties (e.g., Bruzual and Charlot 2003; Conroy et al.
2009; Leitherer 2014; Chevallard and Charlot 2016; Wilkinson et al. 2017; Cappellari
2017, among many others), see Conroy (2013) for a recent review, and http://www.
sedfitting.org by Budavari et al. for a complete and updated list of the available tools.
These methods are in principle very powerful because they use all the information
contained in the spectra, often also including broad-band photometry to simultane-
ously derive chemical abundance, age distribution (i.e., the star-formation history),
dust extinction, and possibly other parameters such as the IMF. The weak point is that
often the solution is not unique and there are strong degeneracies among the parame-
ters. In particular, the problem is strongly non-linear in stellar mass and age, with the
youngest and more massive stars often completely outshining the older, less massive
stars that constitute most of the mass (see, e.g., Maraston et al. 2010). Uncertainties in
the spectra of the input stellar populations, for example due to the presence of stellar
rotation and binary stars (e.g., Levesque et al. 2012; Leitherer et al. 2014; Stanway
et al. 2016; Choi et al. 2017) also affect the results. Despite these uncertainties, these
methods are becoming the standard tool to analyse composite stellar population, in
particular when spectra with enough spectral resolution and S/N are available.

2.2 UV spectra

At high-redshift (z > 1), the UV part of the spectrum becomes more easily accessible
at optical wavelengths and often constitutes the most important piece of information
about the properties of stellar populations. At these wavelengths spectra are dominated
by the photospheric properties of young, massive stars, allowing us to derive the
properties of the on-going star formation activity.

A metallicity dependence of the depth of many UV absorption features is expected
on the base of theoretical models (e.g., Leitherer and Heckman 1995; Leitherer et al.
2010; Eldridge and Stanway 2012) and was actually observed in the spectra of local
starburst galaxies (e.g., Heckman et al. 1998, 2005; Leitherer et al. 2011).

In the UV, correlations between metallicity and equivalent widths (EWs) of many
absorption features are a consequence of several physical causes. First, the contribution
from the photospheres of the O and B stars can be seen, and these spectra depend on
metallicity. Second, the strong, metal-dependent winds from hot stars dominate the
spectra close to high-ionization lines, such as CIV and SiIV (e.g.,Walborn et al. 1995).
Third, the ISM produces the absorption of interstellar lines whose column density is
related to metallicity. The interstellar lines are usually heavily saturated (e.g., Pettini
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Fig. 3 Stacked rest-frame UV spectrum of star-forming galaxies at 〈z〉 ∼ 2.4. The most important absorp-
tion and emission features are shown, colour-coded according to their nature: red, stellar absorption features;
green, interstellar absorption features; blue, nebular emission lines; violet, fine structure lines. Image repro-
duced with permission from Steidel et al. (2016), copyright by AAS

et al. 2002b, see Savage and Sembach 1996 for a review) and the observed EWs are
more sensitive to velocity dispersion than column density (González Delgado et al.
1998; Leitherer et al. 2011).

A complete list of features with their physical origin can be found in Table 1 of Lei-
therer et al. (2011). Here we only mention that the features that have usually attracted
the highest interest are stellar wind lines such as NVλ1238,1242, SiIVλ1393,1402,
CIVλ1548,1550, andHeIIλ1640, interstellar lines such as SiIIλ1190,1260,1304,1526,
SiIIIλ1206, OIλ1302, CIIλ1334, SiIVλ1393,1402, FeIIλ1608, AlIIIλ1670,1854,
1862, NiIIλ1710,1741,1751, and MgIIλ2796,2803, and photospheric lines such
as FeVλ1360-1380, OVλ1371, SiIIIλ1417, CIIIλ1427, FeVλ1430, SiIIλ1533, and
CIIIλ2300 (Leitherer et al. 2001; Pettini et al. 2002b; Leitherer 2014). Some
of these are shown in the rest-frame UV composite spectrum of distant galax-
ies in Fig. 3. Weaker interstellar lines, which are not saturated, are sometimes
also detected (Pettini et al. 2000, 2002b), specifically: FeIIλ1144, SIIλ1250,1259,
NiIIλ1317,1370,1703,1709,1741,1751, and SiIIλ1808.

These features usually have complex dependences on age, metallicity and IMF. For
these reasons, similar to the optical case, several authors have identified a number
of indices optimized to depend only or mainly on metallicity (Heckman et al. 1998;
Leitherer et al. 2001; Rix et al. 2004; Maraston et al. 2009; Leitherer et al. 2011;
Sommariva et al. 2012; Zetterlund et al. 2015; Faisst et al. 2016; Byler et al. 2018).
These works are based either on empirical spectral libraries or on theoretical stellar
spectra. Both approaches have strengths and weaknesses. Empirical libraries auto-
matically take into account the uncertain effects of stellar winds, but usually include
only a narrow range of metallicities, limited by the metallicity distribution of young
stars in the local universe, and are affected by the unknown contribution of interstellar
lines (e.g., Kudritzki et al. 2016). In contrast, theoretical libraries can be built for a
large number of different metallicities over a large range, but are affected by model
uncertainties and do not take into account several effects present in the real spectra.
The resulting indices depend on a number of assumptions, such as the age of the
star-forming episode and the evolution of the SFR, usually assumed to be constant,
instantaneous, or exponentially declining.
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The IMF of the stellar population also affects the results. While this introduces yet
another source of uncertainty, it also opens a way to test the dependence of the IMF
on galaxy type, environment, star-formation activity and cosmic age, as discussed, for
instance, by Lemasle et al. (2014), La Barbera et al. (2016), Fontanot et al. (2017),
Sarzi et al. (2018) and De Masi et al. (2018).

3 Measuringmetallicity and chemical abundances of the gaseous
phase

In this section we provide a brief overview of the methods used to infer the metallicity
and chemical abundances of the gaseous phase focusing on the interstellar medium
(ISM), but also discussing the techniques exploited for the circum-galactic medium
(CGM)and intergalacticmedium (IGM), aswell as for the intra-clustermedium (ICM).
For each method we critically assess advantages and limitations. A more detailed,
recent review can be found in Peimbert et al. (2017).

3.1 Direct method based on electron temperature

The spectra of ionized gas in astrophysical conditions are usually very rich of collision-
ally excited bf emission lines (CEL). The flux of each metal line is given by the abun-
dance of the element (specifically the observed ionic species) times its emissivity. If the
latter can bemeasured, then the abundance can be constrained accurately (Aller 1984).

The emissivity of these lines depends on both electron temperature Te and on
electron density ne. Once these two parameters are measured, ionic abundances follow
fromrelations basedonly on atomicphysics. For at two levels-ion, the rate of collisional
de-excitation (per unit volume) of the transition 2 → 1 is given by n2n0C21, where n2
is the density of ions whose level 2 is populated, n0 is the density of colliding particles
(typically electrons), and C21 is the collisional de-excitation coefficient given by

C21 =
(
2π

kTe

)0.5
�
2

m3/2

Ω(1, 2)

ω2
, (5)

where Ω(1, 2) is the “collision strength” of the transition, ω2 is the statistical weight
of the upper level 2, and there is a mild dependence on Te as

√
Te.

The rate of collisional excitation is similarly given by n1n0C21, where

C12 = ω2

ω1
e−E21/kTeC21, (6)

that depends exponentially on Te.
A CEL is produced by the collisional excitation of the upper level followed by

a radiative de-excitation. Neglecting stimulated emission (usually not important in
diffuse nebulae) and absorption, the population n2 of the upper level is given by

dn2
dt

= −n2(A21 + neC21) + n1neC12, (7)
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where A21 is the Einstein coefficient for spontaneous (radiative) transition.
At equilibrium (dn2/dt = 0):

n2
n1

= neC12

A21 + neC21
(8)

The critical density nc is defined as the density at which the rate of collisional de-
excitations equals the rate of spontaneous radiative transitions, i.e.

nc = A21/C21, (9)

and, therefore,
n2
n1

= ne/nc
1 + ne/nc

w2

w1
e−E21/kTe . (10)

When themediumhas a densitymuch lower than the critical density of the transition
(ne 
 nc), n2 depends exponentially on Te and n1 ∼ nX , where nX is the density of
the ion X . The volumetric emissivity J21 of a line is, therefore, given by

J21 = hν21
n2A21

4π
∼ nenxe

−E21/kTe . (11)

Once ne and Te are measured, ionic abundance can be obtained by comparing the
flux of the CEL to the hydrogen recombination line. Adding up the abundances of
the observed ions, and assuming an ionization correction for the unobserved ones, the
total elemental abundance is derived (e.g., Aller 1954; Dinerstein 1990; Pilyugin and
Thuan 2005; Pilyugin et al. 2006b, 2009, 2010a; Bresolin et al. 2009a; Perez-Martinez
2014; Pérez-Montero 2014; Pérez et al. 2016).

Electron density is usually measured by density-sensitive doublets, i.e., doublets
that have critical densities not far from the gas density, hence whose flux ratio
depends strongly on the density around this regime, such as [OII]λ3726,3729 and
[SII]λ6717,6731. However, since in order to infer the abundance, the flux of the CEL
lines has to be compared with the flux of the hydrogen recombination lines, and
since the emissivity of the hydrogen recombination lines scales as ne n p (where n p is
the density of protons), when comparing the emissivities the dependence on density
cancels out (as long as the density is below the critical density), and therefore only
the dependence on temperature is really critical to determine the abundance of the
ion. Electron temperatures can be measured through “auroral” lines, i.e., lines com-
ing from high quantum levels, whose excitation is very sensitive to temperature. The
most commonly used of such lines areOIII1661,1666, [OIII]λ4363, [OII]λ7320,7330,
[SII]λ4069, [NII]λ5755, [SIII]λ6312 (e.g., Castellanos et al. 2002), whose fluxes are
compared to other brighter lines from the same species but from very different energy
levels. A more complete list of the line ratios used can be found in Pérez-Montero
(2017). Themost accurate results are only obtainedwhen several of these lines are used
because they trace different regions of the emitting nebula, in particular regions of dif-
ferent ionization levels. The [SIII]λ6312 is an interesting line, although not often used.
In fact, it can be observed to higher metallicity than, for example, [OIII]λ4363, but the
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corresponding nebular lines needed to measure the abundance are [SIII]λ9069,9532,
which are in a part of the spectrum which is often not observed. Specialized routines
are now available that derive temperature from line ratios, such as PYNEB (Luridiana
et al. 2012, 2015), a PYTHON version of the STSDAS NEBULAR routines. A list of
sources for atomic data can be found, for example, in García-Rojas et al. (2009) and
Fang et al. (2015). A tutorial on the use on this method was recently published by
Pérez-Montero (2017).

The practical use of this method is often limited by the intrinsic faintness of the
auroral lines, which typically are 10–100 times fainter than the corresponding Balmer
lines. While the auroral lines are routinely observed in local or low redshift, metal-
poor, star-forming galaxies (Kennicutt et al. 2003; Izotov et al. 2006a, b, 2011, 2012,
2018a; Izotov and Thuan 2007; Kreckel et al. 2015; Haurberg et al. 2015; Amorín
et al. 2015; Pilyugin et al. 2015; Lagos et al. 2016b; Ly et al. 2016; Sánchez Almeida
et al. 2016), at higher redshift (z > 1) only a few detection claims exist. While some
of these measurements are based on UV lines such as OIII]λ1661,1666 (Villar-Martín
et al. 2004; Erb et al. 2010), most of the claims are based on optical lines observed in
the near-IR and are often affected by very low signal-to-noise ratios (often S/N < 2),
are based on uncertain identifications (due, for example, to the nearby Hγ ), and would
produce unrealistically high [OIII]λ4363/[OIII]λ5007 ratios (Yuan and Kewley 2009;
Christensen et al. 2012; Stark et al. 2013; James et al. 2014b; Maseda et al. 2014;
Sanders et al. 2016b). In contrast, auroral lines are often detected in stacked spectra
of both local and distant galaxies (Andrews and Martini 2013; Trainor et al. 2016;
Curti et al. 2017; Bian et al. 2018). Average relations between the temperatures of
regions of different ionizations in HII regions and galaxies are also computed (Pérez-
Montero and Díaz 2003; Izotov et al. 2006b; Pilyugin 2007; Pilyugin et al. 2006b,
2009, 2010a; Curti et al. 2017). These relations can be used when some auroral lines
are not observed. Direct relations between “strong” lines and auroral line fluxes, the
so-called f –f relations, have been proposed byPilyugin andThuan (2005) andPilyugin
et al. (2006a, 2009). Recently, Curti et al. (2017) and Curti (2018) have extended these
relations and applied them to SDSS galaxies, obtaining very tight relations between
auroral and strong line fluxes.

A source of uncertainty of this method is due to the thermal and density struc-
ture of the emitting nebulae. The exponential dependence on Te means that emission
is dominated by the regions of higher Te and the derived values of the parameters
can be biased (e.g., Peimbert 1967; Stasińska 2002; Liu 2002, 2003; Esteban et al.
2004; García-Rojas and Esteban 2007; Peimbert et al. 2007). This problem is typically
addressed by introducing a temperature-fluctuation parameter t2 that can be estimated
by comparing different measurements of Te (e.g., Peimbert 1967; Peimbert et al. 2004,
2012, 2017).

The problem of temperature fluctuations can be alleviated by exploiting coronal
lines from various ionization stages of the same elements. These lines are emitted
by different parts of the HII regions, including the partially ionized regions, and the
thermal structure of the HII region can be better sampled (e.g., Campbell et al. 1986;
Garnett 1992; Kennicutt et al. 2003; Bresolin et al. 2005; Pilyugin et al. 2009; Curti
et al. 2017). This point is further discussed in Sect. 3.4.
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3.2 Abundances frommetal recombination lines

The permitted, recombination lines (RL) of metal ions are in principle the most direct
way to derive the chemical abundances. In the usual conditions in HII nebulae (no
stimulated emission), the volumetric emissivity of a permitted line of the ion X due
to a transition between the levels i and j is

Ji j = hνi j

4π
n
(
X+i+1

)
neα

eff
i j

(
X+i , Te

)
, (12)

where αeff
i j has only a slow (about linear) dependence on Te. The ionic abundance is

computed by comparison with hydrogen recombination lines, which have the same
dependence on density, hence the estimated abundances are nearly insensitive to the
gas density. The total element abundance is measured after assuming an ionization
correction for the unobserved ions (Peimbert 2003; Tsamis et al. 2003; Esteban et al.
2004, 2014; López-Sánchez et al. 2007; Peimbert et al. 2007, 2014; Peimbert and
Peimbert 2014; Toribio San Cipriano et al. 2017).

The RLs most commonly used to measure metallicity are OI8446,8447, OII4639,
4642,4649, OIII3265, OIV4631, NII4237,4242, NIII4379, CII4267, CIII4647, and
CIV4657.

The mild dependence on density and temperature reduces the impact of clumping
and temperature fluctuation that can affect the CEL-Te method described above. As
the line emissivity in Eq. (12) is proportional to the abundance of each element,
recombination lines from metallic species are very faint when compared to the H
recombination lines, of the order of 10−3–10−4 with respect to Balmer lines even
for the most abundant elements like C and O. The detection of RL from metals is
practically limited only to bright HII regions, planetary nebulae (PNe) and supernova
remnants (SNRs), with spectra of high-resolution and high signal-to-noise ratio (e.g.,
Peimbert et al. 2004; García-Rojas and Esteban 2007).

3.3 Photoionizationmodels

The widely adopted alternative to the direct method consists in using photoionization
models to predict or interpret the relative strength of some of the main nebular lines to
constrain the gas-phasemetallicity. This approach has high potential, but also a number
of limitations, as unavoidably only a small number of parameters involved in the
photoionization calculations can be realistically explored, with simplified geometrical
configuration, generally not properly reflecting the complexity and distribution of
real HII regions. However, the advantage is that in principle there is no limit on the
possible properties of star-forming regions that can be explored, especially in terms
of metallicity range and properties of the ionizing spectrum. This flexibility enables
also the potential exploration of systems at high-redshift, even in extremely metal
poor environment or extreme ionizing spectra, which do not have local counterparts
(e.g., Schaerer 2003; Kewley et al. 2013a; Jaskot and Ravindranath 2016; Xiao and
Stanway 2018). The additional advantage is that such models can constrain, together
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with metallicity, other properties of the ionized gas, such as the ionization parameter.
Finally, as discussed in the next sections, photoionizationmodels enable the calibration
strong-line diagnostic associatedwith lines that are not possible to calibrate empirically
through the direct method because the required data are not available.

Generally, the classical approach is to use detailed photoionization codes, such as
CLOUDY (Ferland et al. 2013) or Mappings (Binette 1985; Sutherland and Dopita
1993; Dopita et al. 2013) to generate a grid of models out of which a number of line
ratios are extracted and proposed as diagnostic of the gas metallicity (e.g., Kewley and
Dopita 2002; Nagao et al. 2011; Dopita et al. 2013, 2016; Jaskot and Ravindranath
2016; Gutkin et al. 2016; Chevallard and Charlot 2016; Feltre et al. 2016). Generally,
with the exception of a few cases (Jaskot and Ravindranath 2016), models assume a
simple plane-parallel geometry. Most of them assume that chemical abundances scale
proportionally to solar, except generally for nitrogen whose abundance is assumed to
scale with the global metallicity assuming a fixed relationship (see, e.g., the discussion
in Nicholls et al. 2017). The effect of dust is generally included, both in terms of dust
extinction and in terms of dust depletion of chemical elements, and the assumptions
on dust distribution affect the resulting structure of the HII region (e.g., Stasińska and
Szczerba 2001); dust depletion is generally inferred from Galactic studies and assum-
ing that the dust-to-metal ratio remains constant withmetallicity, which, however, may
not be the case at low metallicities (De Cia et al. 2016; De Cia 2018). Another impor-
tant assumption is that most ionized clouds are ionization bounded (i.e., the ionized
zone is not truncated by the dimension of the cloud), but this assumption may not
apply in number of galaxies, especially in some young, strongly star-forming systems
(Nakajima and Ouchi 2014); some models have incorporated this possibility to inves-
tigate metallicity diagnostics, although restricted to the UV (Jaskot and Ravindranath
2016). The primary quantities that are varied in the grid of parameters are metallicity
and ionization parameter, defined as the dimensionless ratio of the incoming photon
flux density and gas density at the cloud surface, normalized by the speed of light
U = q/c = Qion/(4πr2nec) where Qion is the number of ionizing photon emitted
per unit time from the source, and r is the distance to the emitting cloud. Metallicity
and ionization parameter are, for a given shape of the ionizing flux, the two parame-
ters most important in affecting the flux ratios of the main nebular lines, and are often
subject to degeneracies, in the sense that most emission line ratios depend on both
parameters.

Some authors, especially in early models, adopted a constant gas density. Later
Dopita et al. (2014) have pointed out that radiation pressure on dust is probably the
primary physical mechanism regulating the physical properties of gaseous clouds and
that, therefore, it is physically more sensible to adopt a constant pressure and derive
the density distribution accordingly. In either case the assumed density or pressure can
be another parameter that is varied to construct the grid of models.

While original models assumed only a single representative shape of the ionizing
spectrum, more recent models typically explore a broad range of ionizing stellar con-
tinua from stellar population synthesis models, lately even expanding the range to
include the contribution of stellar binarity (especially at low luminosity) and rotation
(Levesque et al. 2012; Leitherer et al. 2014; Stanway et al. 2016; Choi et al. 2017; Xiao
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and Stanway 2018). The possible presence of turbulence introduces further uncertain-
ties (Gray and Scannapieco 2017).

While such photoionization models are widely used, we warn about some impor-
tant caveats and issues. Despite extensive efforts, these photoionization models are
still quite simplistic, and are still far from capturing the complexity of the HII regions
and their distribution in galaxies. An indication of this is that, while models tend to
statistically reproduce fairly well many diagnostic diagrams, when individual systems
are considered it is often very difficult to find a single model that simultaneously
reproduces all observed nebular line ratios. The basic issue is likely to be that both
within each HII region and among the several HII regions typically sampled by the
large projected aperture of extragalactic surveys, the ionization parameter is not char-
acterized by a single value, but by a broad distribution. The same issue applies to other
parameters such as density, temperature and metallicity. Future generation models
will hopefully incorporate this additional feature, although it is likely demanding to
implement.

Another issue is that assuming a fixed relationship between N/H and O/H, typically
of the steep form N/H ∝ (O/H)2 in the intermediate/high-metallicity regime, makes
the flux of the nitrogen nebular lines (and in particular [NII]λ6584) hypersensitive
to metallicity; however, one should take into account that nitrogen nebular lines are
probing directly the abundance of nitrogen; if a system deviates from the assumed
relation (which, for instance seems to be the case in galaxies of different masses and
other sub-galactic regions), then the nitrogen emission line may provide deceiving
information. A similar problem applies to carbon nebular lineswhen usingUV spectra.

More recent models are introducing a Bayesian, or multi-features fit, approach in
which the information coming from multiple nebular lines (and sometimes also from
the continuum) is combined to identify the best model among those provided by the
grid (e.g., Tremonti et al. 2004; Blanc et al. 2015; Chevallard and Charlot 2016; Pérez-
Montero et al. 2016; Vale Asari et al. 2016; Pérez-Montero and Amorín 2017). These
codes are certainly a step forward. However, some of them still make the assumption
of a fixed relationship between N/H, C/H and O/H given a priori to the code. As
mentioned, this risks the determination of the metallicity to be dominated by the flux
of a single nitrogen or carbon line and, in addition, it is not really possible to distinguish
between effect of differential chemical abundances and global metallicity. However,
some of the most recent codes do consistently derive the global metal abundance
and, separately, the abundance of nitrogen and carbon, without making assumptions
on their abundance scaling with metallicity (Blanc et al. 2015; Pérez-Montero et al.
2016; Vale Asari et al. 2016; Pérez-Montero and Amorín 2017).

As will be discussed in Sect. 3.4, photoionization models tend to overestimate gas
metallicity from ∼ 0.2 up to even ∼ 0.6 dex. The discrepancy is particularly strong
at high metallicities. The origin of the discrepancy is not totally clear. Dust depletion
is certainly a factor contributing for at least 0.1 dex; indeed, photoionization models
do account for dust depletion, while the direct methods simply give the actual gas
metallicity. Another potential problem is how nitrogen is included in the photoion-
ization models; its assumed quadratic dependence on the metallicity may artificially
boost the inferred metallicity. Alternatively, Te-based metallicities may be biased low
as a consequence of low-metallicity regions being characterized by brighter auroral
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lines. An interesting additional possibility is that the basic assumption that electrons
in HII regions follow a Maxwell–Boltzmann distribution may be incorrect and that
instead they follow a distribution similar to that observed in astrophysical plasmas in
and beyond the solar system, i.e., a so-called κ-distribution (a generalized Lorenzian
distribution), which is characterized by amore extended tail towards high energies than
the Maxwell–Boltzmann distribution. This possibility has been investigated recently
by Binette et al. (2012), Nicholls et al. (2012) and Dopita et al. (2013), who have
pointed out that, very interestingly, the introduction of a κ-distribution in models of
HII regions solves some of the outstanding problems, such as the discrepancies in the
temperatures measured by some auroral lines (see Sect. 3.4), and makes the photo-
ionization derivedmetallicities in better agreementwith those inferred from the auroral
lines. This is certainly an area of study worth developing further. A revision of some
of the nebular line diagnostics by including the effects of a κ distribution has already
been presented by Dopita et al. (2013). It is also possible that the introduction of the
κ-distribution is actually a way to reproduce the effect of gradients in the properties of
the HII regions or of a collection of HII regions with different conditions, for example
different temperatures.

3.4 Comparison among the different methods

In general the three methods described above give different results. The ratio of the
abundances obtained from the more direct methods, i.e., from RLs and Te-CELs, is
often referred to as “Abundance Discrepancy” (AD, Tsamis et al. 2003; García-Rojas
and Esteban 2007; García-Rojas et al. 2009, 2013; Peimbert et al. 2017; Toribio San
Cipriano et al. 2017) and can be very high, up to a factor of ∼ 5 (Tsamis et al. 2003).
This discrepancy is a serious limitation to our understanding of ionized nebulae and
its origin is debated. Temperature fluctuations in HII regions are definitely present
(García-Rojas and Esteban 2007) but their real effect on abundance determination is
not clear and there also are indications, based on the comparison with fine-structure
infrared lines, that they are not the source of the AD (Tsamis et al. 2003). The pres-
ence of small-scale, chemical inhomogeneities due to a clumpy, not well mixed gas
distribution, possibly related to the presence of SN remnants, has been proposed by
Tsamis and Péquignot (2005) and Stasińska et al. (2007) as a way to explain the
different results from the RLs (dominated by the metal-rich clumps) and the CELs
(dominated by the more diffuse medium), and by Binette et al. (2012) to explain
the difference in temperature between [OIII] and [SIII]. Flourescence excitations via
continuum or resonance lines have also been proposed as a way to provide unrealistic
RL flux ratios and, therefore, affecting RL-derived metallicities (Grandi 1976; Liu
et al. 2001; Tsamis et al. 2003).

Even higher differences exist between the results of CELs and RLs and those of the
photoionization models; systematic discrepancies of 0.6–0.7 dex are not uncommon
(e.g., Kewley and Ellison 2008; Moustakas et al. 2010; López-Sánchez et al. 2012),
although some photoionization models tend to be in better agreement with the Te
method (Pérez-Montero 2014). Generally, direct Te metallicities tend to be lower than
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those derived from photoionization models, with RLs usually in between these two
values.

Whenmaking these comparisons one should also take into account that the direct Te
and RL methods estimate the metallicity of the gas phase only, while photoionization
models generally take into account dust depletion and provide results in terms of total
metallicity of the ISM (i.e., gas and dust). Therefore, Te and RLmetallicities should be
increased by about 0.1 dex in order to have a fair comparison with the photoionization
models.

The problem of understanding these differences and obtain the best estimates of
the gas-phase metallicities can be addressed by comparing the values obtained from
CELs, RLs, and photoionization methods with those of the young stars formed in the
same region. The use of young stars is needed to guarantee that the stellar metallicity
is similar to gas-phase metallicity, as young stars have been recently created from the
same ISM that is observed in the HII regions, with the possible exception of some
CNO reprocessing.

Independent estimates of metallicities can be obtained for blue supergiants (BSG)
and red supergiants (RSG). Spectral type A and B BSG are massive (12–40 M�),
young (less than 10 Myr) stars in the short evolutionary stage leading to RSG. They
are very bright and therefore their spectra can be obtained with the high-S/N needed
to accurately measure chemical abundances. Their spectra show absorption lines from
many elements (e.g., C, N, O, Mg, Al, S, Si, Ti and Fe). High-resolution spectra can
provide abundances with uncertainties of less then 0.05 dex (e.g., Kudritzki et al.
2012), while lower resolution spectra can also be used to obtain uncertainties of ∼ 0.1
dex (Kudritzki et al. 2008, 2016).

RSGs have initial masses between 8 and 35 M�, high-bolometric luminosities
peaking in the near-IR, and young ages (less than 50 Myr). Abundances of RSG can
also be reliably measured if good spectroscopy is available (Cunha et al. 2007; Davies
et al. 2010, 2017a; Patrick et al. 2016).

Themetallicity estimates derived forRSGandBSGare largely independent because
the physical conditions of the atmosphere of the two types of stars are very different.
The BSGmethod exploits hot atmospheres, and obtain metallicities from optical lines
of singly and doubly ionized ions, while for RSG much colder atmospheres are used
and near-IR lines from neutral metals are measured. The agreement between these two
methods is excellent (e.g., Gazak et al. 2015; Davies et al. 2017a), and Zahid et al.
(2017) recently showed that the derived values are also in excellent agreement with
those derived by spectral fitting of stacked spectra of many galaxies.

The stellar values can be compared to those derived for the ISMwith various meth-
ods. This comparison has been subject of a number of recent studies (Bresolin 2007;
Kudritzki et al. 2012; Hosek et al. 2014; Lardo et al. 2015; Gazak et al. 2015; Bresolin
et al. 2016; Davies et al. 2017a; Toribio San Cipriano et al. 2017) in which metallicity
gradients of individual, local galaxies with different metallicities are derived with all
the available methods to allow a comparison on local scales (see Fig. 4). In most cases
there is a good agreement between stellar metallicity and the results of the Te-CEL
method for the ISM. The status is summarized by Bresolin et al. (2016) (see Fig. 5;
Davies et al. 2017a). Photoionization models (Kewley and Dopita 2002; Tremonti
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Fig. 4 The radial metallicity gradient in M300 measured by three different methods: BSG (blue triangles),
RSG (red dots), HII regionmetallicities with the “Te”method (green squares). The agreement is remarkable.
Image reproduced with permission from Davies et al. (2015), copyright by ESO

Fig. 5 Difference between stellar and gaseous metallicity as inferred “directly” from the Te method (blue
circles) and from the recombination lines (orange squares) in a sample of local galaxies and star-forming
regions, as a function of stellarmetallicity. The vertical line shows the adoptedSolar value. Image reproduced
with permission from Bresolin et al. (2016), copyright by AAS

et al. 2004; Maiolino et al. 2008) usually provide higher metallicities, with differences
of the order of 0.2–0.3 dex.

It is still not clear whether the stellar metallicities agree better with RLs or Te-CEL
derived values. According to the summary in Bresolin et al. (2016) (Fig. 5), a good
agreement is found with the Te-CEL at any metallicity, while the RL method seems to
overestimate metallicity with respect to the stellar values for sub-solar metallicities.
The situation is not clear yet and better agreement with RLmetallicities are also found
in the Orion nebula (Simón-Díaz 2010; Simón-Díaz and Stasińska 2011).
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Summarizing, Te direct gas-phase metallicities are in better agreement with the
metallicities of young stars and therefore are now considered to be a more solid base
for the “strong line” methods described in the next section1 (Denicoló et al. 2002;
Pettini and Pagel 2004; Andrews and Martini 2013; Curti et al. 2017).

3.5 Strong line calibrations

The emission lines required to directly measure the gas metallicity are very weak
and challenging even with large telescopes. This has generally confined the use of
the direct method to a few tens/hundreds local galaxies and HII regions, or resorting
to the use of stacking of large number of spectra (e.g., Andrews and Martini 2013;
Curti et al. 2017). At high-redshift the auroral lines needed to apply the Te method
have been detected (or marginally detected) only in a handful of sources. This issue
has prompted astronomers to calibrate alternative diagnostics of the metallicity that
exploit relatively strong nebular emission lines, which can be detected more easily,
even in low S/N spectra. This technique is often referred to as the “strong linemethod”.

It is important to note that the strong line method is not a primary technique to
derive metallicity but is a way to allow for an easier, albeit less precise, application of
one of the primary methods introduced above.

These strong line calibrations have been performed empirically, through the direct
methods (e.g., Pettini and Pagel 2004; Pilyugin and Thuan 2005; Pilyugin et al. 2010b;
Pilyugin and Grebel 2016; Curti et al. 2017), through photoionization models (e.g.,
Zaritsky et al. 1994; McGaugh 1991; Kewley and Dopita 2002; Kobulnicky and Kew-
ley 2004; Tremonti et al. 2004; Nagao et al. 2011; Dopita et al. 2016), or a combination
of the two (e.g., Denicoló et al. 2002; Nagao et al. 2006a; Maiolino et al. 2008).

An important warning is that a number of the “strong line” metallicity diagnostics
are highly degenerate with other parameters (ionization parameter, density, pres-
sure,…) or even exploit indirect correlations betweenmetallicity and other parameters,
such as the correlation between metallicity and ionization parameter (Nagao et al.
2006a; Dopita et al. 2006) and the correlation between metallicity and nitrogen abun-
dance. It is important to be aware of these issues and using multiple diagnostics is
strongly encouraged. Within this context, for what concerns the direct calibrations,
Pilyugin et al. (2010b) and Pilyugin and Grebel (2016) have developedmethods which
use strong line ratios to consistently provide metallicity, nitrogen abundance and mit-
igate the effects of ionization parameter.

In the context of photoionization models, the calibration of strong line ratios is
rapidly making the way, as mentioned above, to codes which simultaneously fit mul-
tiple line ratios (Blanc et al. 2015; Chevallard and Charlot 2016; Pérez-Montero et al.
2016; Pérez-Montero and Amorín 2017), and, since most of these codes are publicly
available, having calibrations for individual “strong line” diagnostics is becoming less
compelling. However, the use of individual strong line diagnostics is still popular and
handy, especially for high-redshift studies, where generally only a few nebular lines
are measured.

1 As explained above, RL lines are too faint and detected in too few galaxies to be used to define a strong
line calibration.
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The use of hybrid calibrations (i.e., both empirical, through the direct methods,
and exploiting photoionization models) was in the past needed to properly cover the
metallicity range (Nagao et al. 2006a; Maiolino et al. 2008). Indeed, while the low-
metallicity range is fairly populated in terms of galaxies and HII regions with auroral
lines detections for the Te method, at highmetallicities theweakness of the auroral lines
has resulted in poor statistics and sparse sampling; this, togetherwith concerns of biases
of the auroral-line detected samples in the high-metallicity range, has led to efforts
to complement the empirical calibrations (at low metallicities) with photoionization
models-based calibrations at high metallicities. However, more recently extensive
stacking of SDSS galaxies (Curti et al. 2017) has mitigated these issues and fully
empirical (Te-based) calibrations are available up to high- metallicities.

Wefinally point out that all these strong line calibrations, either empirical or through
photoionization models, are based on HII regions and/or star-forming galaxies. This is
an important caveat for various reasons. The presence of diffuse ionized gas (DIG, see
Sect. 3.5.4) or of contamination by other excitation mechanisms, such as photoion-
ization by shocks or harder sources, such as AGNs or evolved post-AGB stars, can
strongly affect the nebular line ratios in a way that is independent of the metallicity
and can vary from galaxy to galaxy. The selection of HII regions/star-forming galax-
ies is typically based on the so-called “Baldwin–Phillips–Terlevich” (BPT) diagnostic
diagrams which attempt to isolate HII regions from regions excited by other mech-
anisms and sources (see Sect. 3.5.4). However, the simple demarcation reported by
some authors (Kauffmann et al. 2003; Kewley et al. 2006b) is identified in an empirical
way or by using considerations based on theoretical models. In reality the transition
between different excitation mechanisms is certainly much smoother and mixed. It is
therefore very likely that the datasets used for calibrations include contamination from
AGN, shocks and post-AGB stars and, vice-versa, samples of star-forming regions are
missed from the calibrations, especially in the high-metallicity regime. The same
contamination issue is certainly present when applying these calibrations to galactic
regions which are marginally resolved, or to the integrated spectra of galaxies in which
different contributions are likely mixed. We will discuss these issues in the following.

3.5.1 Strong line calibrations: optical lines

Optical nebular line ratios are among the most widely exploited to constrain the
metallicity in galaxies, both because some of the strongest nebular lines are in this
wavelength range, and because this spectral range is easily accessible from ground
with a variety of facilities and huge amount of data have been delivered by several
surveys.

Table 1 provides a list of the main strong line diagnostic, and their definition, that
have been proposed and calibrated either empirically or theoretically by several teams
(McCall et al. 1985; Skillman 1989; McGaugh 1991; Zaritsky et al. 1994; Denicoló
et al. 2002; Kewley and Dopita 2002; Kobulnicky and Kewley 2004; Tremonti et al.
2004; Pettini and Pagel 2004; Pilyugin and Thuan 2005; Nagao et al. 2006a, 2011;
Maiolino et al. 2008; Pilyugin et al. 2010b; Pilyugin and Grebel 2016; Brown et al.
2016; Dopita et al. 2016; Curti et al. 2017). In some of these studies authors have
suggested a combination of them to account for secondary (or primary!) dependences,
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such as the dependence on ionization parameter or nitrogen abundance (e.g., Kobul-
nicky and Kewley 2004; Pilyugin and Thuan 2005; Pilyugin et al. 2010b; Pilyugin and
Grebel 2016; Curti et al. 2017).

In the third column we provide the references for some of the calibrations that
have been proposed. We strongly suggest to use the empirical calibrations (Te-based)
obtained by Curti et al. (2017) and Curti (2019), and shown in Fig. 6, as they are
based both on individual HII galaxies and stacks of SDSS galaxies in which also
low-ionization coronal lines are detected and which, therefore, enable the empirical
calibration to extend to high metallicities, while also mitigating potential biases.

As mentioned, given that each of these line ratios is generally degenerate with
other parameters, it is advised to combine multiple of these diagrams to disentangle
dependences (a publicly available routine to combine these calibrations can be found
at http://www.arcetri.astro.it/metallicity/). However, if only some of these diagnostics
are available it is important to be aware of a number of potential caveats, strengths
and weaknesses, which are summarized in column 4 and 5 of Table 1, and discussed
in the following.

R23 (≡ log(([OII]λ3727 + [OIII]λ5007,4958)/Hβ)) has been one of the parameters
most widely adopted, as it involves emission lines of both the main ionization stages
of oxygen, O+ and O2+, hence it is less affected by the ionization structure of the HII
regions. However, it is subject to a significant dependence on the ionization parameter,
which some authors attempt to correct by including additional transitions such as O32,
as discussed below (Kobulnicky and Kewley 2004; Pilyugin and Thuan 2005; Nagao
et al. 2006a). The additional problem of this diagnostic is that it is double-branched
(i.e., a R23 value can be associated with two very different metallicities), hence identi-
fying which of the two branches applies requires the use of another diagnostics. Also,
it has a veryweak dependence onmetallicity at the switching between the two branches
(roughly between 12+ log(O/H) = 8.0 and 8.5), therefore loosing its importance on a
significant range of metallicities. Finally, the use of [OII]λ3727 line (far in wavelength
fromHβ and [OIII]λ5007) implies that this diagnostic is significantly sensitive to dust
reddening, hence requiring correction.

R2 (≡ log([OII]λ3727/Hβ)) and R3 (≡ log([OIII]λ5007/Hβ)) are individually
strongly dependent on the ionization parameter and on the ionization state of the
gas, hence are not really meant to be used in isolation, unless each of them is really
the only indicator available. Nevertheless, Fig. 6 shows that, at least for the stacked
spectra, a tight, well-behaved relation exist between R3 and metallicity. This is mainly
driven by the relation between metallicity and ionization parameter, but seems to work
well across a large range of metallicity. R3 is also insensitive to dust reddening. In
contrast, R2 is affected by the same issues as R23 in terms of being double-valued and
being affected by dust reddening.

N2 (≡ log([NII]λ6584/Hα)) is very convenient to use, especially at high-z, as the
two lines are very close-by hence requiring a very small spectral coverage and being
completely free from dust reddening (unless differential dust extinction is present
inside the galaxies). However, this diagnostic is actually primarily tracing the abun-
dance of nitrogen, hence if galaxies follow a different N/O–O/H relation than the
average sample used for the calibration then this indicator can be deceiving. This
diagnostic is also well known to be strongly sensitive to ionization parameter (e.g.,
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Fig. 6 Strong line diagnostics as a function of oxygen abundance obtained by Curti et al. (2017) and Curti
(2019). For the definition of the strong line diagnostics on the Y -axes please refer to Table 1. Green symbols
are individual galaxies and circles are measurements from stacks of galaxies from the SDSS, colour coded
by the number of galaxies in each stack (top colour bar). These calibrations are based on the most recent
realization of Te direct method

Nagao et al. 2006a). This ratio is also one of the parameters used to select star-forming
galaxies in the BPT diagram, hence its calibration and application is highly sensitive
to the detailed BPT-boundary adopted to select HII regions, implying that the resulting
metallicity distribution of galaxies is also quite subject on the assumed BPT bound-
ary. Finally, given its quadratic dependence on metallicity, N2 can be very low in low
metallicity galaxies, down to −2, and therefore the [NII]λ6584 line can be vary faint.
This can introduce severe selection biases through the undetected galaxies if this effect
is not properly taken into account.

S2 (≡ log([SII]λ6717,31/Hα)) is very similar to N2, but it has the advantage of not
being linked to the nitrogen abundance. Sulfur is an α-element like O, therefore S/O
is expected to evolve much less than N/O.

O32 (≡ log([OIII]λ5007/[OII]λ3727)) ismostly a tracer of the ionization parameter
(Díaz et al. 2000;Kewley andDopita 2002;Nagao et al. 2006a). The strong dependence
onmetallicity (Fig. 6) is mostly secondary and ismostly due to the correlation between
ionization parameter and metallicity. Therefore, this diagnostic should really be used
only if no other tracers are available and always bearing in mind that it is a very
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indirect tracer, through theU–Z relation (which may evolve with redshift, see Kewley
et al. 2013b), and subject to large scatter. Both O32 and R3 can be used to distinguish
between the two branches of R23.

Ne3O2 (≡ log([NeIII]λ3870/[OII]λ3727)), proposed by Nagao et al. (2006a) and
Pérez-Montero et al. (2007), is equivalent to O32, i.e., is primarily a tracer of the
ionization parameter, however it has the advantage that [NeIII]λ3870 and [OII]λ3727
are very close in wavelength, hence they require a very small wavelength range to be
observed simultaneously (quite convenient at high-redshift), and their ratio is essen-
tially unaffected by dust reddening. Also, it is the only ratio available in the near-IR
bands above z ∼ 3.6whenHβ and [OIII]λ5007 exit the near-IRKband. The drawback
is that the [NeIII]λ3870 line is typically ten times fainter than [OIII]λ5007.

O3N2 (≡ log([OIII]λ5007/Hβ) − log([NII]λ6584/Hα)) is used quite extensively
as it is a monotonic function of metallicity and unaffected by dust extinction (unless
significant differential extinction is present). However, it is very sensitive to the ion-
ization parameter and to the N/O abundance ratio, hence with the same major caveats
discussed above for the other diagnostics affected by the same issues.

RS23 (≡ log([OIII]λ5007/Hβ+ [SII]λ6717,31/Hα)) is a very promising diagnos-
tics, proposed only recently by Curti (2019) and Kumari (in prep.). It is essentially
equivalent to R23, but where [OII]λ3727/Hβ is replaced by [SII]λ6717,31/Hα. Hence,
as R23, it probes both the high- and low-ionization stages of the gas, but it has the
additional advantage of being nearly insensitive to dust reddening. However, it shares
some of the same issues as R23, in the sense that it has a secondary dependence on the
ionization parameter and is double valued, although the inversion point is conveniently
shifted to lower metallicities relative to R23.

N2S2Hα (≡ N2/S2 + 0.264·N2) was developed by Dopita et al. (2016) and is
expected to be less sensitive to the ionization parameter with respect to N2 and S2,
and share with them the same requirement for the small wavelength range and the
feature of being little affected by extinction. The calibration provided by (Dopita et al.
2016) through photoionizationmodels is strongly dependent on the assumedN/O–O/H
relation. This diagnostic has been re-calibrated empirically by Curti (2019), but the
inclusion of the nitrogen line still preserves its dependence on the nitrogen abundance.

N2O2 (≡ log([NII]λ6584/[OII]λ3727)) and N2S2 (≡ log([NII]λ6584/[SII]λ6717,
31)) are both very good tracers of the abundance of nitrogen relative to α elements
(e.g., Pérez-Montero and Contini 2009); however, they are often used also as tracers
of metallicity thanks to the correlation of the nitrogen to α-elements abundance ratio
(N/α, such asN/O andN/S)withO/H at highmetallicities. Yet, one should bear inmind
that the dependence onmetallicity is therefore indirect and that these diagnostics can be
deceiving for systems deviating from the N/α–O/H average relation. Both diagnostics
fail to be a sensitive metallicity diagnostics at low metallicities where the N/α–O/H
flattens. N2S2 has the advantage, relative to N2O2, of being much less sensitive to
dust reddening and requiring a small wavelength range.

Even more indicators, based a different combinations of several lines or on other
elements such as Argon, have been proposed, among others, by Pérez-Montero and
Díaz (2005), Stasińska (2006), Pérez-Montero et al. (2007), Kobulnicky et al. (1999),
Dopita et al. (2016) and Pilyugin and Grebel (2016). Most importantly, some of these
authors provides interlaced combination of multiple line diagnostics that attempt to
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explicitly take into account (and thereforemitigate) the effects of other physical param-
eters, such as the ionization parameter.

It is important to recall that, when attempting to investigate the nitrogen abundance
N/O as a function of global metallicity O/H, obviously none of the strong line metal-
licity diagnostics involving the nitrogen lines should be used to measure the global
metallicity O/H, as in this case both axes would essentially measure more or less
directly the nitrogen abundance; for this kind of studies the global metallicity O/H
should be measured by using only nitrogen-free diagnostics. Calibrations giving N/O
(or N/S) in terms of N2O2 and N2S2 are given, for instance, by Pérez-Montero and
Contini (2009) (based on empirical calibration) and Strom et al. (2017a) (through
photoionization modelling).

Summarizing, the results of strong line methods based on optical lines critically
depend on the method used to calibrate their line ratios, and calibrations based on
the Te method should be preferred. When lines of other non-alpha elements, such as
Nitrogen, are used to measure Oxygen abundance, variations of the relative element
abundances add another important source of uncertainty.

3.5.2 Strong line calibrations: UV lines

Although extensivemodels and codes have been developed to infer themetallicity from
the UV lines (Fosbury et al. 2003; Jaskot and Ravindranath 2016; Gutkin et al. 2016;
Feltre et al. 2016; Chevallard and Charlot 2016; Pérez-Montero and Amorín 2017;
Byler et al. 2018; Nakajima et al. 2018), and some works also measure metallicities
directly using UV auroral lines (e.g., Erb et al. 2010; Berg et al. 2018), no clear, simple
calibration has been proposed to derive the gas metallicity from ratios of UV strong
lines. Ratios between CIII]1908, CIV1549 and HeII1640 (often some of the brightest
line detected in the UV spectra of star-forming galaxies) are all strongly sensitive
to the ionization parameter and shape of the ionizing continuum, and they are also
produced/contributed bydifferent physical processes:CIII]1908 is a collisional excited
nebular line, CIV1549 is a resonance line which is generally blended with interstellar
absorption and stellar P-Cygni profile, HeII 1640 is an interstellar recombination line
in the highly ionized part of HII regions, but is also produced by the atmospheres of
Wolf–Rayet stars. Pérez-Montero and Amorín (2017) also investigated the ratio of
UV carbon lines with the optical hydrogen recombination lines; however, besides the
problem of these ratios being extremely sensitive to dust reddening, no clear trend was
found with metallicity, likely also because of the strong dependence on the ionization
parameter.

However, the UV range contains the optimal nebular lines for the measurement of
the C/O abundance ratio. Indeed, based on empirical calibrations, Pérez-Montero and
Amorín (2017) have shown that the flux ratio

C3O3 ≡ log

(
CIII]1908 + CIV1549

OIII]1664
)

,

is primarily sensitive only to the C/O ratio, and they provide an empirical relation
in the form log (C/O) = −1.069 + 0.796 C3O3. One however has to be aware of
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the caveats on the different production mechanisms of these lines discussed above,
especially for what concerns CIV1549. If information on the electron temperature is
available from auroral lines, then a more accurate determination of the C/O abundance
(or at least of C2+/O2+) can be obtained from the CIII]1908/OIII]1664 ratio (Garnett
et al. 1995, 1997), hence not having to rely on CIV1549 and the issues associated with
this transition.

3.5.3 Strong line calibrations: far-infrared lines

The advent of IR space observatories such as Spitzer (Werner et al. 2004) andHerschel
(Pilbratt et al. 2010), the prospect of newmajor spectroscopic IR surveys with the next
generation satellites (SPICA, Roelfsema et al. 2018), and the possibility of observing
the rest-frame far-IR wavelength range in distant galaxies with ground based sub-
mm/mm observatories, such as ALMA and NOEMA, has fostered the investigation
of mid/far-IR transitions as metallicity tracers.

Far-IR, fine-structure lines are expected to become a main coolant of HII regions
at moderately high metallicities and low temperatures (e.g., Stasińska 2002). One
problem of these transitions is that the most useful of them, within this context, are
sparsely distributed across the broad IR wavelength range, often posing observational
challenges. The additional problem is that these transitions tend to have low critical
densities, making the gas density an additional important parameter affecting these
diagnostics. Moreover, some of these transitions come frommultiple gas components,
making theirmodelling difficult and subject to large uncertainties and assumptions; for
instance [CII]158µmis emitted partly in theHII regions and in the Photo-Dissociation-
Regions (PDR).

However, despite these caveats, IR transitions offer the possibility of investigating
the metallicity of galaxies virtually without suffering from any dust extinction effects,
therefore areworth exploring and using,whenever possible (Moorwood et al. 1980a, b;
Lester et al. 1987; Rubin et al. 1988; Tsamis et al. 2003). For example, themetallicities
of the central, obscured regions of starburst galaxies are only accessible via these far-
IR lines, while metallicities derived from optical lines are likely to apply only to the
outer, less dust-extincted part of these galaxies (e.g., Puglisi et al. 2017; Calabrò et al.
2018).

Most efforts have used photoionizationmodelling, and primarily using nebular lines
coming only from HII regions, hence reducing model uncertainties and assumptions.
After investigating various possible line ratios, Nagao et al. (2011) identified the line
flux ratio ([OIII]λ52µm+88µm)/[NIII]57µm as a good tracer of the gas metallicity,
which is little dependent on gas density, ionization parameter and source of ionizing
continuum. This has been confirmed later on by Pereira-Santaella et al. (2017) by
adding a correction factor that minimizes the effects of some scaling relations not
directly associated with metallicity (Fig. 7, left). Note however, that the metallicity
sensitivity of this diagnostic is primarily due to the relation N/O–O/H assumed in
the photoionization models adopted to calibrate it (hence the steep dependence at
high metallicities and flattening at low metallicities). So one should be aware that this
diagnostic is primarily tracing N/O.
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Fig. 7 Two metallicity calibrations based on far-IR lines. Left: (2.2×[OIII]λ88µm+[OIII]λ52µm)/
[NIII]57µm flux ratio as a function of the gas metallicity, for different ionization parameters and sources
of ionization, according to the photoionization models developed by Pereira-Santaella et al. (2017). Right:
([NeIIII]16µm+[NeII]13µm)/([SIV]11µm+[SIII]16µm) as a function of metallicity along with a range
of photoionization models. Image reproduced with permission from Fernández-Ontiveros et al. (2017),
copyright by ASA

In absence of one of the two [OIII] transitions, the [OIII]λ52µm/[NIII]λ57µm and
[OIII]λ88µm)/[NIII]λ57µm ratios can still be used individually, but they are much
more sensitive to the gas density. In fact, the line ratio [OIII]λ88µm/52µm in sensitive
to density and can be used to measure it (Lester et al. 1983).

Fernández-Ontiveros et al. (2017) have also proposed the ratio ([NeIIII]16µm+
[NeII]13µm)/([SIV]11µm+[SIII]16µm)as a goodmetallicity diagnostics, by comput-
ing both an empirical calibration and a range of photoionization models (Fig. 7, right),
(although strongly affected by dust extinction) and Croxall et al. (2013) have proposed
a calibrationbasedon the ratios [OII]λ88µm/Hα and [NeII]λ12.8µm/[NeIII]λ15.5µm.

Finally, Nagao et al. (2012) proposed that [NII]λ205µm/[CII]λ158µm could be
a viable metallicity tracer for observations of high redshift galaxies with ALMA (at
z > 4, where both lines are detectable from ground), again exploiting the N/O–O/H,
although subject to significant model uncertainties.

3.5.4 Excitation source and BPT diagrams

Understanding the source of excitation of the nebular emission lines is important
as the calibration of the metallicity diagnostics is typically restricted to a class of
ionizing/excitation sources, generally young hot stars in star forming regions. This
section gives a quick overview of some of the diagnostics used to classify galaxies
and galactic regions, as well as of some of the main issues.

Diagrams comparing two or more emission line flux ratios contain a wealth of
information about the conditions of the emission line nebulae. Different pieces of
information can be obtained from different line ratios. Usually the influence of dust
extinction isminimized either by using pairs of lines close inwavelength, or by plotting
extinction-corrected line ratios.
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The BPT diagrams, originally proposed by Baldwin et al. (1981), are among the
most widely used. In these diagrams the [OIII]λ5007/Hβ ratio is used for its depen-
dence on ionization parameter, and compared either to [NII]λ6584/Hα (N2-BPT),
[SII]/Hα (S2-BPT), or [OI]/Hα (OI-BPT) (Veilleux and Osterbrock 1987). Diagnos-
tic diagrams similar to the BPT plots have been discussed also considering lines at
wavelengths other than optical, such as mid- and far-IR (Dopita et al. 2013) and UV
(Byler et al. 2018).

In general, line flux ratios depend on many quantities such as total metallicity,
chemical abundance ratios, ionization parameter and hardness of the ionizing contin-
uum. For this reason BPT diagrams are widely used to compare observational and
theoretical results on emission lines (e.g., Lehnert and Heckman 1996; Kewley et al.
2001a; Kewley and Dopita 2002; Dopita et al. 2006). These are the first diagrams that
any photoionization model must reproduce, at least at the statistical level. Diagrams
have also been introduced that are optimized to reveal the effect of single parameters.
For example, the distribution of galaxies in the diagram O32 vs. R23 is sensitive to
both the ionization parameter and metallicity, and can be used to break the degenera-
cies between these two quantities both in the local universe and at high redshift (Lilly
et al. 2003; Hainline et al. 2009; Richard et al. 2011; Nakajima et al. 2013).

The presence of diffuse ionized gas (DIG) in local and distant galaxies (e.g., Oey
et al. 2007) can also affect the position of galaxies on the BPT diagrams and bias the
measurements of metallicity especially, in galaxies with low sSFR and low surface
brightness of Hα emission (Sanders et al. 2017; Zhang et al. 2017; Lacerda et al.
2018).

Note that, since [NeIII]λ3870 and [OIII]λ5007 are emitted by essentially the same
region and scale nearly proportionally to each other, the [NeIII]/[OII] and O32 have
the same meaning and both depend mainly on ionization parameter. This is the reason
why the [NeIII]/[OII] vs. O32 plots show small scatters (Steidel et al. 2016). The two
lines can therefore be used equivalently.

Local galaxies showa typical bimodal distribution in the classicN2-BPT ([OIII]/Hβ

vs [NII]/Hα), S2-BPT ([OIII]/Hβ vs [SII]/Hα) and O1-BPT ([OIII]/Hβ vs [OI]/Hα)
diagrams, which are not sensitive to dust extinction. HII regions and galaxies whose
emission is dominated by star formation, i.e., whose ionizing continuum is due to
young, hot stars, follow a well defined sequence, where high values of [OIII]/Hβ

correspond to low values in [NII]/Hα, [SII]/Hα and [OI]/Hα, as shown in Fig. 8 for
the former two (Veilleux andOsterbrock 1987;Kewley et al. 2001a, b;Kauffmann et al.
2003; Bamford et al. 2008; Lamareille 2010). The position of the galaxies along the
star-forming sequence is dominated by the luminosity-weighted ionization parameter.
This is linked to metallicity (Nagao et al. 2006a; Dopita et al. 2006), therefore this is
also ametallicity sequence, increasing towardhigher values of [NII]/Hα (e.g.,Andrews
and Martini 2013; Curti et al. 2017).

Nebulae excited by a harder, AGN continuum are located in a different part of the
diagram, with high values of all these diagnostic ratios: [NII]/Hα, [SII]/Hα, [OI]/Hα

and [OIII]/Hβ; therefore, theBPTdiagrams are routinely used as a classification tool to
separate the two populations of star-forming andAGN-dominated galaxies. The reason
whyAGNare located in these regions of theBPTdiagrams is primarily the combination
of two effects: high energy photons produced by AGN increase the fraction of highly
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Fig. 8 The three classical diagnostic diagrams N2-BPT, S2-BPT, and R3 vs. R2 for SDSS galaxies. Galax-
ies are colour-coded according to the N2-BPT (blue and purple) and S2-BPT (green and cyan) diagrams.
Blue are star-forming galaxies, purple are composite galaxies, green are Seyfert nuclei and cyan are LIN-
ERs/LIERs. Image reproduced with permission from Lamareille (2010), copyright by ESO

ionized oxygen and also penetrate deeper into the gaseous clouds producing extended,
partially ionized regions where singly ionized nitrogen and sulfur, as well as neutral
oxygen, are abundant and where their collisionally excited transitions are the main
coolant; moreover, the intense radiation field produced by AGNs also often results
into high ionization parameter, which further boosts the [OIII]5007 emission.

Composite galaxies with contributions from both star formation and AGN occupy
an intermediated position.

The region of the BPT diagrams with high values of [NII]/Hα, [SII]/Hα, and
[OI]/Hα and relatively low values of [OIII]/Hβ are occupied by the so-called “Low
Ionization Nuclear Emission Line Regions”, LINERS (Heckman 1980). The bimodal-
ity of the population in this region is evenmore evident in the S2-BPTdiagram (Kewley
et al. 2006a). Recent works have shown that this kind of emission is not confined to
the nuclear region and is actually extended on kilo-parsec scales (Sarzi et al. 2010;
Singh et al. 2013; Belfiore et al. 2016b), it has therefore been suggested to rename
these regions as “LIER” (i.e., dropping the “N” that stands for “Nuclei” in the original
acronym). It has been shown that LINER/LIER are a composite population that can
be ionized by weak AGN, by post-AGB stars (associated with evolved stellar popu-
lations) or shocks (e.g., Shull and McKee 1979; Chevalier et al. 1980; Lehnert and
Heckman 1996; Allen et al. 2008; Rich et al. 2010; Binette et al. 2012; Newman et al.
2014, see Sect. 3.5).

The most commonly used separation boundaries between these classes of galaxies
are from Kewley et al. (2001a, b, 2006a) and Kauffmann et al. (2003), but other
classifications have been proposed by Veilleux and Osterbrock (1987), Tresse et al.
(1996), Dopita et al. (2000), Stasińska et al. (2006), Cid Fernandes et al. (2010) and
Lamareille (2010). In all cases, galaxy classification based on different BPT diagrams
(eitherN2, S2, orOI) can be very different (see Fig. 8). To obtainmore robust and stable
results Vogt et al. (2014) defined multiparameteric, 3D BPT diagrams, simultaneously
using more than two line ratios.

Recently, a number of large size, integral field unit (IFU) spectrographs have been
used to map a number of emission line galaxies. These data have been used to obtain
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Fig. 9 Three classical diagnostic diagrams for high-z galaxies. The N2-BPT, S2-BPT, and O32 vs. R23
diagrams are shown. Grey dots are the local SDSS galaxies, while green dots are star-forming galaxies at
z ∼ 2.3 observed with MOSDEF at Keck. High-z galaxies show a clear offset from the local HII-sequence
on the N2-BPT diagram, but not offset on S2-BPT diagram (although this claim has been debated, Strom
et al. 2017b) nor on the local O32 vs R23 diagram. Image reproduced with permission from Shapley et al.
(2015), copyright by AAS

spatially-resolved BPT diagrams studying the ionization properties of galactic sub-
regions, both in local galaxies (e.g., Belfiore et al. 2015, 2016b; Davies et al. 2016,
2017b) and at high redshift (e.g., Newman et al. 2014; Curti 2018). In particular,
the use of the VLT IFU spectrograph MUSE (Bacon et al. 2010) on nearby galaxies
has allowed astronomers to obtain spatially resolved spectroscopy with very high
spatial resolution on entire galaxies (e.g., Cresci et al. 2017; Venturi et al. 2017, 2018)
distinguishing different ionisation conditions in different parts of galaxies.

The new, near-IR, multi-object spectrographs on 8-m class telescopes have allowed
the observation of the near-IR spectra of a large number of intermediate redshift
galaxies, obtaining high S/N ratios and reliable fluxes for the rest-frame optical lines.
These studies have confirmed and clarified earlier results, based either on few galaxies
or stacked spectra, that had shown the presence of a shift between the BPT distribution
of high-z galaxieswith respect to local forminggalaxies (Shapley et al. 2005, 2015;Erb
et al. 2006a, 2010; Kriek et al. 2007; Liu et al. 2008; Hainline et al. 2009; Finkelstein
et al. 2010; Yabe et al. 2012, 2014, 2015a; Cullen et al. 2014; Newman et al. 2014;
Masters et al. 2014; Hayashi et al. 2015; Salim et al. 2015; Sanders et al. 2016c;
Steidel et al. 2016; Trainor et al. 2016; Strom et al. 2017a, b; Kashino et al. 2017,
among others). High redshift galaxies appear to have higher [OIII]/Hβ for a given
[NII]/Hα, or higher [NII]/Hα for a given [OIII]/Hβ, or both, see Fig. 9. Studies
comparing the redshift evolution of only one line ratio with respect to other properties
of the galaxies such as mass or sSFR also find evidences for evolution, but in this case
the results are more ambiguous because it is not easy to distinguish an evolution of the
ionizing properties of the gas from a simple metallicity evolution (Cullen et al. 2016;
Holden et al. 2016)

Many possible explanations have been proposed. Kewley et al. (2013a) ascribe this
shift to an evolution of the ISMconditions in high-z starbursts, such as higher densities,
harder ionizing radiation, or higher ionization parameter (see Fig. 10). Several authors
(Brinchmann et al. 2008; Hayashi et al. 2015; Shimakawa et al. 2015; Kewley et al.
2015; Cullen et al. 2016; Kashino et al. 2017; Hirschmann et al. 2017; Kaasinen et al.
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2018) explain the effect as the consequence of a high ionization parameter due either to
higher SFR densities, or to a top-heavy IMF. Higher densities or higher ISM pressures
are suggested by Shirazi et al. (2014), but this possibility is not supported by Strom
et al. (2017a) who found no correlation between density and offset from the local
BPT. Higher densities and higher ionization parameters are also seen in the rare local
galaxies that fall into the same, offseted part of the N2-BPT diagram (Bian et al. 2016,
2017, 2018). These galaxies have low mass and high sSFR, but other SDSS galaxies
with similar mass and sSFR do not necessarily have the same properties of the ISM,
pointing towards other explanations for their peculiar properties.AlsoPoetrodjojo et al.
(2018) do not find a relation between ionization parameter and sSFR in their sample
of local, face-on spiral galaxies. Higher N/O abundance ratio has been proposed, as an
explanation of the offset, by Pérez-Montero and Contini (2009), Masters et al. (2014,
2016), Shapley et al. (2015) and Yabe et al. (2015a), based on the evolution in the N2-
BPT and not in the S2-BPT, on the absence of offset in the O32 vs. R23 diagrams (see
Fig. 9), and on some N/O ratios measured at high redshift (Kojima et al. 2017). Jones
et al. (2015a) reached the same conclusion on the base of a metallicity calibration at
z = 0.8 based on the “direct” method. The difference in N/O could be related to the
presence of hot (Te ∼ 80 000 K) Wolf–Rayet stars enriching the ISM with N, or to
selection effects at high redshift (Masters et al. 2016). Cowie et al. (2016) proposed a
combined effect of increasing N/O and increasing ionization parameters. However, a
variable N/O has been questioned by Kashino et al. (2017) and Strom et al. (2017a),
as these authors find evolution also in the S2-BPT diagram, and by the results of the
models proposed by Hirschmann et al. (2017). Steidel et al. (2014), Nakajima et al.
(2016) and Strom et al. (2017a) proposed the effect of harder stellar ionizing radiation
as the dominant contribution to the BPT evolution, but this is not supported by the lack
of correlation between the ionizing photon production efficiencies and the offset from
the local BPT diagram found by Shivaei et al. (2018). In addition to the hardness of the
spectra, Nakajima et al. (2016) suggested that matter-bounded HII regions could boost
the value of the O32 ratio. Weak AGNs and shocks (Wright et al. 2010; Newman et al.
2014) could also have a role, albeit Steidel et al. (2014) found no evidence for high
ionization lines from AGNs, and possibly selection effects could be present (Juneau
et al. 2014).

In conclusions, it is not clear if there is one dominant effect and, actually, it is likely
that many of them contribute to the observed BPT “evolution” with redshift. This large
range of possible explanations ultimately derives from the intrinsic degeneracies of
the photoionization models with respect to many parameters, as shown in Fig. 10.

Most importantly, in the context of this review, it is not clear how the strong-line
calibrations derived for local galaxies are affected by this evolution of the excitation
mechanisms/processes or of the relative abundances. Definitely the shift from the local
distribution on the BPT diagram results in an internal inconsistencies of the different
methods (e.g., Kewley and Dopita 2002); the effect on metallicity can be severe when
using N-based indicators (Newman et al. 2014; Cullen et al. 2016) or relatively minor
(Salim et al. 2015), especially when using many line ratios (Brinchmann et al. 2008).
The problem of the possible evolution of metallicity diagnostics could be solved if
direct detections of [OIII]λ4363 and other auroral lines in a significant number of
high redshift galaxies are obtained. Using observations at z ∼ 0.8, Jones et al. (2015a)
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Fig. 10 Illustration of the effect
of the variation of several
parameters on the offset from
the HII sequence on the N2-BPT
diagram. It shows how the SDSS
star-forming galaxy sequence (in
red) is modified by a harder
ionizing field into the orange
line, by an increase of electron
density into the green line, by an
increase of the ionization
parameter q into the blue line,
and by an increase of N/O into
the purple line. The effects of
most of these parameters are
highly degenerate. Image
adapted with permission from
Kewley et al. (2013a), copyright
by AAS

obtained that the calibrations remain stable within 0.01 dex with respect to the local
ones, revealing a small effect of the shift in the BPT diagrams on metallicity determi-
nations. Similarly, by exploiting the currently limited number of high redshift (z ∼ 2)
galaxies for which “direct” Te metallicity measurements are available (mostly lensed
galaxies), Patrício et al. (2018) have shown that diagnostics such as R23 and O3 appear
to provide still reliable metallicity measurements, consistent with the local calibra-
tions, while diagnostics involving nitrogen seem to be affected by a systemic offset,
suggesting that a redshift evolution of the N/O abundance ratio, or selection effects,
are probably affecting the reliability of these diagnostics. Diagnostics that are primar-
ily tracing the ionization parameter and tracing metallicity only indirectly (or through
a secondary dependence), such as O32 and Ne3O2, are those that show the largest
dispersion and deviations in terms of ‘true’ metallicity with respect to that inferred
from applying the local calibrations, confirming that enhanced ionization parameter in
distant galaxies is heavily affecting these diagnostics. Certainly more direct Te based
measurements at high redshift are needed to further assess these issues.

Summarizing, the various flavours of the BPT and other diagnostic diagrams are
critical tools to study the conditions of the ionized ISM in local and distant galaxies
and determine the main contribution to the ionization, allowing for a classification of
the galaxies. Clear signs of evolution are seen between local and high-redshift (z ∼ 2)
galaxies, and the origin of this evolution is debated. It is likely that the values of
metallicity derived for distant galaxies with strong line methods are affected by this
evolution, but the importance of this effect is still not clear.

3.6 Interstellar and intergalactic absorption lines

The ultraviolet spectral region is rich in resonant transitions of metal lines, associated
with different kind of ions. If a clump of gas is observed against a source of radiation,
the absorption introduced by such transitions provide a measure of the column density
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of the associated ionic species (through the curve of growth, see Savage and Sembach
1996, for a review) . More specifically the depth of the absorption produced by the
transition between levels m and n of an ion i along the line of sight is given by e−τ(ν),
where the optical depth is defined as

τ(ν) = πe2

mec
f N iφ(ν, b),

where Ni is the column density of the ion i , f is the oscillator strength and φ(ν, b)
describes the line profile as a function of frequency, which is also dependent on the
Doppler parameter b.

If the column of hydrogen is also measured through one of the Lyman absorption
lines, and constraints on the ionization status of the gas can be obtained, then accurate
measurements of the cloud metallicity, or of its relative chemical abundances, can be
inferred. Provided that the spectrum has high enough signal-to-noise, and adequate
resolution, this techniques provides some of the most accurate measurements of gas
metallicity and chemical abundances. Indeed, by measuring directly the column of
metals/ions the technique is often (nearly) model independent and subject to little
uncertainties.

Most metal absorption lines used to investigate the chemical abundances are res-
onant lines in the UV. These have been extensively used to investigate the chemical
abundances of the circumgalactic/intergalactic medium and in the interstellar medium
of galaxies (e.g., Le Brun et al. 1997; Rauch 1998; Pettini et al. 2002a; Noterdaeme
et al. 2008; Lehnert et al. 2009; Steidel et al. 2010; Rafelski et al. 2012; De Cia et al.
2018). In most cases quasars were used as background light, but sometimes also other
bright sources such as SNe and Gamma-ray Bursts (GRBs) constituted the beacon
(e.g., Prochaska et al. 2007; Ledoux et al. 2009; Berger et al. 2012; Vreeswijk et al.
2014). The advent of sensitive spectrometers in space has enabled to extend these
studies to local systems where stellar clusters or star-forming regions are used as
background sources (e.g., James et al. 2014a; Tumlinson et al. 2011, 2017;Werk et al.
2014).

The fundamental difference with respect to luminosity-selected galaxies is that
absorption lines, sensitive to column-density cross-section, probe the most numerous
objects which are expected to be low-mass galaxies with low metallicity, a population
whose emission is not easily accessible at high-redshift. Continuum or line emission
metallicity studies instead tend to probe preferentially more massive (hence more
metal rich) systems. Moreover, while metallicities measured through emission lines
or stellar photospheric features are luminosity weighted (hence provide a view of the
metal content in galaxies biased towards the most active regions), absorption systems
provide a totally unbiased view of the metal content from this point of view.

Damped Lyman Alpha systems (DLAs) are by far the class of systems most widely
exploited to trace metal enrichment and chemical abundances through absorption
features at cosmological distances. These are defined as systems detected in absorption
with column densities of neutral hydrogen N(HI) > 2 × 1022 cm−2. The several
metal transitions observed in absorption together with Lyα often enable a detailed
characterization of their metallicity and abundance pattern. Good overviews of DLAs
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can be found in Pettini (2004) and Wolfe et al. (2005), although much work has
obviously been done since these reviews.

An important aspect to bear in mind about DLAs and other absorption systems,
especially in the context of this review, is that it is not really clear which kind of
systems they are probing and what is their relation to galaxies. Even in those cases
in which the optical counterpart of the DLA is identified, it is not clear whether
the absorption system is tracing the outer parts of the galactic disc, or gas in the
circumgalactic medium that has been ejected or is in an accretion phase, or a satellite
galaxy/clump, or simply clumps in the nearby ICM/CGM (e.g., Fynbo et al. 2010;
Krogager et al. 2012; Fumagalli et al. 2015), possibly characterized by a complex
multiphase status and a poor chemical mixing (e.g., Zahedy et al. 2018). The fact that
DLAs are not directly tracing the bulk of the active and luminous part of galaxies has
been discussed for instance by Pettini et al. (1999) and Pettini (2004), based on the
weak redshift evolution of the metallicity in DLAs.

Prochaska et al. (2003) found evidence for a significant redshift evolution of the
DLA metallicities, subsequently confirmed by various authors (e.g., Rafelski et al.
2012, 2014; De Cia et al. 2018; Poudel et al. 2018), however the extrapolation of
these evolutions to z = 0 is around log(Z/Z�) ∼ 0.7–0.8, i.e., well below the
metallicity of the bulk of local galaxies (at least within their effective radius). For the
same reasons, and in particular due to the fact that absorption systems probe different
regions than the bright parts of galaxies, it is difficult to compare themetallicity inferred
from absorption systems with those inferred from emission lines or stellar features in
galaxies.While early studies claimed a strong discrepancy (i.e. that absorption systems
were systematically more metal poor than the metallicity inferred from emission line
systems), these claims have been significantly revisited by studies that have compared
absorption-derived metallicities with close-by HII regions and found that they are
indeed consistent with each other (e.g., Bowen et al. 2005). Statistical studies have
also found consistency betweenmetallicities inferred from absorption systems and the
luminous part of their counterpart once metallicity gradients are taken into account
(e.g., Krogager et al. 2017).

Evenwith the difficulties in associating DLAswith the galactic component, absorp-
tion systems still provide the most accurate measurements of the relative abundances
on an extremely wide range of chemical elements. By probing both refractive and
volatile species absorption systems also provide some of the best determination of the
relative depletion of chemical elements in dust grains in different environments and
as a function of metallicity, as it will be discussed in Sect. 3.8.

DLAs will be recalled and discussed in several parts of this review. It is however
important here to recall some caveats and difficulties of this technique, in particular
the saturation of absorption lines, which in some cases only provides a lower limit
on the column density of the ionic species, and the need to correct for the ionic
fraction. The latter is often themain source of uncertainty as, unlessmultiple transitions
from different ionization stages of the same element are observed, it may imply some
modelling to account for the fraction of the unobserved ionic species. However, in
many cases either several transitions are available to tightly constrain the ionization
stage, or the column density is large enough that one can safely assume that the bulk
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of the cloud is self-shielded and therefore mostly neutral or in low ionization stages
(Wolfe et al. 2005).

In the case of absorption lines used to probe the ISM in galaxies, the clump(s) cov-
ering factor is another potential source of uncertainty, but it can often be constrained
either through the depth of saturated lines, or by using doublets whose relative equiv-
alent widths is tied to the relative oscillator strengths.

The fact that transitions of different elements can be traced at different red-
shifts, depending on the available wavelength band, and at different column densities
(depending on the oscillator strength of different transitions), may introduce difficul-
ties in properly comparing the metallicities observed at different cosmic epochs and
different systems (e.g., Rafelski et al. 2012, 2014; Wolfe et al. 2005, and reference
therein).

At very high redshift (z > 5) the Lyα optical depth of the IGM is so high to
make the continuum blueward of the Lyα wavelength at the redshift of the background
source nearly totally absorbed. Therefore, at these redshifts it generally becomes nearly
impossible to obtain constraints on the column of hydrogen. However, at very high red-
shifts absorption systems still provide extremely precious information on the relative
chemical abundances (modulo ionization corrections) (Becker et al. 2012; D’Odorico
et al. 2013).

Summarizing, absorption lines probe a different galaxy population (or different
galactic regions) with respect to that investigated by luminosity-selected samples,
because the former are most sensitive to the column density distribution of gas. Due to
their high columndensity, accuratemeasurements of the abundance of several elements
can be obtained for the DLAs, allowing for a detailed study of the evolution of the
abundance ratios and of dust depletion.

3.7 Chemical abundances from X-ray spectroscopy

X-ray spectroscopy has been extensively used to measure the chemical abundances
in hot plasmas (T ∼ 106–108 K), especially in the case of the hot ICM, (Mushotzky
et al. 1996; Mushotzky and Loewenstein 1997; de Plaa et al. 2007; Sato et al. 2007;
Mernier et al. 2016, 2018; Simionescu et al. 2018), but also in the galactic winds (e.g.,
Ranalli et al. 2008; Nardini et al. 2013; Veilleux et al. 2014).

Chemical abundances and metallicity are inferred through thermal collisional exci-
tation and ionization models. This is relatively straightforward, as these plasmas are
generally optically thin and in collisional ionization equilibrium, although accounting
for the charge exchange X-ray emission has complicated the interpretation of some
spectra (e.g., Liu et al. 2012; Zhang et al. 2014). The X-ray spectrum of hot plasma
is rich of transitions from nearly all elements, from carbon to nickel, hence rich of
information that can be used to infer chemical abundances. Of course, no transitions
from hydrogen are detectable in the X-rays, hence the absolute metallicity can only be
constrained by modelling the metal lines emission relative to the underlying free-free
emission.

Until recently, many studies had mostly used CCD spectra resulting into very low
spectral resolution that produces blending of many metal emission lines and, there-
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fore, significant uncertainties in the resulting chemical abundances. The use of X-ray
dispersion grating spectrometers has enabled astronomers to greatly improve the deter-
mination of the chemical abundances in plasmas by disentangling the transitions of
several chemical elements (e.g., Ranalli et al. 2008; Mernier et al. 2016, 2018). How-
ever, the dispersive nature of this technique has often limited the use of this method
to the systems with high surface brightness, such as galaxy cluster cores. The use of
the innovative arrays of micro-calorimeters on board of the Hitomi space observa-
tory have delivered a fantastic combination of very high spectral resolution and high
sensitivity, therefore enabling an unprecedented, extremely detailed determination of
the abundances in the Perseus cluster (Hitomi Collaboration 2017; Simionescu et al.
2018). Unfortunately, the limited lifetime of the Hitomi observatory has prevented the
extension of such studies to larger samples.

Grating X-ray spectroscopy has been used also to detect highly ionized metal lines
in Warm-Hot systems along the line of sight of bright background quasars (Buote
et al. 2009; Zappacosta et al. 2010, 2012; Fang et al. 2010; Nicastro et al. 2018).
These observations are very challenging, and do not really provide constraints on the
gas metallicity (which is generally assumed or constrained from other tracers), how-
ever they can provide key information on the content of baryons in these intervening
systems.

3.8 Dust depletion

In the interstellar medium a significant fraction of metals is locked into dust grains,
and this is a major source of uncertainty for the determination of the metallicity and
chemical abundances of the ISM. The “direct” methods only probe the gas phase
metallicity, while photoionization models assume, a-priori a fixed depletion pattern
of the various chemical elements, hence assume that the dust-to-metals ratio does not
depend on metallicity or other environmental effects.

As mentioned in Sect. 3.6, absorption line studies are the most effective in tracing
the depletion pattern, as they can both trace elements that are heavily depleted onto
dust (e.g., iron) and elements of the same group that are little depleted.

Extensive studies and reviews on the dust depletion patterns and properties have
been published (e.g., Savage and Sembach 1996; Draine 2003; Jenkins 2009; De Cia
et al. 2016; Galliano et al. 2018) and an extensive discussion goes beyond this paper.
However, in the followingwe provide some basic information that is particularly useful
when investigating the metallicity of the ISM.

The amount of depletion is heavily variable and depends on environment (e.g.,
Jenkins 2014). Typically, of the order of 30–50% of the metals is locked in dust
grains. The depletion fraction is quite different from element to element, depending
on its “refractory” nature. Typically, in the ISMnearly all (∼ 90–99%) of iron is locked
in dust, together with most of the silicon (∼ 30–97%, making silicate grains). About
∼ 0–40% of oxygen and carbon are in grains, while other elements such as nitrogen,
are almost totally in the gas phase (Jenkins 2009) even in the densest environments
(e.g., Caselli et al. 2002). Zinc is often assumed to be free from dust depletion and
therefore to be a good tracer of the abundance of the iron peak elements, but detailed
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studies have shown that it can suffers of significant depletion as well (Jenkins 2009;
Berg et al. 2015b). The resulting structure of dust is complex, with cores, mantles and
intrusions of the different elements. These are all important aspects when measuring
the metallicities by using specific metal lines.

The assumption that the depletion pattern and, more generally, the dust-to-metal
ratio is independent of metallicity seems to be reasonable only around solar metallic-
ities, while recent studies (mostly based on the DLA observations) have shown that
the dust-to-metal ratio decreases significantly with metallicity (e.g., about 50% lower
at Z ∼ 0.1 Z�) (Vladilo et al. 2011; Wiseman et al. 2017; De Cia et al. 2013, 2016),
suggesting that grain-growth in the ISM is a dominant mechanism of dust formation.
The variation of dust depletion with metallicity introduces a level of complexity that
has not been incorporated yet in photoionization models.

4 The landscape of galaxy chemical evolutionmodels

Each galaxy is subject to a number of processes acting together that determine its
chemical evolution. Metal poor gas is accreted from the IGM; gas is used inside the
galaxy to form stars, but stars can also be acquired via major or minor mergers; stellar
evolution provides chemically enriched gas to the ISM via SN explosions and stellar
winds; part of this enriched gas can leave the galaxy through galactic winds to enrich
theCGMor the IGM; the gas inside galaxies is recycled several times and goes through
a number of stellar generations; dust is created and destroyed, locking and releasing
metals; the presence of a central AGN can affect the properties of the ISM and of the
CGM, either by heating the gas or by removing it throughAGN-drivenwinds, and both
these effects can suppress star formation; dynamical interactions with nearby galaxies
and with the ICM can alter the properties of the ISM and affect the star formation
activity. All these effects can depend on several parameters such as dark matter halo
mass, cosmic time, and environment. The study of the chemical enrichment of galaxies
can give information on all these effects.

Different kinds of models have been developed to take into account all the effects
discussed above in a consistent way and inside a cosmological framework. Extensive
reviews of themethods used to develop galaxy formationmodels and of the current sta-
tus of the subject can be found in Silk andMamon (2012), Silk et al. (2014), Somerville
and Davé (2015), Naab and Ostriker (2017) and Dayal and Ferrara (2018). In the con-
text of galaxy formation models, Matteucci (2012) provides an extensive overview on
the theoretical approaches to model and reproduce chemical enrichment of galaxies..

In this section we give a brief summary of the main classes of existing models of
galaxy formation and evolution, which will serve as a reference for the discussions
presented together with the observational results. As emphasized by Somerville and
Davé (2015), all these models are based on a common set of basic physical processes
and obtain similar, although not at all identical, results (see, e.g., Mitchell et al. 2018).

One critical problem that all models must solve is how to keep star formation
efficiency low, as in all galaxies only a small fraction of baryons are converted into
stars. Galaxies contain a smaller fraction of baryonswith respect to the cosmic average,
and this fraction increases with mass up to halo mass of the order of 1012 M� (e.g.,

123



De re metallica: the cosmic chemical evolution of galaxies Page 43 of 187 3

Baldry et al. 2008; Papastergis et al. 2012). This requires the existence of mechanisms
to remove baryons from galaxies, or prevent accretion. Star formation must also be
limited. For this, the gas can be put into some state unsuitable for star formation rather
than removed from the galaxy, or further accretion of gas can be prevented therefore
depriving the galaxy of the necessary ingredient for a sustained and prolonged star
formation. Sources of these kinds of feedback have been proposed to be, among others,
SNe, radiation from young stars, AGN, and ram-pressure stripping due to a intracluster
medium.

All models contain a few main, critical parameters that are described via mathe-
matical formulae in the analytical and SAM models or with physical prescriptions in
the numerical ones:

• The star formation “efficiency”, defined as the number of stars formed per unit
time per unit gas mass

ε = SFR/Mgas, (13)

often referred to as the inverse of the gas “depletion time”, i.e., the time required
for star formation to completely use up all gas if there is no further gas accretion
and the star formation rate remains constant. Note, however, that in case of no
accretion the SFR cannot remain constant, must decline exponentially, as simply
obtained by solving the “closed-box” differential equation

SFR = −dMgas/dt = εMgas, (14)

hence the term “depletion time” is not totally appropriate, as it is actually linked
to the e-folding time of the SFR. The star formation efficiency is often taken as
constant, independent of the gas mass or surface density; this is equivalent of
assuming that the Schmidt–Kennicutt relation is linear, in contrast to the original
formulation, which has a slope of 1.4 (see Kennicutt and Evans 2012). Whether
the slope of the relation is linear or superlinear is still a debated issue, which goes
beyond the scope of this review. More detailed models tend to distinguish between
the star formation efficiency associated with the sole molecular gas, i.e., the phase
out of which stars form, and the global star formation efficiency, i.e., including
the atomic component of the cold gas, which is typically inactive and mostly a
reservoir on larger scales.

• The outflow mass loading factor, i.e., the ratio between mass outflow rate and star
formation rate,

η = Ṁoutfl

SFR
. (15)

For star-forming galaxies, in which the outflow is primarily driven by SNe and
radiation pressure from stars, the loading factor is typically observed to be around
unity (e.g., Steidel et al. 2010; Heckman et al. 2015; Fluetsch et al. 2018), but it
is expected to anti-correlate with the mass of the galaxy (as a consequence of the
deeper gravitational potential well, Somerville et al. 2012), and it can be boosted by
a large factor by the presence of an AGN (Cicone et al. 2014; Fluetsch et al. 2018).
Oftenmodels leave the outflow loading factor as a free parameter that is constrained
by fitting the observational data. When talking about outflow, it is often important
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to discriminate between gas that does not escape the galaxy (falling back, hence
being recycled, on relatively short timescales) and gas that leaves the halo (orwhich
is potentially re-accreted only very long timescale, close to theHubble time). Some
models introduce the concept of “effective” outflow loading factor by considering
only the fraction of gas that is expelled and not recycled (Peng et al. 2015). Most
models assume that the metallicity of the outflowing gas is the same as the average
metallicity of the ISM in the galaxy (or of the galactic sub-region), while some
models also consider the possibility of differential outflows in which the species
produced by core collapse SNe are expelled more efficiently than other elements.

• The gas inflow rate. This is one of the most critical parameters, as it regulates
most of the galaxy evolution. Many models assume that the gas inflow rate is pro-
portional to the SFR in the galaxy as this enables a simpler analytical solution of
the differential equations that describe galaxy evolution and chemical enrichment.
However, although mathematically convenient, we warn that this assumption is
unphysical, as there is no physical reasonwhy the inflowing gas should know about
the SFR in the galaxy. Moreover, assuming that the accretion rate is proportional
to the SFR, when combined with Eqs. (13)–(15), automatically implies that the gas
mass and the SFR must decline exponentially with time, hence implying that the
galaxy cannot follow the observed tight relation between mass and SFR dubbed
Main Sequence of Star Formation (MSSF, e.g., Brinchmann et al. 2004; Daddi
et al. 2007). The only case in which the inflow rate can be physically assumed to
be proportional to the SFR is in the condition of perfect equilibrium in which the
inflow rate is exactly compensated by the SFR and outflow rate. More physically
sound models assume the inflow rate proportional to the halo mass. Generally the
inflowing gas is assumed to be chemically pristine; this assumption may not be
appropriate in several cases; indeed, as we will see in Sect 5.1.6 and Sect. 8 the
circumgalactic gas can be significantly enriched, also at high redshift.

It is important to emphasize that a meaningful comparison between the results of
the models, especially those based on numerical techniques, and the observation must
take into account all the selection effects on both sides. In fact, generally large popula-
tions of observed galaxies are compared to a large number of model galaxies derived
from the simulated evolution of baryons inside a distribution of dark matter halos, and
the selection of the objects in the models can be different to those affecting the actual
observations. While the former are usually selected on stellar mass or halo mass, the
latter are selected based on luminosity or gas column density. In other words, simula-
tionsmust be “observed” using the same selections used for the telescope observations,
producing “synthetic observations” of the simulation outputs. This is not always done,
but the result of the comparison and the values of the derived physical quantities can
depend critically on these effects (e.g., Governato et al. 2009; Scannapieco et al. 2010;
Guidi et al. 2016, 2018).

4.1 Numerical simulations

These models start from N -body simulations of the effect of gravity on dark and
baryonic matter and the hierarchical growing of structures via a continuous process
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of merging and accretion. Several implementations exist that can be based either on
particles, or on a geometric mesh, or hybrid. Critical parameters of these simulations
are the spatial and mass resolution, i.e., the finest detail that can be resolved and
reproduced, and the total size of the simulation, i.e., the number of particles used
and the size of the universe volume that is simulated. Being limited by the total
computational time available, usually high resolutions corresponds to small volume
sizes, and vice-versa. Often several simulations are made with the same physics and
different choices of resolution/size (e.g., McAlpine et al. 2016).

In hydrodynamical simulations baryonic physics is included by solving the hydro-
dynamical equations albeit in some simplified form (e.g., Finlator and Davé 2008).
Complex processes on small scales such as star formation and the effect of SN explo-
sions on the ISM would require sub-parsec resolution, which is never achieved, and
sub-grid recipes are still used. The impressive advances in computational power of
the last decade, and a better understanding of the description of the basic physical
processes have allowed these codes to reach the level where reproducing most of the
observational constraints is possible. Several large simulations are now available and
have released their databases to the public to allow for a better and more extensive
analysis of the results. Among the best know, ILLUSTRIS (Vogelsberger et al. 2014;
Genel et al. 2014; Genel 2016), ILLUSTRIS-TNG (Springel et al. 2018; Pillepich et al.
2018; Torrey et al. 2017), EAGLE (Schaye et al. 2015; Crain et al. 2015; McAlpine
et al. 2016; De Rossi et al. 2017), HORIZON-AGN (Dubois et al. 2014, 2016), FIRE
(Hopkins et al. 2014; Ma et al. 2016), and MUFASA (Davé et al. 2016, 2017). The
review by Somerville andDavé (2015) provides an extensive description of thesemod-
els. Some hydro codes are optimized to reach the best possible resolution, albeit on
single galaxies (e.g., Pallottini et al. 2014, 2017; Katz et al. 2015; Costa et al. 2015).

4.2 Semi-analytic models (SAMs)

These models start from considering the merging trees, obtained from N-body dark
matter simulations or Monte-Carlo techniques, that give rise to the formation of cos-
mic structures. The resolution is given by the mass of dark matter particles used.
Galaxies are associated with dark matter halos, and evolve inside them by describing
the important physicswith analytic formulae, usually based on a number of free param-
eters whose values are varied to reproduce the observations, in a forward-modelling
approach. As mentioned above, crucial quantities and processes are, among others,
gas cooling time, star formation efficiency, feedback from SNe, feedback from AGN,
morphological transformation, and metals distribution (e.g., Kauffmann et al. 1993;
Lacey and Cole 1993; Cole et al. 2000; Kauffmann et al. 2004; Croton et al. 2006; De
Lucia and Blaizot 2007; Benson 2012; Collacchioni et al. 2018).

The advantage of SAM models is that they are less computationally expensive
and allow for a faster exploration of the effects of changing the description of the
physical processes. The role of these processes can therefore be better understood. The
weak points are that the physics is controlled “by hand”, i.e., the assumptions on the
physical processes are approximate and not necessary realistic (which is however an
issue also for many simulations), the evolution of baryons and dark matter may not be
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self-consistent because baryons evolve inside pre-determined dark matter halos, and a
large freedom in the choice of the parameters is allowed so that it is not guaranteed that
a unique solution can be obtained. Examples of SAMmodels, discussing in particular
the chemical properties of galaxies, can be found in Thomas et al. (1999), De Lucia
et al. (2004, 2017), Somerville et al. (2008), De Lucia (2010), Hirschmann et al.
(2013), Fu et al. (2013), Yates and Kauffmann (2014), Porter et al. (2014), Cousin
et al. (2016) and Zoldan et al. (2017).

4.3 Analytical models

For the MW and the galaxies in the Local Group with resolved stellar populations,
a set of detailed chemical evolution models have been developed to reproduce the
wealth of data available in terms of total metallicity, chemical abundance ratios, and
radial gradients of these quantities. Besides the galaxy-wide processes listed above,
the (generally unknown) star-formation history of a galaxy, its dependence on radius,
and many physical effects related to stellar evolution (stellar evolutionary sequences
for each initial mass, SN explosions timescale, chemical and dust yields, radial re-
distribution of matter, among others) are to be taken into account. All these quantities
are often expressed as a function of some parameters whose value is to be obtained
by comparison with the observations (e.g., Matteucci and Greggio 1986; Matteucci
and Francois 1989; Matteucci and Brocato 1990; Matteucci 1994, 2001; Chiappini
and Gratton 1997; Chiappini et al. 2001; Naab and Ostriker 2006; Pipino et al. 2006;
Prantzos 2008, 2009; Calura and Menci 2009; Cescutti et al. 2015; Ryde et al. 2016;
Vincenzo et al. 2016; Grisoni et al. 2017, 2018).

The treatment of dust production and destruction is an important ingredient that
can affect the results especially for the elements most depleted into dust, and change
important aspects of the chemical evolution models (Dwek 1998; Calura et al. 2008;
Valiante et al. 2009; Gioannini et al. 2017a, b).

A class of models for star-forming galaxies are named “equilibrium” models (or
“gas-regulator” models) because they consider how the interplay of all the on-going
processes discussed above affects the gas reservoir of the galaxies and, therefore, their
star formation, giving a slowly-evolving quasi-steady state, in which gas inflow is
compensated by star formation and outflows, yielding a nearly constant, or slowly
evolving, gas content (Bouché et al. 2010; Peeples and Shankar 2011; Dayal et al.
2013; Lilly et al. 2013; Forbes et al. 2014; Pipino et al. 2014; Peng and Maiolino
2014a; Feldmann 2015; Yabe et al. 2015b; Harwit and Brisbin 2015; Kacprzak et al.
2016; Hunt et al. 2016b, see Fig. 11).

From the point of view of chemical evolution, there are still many chemical ele-
ments whose evolution is not satisfactorily reproduced in the solar neighbourhood.
This is very probably due to failures in the stellar yields suggesting that nucleosynthe-
sis calculations should be revised. Recently, Matteucci et al. (2014) have shown that
a possibility of reproducing, for instance, the solar abundance of the r-process ele-
ment Europium, as well as [Eu/Fe] versus [Fe/H] in the galaxy, is to assume that
this element is mainly produced during merging of neutron stars. Such an event
has been witnessed for the first time in connection to the gravitational waves event
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Fig. 11 Basic processes of the
equilibrium model. Image
reproduced with permission
from Lilly et al. (2013),
copyright by AAS

GW170817 (Pian et al. 2017). The other channel of Eu production is represented
by core-collapse SNe, although their Eu production is not enough to reproduce the
solar Eu. New nucleosynthesis calculations are necessary also for elements such as
Mn, Cr, K, Ti (see Romano et al. 2010). Better dust production and destruction pre-
scriptions are expected to better reproduce chemical evolution in the presence of
dust.

Summarizing, models of galaxy formation and evolution have been computed using
very different analytical and numerical methods, each of them with strong and weak
points. All these models use different techniques to study the effect of the same set
of critical mechanisms, in particular the processes limiting star formation in galaxies.
Total metallicity and element abundance ratios are very sensitive to these processes
and to the timescales of star formation, therefore they are among the main observables
used to constrain the models.

5 Metallicity scaling relations in galaxies

Metallicity, both of gas and stars, shows clear scaling relations with several integrated
properties of the galaxies. These relations are present both in star-forming and qui-
escent galaxies, and constitute one of the most revealing pieces of information about
the evolution of galaxies, as discussed in Sect. 4. The processes of galaxy formation
and evolution depend critically on several parameters, at least halo mass and environ-
ment; metallicity, being a consequence of all the star formation history, gas accretion,
merging, and gas outflow, is critically dependent on these parameters in the form of
scaling relations.
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5.1 Themass–metallicity relation (MZR)

The primary scaling relation of metallicity is observed to be with galaxy stellar mass
and, as a consequence, with the quantities that scale with mass, such as luminosity
in bands dominated by relatively old stars. The MZR exists for both gas-phase and
stellar metallicities.

5.1.1 Stellar metallicity

The stellar MZRwas first discovered in local ellipticals by studying colour-magnitude
diagrams and stellar spectroscopy (McClure and van den Bergh 1968; Sandage 1972;
Mould et al. 1983; Buonanno et al. 1985) and soon interpreted as the result of
chemically-enriched SN winds preferentially ejecting metals from low mass galaxies,
due to their shallower gravitational potential well (Tinsley 1974, 1978; Mould 1984).

In more recent times, several authors have applied the methods explained in Sect. 2
to optical spectra of local galaxies, in particular to the extensive SDSS spectroscopic
database, to derive the stellar MZR of local galaxies, both quiescent and star form-
ing (Trager et al. 2000a; Kuntschner et al. 2001; Gallazzi et al. 2005, 2006, 2008;
Thomas et al. 2005, 2010; Panter et al. 2008; Graves et al. 2009; Harrison et al. 2011;
Petropoulou et al. 2011; Conroy et al. 2014; González Delgado et al. 2014; Fitzpatrick
and Graves 2015; Sybilska et al. 2017; Lian et al. 2018b; Kirby et al. 2013; Zahid
et al. 2017; Zhang et al. 2018a). A clear MZR is seen, with metallicity increasing with
mass, as illustrated in Fig. 12.

As detailed in Sect. 2, the stellar populations of local and distant galaxies are studied
using not only rest-frameoptical spectra, but also theUVspectra, especially in starburst
galaxies. The UV stellar MZR have been derived using samples of galaxies selected
in different ways in the local universe (Heckman et al. 1998; González Delgado et al.
1998; Leitherer et al. 2011; Zetterlund et al. 2015). When UV spectra are used, only
the young, massive stars are sampled, and the results are expected to be similar to those
derived for the ISM out of which young stars have recently formed (see Sect. 5.1.2).

By deconvolving the integrated spectra it is also possible to derive stellar metallicity
as a function of stellar age in the same galaxy (e.g., Panter et al. 2008). With this
technique evidence for temporal evolution is found, but the actual significance of the
effect is debated because the process of deconvolving spectra is oftenmodel-dependent
and always associated with significant uncertainties.

Usually, the derived metallicities are luminosity-weighted and can be significantly
different from the mass-weighted values provided by models of galaxy evolution
(Zahid et al. 2017; Lian et al. 2018b). The observed scatter is often greater than the
observational uncertainties, showing that other parameters besides the stellar mass
affect the chemical evolution of galaxies.

As detailed in Sect. 7.2.1, the same authors cited above also find a systematic
increase of the α-elements-to-iron ratio with stellar mass. The alpha/Fe abundance
ratio is a powerful tool to constrain the relative contribution of SNIa and core-collapse
SNe, hence of the star formation history timescale, and an enhanced α-elements/Fe
abundance ratio is usually explained as a consequence of shorter formation timescales
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Fig. 12 Stellar MZRs of local galaxies derived by various authors. Green squares are the median values of
local SDSS galaxies with metallicities derived from Lick indices (Gallazzi et al. 2005); black dots are also
SDSS galaxies but with metallicities derived from spectral fitting of stacked spectra (Zahid et al. 2017);
Blue stars are nearby, single galaxies whose metallicity is based on spectroscopy of individual supergiant
stars (Bresolin et al. 2016; Kudritzki et al. 2016; Davies et al. 2017b). Red triangle are local dwarf galaxies
(Kirby et al. 2013). Image reproduced with permission from Zahid et al. (2017), copyright by AAS

in massive galaxies, the so-called downsizing (e.g., Thomas et al. 2010; Onodera et al.
2015).

Splitting the SDSS sample into the two classes of quiescent and star-forming galax-
ies, Peng et al. (2015) found evidence of the central role of “strangulation” or, more
generally, “starvation” to explain the stellar metallicity properties of galaxies (Fig. 13).
Strangulation is the suppression of gas accretion due to dynamical or physical pro-
cesses (Larson et al. 1980; Balogh et al. 2000; Kereš et al. 2005). When the infall is
halted, the galaxy evolves as a closed box (Searle and Sargent 1972; Tinsley 1980),
reducing gas fraction, enriching gas with the residual, decreasing activity of star
formation, and producing stars with rapidly increasing metallicities, primarily as a
consequence of the lack of inflowing gas that dilutes the metallicity. As observed by
Peng et al. (2015), in such a scenario higher metallicities are expected in quiescent
(starved) galaxies with respect to star-forming galaxies which are still experiencing
infall (hence dilution) of metal-poor gas. A similar interpretation is given by Spi-
toni et al. (2017) in their detailed analytical models, where the metal enrichment of
the passive population relative to the star-forming population is achieved through a
faster decline (relative to normal discs) of the inflow rate, which is similar to the
simple “starvation” scenario but expressed through a smoother, more physically plau-
sible declining function. Also the recent results of the hydrodynamical code EAGLE
are consistent with this scenario (De Rossi et al. 2018). Whatever is its origin, the
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Fig. 13 Stellar mass–metallicity relation for quiescent (red) and star-forming (blue) galaxies in the local
universe. The difference is ascribed to a sudden reduction of gas infall, producing a reduction of star
formation and a rapid increase in metallicity during the “starvation” phase, due to the lack of fresh supply
of external gas diluting themetallicity. Image reproducedwith permission from Peng et al. (2015), copyright
by Macmillan

dominant feedback effect in these galaxy does not remove gas but prevents further
accretions.

The role of environment in shaping the stellarMZRhas been the subject of consider-
able efforts because it is considered, together with mass, one of the main, independent
variables driving galaxy evolution (Trager et al. 2000a;Kuntschner et al. 2001; Thomas
et al. 2005, 2010; Sheth et al. 2006; Sánchez-Blázquez et al. 2006; Pasquali et al. 2010;
Zhang et al. 2018a). In clusters, galaxies on the red sequence show metallicities that
do not depend on age or morphology: old, quiescent ellipticals and younger lenticular
follow the same MZR with similar dispersion (Nelan et al. 2005; Mouhcine et al.
2011). It appears that while environment has a strong effect in defining the morphol-
ogy, age, and the overall level of activity of the galaxies (Pasquali et al. 2010; Peng
et al. 2010, 2012), the direct (i.e., not mediated by mass) effect on the MZR is modest
(Thomas et al. 2010; Mouhcine et al. 2011; Fitzpatrick and Graves 2015; Sybilska
et al. 2017). The effect of environment is larger for dwarf satellite galaxies in high
overdensities, in the sense that they tend to be more metal rich than in low density
environment (Peng et al. 2015; Trussler et al. 2018), an effect ascribed to starvation
as these systems plunge in the hot environment of massive overdensities. In the Illus-
tris simulations Engler et al. (2018) find a dependence of stellar metallicity of dwarf
galaxies in clusters on the time elapse from the infall into the cluster, and explain this
effect with stellar stripping.

Summarizing, increasing amounts of data are available about stellar metallicities
in nearby galaxies and their dependence on the other main parameters of galaxies.
Clear MZRs are present in all galaxy samples, and models can be tested if they can
reproduce these relations in various galaxies, for stars of different ages, and in different
environments. The difference in MZR between ETG and star-forming galaxies has
been interpreted as evidence of gas starvation.
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Fig. 14 Gas-phase MZR in the local universe. Black dots are the median of the distribution of the SDSS
galaxies (shown as gray dots). The black lines enclose 68% and 95% of the distribution, and the red line is a
polynomial fit to the data. The inset histogram is the distribution of residuals of the fit. This MZR is derived
using a metallicity calibration based on photoionization models, and this is likely to produce abundances
higher than the actual values, as discussed in Sect. 3.4. Image reproduced with permission from Tremonti
et al. (2004), copyright by AAS

5.1.2 Gas-phase metallicity

This dependence of ISM metallicity on mass was observed, for the first time, in
galaxies of the Local Group (van den Bergh 1968; Peimbert and Spinrad 1970). The
first MZR was inferred for a small sample of local, star-forming galaxies (irregulars
and blue-compact dwarfs) in an early work by Lequeux et al. (1979) in the form of a
dependence of chemical abundance on total (dynamical) mass, and the correlation was
soon after confirmed by Talent (1981) andKinman andDavidson (1981), see Pagel and
Edmunds (1981) for an early review. The same authors found a clear anti-correlation
of metallicity with gas fraction, which is mainly driven by the anti-correlation between
mass and gas-fraction (e.g., Rodrigues et al. 2012; Peeples et al. 2014). Total and stellar
mass are difficult to obtain for a large number of galaxies, and this was even more
true in the 1980s. As a consequence luminosity was often used as a proxy for mass
when studying these scaling relations (Garnett and Shields 1987; Skillman et al. 1989;
Garnett 2002; Lamareille et al. 2004).

The quality of the MZR observed in the local universe improved significantly with
the use of SDSS spectra that allowed astronomers to measure the flux ratios of the
main optical emission lines for more than 100 000 galaxies (e.g., Tremonti et al. 2004;
Mannucci et al. 2010; Pérez-Montero et al. 2013; Lian et al. 2015), as shown in Fig. 14.
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Fig. 15 Comparison of the MZRs obtained in the local universe (SDSS data, 〈z〉 ∼ 0.08) using different
metallicity calibrations, from Curti (2019). The grey shaded area gives the average metallicity of galaxies
using the Te-based calibration in Curti et al. (2017), in good agreement with Andrews and Martini (2013)
and Pettini and Pagel (2004). Some of the differences, especially at low masses, are due to the different
galaxy selection criteria and are linked to the dependence of metallicity on SFR (see below). The curves
with higher normalizations are obtained when using calibrations based on photoionization models, while
lower curves are based on “direct” Te-based metallicities. Stars and crosses show the MZR inferred by
measuring the metallicities through BSGs and RSGs (Davies et al. 2017a).

The observed scatter around the relation in SDSS galaxies is of the order of 0.1 dex
(Tremonti et al. 2004; Mannucci et al. 2010), somewhat larger than the metallicity
measurement uncertainties. The MZR was also extended towards low mass galaxies,
rare in the SDSS sample, albeit with a larger scatter and possible biases due to selection
effects (Skillman et al. 1988; Lee et al. 2006; van Zee and Haynes 2006; Haurberg
et al. 2013; Pilyugin et al. 2013; Haurberg et al. 2015). The existence of the MZR is
nowadays established from ∼ 107 M� to ∼ 1012 M�, with a steep dependence at low
masses, up to M∗ ∼ 1010 M�, that then flattens out at higher masses.

Most of these studies are based onmetallicities derivedwith the strong-linemethod,
the only technique that can applied to large numbers of galaxies. It should be noted that
both the shape and, evenmore, the overall normalization of the gas-phaseMZRdepend
on the calibration used. In particular, the MZR based on photoionization models, like
Tremonti et al. (2004), and also Mannucci et al. (2010) at high metallicities, provide
high normalizations that, for example, do not fit the positions of the MW, the LMC
and the SMC which are all significant more metal-poor than these MZR. For this
reasons, of particular interest are the MZRs derived by using “direct” metallicities
(see Sect. 3.1) (Berg et al. 2012; Andrews and Martini 2013; Ly et al. 2016; Curti
2019). These studies confirm the overall shape of the relations found with the strong
line methods but with a significant lower normalization, as shown in Fig. 15.

The contribution from the DIG to the line ratios and, therefore, to the computation
of metallicities, can also significantly affect the measured shape of the MZR and
therefore is another source of uncertainty (Sanders et al. 2017).
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The comparison between stellar and gas-phaseMZR can be used to obtain scientific
insights on several aspects of galaxies. For example,the small amount of ISM present
in early-type galaxies (ETG) shows metallicities similar to that of the old stellar pop-
ulation (Griffith et al. 2018). This reveals that the ISM in these galaxies is not due to
infalling gas (expected to be less metal rich than the stars) but to internal production.

5.1.3 Interpreting the MZR

Various possible driving mechanisms have been proposed to explain the existence and
the shape of the MZR.

First, MZR could be shaped by outflows produced by feedback (e.g., Garnett
2002; Brooks et al. 2007). Outflows mainly due to SNe are very common in starburst
galaxies, both in the local universe and at high redshifts (e.g., Heckman 2002; Law
et al. 2007; Weiner et al. 2009; Steidel et al. 2010; Martin et al. 2012; Heckman and
Thompson 2017). These outflows are observed to have metallicities higher than the
ISM of the parent galaxies (Chisholm et al. 2018), and are expected to be much more
effective in small galaxies, where the potential well is shallower, hence removing a
larger fraction of metal-enriched gas from low-mass systems towards the CGM and
the IGM (Tremonti et al. 2004; Tumlinson et al. 2011; Chisholm et al. 2018).

Second, it is known that high-mass galaxies evolve more rapidly and at higher
redshifts than low-mass ones, the so-called “downsizing” (e.g., Cowie et al. 1996;
Gavazzi and Scodeggio 1996; Somerville and Davé 2015, see also Sect. 7.2.1), there-
fore at the present stage they are expected to have converted a larger fraction of their
gas into stars and metals, reaching a higher metallicity (Maiolino et al. 2008; Zahid
et al. 2011). Under this interpretation the MZR is a sequence of evolutionary stages.

Third, the earlier evolutionary stage of smaller galaxies and their larger gas fraction
(e.g., Erb et al. 2006b; Rodrigues et al. 2012; Lagos et al. 2016a) could be linked to
the on-going infall of metal-poor gas, which, once mixed with the existing ISM,
contributes to reduce metallicity and to the build up of the stellar population through
star formation.

Fourth, the shape of the high-mass end of the IMF could depend on galaxy mass,
introducing a systematic change in the average stellar yields and in the rate of metal
enrichment (Köppen et al. 2007; Trager et al. 2000a; Mollá et al. 2015; Vincenzo et al.
2016; Lian et al. 2018a).

Fifth, the metallicity of the accreted gas, recycled from previous episodes of star
formation, may be larger for larger mass galaxies (Brook et al. 2014; Ma et al. 2016).

The equilibrium models introduced in Sect. 4 are explicitly built to reproduce the
MZR and therefore explain this relation as the consequence of the interplay of many
on-going processes. The simple “bathtub” models explain the MZR without having to
invoke any direct effect of the gravitational potential in terms of capability of retaining
metals (i.e., no mass-dependent outflow rate), although mass is indirectly included
through the DM framework, which accelerates the evolution of more massive systems
(e.g., Bouché et al. 2010; Lilly et al. 2013; Peng and Maiolino 2014a; Dekel et al.
2013; Dekel and Mandelker 2014).

SAM and hydro numerical codes (see Sect. 4) were also tuned to reproduce the
MZR and its evolution (De Lucia et al. 2004; Croton et al. 2006; Finlator and Davé
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2008; Oppenheimer and Davé 2008; Oppenheimer et al. 2010; Dutton et al. 2011;
Davé et al. 2011, 2012; Somerville et al. 2012; Dayal et al. 2013; Forbes et al. 2014;
Lu et al. 2015; Pipino et al. 2014; Torrey et al. 2014, 2017, 2018; Zahid et al. 2014c;
Feldmann 2015; Harwit and Brisbin 2015; Kacprzak et al. 2016; Christensen et al.
2016; Hirschmann et al. 2016; Rodríguez-Puebla et al. 2016). These models often
produce an anti-correlation between metallicity and gas fraction (Schaye et al. 2015;
De Rossi et al. 2015; Lagos et al. 2016a; Segers et al. 2016; De Rossi et al. 2017),
which is actually observed, see Sect. 5.2.3.

A critical role in shaping the MZR is played by the properties of stellar and AGN
feedback, the chemical yields, the actual metallicity of the outflowing wind with
respect to the parent ISM, the fraction of metals that are re-accreted, and the evolution
of the star formation efficiency. Many of these parameters are degenerate, and in
some cases measures of metallicity help to break these degeneracies. For example, by
comparing the stellar and gasmass–metallicity relations, Lian et al. (2018b) concluded
that only two scenarios can reproduce both relations as well as theMSSF: either strong
outflows remove most of the metals, or a steeper IMF characterises the at early stages
of galaxy formation. As it will be discussed in Sect. 7, the study of the abundance ratios
between different elements is potentially capable of breaking degeneracies because
they are sensitive to the timescales of star formation.

An important issue when comparing observations with theory is that of normal-
ization which drives the total amount of metals observed in the ISM. As shown in
Fig. 15 and discussed in Sect. 3.4, metallicity calibrations totally or partially based on
photoionization models provide a significantly higher normalization of the MZR than
the direct methods. The amount of metals that the models must produce and disperse
into the IGM depends critically on this problem. The direct method is now considered
to be more reliable and the low normalizations should be preferred.

Summarizing, theMZR could be a sequence of metals removal by outflows, enrich-
ment, dilution, or evolutionary stage, and all these effect could be simultaneously
present. Information on the relative importance of these effects can be obtained by
studying the effective yields (see Sect. 5.1.5).

5.1.4 Redshift evolution of the MZR

Measuring the evolution of the MZR with redshift is not an easy task. A large num-
ber of spectra are needed, and measuring metallicities generally require high S/N
ratios spectra, especially to measure stellar metallicity but also when measuring the
abundances in the gas phase with the “strong-line” method.

The evolution of the stellar MZR has been studied with optical spectroscopy to
sample the stellar populations dominating the total stellar mass up to intermediate
redshifts in massive galaxies, both in clusters and in the field (Kelson et al. 2006;
Ferreras et al. 2009; Choi et al. 2014; Gallazzi et al. 2014; Onodera et al. 2015;
Leethochawalit et al. 2018), finding a modest evolution, consistent with the passive
evolution of the stellar population. A significant number of rest-frame UV spectra of
high redshifts galaxies have been obtained (Mehlert et al. 2002; Fosbury et al. 2003;
Shapley et al. 2003; Steidel et al. 2004, 2016; Rix et al. 2004; Savaglio et al. 2004;
Halliday et al. 2008; Quider et al. 2009; Dessauges-Zavadsky et al. 2010; Erb et al.
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Fig. 16 Stellar MZR at z ∼ 5 for averages of galaxies with (blue) and without (red) Lyα emission. The
stellar MZR in compared with the gas-phase MZR in Mannucci et al. (2009). Image reproduced with
permission from Faisst et al. (2016), copyright by AAS

2010; Mouhcine et al. 2011; Sommariva et al. 2012; Faisst et al. 2016). In particular,
a number of bright, usually lensed galaxies have been studied in considerable detail
in the UV, obtaining a wealth of information about their level of metal enrichment
and about the chemical abundances ratios (e.g., Pettini et al. 2001; Villar-Martín et al.
2004; Dessauges-Zavadsky et al. 2010). Despite large uncertainties, as expected the
stellarMZR derived from rest-frameUVspectra (hence probing young stars) is similar
to the gaseous MZR, has a significant redshift evolution (see Fig. 16), and shows an
inverse relation between metallicity and SFR (Faisst et al. 2016).

Significant observational efforts by many groups have provided a clear picture of
the evolution of the gas-phase MZR up to z ∼ 3.5, i.e., out to the maximum redshift
where the main optical lines are still in the near-IR bands. ThisMZR is found to evolve
monotonically with redshift, with metallicity declining with redshift at a given mass.
At low redshift the evolution is faster at lower mass (see Fig. 17), while high mass
galaxies have already reached their current metallicity at z ∼ 1, in what appears to be
the chemical version of downsizing.

This results is based on many observational works at intermediate (z ≤ 1.5) red-
shifts, mainly using optical spectroscopy (e.g., Contini et al. 2002; Kobulnicky et al.
2003; Kobulnicky and Kewley 2004; Maier et al. 2004, 2005; Savaglio et al. 2005;
Maier et al. 2006; Cowie and Barger 2008; Zahid et al. 2011, 2013; Moustakas et al.
2011; Cresci et al. 2012; Foster et al. 2012; Pérez-Montero et al. 2013; Yuan et al.
2013; Nakajima et al. 2013; Guo et al. 2016; Pérez et al. 2016; Suzuki et al. 2017;
Hoyos et al. 2005). Tracing the evolution at higher redshifts requires near-IR spec-
troscopy. The much brighter sky background, the reduced atmospheric transmission
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Fig. 17 Redshift evolution of the
MZR up to z = 1.55. Blue,
yellow, black and cyan points
refer to z = 0.08, 0.29, 0.78, and
1.55, respectively. These
metallicities have the “high”
normalization related to the use
of photoionization models, see
Fig. 15. Image reproduced with
permission from Zahid et al.
(2014a), copyright by AAS

and the technological limitations of near-IR spectrographs with respect to optical ones,
and the fainter apparent brightness of high-redshift objects produce a lower number
of useful spectra, usually with lower S/N ratio and for galaxies with higher SFR.
Nevertheless a number of authors have produced significant databases at z ∼ 2 (e.g.,
Erb et al. 2006a, 2010; Finkelstein et al. 2011b; Wuyts et al. 2012, 2014a; Cullen
et al. 2014; Zahid et al. 2014b; Steidel et al. 2014; Sanders et al. 2015, 2016c, 2018;
Onodera et al. 2015; Bian et al. 2017) and z ∼ 3 (Maiolino et al. 2008; Mannucci et al.
2009; Belli et al. 2013; Maier et al. 2014; Troncoso et al. 2014; Onodera et al. 2016).

In many cases, the detection of the faintest lines needed to measure metallicities is
only possible when many galaxy spectra are stacked together. This procedure is not
free from uncertainties because it involves choices on which galaxies to stack, how to
do the stacking, and is prone to non-linear effects. Lensed and single bright galaxies
have been extensively observed to obtain higher S/N ratio on the spectra of single
galaxies, especially in the low mass range (Teplitz et al. 2000; Kobulnicky and Koo
2000; Richard et al. 2011; Wuyts et al. 2014b; Jones et al. 2015b; Perna et al. 2018).

While the resulting big picture outlined above is clear, the details are debated and
depend on the method used.

First, metallicity indicators play a critical role, especially because at high redshift
each observing program typically has access to a restricted number of diagnostics,
hence introducing scatter and systematics amongdifferent surveys (Kewley andEllison
2008, seeSect. 3.5). This is evenmore importantwhen taking into account that different
results can be obtained also when using different line ratios of the same calibration
(e.g., Brown et al. 2016). Also, the possibility of a significant evolution with redshift
of the calibrations due to different conditions of the star-forming regions, for example
in terms of ionization parameter, ionizing spectra, density, pressure, and N/O ratio is
always present (see Sect. 3.5.4), and could also be differential for the various methods
(Kewley et al. 2013b, a, 2015; Steidel et al. 2014; Shapley et al. 2015; Strom et al.
2017a; Kashino et al. 2017).

Second, the method used to measure stellar mass (and SFR) affects the results, as
discussed, e.g., in Yates et al. (2012) and Cresci et al. (2018).
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Third, howgalaxies are selected affects the final results. For example,when galaxies
are selected according to the flux of a metallicity-sensitive emission line, such as
[OIII]λ5007 (Izotov et al. 2011, 2015; Xia et al. 2012) the results can be biased
toward lower or higher metallicities.

Fourth, similar but more subtle effects are introduced by the need of putting a S/N
threshold on the flux the line to be used tomeasuremetallicity. If a relatively high (3–5)
minimum S/N is used on all the lines (e.g., Yates et al. 2012), metallicity-dependent
selection effects can be introduced near the detection threshold. For example, the flux
of [OIII]λ5007 is about 1/10 of Hα at solar metallicities (and low extinction) and about
as bright as Hα at Z ∼ 0.2Z�. If a threshold of S/N=3 is used for [OIII]λ5007, at each
SFR (i.e., roughly at each Hα luminosity), a larger fraction of low metallicity galaxies
are included, while high metallicity galaxies are preferentially excluded, altering the
cosmic average and the resultingMZR. Opposite biases are introduced by [NII]λ6584,
whose flux increases with metallicities. The result is the introduction of biases that are
difficult to trace (Salim et al. 2014; Cresci et al. 2018). The opposite approach consists
in using a high S/N threshold only on the emission line more directly related to SFR
and less dependent on metallicity, such as Hα and Hβ, obtaining a more SFR-selected
sample (e.g., Mannucci et al. 2010). In both cases the resulting sample is usually not
mass- or volume-selected.

Fifth, often spectra are obtained inside a fixed aperture irrespective to galaxy dis-
tance. For example, SDSS spectra are obtained with a 3 arcsec circular fiber placed
on the galaxy center. This, together with the existence of radial metallicity gradients,
can introduce spurious correlations of metallicity with distance and galaxy size that
are not easy to estimate and correct.

Finally, the presence of a dependence of metallicity on SFR and other galactic
properties, such as size and surface density (see Sect. 5.2), means that the shape of
the observed MZR and its redshift evolution depend critically on how the targets
are selected in terms of luminosities and redshift range. In other words, the MZR
is only defined for a given average SFR at each mass, using intrinsically fainter or
brighter galaxies for a given mass and redshift affects the shape of the MZR. Marked
differences between published results (e.g., Steidel et al. 2014 vs. Wuyts et al. 2014a)
can be explained by this effect, see the discussion in Cresci et al. (2018).

Despite all these uncertainties, there is a general agreement on the fact that the
observed MZR evolves with redshift (see Fig. 17), especially at z > 1, i.e., the
observed metallicity at a given stellar mass decreases with redshift at a rate which
depends on redshift and mass. The evolution of the MZR can be parametrized in
different ways (e.g.,Moustakas et al. 2011).Maiolino et al. (2008) andMannucci et al.
(2009) used a simple 3rd-order polynomial fit, while Zahid et al. (2014c) introduced
a different parametrization named “Universal Metallicity Relation”. The variation
of only one of the parameters used in this analytic formula, the mass at which the
mass-dependence on metallicity starts to flatten out, is often enough to reproduce the
observed evolution. Curti (2019) proposed a similar parametrization but with onemore
parameter to better match the observations.

Most galaxy evolution models cited in the previous section reproduce the evolution
of the MZR. The steady decrease of metallicity with redshift at constant mass is
ascribed to several reasons, including higher efficiency in ejecting gas and reduced
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stellar yields. Based on the IllustrisTNG simulations, Torrey et al. (2017) identify one
of the main drivers of the MZR evolution in the increasing gas fraction with redshift,
in agreement with the anti-correlation between metallicity and gas fraction and SFR
observed in the local universe (see Sect. 5.2.3), while Yabe et al. (2015b) attribute the
evolution of the MZR to higher infalls and outflows at high redshifts , and Lian et al.
(2018a) propose either higher metal loading factors or a steeper IMF at high redshifts.
As discussed in Sect. 4, a meaningful comparison with the models should consider all
the selection- and observational- effects listed above, and this is not always done.

Summarizing, there is a clear evidence that the gas-phaseMZR and the stellarMZR
based on UV observations (i.e., related to young stars) are evolving with redshift,
with lower metallicities at earlier cosmic times. The details of the evolution depend
on a number of possible selection effects and issues regarding how metallicities are
estimated. The increase of metallicity with time for a given stellar mass is a feature
which is commonly reproduced by the models of galaxy formation.

5.1.5 Effective yields

The effective yields are a way to measure the influence of infall and outflows on the
chemical evolution of a galaxy (Matteucci 2001; Garnett 2002; Dalcanton 2007). The
differential equations describing a closed-box system, i.e., with no infalling gas and not
outflowing winds, with the assumptions of instantaneous recycling, and instantaneous
mixing, can be solved (Edmunds 1990) to express the gas metallicity Z as a function
of the gas fraction fgas and of the true stellar yield y, i.e., the ratio between the amount
of metals produced and returned to the ISM and the mass of stars:

Z = y ln(1/ fgas). (16)

The true yields y can be expressed in terms of the solar yield y� = 0.0142, i.e.,
the fractional contribution of metals to the solar mass (Asplund et al. 2009).

Using the observed quantities for Z and fgas, the effective yield is defined as:

yeff = Z/ ln(1/ fgas). (17)

In general the measured values of yeff differ from the true stellar yields y if the
system is not a closed box. In other words, comparing metallicity with gas fraction
gives information on the gas flow from and into the galaxies. An outflow removes
gas, hence reduces fgas and therefore reduces also yeff . If the outflow preferentially
eject metals, then it also reduces the metallicity, further reducing yeff . Inflow of metal-
poor gas decreases the metallicity and, although it increases the gas fraction, it can be
shown that the net effect is to reduce yeff . Both effects therefore tend to reduce yeff
with respect to y, and the difference is a measure of how much these gas flows affect
the chemical evolution of the galaxies.

Estimating gas masses via the Schmidt-Kennicutt relation, Tremonti et al. (2004)
found a significant dependence of yeff on mass for the local SDSS galaxies (Fig. 18),
with lower mass galaxies having lower yeff . At variance with this result, Yabe et al.
(2015b) used the gas masses directly measured by Peeples and Shankar (2011) and
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Fig. 18 Effective yields as a function of total baryonic mass for SDSS galaxies (gray) and other low-mass
galaxies, from Tremonti et al. (2004). The black diamonds are the median of the data distribution. The
dashed line indicates true yield y if no metals are lost. The pink line is a fit with a physically-motivated
analytic formula, and the pink stars denote galaxies that have lost 50% and 90% of their metals. Image
reproduced with permission from Tremonti et al. (2004), copyright by AAS

metallicities estimated from the MZR, obtaining yeff decreasing with mass, as shown
in Fig. 19 (left). This shows the dependence of the results on how gas fractions are
measured, but in either cases it proves that galaxies are not closed boxes, that infall
and/or outflows of gas have an important effect on metallicity, and that earlier evolu-
tionary stages in lowmass galaxies cannot be the only explanation for theMZR. Either
outflows of metal-rich gas, or infall of metal-poor gas, or both, must have measurable
consequences on metallicity.

At high redshift yeff is found increase with gas fraction and, as a consequence, to
decrease with stellar mass. This is observed at z ∼ 1 (Rodrigues et al. 2012; Yabe
et al. 2015b), at z ∼ 2 (Erb et al. 2006a; Erb 2008; Wuyts et al. 2012), and at z ∼ 3
(Mannucci et al. 2009; Troncoso et al. 2014), as shown in Fig. 19, and mass loading
factors of infall and outflows significantly larger than 1 are often obtained.

5.1.6 The mass–metallicity relation of DLAs and GRB host galaxies

At even higher redshifts (z > 3.5), all the main optical lines leave the near-IR bands
and metallicity can only be obtained with different techniques and on galaxy samples
selected in very different ways with respect to the commonmagnitude- or mass-based
selections.
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Fig. 19 Left: Metallicity as a function of fgas for three sample of galaxies at various redshifts, from Yabe
et al. (2015b). The properties of each galaxy sample are reproduced by models with gas infalls and outflows
proportional to the SFR, where fi and fo are the relative loading factors. Right: Metallicity (upper panel)
and effective yields (lower panel) as a function of fgas in the sample of z ∼ 2 by Erb (2008) (magenta stars)
and z ∼ 3 galaxies from Mannucci et al. (2009) (blue dots). The black dashed line are the expectation of
a close-box model (Edmunds 1990; Matteucci 2001, 2008). Blue and red lines are two different fits to the
blue data points and emphasize the different contribution of outflows ( fo) and infalls ( fi). In this model,
infalls are more effective in changing yeff for the gas-poor galaxies, while outflows are more effective in
gas-rich galaxies. Images reproduced with permission from [left] Yabe et al. (2015b), copyright by AAS;
and [right] from Mannucci et al. (2009), copyright by the authors

A MZR relation up to z ∼ 5 has been derived for gamma-ray burst (GRB) host
galaxies by Laskar et al. (2011) by measuring the metallicity through ISM absorption
lines. To what degree this is representative of the high-redshift universe is debated
because it is still not clear if long-duration GRBs select an unbiased sample of star-
forming galaxies. A discussion of this complex issue is beyond the scope of this review.
Herewe onlymention that evidence for a strongmetallicity bias has been proposed and
negated several times, (see, e.g., Fynbo et al. 2006;Mannucci et al. 2011; Arabsalmani
et al. 2015a, 2018; Piranomonte et al. 2015; Trenti et al. 2015; Krühler et al. 2015;
Vergani et al. 2017, and references therein).

As explained in Sect. 3.6, DLAs (e.g., Wolfe et al. 1986) provide a unique oppor-
tunity to obtain accurate measure of the metallicity of the CGM (and the ISM of the
outer disc) in high-z galaxies (see, e.g., Pettini et al. 2002a; Pettini 2006). Comparing
this information to that derived from luminosity-selected galaxies is not straightfor-
ward (e.g., Fynbo et al. 2008; Christensen et al. 2014), for the various reasons already
discussed in Sect. 3.6.

In particular, DLAs are selected on the gas cross-section, and the information
derived only applies to the part of the galaxy projected on the background source,
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whose distance from the center is usually not known. As a consequence, the same
galaxy can show very different metallicity properties if, for example, two lines of
sight at different radial distances are studied. We recall that it is not even clear whether
DLAs probe the extended discs of galaxies, or clumps in the circumgalactic medium,
or both [see the discussion in De Cia et al. (2018) and Krogager et al. (2017)].

Moreover, different elements are used to measure the metallicity of the ISM in
emission and absorption: typically O and N abundances are estimated for emission-
selected galaxies (see Sect. 3), while in DLA various elements can be traced (Zn, S,
Fe, Si, O, C, Mg, …) depending on the observed band and column density, etc.

Finally, the integrated properties of the galaxy associated with the DLA, such as
stellar mass and SFR, are often not measured as the galaxy itself is often not even
detected, although a small number of DLA galaxies are actually identified in emission
(e.g., Rhodin et al. 2018; Kanekar et al. 2018; Krogager et al. 2017; Noterdaeme
et al. 2012; Péroux et al. 2011). At z ∼ 0.7 these galaxies follow a MZR similar to
the emission-selected galaxies when a somewhat uncertain correction for metallicity
gradients is included (Rhodin et al. 2018). Moreover, Krogager et al. (2017) identified
the optical counterparts of a small sample of DLAs at z ∼ 2 and, by combining these
with some additional previous detections, suggest that the DLA host galaxies follow
a luminosity-metallicity relation.

However, more generally, as a consequence of the issues discussed above, most
studies investigate the mass–metallicity relation by using the velocity dispersion of
the DLA as a proxy for the mass (Haehnelt et al. 1998; Ledoux et al. 2006; Pontzen
et al. 2008). A planar correlation between velocity dispersion (mass), metallicity
and redshift has been proposed by Neeleman et al. (2013) that is capable of reducing
the scatter about the relations involving only two quantities. The correlation between
velocity dispersion and metallicity is found to be in place already at z = 4 (Ledoux
et al. 2006), andMøller et al. (2013) explored the relation out to z = 5byusing a sample
of 100 DLA at 0.1 < z < 5 (see also Arabsalmani et al. 2015b, for a confirmation
that the same relation applies to DLA along the line of sight of both QSOs and GRBs).

Clearly the absolute normalization of the MZR for DLA and luminosity-selected
galaxies cannot be easily compared, as this implies translating the DLA velocity
dispersion (at the location of the DLA impact parameter) into a host galaxy stellar
mass. However, the relative redshift evolution of the two relations can be compared,
and this can give information on the nature of the galaxies associated with the DLA.
Figure 20 shows the evolution of the DLAMZR from z = 5 to z = 0 fromMøller et al.
(2013) compared to the evolution of theMZR of emission-selected galaxies (Maiolino
et al. 2008; Mannucci et al. 2009; Troncoso et al. 2014). Interestingly, the DLAMZR
follow the same rapid evolution as lowmass galaxies. However, clear evolution is only
seen out to z = 2.6, beyond this redshift the normalization of the DLA MZR remains
constant. The cosmic epoch of this break (z ∼ 2.6) is interesting for various reasons: it
is close to the peak of galaxy formation (Madau andDickinson 2014) and, intriguingly,
this is also the redshift where the FMR (see Sect. 5.2) starts to show clear signs of
evolution (Mannucci et al. 2010), and it is also the epoch when the comoving HI mass
density of galaxies change from rapidly increasing (at z > 2) to remaining constant
(at z < 2) (Prochaska and Wolfe 2009). This change has been attributed to several
possible effects: a variation of the IMF (Bailin et al. 2010), variations in the properties
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Fig. 20 Redshift evolution of the
normalization of the
mass–metallicity relation for
DLAs. Dots show average of
DLAs, from Møller et al. (2013),
compared to the evolution of
luminosity-selected galaxies
from Maiolino et al. (2008),
Mannucci et al. (2009) and
Troncoso et al. (2014). At low
masses the MZR of these works
is based on “direct” Te
metallicities; therefore, the
comparison is not strongly
affected by the use of more
modern calibrations (see
Sect. 3.4). Image reproduced
with permission from Møller
et al. (2013), copyright by the
authors

of the IGM and of equilibrium between accretion from the IGM and gas processing
in galaxies (Dixon and Furlanetto 2009; Prochaska and Wolfe 2009; Prochaska et al.
2010), or the switch from “in-situ’ star formation, due to infalling gas, to ”ex-situ”
formation followed by accretion of stellar systems already formed (as expected at
these redshifts by some cosmological simulations Oser et al. 2010). In some of these
scenarios, some of the hypotheses on which the gas-equilibrium models are based
(e.g., Davé et al. 2011; Lilly et al. 2013, see Sect. 4) are no longer valid at z > 2.6.

Summarizing, DLAs follow amass–metallicity relation which is also evolving with
redshift, sign of ongoing process of chemical enrichment in these systems from high
redshifts. The link with the evolution of the MZR in emission-selected galaxies is not
well established, but there is similarity between DLA and low-mass galaxies.

5.1.7 Other classes of galaxies

Special classes of galaxies have also been studied to understand the key processes
affecting chemical evolution.

Merging and interacting galaxies generally show lower metallicities than the MZR
(Kewley et al. 2006a; Michel-Dansac et al. 2008; Ellison et al. 2008b, 2013; Reichard
et al. 2009; Rupke et al. 2010a; Morales-Luis et al. 2011; Mouhcine et al. 2011;
Torres-Flores et al. 2014; Chung et al. 2013; Cortijo-Ferrero et al. 2017).

This difference is interpreted as the effect of the tidally-driven gas infalls that also
produce the increase of SFR (Reichard et al. 2009; Rupke et al. 2010b; Perez et al.
2011; Torrey et al. 2012; Ellison et al. 2013). This results can be used to study the
nature of peculiar galaxies. Fox example, the agreement with the local MZR, together
with the study of galaxy dynamics and metallicity gradients, allowed Bournaud et al.
(2008) to conclude that a chain-like, clumpy galaxy is not an on-going merger but is
actually a clumpy disk.
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Starburst galaxies, Ultra-Luminous Infrared Galaxies (ULIRGs) and low-redshift
analogues of Lyman-BreakGalaxies (LBG) are usually found to havemetallicity lower
than expected for their mass (Liang et al. 2004; Rupke et al. 2008; Roseboom et al.
2012; Lian et al. 2015), and this can be explained by the effect of higher SFR discussed
in the next Sect. (5.2).

Green peas (GP) are compact, star-forming, galaxies selected for the presence of
a bright [OIII]λ5007 line (Cardamone et al. 2009). As the [OIII]λ5007 flux increases
with decreasing metallicity (see Sect. 3.5), these galaxies, as other line-selected sam-
ples, are preferentially selected to have low metallicities and, as a consequence, are
usually below theMZR (Amorín et al. 2010; Izotov et al. 2011; Xia et al. 2012; Amorín
et al. 2012; Ly et al. 2015; Lofthouse et al. 2017; Senchyna and Stark 2018). Simi-
lar to the GPs, the extremely metal poor (XMP) galaxies are rare objects selected to
have extreme line ratios and very low metallicities, down to a few percent solar in the
local universe. They usually have lowmasses, high sSFR, and disturbed morphologies
(Izotov et al. 2006b; Izotov and Thuan 2007; Morales-Luis et al. 2011; Izotov et al.
2012; Sánchez Almeida et al. 2015, 2016; Izotov et al. 2018b, c). By definition they
fall below the MZR.

Lyman-alpha galaxies (LAG), i.e., galaxies selected from their Lyα emission, are
found to have low metallicities. The brightness of the Lyα line in these galaxies is
therefore interpreted in terms of low column density of dust associated with the low
chemical abundance, which makes it easier to the Lyα photons to escape (Finkelstein
et al. 2011a, b; Nakajima et al. 2013; Song et al. 2014; Trainor et al. 2016).

5.2 The dependence of metallicity on SFR and gas fraction

As soon as a sufficient precision was reached, evidences for further dependences
of metallicity on other galactic properties started to appear. Tremonti et al. (2004)
reported a correlation of the metallicity residuals from the MZR with galaxy colour,
ellipticity, and central mass density. Soon after, Hoopes et al. (2007) pointed out a
dependence of the shape of the MZR on galaxy size, and Ellison et al. (2008a) was
the first to explicit state the dependence of metallicity on SFR for a given mass.
Mannucci et al. (2010) introduced a 3D relation between mass, metallicity and SFR,
named Fundamental Metallicity Relation (FMR), so that in the local universe the
residualmetallicity scatter across themedian relation is reduced and becomes very low,
∼ 0.05 dex (i.e., ∼ 12%), consistent with the uncertainties of the measurements. For
a given stellar mass, metallicity decreases with SFR and sSFR, i.e., more actively
star-forming galaxies have lower metallicities than more quiescent galaxies (Fig. 21).
As introduced in Sect. 5.1.1, recently a dependence on SFR was also found for stellar
metallicities by Faisst et al. (2016).

Apparently at odds with the clear evolution of the MZR, Mannucci et al. (2010)
also showed that the FMR does not evolve with redshift up to z = 2.5 (Fig. 23). All
the data at z < 2.5 available to Mannucci et al. (2010) (Savaglio et al. 2005; Shapley
et al. 2005; Erb et al. 2006a; Liu et al. 2008; Epinat et al. 2009; Wright et al. 2009;
Förster Schreiber et al. 2009; Law et al. 2009; Lehnert et al. 2009) closely follow the
surface defined by the local SDSS. In contrast, data at higher redshifts (Maiolino et al.
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Fig. 21 The fundamental metallicity relation. Left: dependence of the gas metallicity on mass, in bins of
SFR. The gray shaded areas contains 68% and 95% of the full, unbinned galaxy sample. Right: dependence
of metallicity on SFR in bins of stellar mass. Image reproduced with permission from Mannucci et al.
(2010), copyright by the authors

2008; Mannucci et al. 2009) showmuch lower metallicities, with a difference of about
0.6dex. This difference is discussed in Sect. 5.2.1.

The actual shape of the local FMR depends on several factors, such as how galaxies
are selected and how mass, SFR, and metallicities are measured. As a result, relations
with different shapes have been published (e.g., Lara-López et al. 2010; Hunt et al.
2012; Yates et al. 2012), while other authors (Brisbin and Harwit 2012; Nakajima and
Ouchi 2014) obtained a shape consistent with that derived by Mannucci et al. (2010)
(Fig. 21). A FMR using “direct” metallicities, based on the Te method, was derived by
Andrews and Martini (2013), who found a significantly stronger dependence on SFR
than in Mannucci et al. (2010). To detect the faint auroral lines needed to measure
Te, these authors stack SDSS spectra according to mass and SFR, i.e., assume that
metallicity depends only (ormainly) on these twoparameters.As discussed inSect. 3.5,
Curti et al. (2017) derived a new Te-based calibration using a different stacking scheme,
based on similarities of the spectra (same [OII]λ3727/Hβ and [OIII]λ5007/Hβratios)
rather then on the galaxy parameters. Using these calibrations, (Curti 2019) derived the
corresponding MZR and FMR . Salim et al. (2014), Telford et al. (2016) and Cresci
et al. (2018) critically re-analyzed the FMR using different metallicity indicators,
various ways to measure SFR, studying the further dependence on galaxy size, and
considering theSFRdistance of the galaxies from theMSSFas basic parameter, finding
similar results to Mannucci et al. (2010).

A number of authors have studied the dependence of metallicity on mass and SFR
looking for linear relations or through the use of principal component analysis (PCA),
i.e., using a technique that rotates the axes in a multi-dimensional space to minimize
the scatter; being a simple linear transformation, the PCA technique cannot really
account for more complex, non-linear correlations, such as the MZR and the FMR.
Within the same context, using the SDSS sample Lara-López et al. (2010) proposed the
existence of a “fundamental plane” between mass, SFR, and metallicities. In contrast
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to virtually all other authors, Lara-López et al. (2010) use a different approach in
which they derive the mass as a function of SFR and metallicity, deriving a plane with
a large scatter, 0.16 dex. The FMR, which has a curved shape at high masses and
different dependence on SFR for different masses, can be approximated by a plane
by reducing the upper limit in redshift which has the effect of lowering the number
of high-mass galaxies present in the sample. The resulting plane is quantitatively
very different from the FMR in Mannucci et al. (2010). This Fundamental Plane
was later revised and extended toward higher masses by Lara-López et al. (2013),
confirming the correlation between the three quantities albeit with a larger scatter
than the FMR. Hunt et al. (2012) used a composite sample of metal poor, starburst
galaxies at 0 < z < 3.4, including the many GPs, with metallicities measured in
various ways, finding a planar correlation of metallicities with mass and SFR at any
redshift. A new PCA was computed by Hunt et al. (2016a) using a different and larger
sample including a number of high-z objects, testing various metallicity estimators,
and comparing with the local SDSS galaxies. The linear relation derived by Hunt et al.
(2016a) does not evolve with redshift. As discussed by Cresci et al. (2018) it does not
reproduce the local dependence of metallicity on mass and the detailed MZR at high
redshifts.

Surveys of local galaxies based on the use of two large, IFU spectrographs, CALIFA
(Sánchez et al. 2012) and MaNGA (Bundy et al. 2015), were used to investigate the
existence and properties of the FMR in these nearby, well-resolved galaxies. A series
of papers based on these data (Sánchez et al. 2013; Hughes et al. 2013; de los Reyes
et al. 2015; Barrera-Ballesteros et al. 2017; Sánchez et al. 2017) have questioned the
existence of the relation in this sample, and hypothesized that the dependence on SFR
observed by many authors on SDSS and other data is due to aperture effects. In these
works a metallicity is computed for each HII region detected, a radial gradient is
computed, and the value of metallicity at the effective radius is used as representative
metallicity of the galaxy. Salim et al. (2014) re-analyzed the same data finding opposite
results, i.e., the presence on an anti-correlation between metallicity and sSFR, and
Pilyugin et al. (2013) excluded the importance of the aperture effects. As discussed
in Cresci et al. (2018) and shown in Fig. 22, a clear, monotonic dependence of the
metallicity on SFR is actually present in the CALIFA andMaNGAdata at the expected
level. More recently also Belfiore et al. (2018, in prep.) have re-analyzed the MaNGA
data, finding a clear dependence on SFR, also on resolved scales, as discussed more
extensively in Sect.6.

In the local universe, the FMR was found to hold also for Lyα local analogs (Lian
et al. 2015) and Herschel-selected starburst galaxies (Roseboom et al. 2012), with
properties similar to the SDSS galaxies. This is somewhat surprising as the conditions
in these galaxies are expected to be quite different from the more common galaxies
dominating the objects in the SDSS. In contrast, the central regions of barred galaxies
observed in the SDSS do not follow the FMR. The radial motions of the gas produced
by the bar creates a temporary central increase of SFRwhich is not linked to a decrease
of metallicity. The metallicity is actually observed to increase, even if the amount of
this increase, of the order of 0.02–0.06 dex, is debated and depends on the indicator
used and on the element considered (Ellison et al. 2011; Cacho et al. 2014). This
metallicity increase is explained with accretion of metal-rich gas toward the central
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Fig. 22 Dependence of
metallicity on mass and SFR for
the 612 CALIFA galaxies in
Sánchez et al. (2017). Galaxies
are colour-coded with SFR as
indicated in the Colour bar.
Lines are the best-fitting MZR in
different SFR bins. Image
reproduced with permission
from Sánchez et al. (2017),
copyright by the authors
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regions of the galaxies (Martel et al. 2013, 2018). As noted in Sect, 5.1.7, interacting
galaxies show lower metallicities and higher SFR, in qualitative agreement with the
FMR (e.g., Ellison et al. 2013). Nevertheless, they tend to have large metallicity
dispersion and some offset from the FMR toward lower abundances (Grønnow et al.
2015; Bustamante et al. 2018).

Summarizing, the gas-phase metallicity not only correlates with mass but also anti-
correlates with SFR, i.e. more star forming galaxies showing lower metallicities. The
actual shape of this relation depends on how galaxies are selected and mass, SFR and
metallicities are measured. This relation seems not to evolve up to z = 2.5, as detailed
in the next section (Fig. 23).

5.2.1 Redshift evolution of the FMR

The issue of the evolution of the FMR, or lack thereof,with redshift has been the subject
of much work, both observational and theoretical. The dependence of metallicity on
both mass and SFR was measured in many galaxy samples at various redshifts, and
the results compared with the predictions based on the local FMR in Mannucci et al.
(2010).

Many works found good agreement between the local FMR and metallicities at
z ∼ 1 (Yabe et al. 2012, 2014; Cresci et al. 2012; Stott et al. 2013; Henry et al.
2013a, b; Maier et al. 2015a, b; Calabrò et al. 2017) and at z ∼ 2 (Nakajima et al.
2012; Belli et al. 2013; Nakajima and Ouchi 2014; Maier et al. 2014; Stott et al. 2014;
Song et al. 2014; Yabe et al. 2015a; Salim et al. 2015; Kacprzak et al. 2016; Wuyts
et al. 2016; Sanders et al. 2018; Hirschauer et al. 2018), i.e. no redshift evolution of
the FMR. Lensed galaxies also played an important role in studying the evolution
of the FMR over a larger redshift range and toward lower masses and lower SFR,
usually finding good agreement with the FMR, at least for the average metallicity
level (Richard et al. 2011; Christensen et al. 2012; Wuyts et al. 2012). Some authors
confirm the relation between metallicity and SFR, but with a weak dependence or with
some evolution with respect to the local FMR (Niino 2012; Pérez-Montero et al. 2013;
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Fig. 23 Difference between the metallicity predicted by the local FMR in Mannucci et al. (2010) and the
metallicity actually observed in a number of galaxy samples at various look-back times (lower scale) or
redshifts (upper scale). This diagram shows that no evolution is observed up to z ∼ 2.5. The evolution of
the MZR can be explained by the selection of galaxies with progressively higher SFR at higher redshifts.
Image reproduced with permission from Cresci et al. (2012), copyright by the authors

Grasshorn Gebhardt et al. 2016; Cullen et al. 2014; Zahid et al. 2014b; Salim et al.
2015; Wu et al. 2016). Other works do not have the sensitivity to confirm or discard
evolution (Divoy et al. 2014; de los Reyes et al. 2015).

Several works on high redshift galaxies (Wuyts et al. 2012; Steidel et al. 2014; Yabe
et al. 2014, 2015a; Sanders et al. 2015;Wuyts et al. 2014a; Onodera et al. 2015;Wuyts
et al. 2016) do not find a clear dependence of metallicity on SFR within their data. It
should be considered that the comparison of the metallicity properties of distant galax-
ies with the FMR of the local (SDSS) galaxies must take into account two separate
issues. The first issue is whether the local FMR is able to predict the average metal-
licity of a galaxy sample with a given average mass and average SFR, i.e., whether
high-redshift galaxies on average follow the local FMR or not; the second issue is
whether within the high-redshift galaxy sample it is possible to detect the metallicity
dependence on the SFR as in the local universe. The latter issue is considerably more
difficult to tackle than the former because it requires accurate mass, SFRs and metal-
licities for each galaxy, with final uncertainties smaller than the expected dependence
of metallicity on SFR, and a large dynamic range of SFR. Measurements of the SFR
at high-z are often quite uncertain due the effect of dust extinction. Similarly, accurate
metallicities are often difficult to obtain at high-z. Moreover, at high-z it is difficult
to achieve a large dynamical range in mass and SFR, especially at low-masses where
the dependence of metallicity on SFR in large.
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Fig. 24 Observed dependence of metallicity on the sSFR at z = 2.3. The plot shows the metallicity
difference Δlog(O/H) from the mean MZR as a function of the sSFR difference ΔsSFR from the MSSF.
Themetallicity shown is computed with the N2O2 strong-line indicator, and the original paper also analyses
other indicators, finding similar results. Blue points are individual galaxies, red squares show medians in
bins of Δlog(sSFR), stars display the results from stacked spectra, colour-coded by stellar mass. The solid
line shows the best fit to the medians, and the dashed line shows the prediction from the cosmological
simulations of Davé et al. (2017). A clear dependence of the residuals with sSFR is seen. Image reproduced
with permission from Sanders et al. (2018), copyright by AAS

About the first issue, Cresci et al. (2018) showed that the papers quoted above that
do not find an internal dependence of metallicity with SFR are actually confirming
the predictions of the FMR in terms of average metallicity. This is a remarkable result
given that the FMR is only based on local galaxies. About the second issue, a few
works report the detection of the dependence of metallicity on SFR also within the
high redshift data alone. Zahid et al. (2014b), Salim et al. (2015), Kacprzak et al.
(2016) and Kashino et al. (2017) find lower metallicities in galaxies with higher SFR
at z ∼ 2, albeit with uncertainties due to the low S/N, the presence of galaxies with
no detections in the faint lines, and the large metallicity scatter. Finally, in the context
of the MOSDEF survey Sanders et al. (2018) investigated the evolution of the FMR
using a large sample (260 objects) of star-forming galaxies at z ∼ 2.3 using several
emission-line ratios. In contrast to earlier works by the same group based on smaller
data sets (Sanders et al. 2015), this study detected the explicit dependence ofmetallicity
with SFR for a given stellar mass within the data sample itself without the need of a
comparison with lower redshift samples, see Fig. 24. The level of metal enrichment
of galaxies with a given stellar mass and SFR is similar to that in the local universe,
being only ∼ 0.1 dex lower, consistent with the no-evolution upper limit derived by
Cresci et al. (2018).

As mentioned, at z > 2.5 various works have found that galaxies deviate from the
FMR by being more metal poor than expected (Mannucci et al. 2010; Troncoso et al.
2014; Onodera et al. 2016), at least in the redshift range 2.8 < z < 3.6 where optical
metallicity diagnostics are still detectable in the K-band. The observed difference,
albeit large (∼ 0.6 dex) should be taken with care: only a few galaxies have reliable
metallicities measured at these redshifts, these galaxies often have very high SFRs
and could be in special phases of their evolution, metallicity is usually measured
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using only one indicator (often R23), and the N2 indicator, which is most often used
at lower redshift, is no longer available. Nevertheless is interesting to note that this
redshift range z ∼ 3.5 where the FMR appears to break down is the same range where
the DLA scaling relations seem to change behavior (Møller et al. 2013) and where
the cosmic density of HI start to evolve rapidly with respect to the non-evolution at
lower redshifts (Prochaska and Wolfe 2009). As mentioned, this is the epoch beyond
which galaxies may no longer be in equilibrium, i.e., at z > 2.5 probably the infall
of (pristine) gas on most galaxies is too fast for them to efficiently transform it into
stars, hence most of the accreting gas is being accumulated and resulting into a larger
dilution of the metals in the host galaxy.

It would be interesting to extend these studies to even higher redshifts. The use
of (rest-frame) optical diagnostics shall await JWST. However, the UV nebular lines
of CIII]1909, CIV1549 and OIII]1808, although weak, offer an alternative potential
tool to trace the gas metallicity out to very high redshift. Interestingly, the few current
detections of these lines at high redshift indicatemoderately lowmetallicities (z ∼ 0.1)
even out to z ∼ 7 (Stark et al. 2017), while at such high redshift one would expect
lower levels of metal enrichment, at least for ‘normal’ galaxies. Yet, one must take
into account that these early detections may be biased toward higher metallicities.

It is interesting that far-IR fine structure atomic transitions, such as [CII]158µm
and [OIII]88µm, redshifted into the millimetre bands of atmospheric transmission,
are increasingly being used to trace the metal enrichment in ‘normal’ galaxies even
at z > 7 (Maiolino et al. 2015; Pentericci et al. 2016; Inoue et al. 2016; Carniani
et al. 2017, 2018; Hashimoto et al. 2018c; Tamura et al. 2018) and out to z ∼ 9
(Hashimoto et al. 2018c). In some of the galaxies the very high [OIII]88µm–to–
[CII]158µm ratio is interpreted as indication of low metallicity (z ∼ 0.1, Inoue et al.
2016), although this interpretation is subject to degeneracies, as the same high ratio can
also be interpreted in terms of ionization parameter (Carniani et al. 2017; Katz et al.
2017). Very interestingly, for some of these galaxies the thermal dust continuum is
also detected (Hashimoto et al. 2018b; Tamura et al. 2018) which implies a significant
amount of dust, and, therefore, of metals, already in place at such early epochs. Some
of these authors infer metallicities as ‘high’ as Z ∼ 0.2 at z ∼ 8, which requires a very
fast and efficient enrichment process in these low mass (Mstar a few times 109 M�)
primeval galaxies.

Summarizing, most of the works confirm or are consistent with the existence of
the FMR at high redshift, and find no or a very limited evolution of this relation
with redshift up to z = 2.5. The situation at even higher redshift is unclear but there
are several indications of evolution during the first ∼ 2 Gyrs after the Big Bang.
This stability of the FMR is an important observation that models must reproduce, as
discussed in the next section.

5.2.2 Origin of the FMR

The origin of the dependence of metallicity not only on mass but also on SFR is
debated. Ellison et al. (2008a) proposed a varying star formation efficiency as the
most probable explanation for the dependence of metallicity on SFR and galaxy size.
Mannucci et al. (2010) proposed that the interplay of infall of metal poor gas and
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star formation may play a central role in shaping the FMR: on the one hand, infall
provides chemically poor gas, lowering metallicity; on the other hand gas accretion
delivers additional fuel for star formation, hence enhancing the SFR.As such, the FMR
is yet another piece of evidence for the importance and ubiquity of cold gas accretion
as a dominant driver of galaxy evolution. As presented in Sect. 5.1.7, the same kind of
explanation had been previously proposed to explain the deviations from the MZR of
several classes of galaxies, such as interacting systems, ULIRG and Green Peas. The
spatially-resolved inverse dependence between SFR and metallicity observed within
galaxies, both in the local universe (SánchezAlmeida et al. 2013, 2014, 2018; Belfiore
et al. 2018) and at high redshift (Cresci et al. 2010) is also naturally interpreted as the
effect of the infall of chemically poor gas, as discussed in Sect. 6.

In a more consistent and quantitative way, the FMR is predicted or explained by
the gas-equilibrium models described in Sect. 5.1.3. This is in agreement with the
observations that local galaxies that are expected to be far from equilibrium, such as
interacting pairs and barred galaxies, show quantitative disagreement wit the FMR.
Some models (e.g., Lilly et al. 2013) predict no evolution of the FMR because the
equilibrium is based on basic physical processes that can remain stable with cosmic
time, while others (e.g., Davé et al. 2011) expect a mild evolution with redshift due
to the progressive enrichment of the CGM. The observational results are not precise
enough to distinguish between these two scenarios in a robustway (Sanders et al. 2018).
An infall with a super-linear dependence of SFR on infalling mass is the explanation
proposed by Brisbin and Harwit (2012). In the context of the equilibrium models,
Wuyts et al. (2016) modified the model by Lilly et al. (2013) by introducing the
evolving gas depletion time obtained by Genzel et al. (2015), obtaining a good fit
to the evolution of the MZR starting from the local FMR, see Fig. 25. The modest
evolution of ∼ 0.1 dex of the FMR found by Sanders et al. (2018) at z ∼ 2.3 can be
interpreted either as a limited but systematic increase in the mass loading factors of
the outflowing gas for a given stellar mass, or with the decrease with redshift of the
average metal abundance of the inflowing gas (Davé et al. 2011).

Lagos et al. (2016b) andDeRossi et al. (2017, 2018)find avery goodmatchbetween
the observations of the FMR and their hydrodynamical codes up to high redshift, and
propose gas fraction as the parameter that is better correlated with metallicity (see
next section). Critical parameters to reproduce the observations are the properties of
stellar and AGN feedback and the dependence of star formation on metallicity. In
the IllustrisTNG simulation Torrey et al. (2018) find the FMR up to high redshift
(see Fig. 26) and ascribe its origin to the similar timescales of the evolution of SFR
and metallicity. This opens up the interesting possibility of using the observed scatter
across the FMR to test the existence of variations of the properties of high redshift
galaxies on timescales shorter than cosmic evolutionary times.

Differences among the various chemical elements can also have a role in defining
and explaining the shape of the FMR. Recently, Matthee and Schaye (2018) computed
the dependence of the abundance of various elements onmass and SFR in the results of
the EAGLE simulation. They found a FMR for the abundance of every element, with
a smaller dispersion for the alpha elements, and they also find a 3D relation between
mass, SFR and [O/Fe].
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Fig. 25 Redshift evolution of the MZR at a stellar mass M = 1010 M�. The gray shaded areas are the
predictions of the Lilly et al. (2013)modelwith the variable depletion time byGenzel et al. (2015), calibrated
on the local FMR by Mannucci et al. (2010). Image reproduced with permission from Wuyts et al. (2016),
copyright by AAS

Fig. 26 Dependence of metallicity onmass and sSFR produced at z=1 by the IllustrisTNG simulation. Solid
and dashed black lines indicate the median MZR and one sigma scatter, respectively. Colours show how
the residuals about the MZR are correlated with SFR. This model produces a low gas retention in the ISM
in the local universe, where ∼ 85% of the metals are outside the ISM. Image reproduced with permission
from Torrey et al. (2018), copyright by the authors
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Interestingly, Pérez-Montero et al. (2013) and Kashino et al. (2016) showed that
the dependence of metallicity on mass seen in SDSS galaxies when using R23 or N2,
as in Mannucci et al. (2010), is not present when the N2S2 or N2S2Hα indicators
(Dopita et al. 2016) is used. Telford et al. (2016) made a critical analysis of these
studies, finding that, in contrast, the FMR is also present in the N2S2 indicator, albeit
with a weaker dependence on SFR. If confirmed, this effect would be in agreement
with the explanation of the FMR as due to infall of metal-poor gas: N2S2 is based on
the ratio between two metal lines, therefore is not sensitive to dilution by pristine gas
as both abundances go down simultaneously. In contrast, N2 and R23 are based on
ratios between metal, collisionally-excited lines and H recombination line, therefore
sensitive to dilution.

5.2.3 The relation betweenmetallicity and gas fraction

According to the explanations of the FMR given by the gas-equilibrium models, the
link between metallicity and SFR is actually due to two relations: the increase of
SFR with gas content (or, equivalently, with gas fraction, fgas), and the decrease of
metallicity with fgas due to dilution. If this is true, a direct dependence of metallicity
on fgas is expected, and several models obtain this relation as the most fundamental
(Lagos et al. 2016a; Segers et al. 2016; De Rossi et al. 2017).

Peeples et al. (2008) and Peeples et al. (2009) showed that such a correlation is
present in the local universe, in the sense that SDSS galaxies with low gas-fractions
also have metallicities above the MZR. In the formalism of the FMR, Bothwell et al.
(2013), Hughes et al. (2013), Lara-López et al. (2013), Jimmy et al. (2015) and Brown
et al. (2018) showed that metallicities anti-correlate with the mass of atomic hydrogen
(or, equivalently,with the fraction ofmass in atomic hydrogen), and that this correlation
is tighter thanwith SFR. Interestingly, the dependence ofmetallicity onHI gas fraction
persists at high stellar mass, where metallicity does not depend on SFR any more (see
Fig. 27; Bothwell et al. 2013). Bothwell et al. (2016a, b) showed that an even tighter
correlation can be present with molecular hydrogen, more directly related to the SF
activity, although the statistics for themolecular gas in galaxies (for which information
on the metallicity is available) are still poor, hence the result needs to be confirmed
with larger sample of galaxies having measurements for both the gas metallicity and
for the molecular gas content.

5.3 Metallicity dependence on environment

The gas-phase MZR shows also some dependence on environment. In the local uni-
verse gas-phase metallicities are observed to correlate weakly with environment, with
higher values in denser environments (Shields et al. 1991; Skillman et al. 1996;
Mouhcine et al. 2007; Cooper et al. 2008; Ellison et al. 2009; Petropoulou et al.
2011, 2012; Kulas et al. 2013; Hughes et al. 2013; Pilyugin et al. 2017; Wu et al.
2017). However, the environmental effects are clearly seen only if satellite and central
galaxies are considered separately. Indeed, central galaxies do not show significant
correlation with the environmental density, while satellite galaxies do show, at a given
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Fig. 27 Observed dependence of gas-phase metallicity on HI mass, in bins of stellar mass, for the SDSS
galaxies. Image reproduced with permission from Bothwell et al. (2013), copyright by the authors

stellar mass, a significant metallicity dependence on environment, i.e., satellite galax-
ies in denser environments are characterized by higher metallicities (Pasquali et al.
2012; Peng and Maiolino 2014b; Peng et al. 2015). In galaxy clusters the metallicity
of satellite galaxies seems to also correlate with the stage of accretion of galaxies into
the cluster (Maier et al. 2016). These trends have been interpreted as a combination
of “strangulation” (i.e., satellite galaxies being prevented from accreting cold, near-
pristine gas as they plunge into the hot halo of massive environments, see Sect. 5.1.1),
ram-pressure stripping, higher metallicities in the infalling gas, and external pressure
reducing the amount of metals lost to the CGM due to gas re-accretion (Pasquali et al.
2010; Peng and Maiolino 2014b; Spitoni 2015; Segers et al. 2016; Pilyugin et al.
2017). The correlation is probably also mediated by the gas fraction, which is higher
in galaxies in low-density environments (Wu et al. 2017). Based on the results of
the Illustris simulation, Genel (2016) attributes the metallicity difference partly to the
different SF history, partly to the smaller size of forming disks, biasing star formation
toward the inner, more metal rich parts. In contrast, Bahé et al. (2017) see the effect
in the EAGLE simulation and identify gas stripping and suppression of metal-poor
infalls as the main drivers of the effect.

At high redshift the situation if even more uncertain, with contrasting results and,
in general, little evidence for the existence of any environmental dependence (Magrini
et al. 2012; Kulas et al. 2013; Williams et al. 2014; Shimakawa et al. 2015; Kacprzak
et al. 2015; Valentino et al. 2015). However, the statistics in these high-z studies are
still poor, while it is well known that large statistics are required to identify the role
of the environment and disentangle it from mass segregation effects.
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Summarizing, the galaxy metallicity (and the metallicity scaling relations) does
not depend significantly on environment for central galaxies, while satellite galaxies
tend to have higher metallicities in denser environments. The latter phenomenon is
possibly associated with the “strangulation/starvation” of galaxies as they plunge into
hot halo of massive environments, but other phenomena may also play a role.

5.4 Metallicity dependence on other physical properties

Besides SFRand gas fraction, other dependencies have been proposed to further reduce
the scatter of the MZR or explain the evolution of metallicity with respect to the FMR
at z > 2.5.

Hoopes et al. (2007) and Ellison et al. (2008a) found a dependence of the gas
metallicity on size, according to which, at fixed mass, more compact galaxies are
more metal rich. The actual difference between the more compact and more diffuse
galaxies depends on mass and is about 0.05–0.2 dex. This relation was later analyzed
by Brisbin and Harwit (2012). Wu et al. (2015) and Hashimoto et al. (2018b) found
similar dependence ofmetallicity on quantities related to size, i.e., respectively, galaxy
surface brightness and stellar surface density (see also Sect. 6). Yabe et al. (2012) found
a similar relation at z ∼ 1.4 albeit with a large scatter. The origin of this dependence
is discussed by all the papers cited above and generally attributed to the effect of gas
infall (Ellison et al. 2008a; Brisbin and Harwit 2012). Wu et al. (2015) showed that the
dependence is not mediated by gas fraction, and attribute the effect to the dependence
on galaxy mass and surface brightness of infalls, outflows, and their relation to SFR.
Sánchez Almeida and Dalla Vecchia (2018) investigated the origin of this effect by
using the EAGLE cosmological simulations (see Sect. 4). The relation between mass,
metallicity and size is present in the results of the simulation (see Fig. 28), together
with the FMR, and concluded that the driving mechanism is the infall of metal-poor
gas.

The dependence on both mass and radius was further discussed by D’Eugenio et al.
(2018) by studying the relation of metallicity with average gravitational potential
(Φ ≡ M∗/Re) and average surface mass density (Σ ≡ M∗/R2

e ). They found a more
direct relation of metallicity with Φ, in agreement with the expected dependence of
metallicity on escape velocity, giving a central role to metal losses due to galactic
winds. The dependence on observing aperture is discussed in Sect. 6.4.

As discussed in Sect. 3.5.4, the ionization parameter q is an important quantity to
understand the nebular spectra of galaxies. This parameter shows some correlation
with stellar mass and SFR (e.g., Dopita et al. 2006; Brinchmann et al. 2008; Nagao
et al. 2006a). Its influence is often studied placing the galaxies in a plane defined
by R23, mainly sensitive to metallicity (but with secondary dependence on q), and
O32, sensitive to q but with a secondary dependence on metallicity (e.g., Kewley
and Dopita 2002; Nakajima et al. 2013; Shapley et al. 2015, see Sect. 3.5 for the
definitions). Based on a sample of local and high-z galaxies, Nakajima and Ouchi
(2014) analyzed the relation between the residuals from the MZR and the ionization
parameters as measured by O32 and by photoionization models. On the base of a
correlation between q and the main integrated parameters of the galaxies, i.e., mass,
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Fig. 28 Predicted dependence of gas-phase metallicity on stellar mass for galaxies of different size from the
EAGLE cosmological simulations. Image reproduced with permission from Sánchez Almeida and Dalla
Vecchia (2018), copyright by AAS

SFR andmetallicity, they extended the FMR into a four-dimensional relation including
q, the “Fundamental Ionization Relation” (FIR). This relation is able to account for
the lower metallicities at z > 2.5.

6 Metallicity gradients in galaxies

6.1 Overall properties of metallicity gradients in galaxy discs

Since the first seminal works by Aller (1942), Searle (1971) and Pagel and Edmunds
(1981), the investigation of gradients of metallicity in galactic discs has been subject
to continuously growing interest, especially in recent years thanks to the developments
of new facilities and extensive surveys that have enabled the measurement of gradients
in detail using multiple tracers and also over large samples of galaxies.

In the local Universe the general finding is that, at least within the optical radius,
in most spiral galaxies the metallicity decreases exponentially with galactocentric
radius. As a consequence, gradient of the metallicity in its logarithmic form [e.g., 12
+ log(O/H)] is linear with radius, and can be expressed in units of dex kpc−1. In the
case of the Milky Way, typically radial metallicity gradients range between − 0.06
and − 0.01 dex kpc−1, depending on the metallicity tracer adopted, as discussed in
the following.

Indeed, different metallicity tracers have been used to investigate the metallicity
gradients, providing different kind of information, especially because they trace the
enrichment at different cosmic times, hence their comparison can provide precious
information on the evolution of the gradients with time.
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Fig. 29 Metallicity gradient of the MW based on Cepheids measurements. Image reproduced with permis-
sion from Luck et al. (2011), copyright by AAS

HII regions are used to trace the current metallicity of the gaseous component of
galactic discs. The preferred method is obviously through the “direct”-Te method (see
Sect. 3.1), which however, due to the weakness of the auroral lines, can be properly
mapped only in the MW (Deharveng et al. 2000; Esteban et al. 2005; Rudolph et al.
2006; Balser et al. 2011) and in a few nearby galaxies (e.g., Bresolin 2007; Bresolin
et al. 2009a, 2012; Werk et al. 2011; Berg et al. 2012, 2013, 2015a). The strong line
method has been extended to probe much larger samples of galaxies, as discussed
later on, but with the uncertainties associated with the latter method, as discussed in
Sect. 3.5.

Massive stars are also an alternative, accurate method to probe the metallicity of the
gas out of which these stars have recently formed. Also in this case, the difficulty of
obtaining the high quality and (high resolution) spectra required to measure the abun-
dances has limited thismethod to theMWand a few other nearby galaxies (e.g., Daflon
and Cunha 2004; Bresolin 2007; Davies et al. 2015), see the discussion in Sect. 3.4.

Cepheids have also been extensively used as a tool to investigate the current metal-
licity gradient, especially in the MW, as in their case, besides being very luminous,
the distance is determined with high accuracy (Luck et al. 2011, 2006; Andrievsky
et al. 2004). As a result, they provide probably the most accurate metallicity gradient
measurements in theMilkyWay (Fig. 29). TheMW radial gradient of [Fe/H] obtained
by Luck et al. (2011) with this method is d[Fe/H]/dRG = − 0.062±0.002 dex kpc−1.
The gradient of [O/H] has nearly the same slope within uncertainties: d[O/H]/dRG =
− 0.056 ± 0.003 dex kpc−1.

Open clusters have instead been used to probe the metallicity of the gas when they
formed, typically probing ages of a few Gyr (Friel 1995; Chen et al. 2003; Sestito
et al. 2006; Magrini et al. 2009; Lépine et al. 2011). By using the extensive ESO-Gaia
surveyMagrini et al. (2017) has provided themost extensivemapping of themetallicity
of open clusters (and field stars) in the MW, by also differentiating between clusters
younger and older than 2 Gyr.

Planetary Nebulae instead probe the enrichment of the gas back to the time when
their progenitors formed, on timescales ranging from about 3–4 Gyr to potentially the
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Fig. 30 Evolution of the metallicity gradient in the MW and in a few additional galaxies as a function of
lookback time, based on different metallicity tracers probing the gas phase at different epochs. This diagram
shows that gradients become steeper, more negative, as time flows. Image reproduced with permission from
Stanghellini et al. (2014), copyright by ESO

oldest epochs (∼ 13 Gyr), and they have been extensively used to investigate gradients
in nearby galaxies and in the MW (e.g., Maciel and Quireza 1999; Maciel et al. 2003;
Henry et al. 2010; Stanghellini and Haywood 2010; Stanghellini et al. 2014), in some
works even differentiating among the ages of the planetary nebulae (Stanghellini and
Haywood 2018).

In principle the different tracers discussed above enable us to determine the evolu-
tion of the chemical gradient in galaxies as a function of lookback time. The general
result is that diagnostics tracing metal enrichment on longer time scales tend to give
gradients that are flatter than those inferred from HII regions, suggesting that metal-
licity gradients have become steeper (more negative) with time (Magrini et al. 2016).
This is shown in Fig. 30, from Stanghellini et al. (2014), where the evolution of the
metallicity gradients is shown as a function of lookback time, for a few galaxies for
which this information can be extracted.

This is somewhat in contrast with simple expectations of inside-out galaxy forma-
tion (inferred by other tracers), in which the inner regions would be expected to start
forming at earlier times, hence having more times to produce metals, than the outer
galactic regions (e.g., Davé et al. 2011; Gibson et al. 2013; Prantzos and Boissier
2000; Pilkington et al. 2012). This steepening requires some heavy redistribution of
metals in the early galaxy formation, such as powerful feedback effects, prominent
radial flows (for instance induced by gravitational instabilities or galaxy interactions)
or early stochastic accretion/dilution (e.g. from intensive accretion and minor merging
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events in the early universe) (Dekel et al. 2013; Dekel and Mandelker 2014; Tissera
et al. 2018; Grisoni et al. 2018).

However, one should also be aware that the tracers probing the metallicity gradi-
ents across long lookback times, such as PNe or older open clusters, are potentially
affected by the effect of radial stellar migration. Indeed, stars may potentially migrate
significantly from their original birth site, washing out an originally steep gradient, as
a consequence of stellar bars, galaxy interactions or other secular processes. In this
scenario the flatter gradients observed at later cosmic times would simply be a con-
sequence of the longer timescale during which stellar migration has been mixing the
older stellar populations. Yet, as discussed later, other results seem to independently
support the scenario in which metallicity gradients have become steeper with time.
Moreover, some detailed modelling of the prominence of stellar migration across the
lifetime of galaxies have indicated that this effect is minor and unlikely to substantially
affect the slope of the metallicity gradient in galaxies (Spitoni et al. 2015).

6.2 Statistical properties of galactic discs metallicity gradients

The advent of large integral field spectroscopic surveys has made it possible to investi-
gate gradients more systematically for large sample of galaxies, especially exploiting
HII regions, whose nebular lines are easier to detect and map in galaxies. By using
spatially resolved spectroscopic data from a sample of 306 star-forming discs from the
CALIFA survey, Sánchez et al. (2014) found a large spread of metallicity gradients.
However, both Sánchez et al. (2014) and Ho et al. (2015) have pointed out that the
spread is greatly reduced, and metallicity gradients become comparable, if the radii
are normalized to the galaxy effective radius (Re), suggesting that the chemical evolu-
tion of galaxies with different masses is governed by the same enrichment processes
occurring on local scales.

Ho et al. (2015) and Sánchez-Menguiano et al. (2016) found no evidence that the
metallicity gradient (normalized to R25) depends on galaxy mass, based on data of
star-forming galaxies from the SAMI and CALIFA integral field surveys, However,
the size and/or the mass range of these samples may not be sufficient to identify clear
trends with mass. Indeed, by using the second MaNGA–SDSS4 data release, com-
prising integral field spectroscopic data for about 2800 galaxies spanning two orders
of magnitudes in stellar mass, Belfiore et al. (2017) later revealed that the metallicity
gradients of star-forming galaxies (normalized to Re) actually strongly depend on the
stellar mass of the galaxy. Indeed, as illustrated in Fig. 31, the metallicity gradient
is nearly flat for low mass galaxies (Mstar ∼ 109 M�) and becomes progressively
steeper (more negative) for more massive galaxies. If one considers that the sequence
in mass somehow reflects an evolutionary sequence, the mass-gradient relationship is
at least qualitatively in agreement with the indication that the metallicity gradient was
shallower at earlier epochs as inferred by the different tracers of individual galaxies.

A steepening of the metallicity gradient with stellar mass has later been confirmed
by Poetrodjojo et al. (2018) by using data from the SAMI Survey (Bryant et al. 2015).
The dependence seems weaker than observed by Belfiore et al. (2017), but the sample
of galaxies is also much smaller.
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Fig. 31 Average gaseous metallicity profile in bins of stellar mass for ∼ 2800 galaxies from the MaNGA
survey. Metallicities are derived from O3N2 using the calibrations in Pettini and Pagel (2004). Image
reproduced with permission from Belfiore et al. (2017), copyright by the authors

It should be noted that these results on metallicity gradients of large samples
of galaxies, based on the extensive MaNGA, CALIFA and SAMI surveys, adopt
the strong line methods for measuring the metallicity, with all caveats discussed in
Sect. 3.4. However, the absolute calibration scale offset potentially plaguing the strong
line method is partly mitigated in the case of metallicity gradients as these imply dif-
ferential measurements. It is also important to recall, that all these studies confine the
measurement of the metallicity gradient to the galactic regions showing evidence for
star formation; extensive bulge or inter-arm regions with LIER-like emission or with
nebular emission too weak to be probed are excluded from the determination of the
metallicity gradients, whichmay result in either potential bias or may bemissing some
key information associated with the metal evolution in these specific regions.

The flattening of the metallicity gradient in the central region of the most massive
spiral galaxies (Fig. 31, see also Zinchenko et al. 2016) is likely a consequence of the
metallicity saturating, and approaching the yield, in the centralmostmetal rich regions.
However, it is also possible that, despite the attempt to confine the measurement of
the metallicity gradient to star-forming regions, some contamination from the central
LIER-like emission in massive galaxies may affect the strong line diagnostics.

Some attempts have been made to explore azimuthal variations of the metallicity
(i.e., at fixed galactocentric distance) in galactic discs, both by using the direct Te
method (Li et al. 2013; Berg et al. 2015a) and the strong line method (Zinchenko
et al. 2016; Sánchez-Menguiano et al. 2017a; Ho et al. 2017, 2018). Generally, the
azimuthal variations, if anything, are found to be small (less than 0.1 dex), but signifi-
cant in a growing number of systems, as shown for example in Fig. 32 (Ho et al. 2018).
There are also claims that, in particular, metallicity varies between the arm and inter-
arm regions in some galaxies (Ho et al. 2017, 2018), whichmay reveal fast enrichment
by the enhanced star formation along the spiral arms. However, these properties do
not seem to be common to most galaxies (Sánchez-Menguiano et al. 2017a). More-
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Fig. 32 Left: metallicity distribution of HII regions in the galaxy NGC2997. Right-top: metallicity distri-
bution for the same galaxy in polar projection. Right-bottom: metallicity difference with the average radial
gradient. The positions of the spiral arms are indicated. Image reproduced with permission from Ho et al.
(2018), copyright by ESO

over, one should take into account that the azimuthal metallicity gradients, as well as
the arm/inter-arm variations, have so far been assessed primarily through strong line
diagnostics and, despite the efforts to take the ionization parameter into account, the
small variations observed may still be affected by changes in the physical conditions
of the ISM and excitation conditions between arm and inter-arm regions. Studies of
azimuthal variations based on direct (Te) measurements are less conclusive in estab-
lishing whether there are significant azimuthal metallicity gradients in local galaxies,
although the statistics of HII-regions is admittedly poor in this case. Certainly more
studies are needed both to expand the samples of galaxies with angular resolution high
enough to resolve azimuthal structures and sensitive enough to detect auroral lines in
multiple galactic HII regions.

In summary, the study of the radial metallicity gradients is an important piece of
information on the current status of the galaxies and on the process dominating their
formation. As different populations of the MW (HII regions, young massive stars,
open clusters, PNe, etc.) reveal the chemical abundances at different ages and stages
of the Galaxies, the evolution of chemical abundance gradient with time can be studies
via stellar archeology. A steepening of the gradient with time towards more negative
values is detected, and this is explained by the presence of radial redistribution of
metals.

6.3 Galactic disk outskirts

While the slope of the radial gradients has generally been probed within the optical
radius, high sensitivity observations have made it possible to explore the radial gra-
dients in the outer discs. Observations have shown that at large galactocentric radii
(typically at R > 2Re), metallicity gradients tend to become very flat and settle to
a relatively high value, typically around 0.3–0.5 Z�. This has been confirmed both
through the direct method applied to individual galactic discs (Bresolin et al. 2009b,
2012; Goddard et al. 2011; Sánchez-Menguiano et al. 2017b), as illustrated in Fig. 33,
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Fig. 33 Schematic representation of the abundance gradients for a sample of local galaxies. Dots are shown
at R = 0.4R25 for each galaxy to represent the characteristic abundances of their inner disks. Image
reproduced with permission from Bresolin et al. (2012), copyright by AAS

and through the stacking of large sample of galaxies (Sánchez et al. 2014). It has been
suggested that the flat slope of the metallicity gradient at large radii may be associated
with the low efficiency and discontinuous star formation typical of outer discs, similar
to what is observed in low-mass galactic discs. However, the really puzzling finding
is the relatively high level of enrichment in these outer regions, where the formation
of stars has been very low and certainly not enough to bring the content of metals to
the observed values. The only realistic explanation is that these outer regions have
accreted pre-enriched material, either as a consequence of cooling from the halo, gas
stripping from the center due to galaxy interactions, minor merging with enriched
satellites, galactic fountains or major outflows from the central (metal rich) regions
(Bresolin et al. 2012; Sanchez et al. 2013; Belfiore et al. 2016a).

It is also important tomention that there are some notable exceptions to these trends.
Indeed, Moran et al. (2012) have found cases of spiral galaxies whose metallicity
gradient drops significantly at R > R90 (the radius enclosing 90% of the r-band light)
and they find that this feature is linked to the amount of atomic gas content HI. This
may indicate that galaxies with prominent metallicity drop in their outskirts have been
recently accreting pristine/low-metallicity gas from the intergalactic medium that, for
momentum conservation, is predominantly deposited in the outer regions.

6.4 Spatially resolved scaling relations

Within this context there has been recently an extensive effort in trying to depart from
metallicity gradient studies with the classical radial axisymmmetric (or azimuthal)
approach, and investigate the variation of metallicities on local scales focusing on
the potential correlation with the other local galactic properties, such as stellar sur-
face density and star formation rate surface density. This approach is equivalent to
investigating whether scaling relations apply locally.
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Fig. 34 Left: gasmetallicity as a function of stellar mass surface density, averaged across the entireMaNGA
sample (black stars) and averaged in bins of star formation rate surface density (coloured lines). Center:
gas metallicity as a function of star formation rate surface density, averaged in bins of stellar mass surface
density. Courtesy of Belfiore et al. (in prep.). Right: gas metallicity as a function of local gas fraction μ,
as inferred from the Balmer decrement. Image reproduced with permission from Barrera-Ballesteros et al.
(2018), copyright by AAS

More specifically, by using CALIFA and MaNGA data, González Delgado et al.
(2014) and Barrera-Ballesteros et al. (2016) investigated the spatially resolved depen-
dence of the gas metallicity on local properties of galaxies. They both find a
clear correlation between metallicity and stellar mass surface density Σ∗. Barrera-
Ballesteros et al. (2016) investigate also the possible dependence of metallicity on
local surface density of star formation rate, ΣSFR, but they claimed that a Z–ΣSFR
relation is not significant, although (at fixed Σ∗) their highest ΣSFR bin does show a
clear drop in metallicity. More recently, Belfiore et al. (in prep.) have further inves-
tigated in detail the spatially resolved metallicity scaling relations by using the latest
MaNGA releases; their analysis confirmed the Z–Σ∗ scaling relation and revealed
also the existence of a clear dependence of metallicity on SFR surface density, i.e., a
Z–ΣSFR anti-correlation, as illustrated in Fig. 34 (left and center).

Barrera-Ballesteros et al. (2018) found also a strong anti-correlation between local
metallicity and gas surface density μ (inferred from the dust extinction traced by the
Balmer decrement) as illustrated in Fig. 34, right. This finding is in good agreement
with the Z–ΣSFR anti-correlation, asΣSFR and gas surface densityμ are tightly linked
by the Schmidt–Kennicutt relation. It is also in agreement with the results on the gas-
FMR by, e.g., Bothwell et al. (2013), see Sect. 5.2.3.

The (anti-)correlation between local metallicity and surface density of SFR (or,
equivalently, on gas surface density) may really be driving the global FMR; in the
scenario in which local metallicity dilution due to infalling gas both decreases the
local metallicity and boosts the local SFR, the cumulative effect can scale up to induce
the FMR over the entire galaxy.

Whether the global MZR stems from the local correlation between metallicity and
Σ∗, or vice-versa, is more difficult to establish. Indeed, total stellar mass and Σ∗ are
correlated, and therefore it is difficult to establish which of the two is the primary,
driving correlation. Barrera-Ballesteros et al. (2016) claim that the local Z–Σ∗ is the
primary relation, which drives both the globalMZR and the radialmetallicity gradients
in galaxies. However, this certainly cannot be the case at large galactic radii, where
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the metallicity profile flattens and remains at relatively high levels, while the stellar
surface density keeps fading exponentially or even more rapidly. Moreover, recently
D’Eugenio et al. (2018) have shown that the gas metallicity is more tightly correlated
with the gravitational potential (Φ ∼ M∗/Re) than with the galaxy stellar mass or the
stellar surface density, indicating that the gravitational potential is likely the primary
mechanism establishing the level of metal content (see also Sect. 5.4). The weak
correlation found by Barrera-Ballesteros et al. (2018) between metallicity and local
escape velocity suggests that metals lost by winds only play a minor role in shaping
the local metallicity. In conclusions, these evidences show that the MZR might be
shaped by global rather than local effects.

Summarizing, the scaling relations observed at the global, galaxy-scale level are
now also observed at the local level. While the global FMR is probably driven by the
local one, the situation for the MZR is uncertain because conflicting evidences are
present.

6.5 Interacting galaxies

While most of these studies have focused on regular, isolated galactic discs, a few
studies have investigated gradients in interacting/merging systems. It has been found
that interacting systems generally have significantly flatter gradients than isolated
galaxies, and the effect is stronger in systems that are in a more advanced stage of
merging (Fig. 35) (Rupke et al. 2010b; Rich et al. 2012a; Torres-Flores et al. 2014).
Moreover, the extended tails resulting from galaxy interaction display remarkably flat
gradients out to 70 kpc (Olave-Rojas et al. 2015). Recently Ellison et al. (2018b) has
used MaNGA data to study the spatial distribution of the excess of SFR and deficit of
metallicity in interacting/merging galaxies, finding that both are more prominent in
the inner parts of the galaxies.

The most widely accepted interpretation is that interactions on the one hand make
the outer low-metallicity gas lose angular momentum and flow towards the central
region of the galaxy causing dilution, while on the other hand metal enriched gas is
stripped into extended tails where the metallicity imprint of the original location is
rapidly lost and mixed up with gas from other regions (Torrey et al. 2012; Rupke
et al. 2010a). This interpretation is consistent with the lower total metallicity observed
in these galaxies as discussed in Sect. 5.1.7, and with the observations that recently
merged galaxies have larger amounts of atomic gas (Ellison et al. 2018a).

6.6 Stellar metallicity gradients

Several studies have been performed on the metallicity gradients of the stellar popula-
tion in early type galaxies (e.g., Spolaor et al. 2010; Bedregal et al. 2011; Koleva et al.
2011; Harrison et al. 2011; La Barbera et al. 2012; Goddard et al. 2017). They are
often more demanding than gas metallicity gradients, as resolved stellar metallicities
require much higher S/N data on the stellar continuum, which is especially difficult
to achieve in the outer parts of early type galaxies galaxy due to the rapidly declining
surface brightness of the stellar light with galactocentric radius. However, given typi-
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Fig. 35 Gas phase metallicity
gradient versus merger stage.
Blue points are isolated systems
from Rupke et al. (2010b),
yellow points are wide pairs, red
points are luminous infrared
galaxies and black points are
from models. Image reproduced
with permission from Rich et al.
(2012a), copyright by AAS

cally the lack of dust reddening, stellar colours have also been employed to map the
metallicity in these passive systems (e.g., Tortora et al. 2010). Fewer studies have been
performed on the stellar metallicity gradients of star-forming galaxies (e.g., Morelli
et al. 2015; Sánchez-Blázquez et al. 2014; González Delgado et al. 2015; Goddard
et al. 2017; Li et al. 2018) both because disentangling age-metallicity degeneracies of
the stellar population requires even higher S/N and because the presence of nebular
lines makes the analysis of the stellar features more difficult. Moreover, the simple
analysis of the stellar metallicity provides light-weighted stellar metallicities, typi-
cally dominated by the most recent stellar population. A proper determination of the
dominating stellar population, especially in late type galaxies is difficult as it depends
on the star formation history and on the stellar indices or wavelength range used to
extract the stellar metallicity. Mass-weighted stellar metallicities are potentially more
interesting to investigate the metallicity gradient of the bulk of the stellar population,
but, as discussed in Sect. 2, mass-weighted stellar metallicities are more difficult to
infer, especially in the outer regions of galaxies where the S/N is not as high as in the
central galactic regions.

Typically, stellar metallicity gradients are shallow. Although the dispersion is large,
works based both on CALIFA (González Delgado et al. 2015) and on MaNGA (God-
dard et al. 2017) find a significant dependence of the stellar metallicity gradient with
stellar mass, with a stronger dependence for late type galaxies than for early type
galaxies (Fig. 36). This is a trend similar to that observed for the gas phase metallicity,
however the important difference is that for stellar metallicities the gradient is negative
but shallower at high masses and becomes positive (“inverted”) at low masses, indi-
cating a change in the formation and accretion histories between low mass and high
mass galaxies, and also between late type and early type galaxies. A strong depen-
dence of stellar metallicity gradients with stellar mass for late type galaxies was also
confirmed by Lian et al. (2018); they point out that the mass dependence is signifi-
cantly stronger than for the gaseous metallicity gradients, which is surprising, given
that close to equilibrium the stellar metallicity should approach the gas metallicity
(Peng and Maiolino 2014a); they interpret the strong difference between stellar and
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Fig. 36 Mass-weighted stellar metallicity gradient as a function of stellar mass for early-type (left) and
late-type (right) local galaxies from the MaNGA survey. Image reproduced with permission from Goddard
et al. (2017), copyright by the authors

ISM metallicity gradients invoking a variation of either the outflow loading factor, or
of the IMF, both in time and radially.

Interestingly, by using MaNGA data, Li et al. (2018) have found that the stel-
lar metallicity gradients depend on stellar velocity dispersion and that they peak
(becoming most negative) at intermediate velocity dispersions of about 100 km s−1.
This is interpreted as indicating a change in the evolutionary history in galaxies. In
particular, metallicity gradients becoming flat at very large velocity dispersions is
likely to indicate a growing role of mergers, which redistribute the metallicity in
very massive galaxies whose velocity dispersion has been enhanced by the merging
history.

Finally, very interestingly, Sánchez-Blázquez et al. (2014) have investigated the
relation of stellar metallicity gradients on the presence and strength of stellar bars,
finding no evidence for any correlation (in agreement with similar studies tracing the
gas metallicity gradients, see Sánchez et al. 2014). This result indicates that stellar
migration associated with stellar bars does not play a significant role in shaping the
metallicity gradient of galaxies, in agreement with the expectations of some models
(Spitoni et al. 2015). However, one should take into account that stellar bars are a
recurrent phenomenon in the life of galaxies (about 40% of spiral galaxies in the local
universe are barred, Sheth et al. 2008), therefore the lack of a correlation with the
current strength of bar in galaxies does not necessarily mean that past barred phases
(even in galaxies currently non-barred) have not played a role.

6.7 Metallicity gradients at high redshift

Measuring metallicity gradients at high redshift is obviously much more difficult for
various reasons.
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Firstly, the steep cosmological dimmingof the surface brightness (∝ (1+z)4)makes
it much more difficult to achieve the S/N required to measure metallicity gradients in
the outer parts of galaxies; this effectively translates into measuring high-z metallicity
gradients only for the gas phase and only by using strong line methods.

Secondly, it becomes increasingly difficult to spatially resolve galaxies in inte-
gral field spectroscopy. In most studies the metallicity gradients are only marginally
resolved. Targeting lensed galaxies generally helps (e.g., Yuan et al. 2011; Jones et al.
2013, 2015b; Leethochawalit et al. 2016; Wang et al. 2017), however at the cost of
introducing the additional uncertainty associated with the lens modelling. Moreover,
even when the lens model is well constrained, gravitational magnification is differ-
ential, hence the resulting lensed image and metallicity map are strongly weighted
towards the regions close to the lens caustic, therefore potentially resulting into dis-
tortedmetallicitymaps. The use of adaptive optics certainly helps (e.g., Leethochawalit
et al. 2016; Perna et al. 2018; Förster Schreiber et al. 2018) although the modest
Strehl-ratios cause the sensitivity to drop significantly, especially towards the outer
low surface brightness regions. HST grism spectroscopy has also been effectively used
tomap themetallicities at high-zwithHST-like high angular resolution (Fig. 37) (Jones
et al. 2015b; Wang et al. 2017), the only problem being the low spectral resolution
of the spectra and small wavelength range, which often limit the use of diagnostics
and makes the subtraction of the stellar continuum more problematic. In other stud-
ies, not exploiting gravitational lensing and from the ground without adaptive optics
(e.g., Cresci et al. 2010; Queyrel et al. 2012; Swinbank et al. 2012; Stott et al. 2014;
Troncoso et al. 2014; Wuyts et al. 2016), the measurement of metallicity gradients has
generally been limited to the larger (hence typically more massive) galaxies therefore
with potential bias.

The additional problem is that most nebular diagnostics are shifted to the near
infrared bands. The basic, bluest diagnostics enabling the use of the strong linemethod
(e.g., the R23 parameter) can be traced in the optical band through optical integral field
spectrometers only out to z ∼ 0.8 (Carton et al. 2018). While integral field spectrome-
ters in the near-IR bands are well developed and available on large telescopes to probe
the strong line metallicity diagnostics at z > 1, the reduced sensitivity in these bands
(primarily because of the higher background, both thermal and from bright OH sky

Fig. 37 Metallicity gradient in a lensed galaxy at z = 1.48 obtained with HST grism data. Left: metallicity
map. Center: uncertainty. Right: radial metallicity distribution (blue points are individual pixels, red points
show the average within annuli). Image reproduced with permission fromWang et al. (2017), copyright by
AAS
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Fig. 38 Overview of the metallicity gradients measured at different redshifts, both in lensed and unlensed
galaxies, from different surveys, including local galaxies (whose gradient evolution has been inferred
through tracers at different lookback times). Evolutionary tracks of different models are also show (see
legend). Image courtesy of Curti et al. (in prep.)

lines) and discontinuous spectral coverage (because of the deep atmospheric absorp-
tion bands), makes the measurement of metallicity gradients even more challenging.
Often, spectra are obtained in a single spectral band, resulting in limited information.
For instance, [NII]/Hα is used to effectively trace metallicity gradients at high-z, as
these two lines are conveniently observed in the same band (e.g., Wuyts et al. 2016;
Förster Schreiber et al. 2018), but at the cost of introducing all uncertainties associated
with this single diagnostic (e.g., dependence on nitrogen enrichment, dependence on
ionization parameter, etc), see Sect. 3.5.4.

With all these caveats, extensive studies have been undertaken to constrain the
evolution of metallicity gradients at high redshift (e.g., Cresci et al. 2010; Queyrel
et al. 2012; Swinbank et al. 2012; Stott et al. 2014; Troncoso et al. 2014; Wuyts et al.
2016;Yuan et al. 2011; Jones et al. 2013, 2015b;Leethochawalit et al. 2016;Wang et al.
2017; Carton et al. 2018; Förster Schreiber et al. 2018). A summary of the observed
evolution of the metallicity gradients is shown in Fig. 38 (from new observations and
a compilation courtesy of Curti et al., in prep.). There is clearly a large dispersion, part
of which is likely due to the observational uncertainties, but it is also likely reflecting a
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Fig. 39 Example of galaxy with inverted metallicity gradient at z = 3.06. Left: map of the [OIII]5007
line emission (approximately proportional to the surface density of SFR). Center: velocity field. Right:
metallicity map. Image reproduced with permission from Cresci et al. (2010), copyright by Macmillan

real dispersion of the metallicity gradients during the early phases of galaxy evolution,
when the accretion and merging processes were more stochastic and resulting into a
more irregular behaviour (e.g., Ceverino et al. 2016). Despite the large scatter, and
with the exception of a few rare cases of very steep gradients (Jones et al. 2013, based
on low S/N spectra), most studies find that at high redshift the metallicity gradients are
on average flatter than observed locally. This is in agreement with the flattening of the
gradients in local galaxies when using tracers that probe longer lookback times, i.e.,
primarily PNe (Stanghellini et al. 2014; Stanghellini andHaywood 2018), as discussed
in Sect. 6.1.

It is interesting to note that studies comparing metallicities measured in DLA
absorption systems with their optical counterparts (whose metallicity is measured
through nebular lines) have also independently inferred gradients that are, on average,
quite flat (− 0.022 dex kpc−1) even out to galactocentric radii of several tens kpc, in
high-z galaxies (Christensen et al. 2014; Rhodin et al. 2018).

However, it is becoming increasingly evident that at such early epochs the concept
of “radial” (azimuthally averaged) gradient loses part of its meaning, as expected by
some models (Ceverino et al. 2016). Indeed, the metallicity distribution is often very
irregular, with large local variations (e.g., Förster Schreiber et al. 2018, and Fig. 37),
hence the apparently flat radial gradient simply results from averaging large azimuthal
variations into the same radial bins. These large irregularmetallicity variations in high-
z galaxies probably reflect the chaotic accretion and formation processes during these
early phases. Therefore, the comparison with models should not be done simply in
terms of radial gradients (which can be partly deceiving of the chemical complexity
of these systems), additional information should be considered such as the metallicity
scatter.

A population of positive (i.e., “inverted”) metallicity gradients has recently been
discovered at high redshift (Cresci et al. 2010; Troncoso et al. 2014; Carton et al. 2018)
(Wang et al. 2018). These inverted gradients appear to be particularly common at z > 3
(Fig. 39). However, it has been pointed out that rather than simply being inverted, the
central metallicity suppression is mostly associated with the central enhancement of
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star formation rate. Cresci et al. (2010) and Troncoso et al. (2014) suggest that this is
a consequence of enhanced inflow of metal-poor gas toward the central galaxies, in
their early epoch of formation, which results in both a local dilution of the metallicity
and a local enhancement of the SFR due to the larger amount of gas available. Stott
et al. (2014) suggest a similar scenario to interpret the correlation that they find at
z ∼ 1 between metallicity gradient and sSFR: the enhanced inflow of near-pristine
gas makes the central region metal poor and also boosts the sSFR. This is in agreement
with the infall interpretation of the FMR, see Sect. 5.2.2.

Whether themetallicity gradients of high-z galaxies have amass dependence similar
to that observed locally is not totally clear, mostly because of the large scatter. Wuyts
et al. (2016) and Stott et al. (2014) do not find a clear mass dependence in their
samples at z ∼ 1–2. Carton et al. (2018) find a weak mass dependence in their sample
at 0.1 < z < 0.8. Together with the local findings these results suggest that the mass
dependence of the metallicity gradients is established at late epochs. Correlations of
the gradients with sSFR have been also proposed (Stott et al. 2014; Wuyts et al. 2016),
but in all cases only with low significance and in disagreement with other studies
(Leethochawalit et al. 2016; Troncoso et al. 2014).

Finally, Carton et al. (2018) find an interesting correlation at 0.1 < z < 0.8 between
metallicity gradient and galaxy size, in which small galaxies show a large spread in
metallicity gradient (both positive and negative), while large galaxies present a much
smaller spread and regular negative gradients.

6.8 Metallicity gradients models

Several models have been proposed to reproduce the metallicity gradients in galaxies,
both for the gas and the stars (Mollá et al. 1997;Chiappini et al. 2001;Naab andOstriker
2006; Mott et al. 2013; Spitoni et al. 2013, 2015; Ho et al. 2015; Kudritzki et al. 2015;
Ascasibar et al. 2015; Schönrich and McMillan 2017; Lian et al. 2018). Many models
consist in the extension of the analytical “gas regulator” scenario applied to concentric
galactic rings, in which there is a radial dependence of the primary parameters, such as
gas infall timescale and star formation efficiency (also introducing threshold for star
formation). Some models, as discussed above, also introduce variable outflow loading
factors and even variable IMF. The main challenge of these models is that they have
also to reproduce the inside-out growth of galaxies, i.e., the finding that, based on both
the stellar population age gradients and surface density gradients, the central parts of
galaxies must have grown earlier and faster than the outer parts. This requires models
to have accelerated star formation and enrichment in the central regions, relative to
the outer regions, which results into a negative metallicity gradient, as observed in
galaxies.

The main problem of this scenario is that, if different galactic annular rings do not
exchange metals (as it is the case in most models), then the unavoidable consequence
is that the metallicity gradient should flatten with cosmic time, which is opposite
to that observed as inferred from the observation in local galaxies diagnostics that
trace metallicity gradients at earlier epochs (Fig. 30), from the observed evolution of
metallicity gradients at high redshift (Fig. 38) and even based on the simple finding that
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Fig. 40 Examples of metallicity gradients predicted by the analytical model of Mott et al. (2013), which
include radial flows of gas. The model on the left assumes a threshold, inside-out formation, constant
star formation efficiency, and radial flows. The model on the right uses a radially variable star formation
efficiency. It has to be noted that the metallicity gradient becomes more negative with time (at least within
the central 10 kpc, which is the only part observed at high redshift) and also that in the left-side model at
early times the metallicity gradient is centrally inverted as a consequence of strong central infall of pristine
gas. Image reproduced with permission from Mott et al. (2013), copyright by the authors

the metallicity gradient steepens with galaxy stellar mass (Fig. 31) and assuming the
stellar mass sequence of galaxies somehow reflects their evolutionary pattern. Possible
solutions to comply with the inside-out growth of galaxies and having metallicity
gradients that steepen with time is that stellar migration plays a role in mixing stellar
metallicities and the production of metal at different radii, from different generations
of stars (Spitoni et al. 2015; Schönrich andMcMillan 2017), or prominent radial flows
of gas that can dilute the central regions at early epochs (Spitoni and Matteucci 2011;
Mott et al. 2013; Spitoni et al. 2013), or strong feedback (in the form of outflows) at
early epochs has redistributed the metals produced by the central active region in the
circumgalactic medium and towards the external region of galactic discs. This is not
unreasonable given that recent observations have revealed that as much as 40% of the
metals produced by galaxies have been expelled in their halo (see Sect. 9) and that
the circumgalactic medium has already been significantly enriched (Z ∼ 0.1 Z�) by
z ∼ 2 (Prochaska et al. 2013). Figure 40 shows the effect of introducing radial flow in
the analytical models proposed by Mott et al. (2013). Interestingly, in this models the
high inflow rate of pristine gas towards the central regions even inverts the gradient
centrally, nicely reproducing the inverted gradients observed at high redshift (Fig. 39
Cresci et al. 2010; Troncoso et al. 2014).

Zoom-in cosmological simulations have become increasingly popular to investi-
gate the evolution of metallicity gradients in galaxies (Di Matteo et al. 2009; Torrey
et al. 2012; Pilkington et al. 2012; Gibson et al. 2013; Tissera et al. 2016a, b, 2017,
2018). However, these high-resolution simulations are computationally expensive. As
a consequence, only a limited number of galaxies are generally simulated at this level
of detail. Simulations typically obtain reasonably metallicity gradients, although some
of them struggle to reproduce the observed mass dependence. A common outcome
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is that galaxy interactions tend to flatten the metallicity gradients at any epoch (Di
Matteo et al. 2009; Ma et al. 2017). There is typically a large scatter and rapid vari-
ations in the gradients observed in simulations especially at high redshift; Ma et al.
(2017) suggest that the observed gaseous metallicity gradients reflect more the current
status of the galaxy rather than tracing its past cosmological evolution. Many simula-
tions tend to have the same problem as analytical models in reproducing the temporal
steepening of metallicity in regular, rotating galaxies. Within this context the most
successful models are those that introduce enhanced feedback from star formation,
which redistributes the metals across the galaxy more effectively in the early, active
stages of galaxy formation (Gibson et al. 2013).

6.9 Summary of metallicity gradients in galaxies

In this section we summarize some of the key results regarding the spatially resolved
distribution of metals in galaxies.

Radial metallicity gradients tend to steepen in more massive galaxies. This is
observed both for the gas phase metallicity and for the stellar metallicity (although
with larger scatter).

However, metallicity gradients are not described by a single slope; they generally
flatten at high galactocentric radii (suggestive that galactic outskirts have accreted
pre-enriched material) and, in massive galaxies, they tend to flatten also in the central
region (likely because of metallicity saturation).

There is evidence that the metallicity is not simply a function of galactocentric
radius, but it depends on the local physical properties of the galactic disc. More specif-
ically, the gas metallicity is found to correlate with the surface density of stellar mass
and to anti-correlate with the surface density of star formation rate and with the sur-
face density of gas. Whether these local scaling relations are responsible for the global
metallicity scaling relations has yet to be properly assessed.

The use of indicators that trace the metallicity in galaxies at different lookback
times, as well as the direct observation of metallicity gradients at high redshift, indi-
cate that metallicity gradients were flatter in the past (which is also consistent with the
local steepening of metallicity gradients as a function of stellar mass, if one consider
low mass galaxies progenitors of more massive ones). The fact that radial metallicity
gradients steepen with cosmic time is in contrast with the simplest expectations of
the chemical enrichment in the scenarios in which galaxies grow inside-out (as con-
firmedby independent observations),whichwould expect a flattening of themetallicity
gradients with time. Solutions to this issue involve either stellar radial migration, or
prominent early radial inflows of low-metallicity gas or feedback (outflow) effects that
redistribute the metals produced in the central regions in the circumgalactic medium
and towards the outer galactic regions.

It is finally interesting to note the growing evidence for a population of high-z
galaxies with inverted (i.e., positive) radial gradients, which may be tracing systems in
which prominent inflows of lowmetallicity gas are taking place orwhich are associated
with galaxy merging/interaction which are effective in driving metal-poor gas from
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the outskirts towards the central region, hence flattening or even inverting metallicity
gradients.

7 Relative chemical abundances

Since different elements are produced by different classes of stars/SNe and released on
different timescales (see Fig. 1), the relative abundances between different chemical
elements provide precious information on the star formation history and on the IMF.

The ratio between α-elements, which are primarily produced on short timescales by
massive stars through core-collapse SNe, and iron-peak elements, which are primarily
produced by SN Ia on longer timescales, is a classical example of tracer of star forma-
tion history. Stellar populations characterized by “enhanced” α/Fe must have formed
on short timescale, before that SN Ia had time to enrich the ISM, while stellar popu-
lations characterized by “low” or solar-like α/Fe must have formed over a prolonged
phase of star formation. Other chemical elemental ratios, including CN/Fe (Carretero
et al. 2004, 2007) have a similar potential of constraining the star formation history.

The detailed abundance pattern of several chemical elements can potentially pro-
vide the fingerprints of the specific stellar progenitors that have been responsible for
enriching the ISM. Potentially they can even provide the signature of the enrichment
by the first population of stars (Frebel and Norris 2015; Caffau et al. 2011).

In this section, after a rapid overview of themetal abundances observed in theMilky
Way, we will focus primarily on the chemical abundances observed across the galaxy
populations, locally and at high redshift. A detailed analysis of all chemical elements
would require a full, dedicated review. We will, therefore, focus on the analysis of
the most commonly used chemical elements and, in particular, α/Fe, N/O and C/O,
although we will also mention some other chemical abundance ratios.

7.1 TheMilkyWay

Extensive spectroscopic surveys have enabled astronomers to map the relative chemi-
cal elements of large numbers of stars in the Galaxy (e.g., SEGUE, RAVE, APOGEE,
GAIA-ESO, HERMES-GALAH, Yanny et al. 2009; Steinmetz et al. 2006; Gilmore
et al. 2012; Freeman 2012; Majewski et al. 2017). High spectral resolution obser-
vations have provided unprecedented constraints on the relative abundances of most
chemical elements, although on smaller samples of stars. (e.g., Reddy et al. 2006;
Bensby et al. 2010; Nissen and Schuster 2010; Johnson et al. 2014; Zoccali et al.
2017, and references therein). The advent of high resolution near-IR spectroscopic
surveys has further enabled astronomers to trace the chemical abundances in the inner
bulge and for metal-rich cool stars, whose heavy metal lines blending and blanking at
optical wavelengths makes it difficult to measure chemical abundances with classical
optical spectroscopy (e.g., Rich et al. 2012b; Önehag et al. 2012; Lindgren et al. 2016).

An overview of the [α/Fe] versus [Fe/H] for the Galactic disc is given in Fig. 41,
obtained with APOGEE near-IR, medium-resolution spectroscopic data of ∼ 70 000
red giants (Hayden et al. 2015). [α/Fe]–[Fe/H] diagrams are very useful in identi-
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Fig. 41 [α/Fe] versus [Fe/H] in the Galactic disc stars in bins of galactocentric distance and vertical distance
from the Galactic plane from a sample of ∼ 70 000 red giants observed by the SDSS-III/APOGEE survey.
Image reproduced with permission from Hayden et al. (2015), copyright by AAS

fying stellar populations resulting from different star formation histories. Indeed, as
mentioned above, the [α/Fe] ratio works like a clock of the star formation history,
indicating how rapidly star formation has occurred, while the [Fe/H] ratio distributes
stellar populations along their temporal evolutionary sequence (of course, depending
on the star formation efficiency stellar populations spread more or less quickly along
this axis). In Fig. 41 different panels conveniently show the [α/Fe]–[Fe/H] distribu-
tion in bins of galactocentric radius and distance from the Galactic plane, illustrating
that the stellar populations in the disc have a bimodal distribution, which has been
identified with the thin and thick disc. The thin disc, which dominates the stellar pop-
ulation on the disc plane and at intermediate and large radii, is characterized by a
rather flat [α/Fe]–[Fe/H] distribution indicative of a prolonged star formation history,
on timescales of about 7 Gyr, probably also associated with normal star formation
efficiency (typical of disc galaxies) (Matteucci and Greggio 1986; Ryde et al. 2016;
Micali et al. 2013). The thick disc population, dominating at higher vertical distances
from the Galactic plane and in the inner disc, is clearly α-enhanced (and, on average,
more metal poor than the thin disc), indicating that the thick disc was formed faster,
on a timescale of about ∼ 2 Gyr, and likely with higher star formation efficiency. It is
important to highlight that the existence of thick-thin disc bimodality is still debated.
In particular, Bovy et al. (2012) claim that there is not a real bimodality but a smooth,
continuous distribution if one considers the mass-weighted scale-height distribution
of stellar populations.

There has been growing evidence that the bulge stellar population is bimodal in
metallicity (e.g., Rojas-Arriagada et al. 2017), hosting both a sub-solar population
and a supersolar population. The two populations also have different [α/Fe] enrich-
ment levels, as illustrated in Fig. 42, top. The low-metallicity component chemical
properties are consistent with those of the thick disc. The high-metallicity compo-
nent appeared similar to the thick-disk based on the optical spectroscopic surveys,
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Fig. 42 [α/Fe] versus [Fe/H] in theGalactic bulge from theGaia-ESO (optical) survey (top, Rojas-Arriagada
et al. 2017) and from the APOGEE (near-IR) survey (bottom, Schultheis et al. 2017). Images reproduced
with permission, copyright by ESO

but when measured through near-IR data (i.e., consistent with the disc data shown in
Fig. 41), more adequate to probe the high metallicity component of the bulge, also
the high metallicity component appears clearly α-enhanced relative to both the thick
and thin discs, as illustrated in Fig. 42, bottom (Schultheis et al. 2017). The emerging
picture is that the high-metallicity component was formed through the same secular
process as the thick disc, and actually associated with the inner Galactic bar, while the
low-metallicity, α-enhanced component was formed quickly (within less than about
0.5 Gyr), with high efficiency (which enabled quick enrichment), as a consequence of
the initial gravitational collapse of the galaxy.

The halo is also α-enhanced but characterized by even more metal-poor stars
(Cayrelm et al. 2004; Frebel and Norris 2015) and it has been suggested that its
chemical properties are also consistent with the early, fast and efficient collapse of the
galaxy (Micali et al. 2013), although more recent data point at two stellar populations,
differentiated both chemically and kinematically (Carollo et al. 2007; Fernández-Alvar
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Fig. 43 Galaxy’s three-phases infall model (3IM). Left: temporal evolution of the SFR as predicted by
the 3IM. The (red) solid portion of the curve refers to the halo phase, the (black) dot-dashed one to the
thick-disc phase, the (blue) dashed one to the thin-disc phase. The coloured bands are due to a large number
of subsequent, rapid variations. Right: SFR density versus gas density in the halo (red crosses), thick disc
(black crosses) and thin disc (blue crosses). Also shown are the fit to the ΣSFR − Σgas relation for local
spirals and z = 1.5 BzK galaxies (grey solid line), the extrapolation of the starburst sequence from the
same authors (grey dashed line) and the region of the plot occupied by spiral galaxies data (delimited by the
dotted grey lines). Image reproduced with permission from Micali et al. (2013), copyright by the authors

et al. 2018), corresponding to faster and slower star formation histories, respectively,
the former possibly also associated with a top-heavier IMF.

Overall, among analytical models, the abundances and metallicities in the various
components of the MilkyWay can be explained well in the framework of the so-called
two- or three-phase infall model (Fig. 43, Micali et al. 2013; Chiappini and Gratton
1997; Chiappini et al. 2001, 2005) in which the halo and old bulge components
have formed very quickly (within less than 0.5 Myr) and very efficiently (above the
Schmidt–Kennicutt relation): the thick disc (and lower metallicity component of the
bulge) has formed in a second infall event (on intermediate timescales of∼ 2 Gyr) and
with even higher efficiency, while the thin disk has formed on much longer timescale
(∼ 7 Gyr), following the Schmidt–Kennicutt relation for normal star-forming discs.
Both the thick and (especially) the thin disc must also have had a radially variable
inflow rate. Alternative models by Schönrich and Binney (2009a, b) reproduce the
multiple components as the effect of different star formation conditions in different
parts of the disc followed by radial mixing of stars.

Summarizing, different morphological components of the Milky are characterized
by different chemical abundance patterns, especially for what concerns α/Fe, indicat-
ing different formation histories and different formation processes. More specifically,
halo, bulge, thick and thin discs are characterized by gradually later ages of star forma-
tion, on gradually longer timescales, and likely associatedwith different star formation
efficiencies.Whether these were physically distinct phases (yielding to distinct, differ-
ent populations) or part of a more smoother, continuous evolution is not totally clear.
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7.2 Local galaxies

7.2.1 ˛/Fe

As introduced above, [α/Fe] is sensitive to the number ratio of CC to thermonuclear
SNe and, therefore, is a powerfulway to study the star formation timescales of galaxies.
It is also sensitive to a number of parameters such as the IMF, the assumed stellar yields,
the delay time distribution of type Ia SNe, and the differential ejection of metals into
the CGM. In simple, close-box, constant-IMF models, [α/Fe] is expected to evolve
from a high value when, at early times and low metallicities, (little) iron production
is dominated by CC events, toward a lower value, when iron produced by Ia events
becomes dominant. The faster star formation occurs, the higher is the enrichment of
α-elements by CC SNe before that SNIa start polluting the ISM with iron.

Beyond the MW, chemical abundances of individual stars (giants/supergiants) has
been determined only for a few galaxies of the Local Group, mostly dwarf satellites of
the MW and Andromeda (e.g., Bonifacio et al. 2004; Monaco et al. 2005; Sbordone
et al. 2007; Tolstoy et al. 2009; Cohen and Huang 2010; Kirby et al. 2011; Hill and
DART Collaboration 2012; Starkenburg et al. 2013; Hendricks et al. 2014). Dwarf
spheroidal galaxies are characterized by a distribution on the α/Fe vs Fe/H diagram
that is below the plateau observed in MW halo and thick disc stars, joining the α/Fe
abundance ratio of MW halo stars only at [Fe/H] < −1.5. The presence of a knee in
the distribution is still debated (Tolstoy et al. 2009; Kirby et al. 2011; Hendricks et al.
2014). This distribution implies that SNIa have contributed to the enrichment of the
stars in these systems at most metallicities, i.e., during most of the formation of these
systems, except for the their earliest phases, suggesting a bursty evolution possibly
resulting from a sequence of minor accretion or merging events. Dwarf irregulars
(e.g., the Small Magellanic Cloud), which are still in the process of actively forming
stars, are also characterized by low α/Fe abundance ratio, indicating that they have
been forming stars slowly, stochastically and/or inefficiently (Matteucci and Chiosi
1983; Recchi et al. 2001). As a consequence of their shallow gravitational potential, in
dwarf galaxies supernova-drivenwinds are also expected to play amore important role,
with respect to more massive galaxies, in regulating the chemical enrichment history,
by removing metals (likely in a differential way, i.e., preferentially α-elements), by
reducing the efficiency of star formation and by contributing to its stochasticity.

Except for the few galaxies in the Local Group, the bulk of the investigation of
the chemical abundances of the stellar population in galaxies has been based on spa-
tially integrated spectra, unavoidably implying larger uncertainties and degeneracies.
However, despite these caveats, large spectroscopic surveys have enabled us to inves-
tigate the relative chemical abundances across a broad range of galaxy masses and
environments.

Initial works have investigated chemical abundances using primarily the Lick
indices and focusing on early type galaxies to constrain their evolutionary history.
Such early works already identified that early-type galaxies have enhanced α ele-
ments compared to the abundance patterns of the stars in the Galactic disc (Worthey
1994; Thomas et al. 1999). It was further found that such α-enhancement increases
steadily as a function of stellar velocity dispersion, which is a tracer of galaxy mass
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(red). Image reproduced with permission from Conroy et al. (2014), copyright by AAS

(Trager et al. 2000a; Thomas et al. 2005). Such a trend has been clearly confirmed
by the full-fitting (i.e., not limited to the Lick indices) of the spectra of local galaxies
(Walcher et al. 2009; Conroy and van Dokkum 2012) as illustrated in Fig. 44, where
the abundance of different chemical elements relative to iron is obtained from Sloan
spectra stacked in bins of velocity dispersion (Conroy et al. 2014). This trend indicates
that more massive galaxies have formed much more rapidly than low-mass galaxies.
More specifically, translating the velocity dispersion into galaxy mass, and combining
the α-enhancement information with the age of the stellar population (more massive
galaxies are typically older), results into the scenario originally proposed byMatteucci
and Tornambe (1987) and Matteucci (1994), further developed by later studies, and
summarized in Fig. 45 from Thomas et al. (2010) (see also Thomas et al. 2005), in
which more massive galaxies formed at earlier cosmic epochs (a phenomenon often
referred to as “cosmic downsizing”), on shorter timescales and (based on models)
more efficiently. This scenario, at least in terms of timeline sequence, has been veri-
fied through the evolution of the mass function of galaxies at high redshift, illustrating
that most massive galaxies were already in place at early cosmic epochs, while lower
mass galaxies have evolved more slowly (e.g., Gavazzi and Scodeggio 1996; Cowie
et al. 1996; Pérez-González et al. 2008; Muzzin et al. 2013; Santini et al. 2015).
Theoretical models and numerical simulations explain this phenomenon in terms of
accelerated evolution in the overdense regions of the Universe, where baryons collapse
more rapidly in the deepest gravitational potential wells of dark matter. The enhanced
star formation efficiency in these dense regions facilitates the rapid formation of stars
and rapid gas consumption. Moreover, the strong negative feedback from the resulting
supernovae and rapid black-hole accretion (releasing large amount of energy through
the luminous quasar phase) result in the rapid quenching of the star formation (Mat-
teucci and Tornambe 1987; Matteucci 1994; Pipino et al. 2011; Segers et al. 2016; De
Lucia et al. 2017). Additional theoretical explanations involve the effect of varying
IMFs (Fontanot et al. 2017).

Early-type galaxies show rather flat radial gradients in terms of [α/Fe], or slightly
positive (e.g., Greene et al. 2013; Roig et al. 2015). If confirmed, the positive gradients
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Fig. 45 Representation of the specific star formation rate as a function of look-back time for galaxies of
the different masses shown in the labels. Image reproduced with permission from Thomas et al. (2010),
copyright by the authors

of α/Fe can be explained through models in which the quenching in the outer parts of
massive galaxies results primarily through explosion of supernovae, whose cumulative
injection of energy is more effective in ejecting gas in the shallower gravitational
potential of the galaxy outskirts (Pipino et al. 2008, 2010). However, such outside-in
quenching effect would be in contrast with numerical simulations that expect massive
ellipticals to grow inside-out through a sequence of minor (dry) mergers from z ∼ 2
(Naab et al. 2007, 2009), also supported by observed size growth of elliptical as
a function of reshift (van Dokkum et al. 2010), although the latter has also been
interpreted as an observational effect in terms of “progenitors bias” (Lilly and Carollo
2016). However, if the positive radial gradients of α/Fe in massive elliptical galaxies
are confirmed with high significance, then this would be problematic to explain in the
minor merger scenarios for the size growth of ellipticals.

Reproducing the α/Fe enhancement in massive galaxies requires processes that
enable the rapid production of stars and that then quench star formation on relatively
short timescales (∼ 0.5 to 1 Gyr). In analytical models this is achieved by requiring a
high star formation efficiency (which makes the formation of stars and enrichment of
α elements faster) and then a quenching effect that suppresses star formation (either
through SNe or AGN feedback, e.g., Matteucci and Tornambe 1987; Matteucci et al.
1998; Romano et al. 2002; Pipino and Matteucci 2004; Pipino et al. 2008). In cosmo-
logical simulations the introduction of quasar feedback seems to reduce the lifetime of
massive galaxies enough to reproduce the relationship between α/Fe enhancement and
galaxy mass (Segers et al. 2016). However, more recently, De Lucia et al. (2017) have
pointed out that AGN feedback alone may not be able to simultaneously reproduce
the α/Fe enhancement and other galactic properties, leaving the problem open. Within
this context, we note that it is not necessary to invoke the “ejective” mode of quasar
feedback (i.e., removal of gas through massive quasar-driven outflows) in order to
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Fig. 46 Chemical abundances relative to iron inferred for the ICM of the Perseus cluster, obtained with
XMM-Newton RGS for O, Ne and MG, and with the Hitomi SXS for Si to Ni. Image reproduced with
permission from Simionescu et al. (2018), copyright by the authors

achieve a rapid quenching of star formation; indeed, a scenario in which the galaxy is
simply“starved” (e.g., because its surrounding halo has been heated) would also result
in a rapid cessation of star formation, as in distant powerful starburst galaxies (such
as the Submillimetre Galaxies, which are often regarded as the progenitors of local
massive ellipticals) the gas depletion times (by the simple effect of the highly efficient
star formation) are as short as a few hundred million years.

X-ray spectroscopy offers the possibility of measuring the abundance of several
chemical elements, including iron and α-elements, of hot plasmas (> 106 K). There-
fore, X-ray spectroscopy is extremely important to investigate, for instance, the ISM
and CGM heated by SNe and galactic winds, as well as the hot gas in clusters and
groups of galaxies, although sensitivity, spectral and angular resolution issues have
often limited the exploitation of this technique.

X-ray spectroscopy of the hot phase of the galactic superwind of the prototypical
starburst galaxy M82 has revealed a much higher metallicity in the outer parts of
the outflow and with a α/Fe abundance ratio significantly higher than in the host
galaxy, confirming that the outflow is associated with hot plasma freshly enriched by
recent generation of core-collapse supernovae produced by the starburst event (Ranalli
et al. 2008). These results provide the direct observational evidence that starburst
superwinds eject metals with velocities of a few/several hundred km s−1, thus directly
enriching the CGM and IGM.

X-ray spectroscopy of the hot plasma in galaxy clusters and galaxy groups has
generally revealed Solar-like chemical abundances (Fig. 46) and a surprisingly flat
radial distribution of the relative abundances (Simionescu et al. 2010, 2015, 2018;
Mernier et al. 2017). One should not confuse these abundances with those of the stellar
populations in the galaxies belonging to the clusters (which may be α-enhanced if
they formed rapidly); indeed even if star formation may have stopped in the cluster’s
galaxies, SNIa keep enriching the ICM (with their typical high Fe/α pattern) over time.
Mernier et al. (2017) estimate that, on average, the fraction of SNIa with respect to
the total number of SNe (i.e., SNIa + SNcc) that have contributed to the enrichment of
the ICM must be in the range of 20–40%. Interestingly, de Plaa et al. (2017) find that
the O/Fe abundance ratio does not depend on ICM temperature, therefore suggesting
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that the enrichment of the ICM is not related to cluster mass and that most of the
enrichment has occurred before the ICM was formed.

Within the context of X-ray spectroscopy, we mention that excellent high angular
resolution maps of the metal enrichment of some individual clusters have been per-
formed, revealing very interesting substructures. For instance, Sanders et al. (2016a)
has obtained a detailed map of the metal enrichment of the Centaurus cluster revealing
high metallicity blobs on scales of 5–10 kpc, which are likely tracing material uplifted
by the AGN hosted in the central galaxy.

Summarizing, the α/Fe abundance ratio is an important clock to investigate the star
formation history in galaxies. Massive galaxies are characterized by systematically
higher α/Fe ratio that, together with information on their stellar ages, indicates that
more massive galaxies formed on shorter timescales and at earlier cosmic epochs
than lower mass galaxies. The rapid star formation in massive systems is generally
modelled in terms of a combination of enhanced star formation efficiency and strong
feedback effect that rapidly quench star formation. The intracluster medium typically
shows solar abundances, with no significant radial variation, reflecting the additional,
continuous ejection of iron by SNIa over time also from passive galaxies.

7.2.2 N/O

In late-type galaxies, the analysis of chemical abundances has often focused on the gas
phase and on those elements whose abundance can be inferred through the nebular
emission lines (although DLA have also been extensively used to explore in detail
the circumgalactic medium and outer parts of galactic discs, as discussed later on).
Among these, nitrogen is one of the elements that has been subject to many exten-
sive studies. Indeed, its abundance can be inferred from the relative bright doublet
of [NII]λλ6548,6584 next to Hα. The nitrogen abundance can be inferred ‘directly’
through the Te method, through auroral lines tracing the temperature of the partially
ionized zone (e.g., Andrews and Martini 2013; Pilyugin et al. 2010a; Pérez-Montero
and Contini 2009; Berg et al. 2011, 2013, 2015a), see Sect. 3.1. As noted earlier,
the latter method requires the detection of very faint lines and hence can be applied
only to limited samples of nearby galaxies/HII-regions or stacked spectra of galax-
ies. However, at least in star-forming galaxies, the N/O abundance ratio is nearly
proportional to the [NII]λ6584/[OII]λ3727 line flux ratio, as these lines are emitted
from nearly the same zone in HII-regions and hence their ratio is little dependent on
other factors such as the ionization parameter and shape of the ionizing continuum.
Therefore, since these are both relatively bright lines in most star-forming galaxies,
the [NII]λ6584/[OII]λ3727 ratio can be used to investigate the N/O abundance in
relatively large samples of galaxies, and calibrations of this diagnostic have been pro-
vided (e.g., Pérez-Montero and Contini 2009). In the absence of [OII]λ3727 (which
requires a relatively large wavelength range to be observed together with [NII]λ6584),
the [SII]λ6717,6730 doublet can be used as an alternative proxy of α elements, so as
to infer N/S from [NII]λ6584/[SII]λ6717,6730 (Pérez-Montero and Contini 2009).

Nitrogen is a particularly interesting element to investigate in galaxies, because,
in contrast to oxygen and other α-elements, it is produced primarily by intermediate-
mass stars and only with a smaller contribution by massive stars [possibly enhanced
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Fig. 47 N+/O+ ratio as a function of direct-method oxygen abundance (a) and M∗ (b). Open circles are
obtained from SDSS stacks binned in stellar mass, coloured symbols result from stacks in mass and SFR.
Image reproduced with permission from Andrews and Martini (2013), copyright by AAS

in the presence of stellar rotation (Vangioni et al. 2018; Vincenzo and Kobayashi
2018, and references therein)]. Therefore, the N/O ratio provides precious information
on the evolutionary stage of the galaxy. Moreover, nitrogen has also a “secondary”
component, whose production increases with metallicity (Edmunds and Pagel 1978);
indeed, being a product of the CNO cycle, its abundance increases at expenses of the C
and O abundances. As a consequence, at high metallicities the nitrogen abundance is
expected to evolve quadratically with the metallicity, N/H ∝ (O/H)2 or, equivalently,
N/O ∝ O/H.

The nitrogen-to-oxygen abundance ratio in nearby galaxies has been investigated by
multiple studies (e.g., Edmunds andPagel 1978;VilaCostas andEdmunds 1992, 1993;
Thuan et al. 1995; van Zee et al. 1998; Pérez-Montero and Contini 2009; Pilyugin et al.
2010a, 2012; Pérez-Montero et al. 2013; Andrews andMartini 2013; Berg et al. 2011,
2013, 2015a; Belfiore et al. 2015, 2017). Figure 47, top shows the nitrogen and oxygen
abundances inferred from the direct-Te method from SDSS galaxy spectra stacked in
bins of SFR and mass; hollow points are in bins of stellar mass, while coloured points
are further split in bins of SFR (Andrews and Martini 2013). At low metallicities
the N/O abundance is relatively constant (if one ignores galaxies with high SFR,
which will be discussed later); this is the region where nitrogen is thought to mostly
have a ‘primary’ contribution from massive stars. At 12 + log(O/H) > 8.3–8.4,
N/O increases steeply with metallicity; this is the region where secondary nitrogen
production is thought to take over and where intermediate mass stars start to contribute
significantly.
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A similar trend has been clearly observed also for the nitrogen abundance of DLA,
which populate mostly the lowmetallicity plateau (e.g., Pettini et al. 2002a; Centurión
et al. 2003; Zafar et al. 2014). However, for DLA there is evidence for a bimodal
distribution of this plateau, with most systems clustering at [N/α]∼ − 0.85 and a
smaller fraction of them (∼ 25%) clustering around [N/α]∼ − 1.4. Such bimodal
distribution may be related to the N/O spread observed in emission line galaxies
(especially the strongly star-forming ones) at low metallicities (Fig. 47).

For local galaxies most studies have focused mostly on the use of nebular emis-
sion lines in star-forming galaxies. We shall warn that a non-negligible number of
studies investigate the distribution of galaxies on the N/O versus O/H diagram using
a nitrogen-based strong line diagnostic as a tracer of O/H, such as N2 or O3N2. This
is a fundamental mistake that should be avoided by any means. Indeed, the use of
the same information (the [NII] line flux) on both axes unavoidably introduces artifi-
cial correlations between N/O and O/H. Moreover, strong line diagnostics based on
theoretical photoionization models (and several Bayesian methods) assume a-priori a
relationship between N/O and O/H; therefore, these strong line diagnostics cannot be
used to investigate the N/O vs O/H trends.

It has been pointed out by several authors that the N/O abundance ratio is a strong
function of the galaxy mass (Pérez-Montero and Contini 2009; Andrews and Martini
2013; Masters et al. 2016). This is, for instance, shown in the stacked analysis by
Andrews and Martini (2013) in Fig. 47. Such a trend with stellar mass is regarded as
a consequence of the fact that massive galaxies are more evolved; hence the nitrogen
enrichment contribution by intermediate mass stars has been more prominent. How-
ever, it is also probably a secondary product of the mass–metallicity relation; indeed
the higher metallicity of massive galaxies likely boosts the production of secondary
nitrogen.

Chemical evolutionary models have been proposed to interpret the evolution of
the N/O abundance (e.g., Matteucci 1986; Garnett 1990; Coziol et al. 1999; Henry
et al. 2000; Chiappini et al. 2005; Köppen and Hensler 2005; Torres-Papaqui et al.
2012). The most recent effort in this area is from Vincenzo et al. (2016) where the
observational data are compared with the different model predictions by varying dif-
ferent parameters such as gas inflow properties, efficiency of star formation, outflow
loading factor and also including the scenario of differential outflow rates, in which
oxygen is expelled more preferentially by the SN-driven winds than nitrogen. Some
of these models are shown in Fig. 48, overplotted on the density distribution observed
in several thousand galaxies from the SDSS survey (colour shaded area). The broad
distribution of galaxies in the N/O versus O/H diagram implies that different galaxies
have evolved through different paths. However, models show that, on average, the
global population of star-forming galaxies require an initial phase in which star for-
mation in fuelled by gas infall over a timescale of 1 Gyr and that outflows start being
effective in quenching further enrichment when the galaxy has reached a metallicity
close to solar. These data seem to constrain the average past star formation efficiency
to a value of about ν ∼ 1.5–2 Gyr−1.

It is interesting to note that the characteristic shape of the N/O versus O/H diagram
for star-forming galaxies can be very useful to identify secondary evolutionary effects
at play when galaxies deviate from this sequence. In particular, observations have
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Fig. 48 Models of nitrogen enrichment in galaxies overplotted onto the SDSS data (colour shaded area). a
Effect of varying the infall mass Minf ; b effect of varying the infall time-scale τinf ; c effect of varying the
star formation efficiency ν; d effect of varying the outflow loading factor ω. In panel d, the dashed lines
correspond to a non-differential outflow (where both N and O are expelled with the same efficiency) while
the solid lines refer to the reference assumption of a differential outflow where N is not expelled (with
ωN = 0). Image reproduced with permission from Vincenzo et al. (2016), copyright by the authors

shown that a significant fraction of galaxies and star-forming regions tend to scatter
toward the high N/O region at fixed O/H (e.g., Köppen and Hensler 2005; Belfiore
et al. 2015). One of such examples is illustrated in Fig. 49, which shows the N/O
versus O/H diagram for the spatially resolved star-forming regions of a galaxy in
the SDSS4-MaNGA sample (Belfiore et al. 2015). Such deviations can be explained
through different scenarios: (1) a burst of star formation with increased star formation
efficiency that, as shown in Fig. 48c, at later time boosts the N/O abundance relative
to the sequence; (2) the infall of pristine/metal-poor gas at late times; such an event
dilutes the overallmetallicity leaving unaffected theN/O abundance, hencemoving the
galaxy/region horizontally on the diagram (Köppen and Hensler 2005); (3) a fountain
scenario in which metal-rich gas with high N/O abundance is ejected from the central
region and deposited on the outer galactic regions, which aremoremetal-poor and have
lower N/O, resulting in a mixing sequence. Each of these scenarios is characterized
by a different pattern on the N/O versus O/H diagram. For instance, in the case of
the galaxy shown in Fig. 49 a fountain/mixing scenario seems to describe well the
deviations from the N/O main sequence in this system. Another important mechanism
that has been proposed to explain local enhanced nitrogen abundance in some star-
forming regions (especially thanks to IFU techniques) is the enrichment of nitrogen by
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Fig. 49 Spatially resolved N/O vs O/H diagram for one galaxy in the SDSS4-MaNGA sample. Points are
colour-coded according to their Dn(4000) parameter (strength of the 4000 Å break), which is a tracer of
the age of the stellar population (redder points are older). The contours show the distribution in the SDSS
sample (with the same calibrators adopted for the galaxy). The blue and black solid lines with diamonds
show the fountain mixing effect in which metal-rich gas expelled from the central region is mixed with
metal-poor gas from the outer regions, for two different values of the lower metallicity. The deviation
from the main N/O–O/H main sequence observed in this galaxy can be reproduced fairly well through
such fountain mixing simple model. The correlation of the deviation with the Dn(4000) parameter can be
explained with the fact that older regions are more gas poor, and hence the dilution effect is more effective.
Image reproduced with permission from Belfiore et al. (2015), copyright by the authors

Wolf–Rayet outflows (Walsh and Roy 1989; López-Sánchez et al. 2007; James et al.
2009; Pérez-Montero et al. 2011; Monreal-Ibero et al. 2012).

The gradient ofN/O abundance has also been investigated recently (Berg et al. 2013,
2015a; Belfiore et al. 2017; Esteban and García-Rojas 2018; James et al. 2009, 2013;
Westmoquette et al. 2013; Kumari et al. 2018). Figure 50 shows the N/O abundance
ratio radial gradient for star-forming galaxies from the SDSS4-MaNGA survey in bins
of stellar mass (Belfiore et al. 2017). The systemically increasing nitrogen abundance
with galaxy mass, the tendency for the gradient to steepen with galaxy mass and to
flatten in the outer parts are all trends similar to those seen in the metallicity gradients
(Fig. 31). However, one important difference is that theN/O gradient does not flatten in
the central region as instead observed for the O/H abundance.Within the context of the
inside-out growth of late-type galaxies, this finding indicates that the central regions of
massive galaxies have locally evolved to an equilibrium metallicity (saturated around
the yield), while the nitrogen abundance continues to increase as a consequence of
both the delayed secondary nucleosynthetic production and the contribution from
intermediate mass stars.

Summarizing, the N/O vs O/H diagram of galaxies shows a dual behaviour, with a
plateau at low metallicities and a steeply increasing trend at high metallicities, which
can be interpreted in terms of primary production of nitrogen at low metallicities,
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Fig. 50 N/O abundance ratio radial gradient for star-forming galaxies from the SDSS4-MaNGA survey in
bins of stellar mass. Image reproduced with permission from Belfiore et al. (2017), copyright by the authors

while at high metallicities can be interpreted as the delayed production by nitrogen
by intermediate-mass stars together with the “secondary” production channel; hence
the N/O vs O/H diagram can be interpreted as an evolutionary sequence. The nitrogen
abundance also correlates significantly with galaxy stellar mass, which is interpreted
in terms of more massive galaxies being more evolved; hence intermediate mass stars
have had more time to enrich the ISM with nitrogen. Individual galaxies or galac-
tic regions may show significant deviations from this trend (in particular by showing
enhanced nitrogen abundance), which can be explained bymodels in terms of different
effects (such as metallicity dilution by accreting near-pristine gas, variation of star for-
mation efficiency, differential outflows effects, enhanced enrichment by Wolf–Rayet
stars).

7.2.3 C/O

The abundance of carbon provides additional important information on the evolu-
tionary stage of galaxies as carbon is primarily released by intermediate mass stars
(although Wolf–Rayet stars, whose progenitors are thought to be high mass stars, are
regarded as additional important contributors of carbon, Dray et al. 2003; Dray and
Tout 2003). Therefore, significant carbon enrichment is generally delayed with respect
to α elements.

In the local universe the carbon abundance has been investigated in galactic stars
throughmedium/high-resolution surveys (Gustafsson et al. 1999; Bensby and Feltzing
2006; Akerman et al. 2004; Spite et al. 2005; Fabbian et al. 2009; Nieva and Przybilla
2012; Nissen et al. 2014; Tautvaišiene et al. 2016), although one should be aware
that when observed in evolved giant and supergiant stars complex internal mixing and
dredge up processes make it difficult to properly interpret the observed abundances
and to use them to trace galaxy evolution. Carbon abundance in stellar spectroscopy
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has been extended also to some nearby galaxies, and recently Conroy et al. (2014)
have extended the analysis to thousands of galaxies from the SDSS, through fitting of
stacked spectra (see Fig. 44).

The gas phase metallicity has been more difficult to determine as carbon does not
have strong transitions at optical wavelengths. However, deep observations of bright
HII regions, both in our galaxy and external galaxies, have enabled the detection
of CII recombination lines in the optical, enabling the measurement of the carbon
abundance for some of them (Esteban et al. 2002, 2009, 2014; Peimbert et al. 2005;
López-Sánchez et al. 2007; García-Rojas and Esteban 2007). HST has enabled sensi-
tive spectroscopy in the UV, where collisionally excited lines of carbon are present,
especially CIII]λλ1907, 1909 (but also CIV1459, for galaxies with harder ionizing
spectrum, such as AGNs), which have been used to estimate the carbon abundance in
HII regions, although often requiring photoionization modelling (Garnett et al. 1997,
1999; Kobulnicky et al. 1997; Kobulnicky and Skillman 1998; Izotov and Thuan 1999;
Berg et al. 2016a; Pérez-Montero and Amorín 2017; Peña-Guerrero et al. 2017). As
mentioned in Sect. 3.5.2 if information on the gas temperature is available, then the
carbon abundance can be inferred with higher accuracy (Garnett et al. 1995, 1999).
TheUV spectral range also contains absorption features fromUV resonant lines which
can further be used, through HST data, to constrain the carbon abundance of the ISM
(primarily using the CII1334 ISM absorption, James et al. 2014a) and of the young
stellar population (Leitherer et al. 2011; Leitherer 2011).

Figure 51, from Berg et al. (2016a), summarizes some of the main findings on the
C/O versus O/H diagram for different galactic systems and components, specifically
halo and disk MW stars, HII regions measured either through recombination lines or
throughUV collisionally excited lines (as well as high-z DLA,whichwill be discussed
in the next section). The plot shows large dispersion. However, at least at metallicities
higher than 12 + log(O/H) = 7, it resembles the trend observed in the N/O versus
O/H diagram, with a flat relation at lowmetallicity and a steeply increasing abundance
at high metallicities. The latter trend has led some authors to suggest that carbon may
also have a secondary production, i.e., yields that are strongly metallicity-dependent;
alternatively, or in addition, the delayed release of C may also mimic a secondary
production effect (Garnett et al. 1999; Henry et al. 2000; Carigi 2000; Chiappini
et al. 2003). The similar behaviour of carbon and nitrogen is further supported by the
observed C/N trend (Fig. 52), which is constant with metallicity (Berg et al. 2016a)
and which has strengthened the idea that carbon follows an enrichment pattern similar
to nitrogen.

The stacking analysis of Conroy et al. (2014) has revealed that carbon is enhanced
relative to iron in more massive galaxies (i.e., with larger velocity dispersion, Fig. 44),
an effect similar to the α enhancement in massive galaxies, although slightly less
extreme, indicating that carbon is capturing star formation on intermediate temporal
scales.

Summarizing, the C/O vs O/H diagram of galaxies shows a similar dual behaviour
as for nitrogen, with a plateau at low metallicities and a increasing trend at high
metallicities. These similarities with the N/O diagram suggests that carbon shares a
common origin with nitrogen (as confirmed by the constant C/N ratio). In particular,
at high metallicities carbon is enriched with delay by intermediate mass stars and may
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Fig. 51 C/O abundance ratio as a function of O/H for Galactic and extragalactic systems, compared with
various models. Blue dots are HII regions in dwarf galaxies observed by Berg et al. (2016a) with HST/COS.
Purple dots are other objects with direct oxygen abundances and C/O abundances determined from UV
CELs. Green filled squares are star-forming galaxies with abundances based on RLs. Triangles are MW
halo stars, while 4-pointed stars are disk stars. Finally, orange diamonds are DLAs, and lines are the results
of three enrichment models, see Berg et al. (2016a) for details. Image reproduced with permission from
Berg et al. (2016a), copyright by AAS

also have a “secondary” component. Therefore, the C/O vs O/H diagram describes
a temporal sequence. In the next section we will discuss the peculiarity of the C/O
abundance ratio at very low metallicities.

7.3 High redshift and the very lowmetallicity regime

At high redshift the measurement of the relative chemical abundances are obviously
much more difficult to obtain as the limited S/N of distant galaxies often prevents
detecting the required multiple spectral diagnostic features. This is especially true for
what concerns measuring the [α/Fe] ratio in the spectra of stellar populations of high-z
galaxies, as this requires excellent S/N on the continuum. Indeed, currently, the [α/Fe]
ratio has been measured only in a few cases by exploiting individual spectra (Lonoce
et al. 2015; Kriek et al. 2016) or by using stacking of star-forming or quiescent galaxies
(Onodera et al. 2015; Steidel et al. 2016). Thegeneral result is that these distant galaxies
are all α-enhanced, in some cases even relative to the lower redshift passive galaxies
of the same mass (e.g., Fig. 53), indicating that these galaxies have formed quickly,
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Fig. 52 C/N abundance ratio as a function of O/H for the same systems as in Fig. 51. The dashed line is
the weighted average of the significant detections based on CEL. Image reproduced with permission from
Berg et al. (2016a), copyright by AAS

Fig. 53 [Mg/Fe] abundance for a massive galaxy at z = 2.1 as a function of mass (left) and as a function
of [Fe/H] (right), compared with lower-redshift galaxies (see legend). The black dashed line and the red
arrows are the results of two evolutionary models. Image reproduced with permission from Kriek et al.
(2016), copyright by Macmillan
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Fig. 54 N/O versus O/H for a sample of star-forming galaxies at z ∼ 2.3 (symbols) compared with local
star-forming galaxies (contours). Image reproduced with permission from Strom et al. (2017a), copyright
by the authors

with little iron pollution from SNIa, generally inferring star formation timescales of
only 0.5–1 Gyr.

TheN/O abundance ratio in high-z star-forming galaxies has been investigated little
so far, due to the need to sample a broad range of nebular diagnostics (hence multi-
band near-IR/optical observations are needed, which may be subject to differential slit
losses if not performed with IFU), both to measure N/O (which requires measuring
[NII] and [OII]) and to measure the metallicity O/H with diagnostics that do not use
nitrogen. One of such attempts is shown in Fig. 54 based on a near-IR spectroscopic
survey of galaxies at z ∼ 2.3 (Steidel et al. 2016; Strom et al. 2017a) Generally high-z
star-forming galaxies (symbols) follow the same relation as local galaxies (contours),
although with somewhat larger scatter, some tendency of being more nitrogen-rich at
a given O/H. This seems confirmed (especially in terms of larger scatter) by a smaller
sample, but based on Te measurements, at lower metallicities, in the work by Kojima
et al. (2017). The larger scatter, if confirmed with higher statistics in future surveys,
may be a consequence of enhanced star formation efficiency at such early epochs
(Vincenzo and Kobayashi 2018), or may reflect frequent and prominent inflows of
near-pristine gas in high-z galaxies (which dilute the metallicity, hence O/H, but affect
little N/O), as expected by many theoretical models (see the discussion in Sect. 7.2.2).

The C/O ratio was studied by Steidel et al. (2016) in the stacked spectrum of ∼ 20
galaxies at z ∼ 2.4 and by Amorín et al. (2017) in individual galaxies at z ∼ 3. They

123



3 Page 110 of 187 R. Maiolino, F. Mannucci

found values in agreement with the values in local stars and HII regions, although with
large scatter.

As discussed in Sect. 3.6, high column density absorption systems (DLA) generally
provide the most accurate determination of the relative (and often absolute) chemical
abundances (e.g., Prochaska and Wolfe 1999; Berg et al. 2015b, 2016b; Fumagalli
2014; Pettini et al. 2008; Henry and Prochaska 2007; Dessauges-Zavadsky et al. 2006;
Wolfe et al. 2005; Prochaska et al. 2003; Rafelski et al. 2012; Neeleman et al. 2013;
Jorgenson et al. 2013), although they probe a broad range of environments, whose
connection with galaxies is generally not fully clear (likely ranging from outskirts of
galactic discs to clumps in the intergalactic medium). In contrast to early claims that
DLA abundances may resemble the chemical pattern of stars in the MW halo, hence
that DLAmay probe the formation of galactic haloes, more recent studies have shown
that the chemical and kinematic properties of DLA are more similar of those seen in
dwarf galaxies of the Local Group (Fig. 55; Cooke et al. 2015; Berg et al. 2015b; De
Cia et al. 2016), hence DLA might be tracing the early formation of dwarf satellite
galaxies (also based on their similar velocity dispersion).

In many DLA it is possible to trace the detailed chemical enrichment pattern of sev-
eral elements (Fig. 56), in most cases confirming that these result from the enrichment
of core-collapse supernovae from massive stars (Prochaska et al. 2003; Dessauges-
Zavadsky et al. 2006).

It is interesting thefinding that, for bothDLAs at high-z and for halo stars, the carbon
abundance relative to α elements increases systematically at very low metallicities
(12+ log(O/H) < 7, e.g., Figs. 51 and 57 Cooke et al. 2012; Berg et al. 2016b; Lehner
et al. 2016) which has been interpreted as possible signature of enrichment by PopIII
stars (Carigi and Peimbert 2011), although such high values of C/O at lowmetallicities
can also been explained by other models without invoking the contribution of PopIII-
like yields, but simply different carbon yields in the metal poor (PopII) regime (Mollá
et al. 2015). A similar enrichment has been observed in a population of metal-poor
halo stars collectively known as carbon-enhanced metal-poor [CEMP] stars (Beers
and Christlieb 2005).

Lyman Limit Systems (LLS), which are characterized by lower absorbing column
density relative to DLA, appear to deviate from the trend observed in MW stars and
DLA, by being carbon enhanced at metallicities −2 < [α/H] < −1. Lehner et al.
(2016) suggest that this indicates that LLS trace gas clouds enriched by preferential
ejection of carbon from low metallicity galaxies.

Even more interesting is the discovery of extremely low metallicity DLA and LLS
systems ([α/H] < −3) that are also carbon poor (Fig. 57) (Lehner et al. 2016; Crighton
et al. 2016;Cooke et al. 2017). These are considered the best candidates as tracers of gas
polluted by PopIII stars. Overall, their chemical enrichment pattern is well-reproduced
by pollution from supernovae originating from PopIII stars, with progenitor masses of
about 20M�. The abundance pattern of these systems is partly reminiscent of some of
the most metal poor halo stars. The most metal poor of these stars has a metallicity of
4.5× 10−5 M� (Caffau et al. 2011) and its chemical abundance pattern is well repro-
duced by a metal-free progenitor with mass of about 20–30 M� (Fig. 58) (Schneider
et al. 2012b). Interestingly, both in the case of DLA/LLS and halo stars the abundance
pattern excludes the scenario of pollution by very massive PopIII progenitors, which
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Fig. 55 [α/Fe] versus [Fe/H] for high redshift DLA (black symbols) compared with local dwarf spheroids.
Image reproduced with permission from Cooke et al. (2015), copyright by AAS

would result in hypernovae. It is also very interesting that the extremely metal poor
halo stars have sub-solar stellar masses, at metallicities well below the critical value
that, according to standard model, would allow cooling and fragmentation of the gas
that would enable the formation of low-mass stars (shaded region in Fig. 57; Frebel
et al. 2007). While initially very puzzling, Schneider et al. (2012a, b) pointed out that
small amount of dust formed in the ejecta of PopIII SNe would be enough to enable
the cooling and fragmentation of the gas that would result into the formation of the
first generation of extremely metal-poor low-mass stars.

We conclude this section by highlighting that millimetre/submillimetre observa-
tions of molecular transitions at high-redshift are now sensitive enough to provide
valuable constraints not only on the composition of molecular species in the ISM of
primeval galaxies, but also on the relative abundance of different atomic isotopes,
which can provide precious information on the properties of the stellar populations
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Fig. 56 Detailed chemical abundances inferred for a sample of 11 DLAs at z ∼ 2. Image reproduced with
permission from Dessauges-Zavadsky et al. (2006), copyright by ESO

Fig. 57 [C/α] vs [α/H] for high-redshift DLAs and Lyman Limit Systems, compared with Galactic stars.
The hatched orange region identifies the area within which gas may have been primarily polluted by PopIII
stars (Frebel et al. 2007). Image reproduced with permission from Lehner et al. (2016), copyright by AAS

responsible for the early chemical enrichment. Zhang et al. (2018b) have measured
the 13C/18O abundance ratio in a sample of distant lensed, starburst galaxies (z ∼ 2–
3), by measuring multiple transitions of the 13CO and C18O isotopologues of carbon
monoxide. Since 13C ismostly produced by low/intermediatemass stars (M∗ < 8M�)
while 18O is mostly produced by massive stars (M∗ > 8M�), the 13C/18O ratio is
sensitive to the shape of the IMF. From their measurements. Zhang et al. (2018b) find
that these early systems are likely characterized by a top-heavy IMF.

Summarizing, galaxies with α-enhanced stellar populations are already seen at high
redshift (z ∼ 1 − 2), indicating that these systems have formed rapidly, likely within
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Fig. 58 Abundance pattern observed in the most metal poor halo star (black points, Caffau et al. (2011))
compared with yields expected from PopIII stars (red points). Image reproduced with permission from
Schneider et al. (2012b), copyright by the authors

0.5–1 Gyr. The N/O abundance ratio of distant galaxies generally follow the local
relation, but with larger dispersion and with a larger fraction of nitrogen-enhanced
(relative to oxygen) galaxies, which may indicate that these galaxies have experienced
enhanced star formation efficiency or absolute metallicity dilution by infalling near-
pristine gas. The α/Fe properties of DLAs (together with their velocity dispersion)
suggest that they may trace the early formation of dwarf galaxies and generally be
primarily enriched bymassive stars (also basedmore broadly by awider set of chemical
abundances). Theproperties of verymetal poorDLAwith sub-solar carbon abundances
suggest that these may trace the early enrichment by the first generation of stars
(PopIII).

8 Metallicity and chemical abundances in AGN

Active galactic nuclei (AGN), powered by supermassive accreting black holes, in their
various manifestations, have been extensively investigated to probe the metallicity in
galactic nuclei, in their host galaxies and even in the CGM. Given that they can reach
very high luminosities (quasar phase) they have been effectively used to probe the
metallicity of their circumnuclear region and of their host galaxies out to very high
redshift.

The nebular emission lines in AGN are primarily divided in two classes, “broad”
lines and “narrow” lines.
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Broad emission lines, with line widths up of a few to several thousands km s−1,
are emitted by a nuclear region typically smaller than a fraction of a parsec (the so-
called Broad Line Region, BLR). The density of the clouds in the BLR is so high
(∼ 1011 cm−3) that “forbidden” transitions (e.g., [OIII]5007, [OII]3727, [SII]6730,
etc.) are not detected; indeed the critical densities of all these collisionally excited
transitions are well below the typical density of the BLR, implying that in this regime
their emissivity increases only linearly with gas density, in contrast to the permit-
ted lines (such as hydrogen Balmer recombination lines) whose emissivity increases
quadratically with density even in the extreme conditions of the BLR.

The narrow lines have widths more comparable to those typically observed in the
host galaxies (a few 100 km s−1), although typically broader because often associated
with outflows, and extend on scales ranging from a few 100 pc to several kpc (the
so-called Narrow Line Region, NLR).

Metallicity determinations of the BLR and NLR havemostly relied on photoioniza-
tion models (e.g., Hamann and Ferland 1999; Nagao et al. 2006c), although attempts
have been made to use the direct-Te method (Dors et al. 2015) but which have revealed
the inadequacy of this method for AGNs ( the origin of such “temperature problem”
in AGNs is not yet clear).

Some of the broad line ratios from metal transitions in the UV have been proposed
as sensitive metallicity tracer of the BLR. The nebular emission ratio (SiIVλ1397 +
OIVλ1402)/CIVλ1549) has been proposed to be themost stable against distribution of
gas densities and ionization parameter in the BLR clouds, and also in terms of hardness
of the ionizing continuum (Nagao et al. 2006a). The ratios NVλ1240/CIVλ1549
and NVλ1240/HeIIλ1640 have also been proposed (e.g., Hamann and Ferland 1999;
Dietrich et al. 2003b; Nagao et al. 2006c; Matsuoka et al. 2011b; Wang et al. 2012),
but they are more sensitive to ionization parameter, shape of the ionizing continuum
and are primarily sensitive to the nitrogen abundance rather than metallicity.

The general finding is that the metallicity of the BLR in quasars is very high,
nearly always supersolar and up to several times solar (Hamann and Ferland 1999;
Dietrich et al. 2003b; Nagao et al. 2006a; Jiang et al. 2007; Juarez et al. 2009; Simon
and Hamann 2010; Matsuoka et al. 2011b; Wang et al. 2012; Shin et al. 2013; Xu
et al. 2018). Such high values of the metallicity have posed questions on whether
the photoionization modelling of the extreme environment characterizing the BLR is
appropriate. However, very high nuclear metallicities (a few/several times solar) are
also confirmed by the iron emission and absorption features observed in the X-ray
emission coming from the nuclear region (e.g., Jiang et al. 2018). Yet, such high
metallicities in the nuclear region of AGN are not really unexpected. Indeed the very
high densities and large amount of gas in the central region of AGN likely foster rapid
star formation and quick enrichment on the ISM. Moreover, it is important to bear in
mind that the mass of gas in the BLR is very small, a few times 104 M�. As pointed
out by Juarez et al. (2009), such small mass can be quickly enriched with less than a
SN explosion every 104 yrs.

The somewhat puzzling result is that the metallicity of the BLR does not seem to
evolve with redshift (Fig. 59, top) and such lack of evolution appears to persist out
to the most distant quasars known, at z = 7.5 (Fig. 59, bottom) (Nagao et al. 2006c;
Juarez et al. 2009; Mortlock et al. 2011; Bañados et al. 2018; Xu et al. 2018).
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Fig. 59 Top: average metallicity of the BLR in quasars (from stacked spectra) as a function of redshift.
Image reproduced with permission from Nagao et al. (2006c), copyright by ESO. Bottom: spectrum of the
most distant quasar currently known (z = 7.5) compared with the average spectrum of intermediate redshift
quasars from SDSS, illustrating that the two are nearly identical, suggesting similar chemical enrichments
of the BLR. Image reproduced with permission from Bañados et al. (2018), copyright by Macmillan

The lack of redshift evolution of the metallicity which, in contrast to what is
observed for galaxies, seems to remain high at all redshifts, is likely a consequence
of the mass–metallicity relation combined with selection effects. Indeed, in order to
be selected in large-scale surveys, the quasar has to be luminous enough to pass the
sensitivity threshold of the survey; this generally implies that (even if accreting at the
Eddington limit) the black hole must have already become fairly massive. If some
form of black hole/galaxy relation is already in place at high redshift, this implies
that, at any redshift, the host galaxy must already be massive, hence typically display
high metallicity when the quasar enters into the survey (at any epoch). This combina-
tion of effects, explaining the lack of redshift evolution of the BLR metallicities, was
discussed more quantitatively in Juarez et al. (2009).

The fact that the metallicity in AGN is linked to the mass–metallicity relation of the
host galaxy was first hinted by the fact that the metallicity of the BLR scales with AGN
luminosity (Hamann and Ferland 1999; Nagao et al. 2006c; Xu et al. 2018). Indeed,
if the AGN luminosity is a function of the black hole mass (assuming an average
L/LEdd ratio) and the black hole mass is linked to the host galaxy mass through BH-
spheroid relation, then one would expect the AGN nuclear metallicity to scale with the
AGN luminosity as a consequence of the mass–metallicity relation of the host galaxy
(Juarez et al. 2009). A more clear evidence of this, which by-passes the use of AGN
luminosity, is the more direct relationship between BLR metallicity and black hole
mass obtained byMatsuoka et al. (2011b) and Xu et al. (2018), as illustrated in Fig. 60
(see also Ludwig et al. 2012, for a potential extension of the relation to low masses.)
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Fig. 60 Metallicity of the BLR as a function of black hole mass for quasars divided into bins of redshift
(see legend). Image reproduced with permission from Xu et al. (2018), copyright by the authors

Matsuoka et al. (2011b) report the lack of correlation between metallicity and
Eddington ratio L/LEdd.Acorrelationwith theEddington ratio is seenonlywhenusing
the NV/CIV and NV/HeII ratios, which are primarily tracing the nitrogen enrichment.
Since nitrogen enrichment is delayed with respect to α elements, the latter correlation
has been interpreted as indication that black hole accretion is triggered with a delay
of a few 100 Myr with respect to the onset of star formation. This is delay that has
been suggested also in local AGNs (Davies et al. 2007) and it has been interpreted
as a consequence of the initial strong turbulence induced by SNe, which may prevent
effective accretion onto the BH, while at later epochs the more gentle stellar winds
may be effective in removing angular momentum from the gas (hence enabling it to
move towards the centre) without introducing excessive turbulence or gas removal
through SN-driven winds.

Many authors have used the flux ratio of the MgII 2798Å doublet relative to the
UV FeII “bump” (due to a blending of multiplets at 2200–3090 Å), with the goal of
constraining the redshift evolution of the α/Fe ratio in the Broad Liner Region (e.g.,
Dietrich et al. 2003a; Maiolino et al. 2003; Freudling et al. 2003; Iwamuro et al. 2004;
Jiang et al. 2007; De Rosa et al. 2011, 2014; Calderone et al. 2017; Mazzucchelli et al.
2017). These various studies find no evidence for a redshift evolution of the MgII/FeII
flux ratio out to most distant quasars at z ∼ 6.5. If one assumes that the flux ratio
is, to a first order, a proxy of the α/Fe abundance ratio, then the lack of evolution
would imply that the relative contribution of SNIa and core-collapse does not change
with redshift. However, ones has to take into account that both emission features, and
especially the FeII “bump”, are primary coolants of the BLR and, therefore, their flux
does not really scale linearly with abundance, but it rather tends to adjust in order to
keep the thermal equilibrium of the BLR clouds (Verner and Peterson 2004; Verner
et al. 2004), therefore the lack of evolution of the MgII/FeII ratio may simply reflect
the “thermostatic” role of the associated transitions.

Similar studies have been performed to investigate the metallicity of the NLR, i.e.,
onmuch larger galactic scales inAGNhosts. In this case studies have generally focused
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on type 2AGNs, inwhich the BLR (whose strong, broad lineswould otherwise prevent
a proper disentangling of the flux of the narrow lines) is obscured along the line of
sight. Studies have both exploited optical narrow nebular lines ratios (especially in
local galaxies) and UV nebular lines (especially in distant galaxies, whose UV lines
are redshifted into the optical bands) and by using photoionization models to infer the
metallicity from a combination of line ratios. Initial claims about highly supersolar
metallicities in the NLR (Groves et al. 2006) have been revised downwards; however,
it is still true that most NLR appear to be metal rich, with metallicities around solar
or super-solar (Nagao et al. 2006b; Matsuoka et al. 2009, 2011a; Stern and Laor
2013; Coil et al. 2015; Dors et al. 2015, 2017; Castro et al. 2017). Matsuoka et al.
(2009) suggest that in the redshift range 1–4 there is little cosmic evolution of the
NLR metallicity, although admittedly the statistics are much poorer than for the BLR
metallicities; however, Coil et al. (2015) have pointed out that, in their sample of type
2 AGNs at z ∼ 2.3, the NLRmetallicity (inferred from rest-frame optical diagnostics)
is lower than the metallicity in the NLR of local AGN. They also point out that the
metallicity of the NLR in their sample of type 2 AGN is higher than in a matched
sample of star-forming galaxies.

The solar/super-solar metallicities in the NLR of AGNs, already at high redshift,
can be partly explained in terms of dust destruction in the NLR, which releases metals
into the ISM (Nagao et al. 2006b;Matsuoka et al. 2009; Dors et al. 2014), but probably
is also partly due to the fact that the NLR is often also associated with galactic (AGN-
driven) outflows originating from the central, metal-rich region of the galaxy. Indeed,
several studies have also directly investigated the outflowing gas in quasars and AGNs,
especially through absorption lines (and especially in Broad Absorption Line Quasars,
where prominent blueshifted absorption troughs probe powerfulwinds), revealing high
metallicity gas being expelled on kpc scales (Hamann and Ferland 1999; Simon and
Hamann 2010; Ganguly et al. 2003, 2006; D’Odorico et al. 2004; Gabel et al. 2006;
Arav et al. 2007; Borguet et al. 2012; Shin et al. 2017).

However, it has been suggested that the NLR also follows the (host galaxy) mass–
metallicity relation (although offset towards higher values), either directly (Matsuoka
et al. 2018) or indirectly through the AGN luminosity or black hole mass as indirect
tracers of the host galaxy mass (Matsuoka et al. 2009; Ludwig et al. 2012).

We finally mention that, while the NLR tends to be generally metal rich, the inves-
tigation of the outer, most extended region of the NLR (sometimes referred to as
Extended Narrow Line Region, ELR) does reveal low metallicity regions (e.g., Fu and
Stockton 2009; Husemann et al. 2011) indicating that the outer parts of the NLR probe
gas in the outer galaxy that are still poorly enriched.

Of growing interest is becoming the technique of probing the metallicity of the
halo of quasars through the analysis of associated absorption systems detected in the
spectrum of a nearby (in projection) background quasar (Prochaska et al. 2013, 2014).
This technique has revealed that the circumgalactic medium of quasars at z ∼ 2 hosts
significant quantities of cold gas (1010 M�) significantly metal enriched (Z > 0.1 Z�
out to the virial radius (rvir ∼ 160 kpc), implying that by z ∼ 2 feedback has already
been quite effective in enriching the CGM of massive galaxies and also implying that
the assumption of pristine gas accretion in many models may be inappropriate.
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In summary, theBLR showvery highmetallicities at any redshift, with no indication
of evolution with time. Selection effects are probably contributing to hide signs of
redshift evolution; nevertheless, this points out toward very early enrichments of the
central regions ofmassive galaxies. Themetallicity of theBLRcorrelates stronglywith
the black hole mass, which is likely a result of the mass–metallicity relation of the
host galaxy combined with the black hole–host galaxymass scaling relation. The NLR
also show high metallicities, though much lower than those observed in the BLR. The
NLR metallicity also shows no evidence for redshift evolution. The interpretation is
complex because contributions to themetallicity of theNLRare expected to come from
the AGN-driven outflows, from the effects of dust destruction, and also to be linked
to the mass–metallicity relation of the host galaxy. The investigation of absorption
systems in the proximity of quasars (by exploiting pairs of quasars that are close
in projection) has revealed large amounts of metal-enriched cold gas in their halos,
suggesting that quasar activity has polluted significantly their circumgalactic medium
through outflows, already at early cosmic times.

9 Metal budget

Since metals are produced by the star formation activity across the cosmic epochs,
comparing the total amount ofmetals seen in the various phases to the cosmic evolution
of stellar mass and SFR is useful to investigating consistency of the interpretation of
these various independent observational results, and in particular the validity of the
underlying assumptions and models about the production of chemical elements and
their transfer among the various galactic and intergalactic phases. In other words, the
metal budget is fundamental information whose evolution should be in agreement
with the other independent observations of galaxy evolution and should be matched
by models. For this reason it has been subject of considerable work (Pei and Fall 1995;
Edmunds and Phillipps 1997; Pettini 2004, 2006; Ferrara et al. 2005; Bouché et al.
2007; Gallazzi et al. 2008; Zahid et al. 2012; Peeples et al. 2014;Madau andDickinson
2014).

Determining the total mass in metals is a challenging goal, as heavy elements are
produced in galaxies and then dispersed in the universe in different forms, often in
states that, as we have discussed in this review, are difficult to observe. Moreover, in
general observational studies measure the metallicity of the various phases, i.e., the
abundance of metals relative to the total content of baryons. Therefore, even in those
cases where the metallicity is well constrained, inferring the absolute total content of
metals implies having a good knowledge of the total mass associated with the same
phase (stars, ISM, CGM, ICM, WHIM, IGM), which are all distributed on different
scales and forms, hence adding to the problem a additional level of complexity and
uncertainty.

Attempts to infer the total mass inmetals in the local universe have implied combin-
ing the contribution to the metal budget from all these components. More specifically:

• Stars and ISM. Galaxies contain large amounts of metals locked into stars and star
remnants and dispersed into the ISM. The mass of metals contained in galaxies
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can be obtained by integrating the mass function of galaxies convolved by the
metallicity and gas fraction as a function of mass. As the chemical abundance
ratios and the overall metallicities depend on galaxy types, it is necessary to make
the computation dividing galaxies in bins of morphology or SF histories. Roughly,
mass-weighted solar metallicities are obtained for this component when assuming
a Salpeter IMF (Calura and Matteucci 2004; Gallazzi et al. 2008).

• CGM and IGM. The CGM is enriched by galactic winds and plays a critical role
in the current “equilibrium models” (see Sect. 4) because it constitutes a reservoir
of metals extracted from the galaxy by winds and that could rain back onto the
galaxy. Similarly, the IGM is thought to be enriched by galactic winds, especially
those escaping from low-mass galaxies. As discussed in the previous sections, the
chemical abundance of the CGMand IGM is obtained from the absorption features
of several ionization species of various elements and shows significant evolution
with redshift, rising to about 0.1 solar in the local universe and containing about
10% of the metals produced (Meiksin 2009; D’Odorico et al. 2010, 2016; Simcoe
et al. 2011; Shull et al. 2014). While the amount of metals in galaxies declines
steadily with redshift, the amount of metals in the CGM/ISM as traced by DLAs
seems to remain roughly constant out to z ∼ 4 (Prochaska et al. 2013; Rafelski
et al. 2014), implying that the fraction of metals in the CGM/IGM is much larger
at high redshift than locally. It had been claimed that the amount of metals in
DLAs shows a decline at z > 4 (Rafelski et al. 2014); however, this has not been
confirmed by more recent studies (De Cia et al. 2018; Poudel et al. 2018).

• The intracluster medium (ICM). As already mentioned, X-ray observations have
revealed that the intracluster medium is highly enriched with all metals (generally
with solar-like relative abundances, Sect. 7.2.1). Metals in clusters are mainly pro-
duced in the evolved populations of early-type galaxies (Matteucci 2012), which
are enriched in Fe by ongoing production of type Ia SNe, also long after the end
of star formation (Maoz and Mannucci 2012). The metal transfer toward the ICM
is due either to AGNs, to SN explosion or to ram stripping, and the system as
a whole evolves nearly as a closed box. As already mentioned, extensive works
have been undertaken to estimate the content of metals in the ICM, especially with
the advent of high-resolution spectroscopy (Mushotzky and Loewenstein 1997;
Balestra et al. 2007; Blanc and Greggio 2008; de Plaa 2013; Molendi et al. 2016;
Mernier et al. 2016, 2018; Hitomi Collaboration 2017; Simionescu et al. 2018).
The metallicity of the ICM is generally very high (supersolar), and therefore,
despite the small contribution to the total baryonic mass (∼ 4%), it is expected
to contribute significantly to the total metal budget (see discussion later in this
section).

• The warm–hot intergalactic medium (WHIM). The WHIM is the warmer/hotter
phase of the IGM, thought to result from the gravitational shock-heating of the
intergalactic medium in the local universe to temperatures of∼ 105–107 K, where
most of the baryons in the local universe are though to reside (Nicastro et al.
2017). It is thought to be the local (hotter) counterpart of the (cooler) IGM at
high-z observed through the Lyα Forest. Its content of metals has been inferred
through UV and X-ray absorption spectroscopy (e.g., Tripp and Savage 2000;
Fang and Bryan 2001; Prochaska et al. 2004; Cooksey et al. 2008; Fang et al.
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2010; Zappacosta et al. 2010, 2012). Typically the inferred metallicity is of the
order of 0.1 Z� and its contribution to the local, total metal budget is less than 5%.

Amid these issues and uncertainties, the published values for the total amount of
metals show a significant scatter, with values around ΩZ ∼ 10−4, (Pei and Fall 1995;
Madau and Shull 1996; Zepf and Silk 1996;Mushotzky andLoewenstein 1997;Madau
et al. 1998; Pagel 2002; Dunne et al. 2003; Calura and Matteucci 2004; Gallazzi et al.
2008) where ΩZ is the density of metals normalized to the critical density of the
Universe for h = 0.7, ρc = 1.36 × 1011 M� Mpc−3.

The relative distribution of metals among these different components is clearly still
subject to significant uncertainties.

Expectations from the integrated cosmic production of stars can be achieved by
integrating the star formation rate density as a function of redshift and convolving it
with the yields per stellar generation (Mollá et al. 2015; Vincenzo et al. 2016). This is
obviously subject to additional uncertainties, not only associatedwith themeasurement
of the evolution of the star formation history (Madau and Dickinson 2014), but also
with our knowledge on the return fraction of metals to the gas phase and with our yet
limited knowledge of the IMF and its potential variations. Bearing in mind all these
uncertainties, the expected average metallicity of the local universe is inferred to be
Z ∼ 0.09 solar for a Salpeter IMF and to decrease by one order of magnitude by
z = 2.5 (Madau et al. 1998; Pettini 2006; Madau and Dickinson 2014).

There is reasonable agreement between the expected and measured metal budget
in the local universe. However, given large uncertainties in both the measured and
expected content of metals the agreement is not too surprising and really not very
constraining of any of the underlying assumptions.

It is has been perhaps more instructive to investigate the metal budget in individual
systems, as this exercise may provide information on processes resulting in loss of
metals, or even provide constraints on the yield of metals.

For instance, Renzini and Andreon (2014) compare the amount of iron in the ICM
(as inferred fromX-ray observations) with the amount of iron expected to be produced
by the stellar populations of galaxies within the cluster, based on empirical yields
of iron. While they find a good agreement for intermediate mass clusters (M500 ≈
1014 M�), in more massive clusters they reveal a clear tension, in the sense that the
ICM contains much more iron mass (up to a factor of ∼ 6) than that produced by stars
in galaxies, revealing higher rates of type Ia SNe in clusters (e.g. Mannucci et al. 2008;
Friedmann and Maoz 2018, and references therein), or issues either in the metallicity
measurements or with our knowledge of the yields.

Calura and Matteucci (2004), Bouché et al. (2007), Peeples et al. (2014) and Tum-
linson et al. (2017) present an extensive analysis of the metal budget in galaxies and
including their CGM, by exploiting the extensive results from the COS-Halos project
(Tumlinson et al. 2011; Prochaska et al. 2017). They show that, nearly independently
of mass, only about 20–25% of metals produced in stars remain in galaxies (in stars or
in the ISM). They infer that, for L∗ galaxies, as much as 40% of the metals produced
by stars are deposited in the halo (CGM, within a radius of ∼ 150 kpc), while the
remaining must be lost into the intergalactic medium.
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Finally, it is interesting to note that the quality of the data is becoming good enough
to enable a spatially resolved metal budget in galaxies. For instance, Belfiore et al.
(2016a) use spatially resolved metallicities for stars and gas combined with spatially
resolved maps of the gas content and surface brightness to illustrate that within the
central 7 kpc (∼ 3 Re) of the well studied galaxy NGC628 about 50% of the metals
have been lost (somewhat in tension with the result obtained by Peeples et al. (2014),
unless many more metals are lost at larger radii). Interestingly, Belfiore et al. (2016a)
also find that the fraction of metals lost increases to about 70% in the central kpc of
the galaxy (a similar result was found by, Greggio and Renzini 2011), suggesting that
such metals were ejected either by the SNe associated with the early central burst of
star formation, associated with the formation of the bulge, or by AGN/quasar driven
winds, during the past evolution of the central region of the galaxy.

Very recently, Telford et al. (2018) have performed a very similar, extensive and
detailed analysis of the spatially resolved metal budget in M31, finding very similar
results, i.e. a higher loss of metals from the central region of M31. Very interestingly,
they also find that during the past 1.5 Gyr some of the metal lost from the central
region have been redistributed in the galactic disc outskirts.

10 Conclusions

In this paper, we have tried to review themeasuringmethods, the observational results,
and the implications for models of galaxy metallicity evolution. It is the result of many
years of effort by many researchers, sometime using dedicated instruments, only part
of this effort is reproduced here.

10.1 Summary

The study of chemical abundances in galaxies is a complex and extended field with
many open problems and conflicting results. Nevertheless, a few clear points are
emerging about methods, observations and models:

• Stellar metallicities are now routinely measured using UV and optical spectra.
Spectrophotometric models of increasing precision, complexity and spectral res-
olution, use the full information contained in the spectra to derive the metallicity
together with other parameters of the stellar population. Simplified methods exist
that use particular features to derive metallicities, and these methods are more apt
to study large samples of galaxies with lower resolution spectra.

• The absolute scale of the gas-phase metallicity is still uncertain because of the
difference among the three main methods to measure it (recombination lines, Te
method and photoionization models). Discrepancies have been reduced, but they
still persist. The “direct” method based on measuring Te is currently the most
reliable and seems to be in agreement with the metallicity of young stars.

• These methods have been used to calibrate a large range of strong line ratios
diagnostics, which can be applied to faint, distant galaxies. The difference among
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these secondary calibrations are dominated by the different method used for the
primary calibration, photoionization model vs. direct ‘Te’ method.

• Most heavy elements are generally largely depleted onto dust grains; therefore, the
evolutions of gas-phase metallicity and of dust are linked together. Dust depletion
is a very important, often neglected source of uncertainty in the study of gas-phase
abundances.

• Both stellar and gas-phase metallicities follow a well-defined mass–metallicity
relation (MZR) in which the metallicity of galaxies increases with stellar mass.
The observed MZR evolves with redshift, with metallicity decreasing at any mass,
although more rapidly at lower masses.

• The gas metallicity of galaxies has also other secondary dependencies. The most
important of which is the anti-correlation between gas metallicity and SFR (or
gas content, which is related to the SFR), which is called (together with the mass
dependence) the Fundamental Metallicity Relation (FMR). This relation has no or
a very limited evolution with redshift up to z ∼ 2.5 and a possible strong evolution
at z ∼ 3.5. Most authors describe the FMR as an effect of gas infall, providing
further evidence for the ubiquity and importance of cold gas accretion in shaping
galaxy evolution, and explain the absence of evolution as the effect of the same
dominant physical processes at z < 2.5.

• Environment also has a secondary effect on the metallicity of galaxies, but only
for satellites, whereby satellite galaxies in denser environments (e.g., group and
clusters) tend to bemoremetal rich than galaxies in low-density environments. This
is probably a consequence of multiple different effects (such as “strangulation”
and accretion of metal-enriched gas).

• Understanding the redshift evolution of the MZR and of the FMR is made chal-
lenging and uncertain by the evident evolution of the ISM properties seen in the
excitation BPT diagnostic diagrams. The dominant cause of this evolution is not
clear, and most likely a combination of different effects (higher pressure, harder
ionizion continua, higher ionization parameter, and variation of the N/O abun-
dance ratio relative to local galaxies). How this evolution affects the determination
of metallicities is not yet clear.

• The metallicity evolution of DLAs provides independent information about the
evolution of galaxies and of their CGM. If their velocity dispersion is taken as
a proxy of their mass, then the metallicity of DLAs follows a mass–metallicity
relation aswell.Although it not straightforward to link absorption-selected systems
to emission-selected galaxies, both classes of objects identify the redshift range
2 < z < 3 (coincident with the peak of star formation density) as a turning point in
galaxy evolution, as this is the redshift range where the evolution of most scaling
relations change significantly.

• The metallicity distribution inside galaxies contains a wealth of information about
the spatially resolved processes of galaxy formation. The radial metallicity gradi-
ents of local galaxies steepen as a function of galaxy stellar mass (at least within
the central ∼ 2Reff ). However, the outskirts of galaxies show very flat metallicity
gradients, which imply accretion of pre-enriched gas from the halo.

• The scaling relations between galaxy metallicity, stellar mass, star formation rate
and gas content are also found locally, on spatially resolved scales, in the form
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of correlations between metallicity and surface density of stellar mass, surface
density of SFR and surface density of gas. However, it is not yet clear whether the
local scaling relations are totally driving the global, galaxy-wide ones.

• Based both on diagnostics that trace the metallicity at different lookback times in
local galaxies and the direct observation of metallicity gradients at high redshift,
there is a clear indication that the radial metallicity gradients of galaxies have
become steeper with cosmic time. This result is difficult to explain in the context
of inside-out formation of galaxies and it requires radial migration of stars, radial
inflows of low-metallicity gas or radial redistribution of metals at the early stages
of galaxy formation.

• There is growing evidence for the existence of inverted (i.e., positive) metallicity
gradients in distant galaxies. These may trace accretion of near-pristine gas or
radial inflow of metal-poor gas induced by galaxy mergers or interactions.

• Different elements provide different information on the evolutionary stage and star
formation history of galaxies. Oxygen, Nitrogen, Carbon and the α-elements are
particularly useful and are studied in detail to understand galaxy formation and
evolution because they sample different time scales.

• The α/Fe abundance ratio shows that the different components of the MW (halo,
bulge, thick and thin disc) have formed not only at different epochs, but also on
different timescales and with different star formation efficiencies.

• Similarly, the α/Fe abundance ratio in local galaxies indicates that more massive
galaxies formed faster (probably with higher star formation efficiency) and at
earlier times than lower mass galaxies, a phenomenon which is known as galaxy
“downsizing”.

• The N/O and C/O abundance ratios, together with O/H, are used to obtain fur-
ther information on galaxy evolution as nitrogen and carbon are characterized by
longer production timescales than α-elements, and, therefore, provide important
information on the evolutionary stage of galaxies and on other galaxy evolutionary
processes (such as gas accretion and efficiency of star formation).

• X-ray observations have shown that the intracluster medium is highly enriched
and with solar-like chemical abundances. The estimated global content of metals
in massive clusters exceed significantly the amount of metals that are expected to
be produced by the clusters’ galaxies. This is still an unsolved, open problem.

• AGN are currently one of the few ways to study metallicity in galaxies up to very
high redshifts (z > 7). The metallicity information can generally be extracted only
for gas in the so-called Broad Liner Region (BLR, on sub-parsec nuclear scales)
and for the Narrow Line Region (NLR, on galactic scales).

• The BLR metallicity scales with black hole mass at all redshifts, which is likely
tracing a combination of mass–metallicity relation in the host galaxy and MBH–
Mgal relation, both already in place at early cosmic epochs..

• The metallicity of the BLR is generally very high (often a few/several times super-
solar) and does not evolve with redshift. The latter is probably a consequence of
observational selection effects (quasars are detected only when their black holes,
and therefore their galaxies, are massive enough, and, therefore, already highly
enriched).

123



3 Page 124 of 187 R. Maiolino, F. Mannucci

• The metallicity of the NLR is lower than in the BLR, but still higher than in
normal galaxies, probably as a consequence of dust destruction and enrichment
by quasar-driven outflows. Also the NLR shows little evolution with redshift.

• Different types of models have been developed to reproduce and explain all these
and other observations. The main contribution of the metallicity and chemical
abundance analysis is to put strong constraints on the role and the properties of
gas infall, galactic winds, stellar and AGN feedback, stellar yields, amount of re-
accretion of gas and IMF. Both analytic and numerical models can now account for
most of the observational results, but they often disagree on the dominant effects.

• The distribution of metal mass in the various components of the universe is still
not well constrained; nevertheless, it appears that most of the metals have left the
parent galaxies.

10.2 Open issues

Although impressive progress has been achieved in recent years, it is clear that several
outstandingproblems anduncertainties have yet to be facedbyobservations and theory.

The difficulty of accessing direct gas-phase metallicity tracers of the gas phase for
the vastmajority of galaxies, especially at high redshift, hence having to rely on strong-
line diagnostics or photoionization models remains one of the main issues. Indeed,
the latter methods are still prone to degeneracies with other galaxy parameters such as
ionization parameter, shape of the ionizing continuum, relative chemical abundances,
geometry, pressure and density of the ionized clouds, and the broad distribution of all
these parameters inside galaxies; these issues make the comparison between different
classes of galaxies and with models still difficult.

Within this context, it is not yet clear how much the evolution of the average
excitation conditions of star-forming regions at high redshift (i.e., the evolution of the
BPT diagrams) affects the metallicity determination of the gas phase through models
or strong line diagnostics calibrated locally.

Similarly, it is still not clear if and how the FMR evolves at high redshift and, if so,
why. As discussed, galaxies out to z ∼ 2.5 follow the same FMRobserved locally once
consistent calibrations and a consistent formalismare adopted.However, the dispersion
is larger at high redshift than locally and it is not clear why, i.e., whether this is a conse-
quence of observational uncertainties or it truly reflects an evolution of the galaxy evo-
lutionary mechanisms. Even more intriguing is the evolution of the FMR beyond z ∼
2.5, which is accompanied by a similar regime change in other properties of galactic
and intergalactic properties around the same redshift (such as the evolution of the con-
tent of neutral atomic gas in galaxies, and the evolution of the DLA’s mass–metallicity
relation); this change of regime at z ∼ 2.5 remains to be fully explained by models.

The redshift evolution of other scaling relations at high redshift, such as with gas
content (either molecular or atomic) or with environment, cannot yet be investigated,
due to the lack of data on these other properties, jointly to metallicity determinations.

Mainly because of sensitivity limitations, the measurement of the stellar metallici-
ties at high redshift is still limited to very small samples, preventing us to investigate
the evolution of scaling relations and the comparison with models at high redshift.
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The investigation ofmetallicity gradients at high redshift is still largely hampered by
the lack of spatial resolution. Gravitational lensing, the use of adaptive optics and HST
have delivered nicely resolved metallicity maps for small samples, but we are still far
from achieving the statistics obtained locally, which has made it possible to investigate
metallicity gradients as a function of galaxy properties. Moreover, it is becoming clear
that at high redshift metallicity variations within galaxies do not follow the same,
simple radial behaviour as in local galaxies, but more complex non-radial variations,
implying that a re-thinking of the metallicity gradients characterization is needed.

Models and numerical simulations have made an excellent progress during recent
years and can nicely reproducemany of the observedmetallicity properties in galaxies,
locally and at high redshift. However, all models still suffer from a number of degen-
eracies and a-priori assumptions that are difficult to control or verify. The IMF (both
in terms of shape and cut-offs) is one of the critical input parameters of models, which
drastically affects their results. Models obviously depend even more critically on their
particular choice of yields and enrichment delay times of stars with different masses.
Result from models also depends on the assumed dependence of the outflow loading
factor and star formation efficiency as a function of galaxy mass, star formation rate
and AGN activity.

Numerical simulations are still limited by lack of high enough resolution to cor-
rectly model the subgrid physics associated with star formation and feedback by SNe
and AGN. It is observed that the shape of some of the metallicity scaling relations
depends on the adopted resolution. Higher resolution simulations can better capture
the baryonic physics, but the unavoidably smaller volumes sampled by these simula-
tions result both in a potential bias towards lower density environments and a shortage
of massive systems, which may affect the comparison with observations, especially
in terms of dependence on environment.

Another outstanding problem consists in the way models and observations are
compared. As the actual shape of MZR and FMR depends on how the galaxies are
selected, it is necessary to select the model galaxies for the comparison in the same
way. This is only rarely done, and usually biased observed samples are compared with
volume-limited model samples.

However, major progress on these various fronts is expected in the near future,
thanks to the development of new observing facilities and new generation of models,
as discussed in the next section.

10.3 Future prospects

In order to properly constrain models, and to advance our understanding of the mech-
anisms driving galaxy evolution, additional and more accurate observational data are
needed.

The next generation of observing facilities and surveys will certainly enable amajor
step forward in this area of research in the next decade.

The James Webb Space Telescope (JWST) holds some of the major expectations.
Its unprecedented sensitivity in the near/mid-IR bands, coupled with its high angular
resolution, and multiple spectroscopic modes (including a multi-object spectroscopic
mode, integral field units and slitless spectroscopy) will enable astronomers to probe
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nebular emission lines that are metallicity diagnostics at high redshift, out to the
re-ionization epoch and beyond, for several thousands of galaxies, including very
low mass systems. Most importantly, JWST will enable astronomers to directly detect
auroral lines in hundreds of individual galaxies, hence directly measure the metallicity
and recalibrate the strong line diagnostics at different epochs. JWST will also deliver
high-fidelitymaps of the distribution ofmetals in hundreds of galaxies. The expectation
of JWST is to trace the metallicity evolution of metals back to the first generation of
stars, i.e., the so-called PopIII stars, formed out of primordial pristine gas.

On a similar time-frame the Extremely Large Telescopes (such as the Giant Mag-
ellan Telescope, GMT, the thirty-meter Telescope, TMT, and the European Extremely
Large Telescope, E-ELT),with their huge collecting areaswill deliver very high signal-
to-noise spectra at intermediate spectral resolution of the stellar continuum in large
samples of distant galaxies, therefore, enabling a major leap forward in the charac-
terization of the stellar metallicities, relative chemical abundances (especially α/Fe)
and the associated scaling relations at high redshift. The determination of metallicity
gradients will also greatly benefit from the leap in angular resolution delivered by
these telescopes, together with their adaptive optics systems. High-resolution spec-
troscopy, the technique that is most severely affected by photon starving, will probably
be the area that will most benefit from the huge collecting area of these telescopes.
The number of new systems that will be observable at high spectral resolution will
increase by orders of magnitude (thanks to the steep luminosity function of quasars),
hence enabling an unprecedented mapping of chemical elements across the universe
through absorption systems, with the ultimate goal of finding the chemical signatures
of the first generation of stars.

On shorter timescales, the advent of the next generation of high-multiplexing, opti-
cal, multi-object spectrographs on 4 m class telescopes, such as WEAVE on WHT
and 4MOST on ESO/VISTA, will allow to expand the number of observed galax-
ies to several millions, obtain spectra at higher resolution, and increase the redshift
range sampled. Even more interesting, the new near-IR multi-object spectrographs on
8 m class telescopes, such as PFS at Subaru and MOONS at the VLT, will deliver
Sloan-like surveys at high redshift by providing near-IR spectra for millions of galax-
ies out to z ∼ 2 and gas metallicities for hundreds of thousands of them. This will
enable astronomers to explore the redshift evolution of themetallicity scaling relations
with unprecedented statistics. The expected leap in statistics, volume and complete-
ness for distant galaxies will make it possible to investigate, for the first time, the
environmental effects on the metallicity scaling relations at high redshift. Stacking
of hundreds/thousands of spectra is also expected to enable the investigation of the
stellar metallicities and also to detect the auroral lines to recalibrate the strong line
diagnostics at high redshift. The current generation of 8m-class telescopes with the
next generation of adaptive-optics assisted spectrographs, such as VLT/ERIS, will be
used to obtain spatially resolved metallicity for a large number of galaxies and with
an higher level of accuracy.

For the warm/hot gas phase the short-lived Hitomi mission has given just a glimpse
of the wealth of information that can be obtained through high-resolution high-
sensitivity X-ray spectroscopy. The The X-ray Imaging and Spectroscopy Mission
(XRISM), to be launched in 2021 by JAXA andNASAwith a European Space Agency
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(ESA) participation, will provide observing capabilities similar to the Hitomi satel-
lite and will, therefore, enable us to obtain detailed and accurate measurements of
the hot plasma in galaxy clusters, in galactic halos and in galactic winds. This will
finally enable astronomers to both derive a much more accurate budget of metals and
to directly witness the metal enrichment of the CGM in different classes of galaxies.
XARMwill pave theway toAthena, the largeX-ray observatory to be launched around
2028, which will trace the metallicity and chemical abundance of the hot gas even in
distant systems, thanks to its unprecedented sensitivity.

The Atacama Large Millimeter Array (ALMA), which has recently entered in full
operation is already delivering exceptional results. In the coming years it is expected to
provide adetailed census of themolecular gas in galaxies across the cosmic epochs.The
capability of tracing the transitions of multiple molecular species, involving several
different elements and associated with different isotopes, will provide unique con-
straints on the star formation history and on the IMF, both locally and at high redshift.

The Square Kilometre Array (SKA), among many expected ground-breaking
results, will finally provide a census of the content and distribution of atomic neutral
gas in galaxies at high redshift, which is the key ingredient, still largely unconstrained,
to understand galaxy evolution at high redshift and the role played by the HI gas reser-
voir in distant galaxies.

On longer timescales SPICA space mission, if selected by the European Space
Agency (ESA) , will offer a sensitivity improvement by orders of magnitude in the
mid- and far-infrared spectroscopic ranges. By measuring fine-structure transitions of
several chemical elements, SPICA will enable astronomers to trace the metal enrich-
ment in several hundreds, or even thousands high-z galaxies, without being affected
by dust extinction, hence probing, in an unbiased way, also the heavily obscured pop-
ulation of galaxies.
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Simón-Díaz S, Stasińska G (2011) The chemical composition of the Orion star forming region. II. Stars,
gas, and dust: the abundance discrepancy conundrum. Astron Astrophys 526:A48. https://doi.org/10.
1051/0004-6361/201015512. arXiv:1010.5903

Singh R, van de Ven G, Jahnke K, Lyubenova M, Falcón-Barroso J, Alves J, Cid Fernandes R, Galbany L,
García-Benito R, Husemann B, Kennicutt RC, Marino RA, Márquez I, Masegosa J, Mast D, Pasquali
A, Sánchez SF, Walcher J, Wild V, Wisotzki L, Ziegler B (2013) The nature of LINER galaxies:

123

https://doi.org/10.1086/169872
https://doi.org/10.1093/mnras/stv915
http://arxiv.org/abs/1411.1408
https://doi.org/10.1093/mnras/stv051
http://arxiv.org/abs/1406.5219
https://doi.org/10.1088/0004-637X/763/1/58
http://arxiv.org/abs/1211.6749
https://doi.org/10.3847/1538-4357/835/1/24
http://arxiv.org/abs/1611.08304
https://doi.org/10.1093/mnras/stu316
http://arxiv.org/abs/1306.6282
https://doi.org/10.3847/1538-4357/aaad62
https://doi.org/10.3847/1538-4357/aaad62
http://arxiv.org/abs/1711.00013
https://doi.org/10.1086/156712
https://doi.org/10.1088/0004-637X/796/1/49
http://arxiv.org/abs/1409.6720
https://doi.org/10.1088/1674-4527/12/8/004
http://arxiv.org/abs/1207.3080
https://doi.org/10.3254/978-1-61499-476-3-137
http://arxiv.org/abs/1312.0107
https://doi.org/10.1088/0004-637X/743/1/21
http://arxiv.org/abs/1104.4117
https://doi.org/10.1111/j.1365-2966.2010.16450.x
https://doi.org/10.1111/j.1365-2966.2010.16450.x
http://arxiv.org/abs/1002.0395
https://doi.org/10.1088/2041-8205/811/2/L25
http://arxiv.org/abs/1506.06164
http://arxiv.org/abs/1806.00932
https://doi.org/10.1111/j.1365-2966.2010.17306.x
http://arxiv.org/abs/1007.2017
https://doi.org/10.1051/0004-6361/200913120
https://doi.org/10.1051/0004-6361/200913120
http://arxiv.org/abs/0912.4103
https://doi.org/10.1051/0004-6361/201015512
https://doi.org/10.1051/0004-6361/201015512
http://arxiv.org/abs/1010.5903


3 Page 178 of 187 R. Maiolino, F. Mannucci

ubiquitous hot old stars and rare accreting black holes. Astron Astrophys 558:A43. https://doi.org/10.
1051/0004-6361/201322062. arXiv:1308.4271

Skillman ED (1989) Empirical oxygen abundances and physical conditions for relatively low abundance H
II regions. Astrophys J 347:883–893. https://doi.org/10.1086/168179

Skillman ED, Melnick J, Terlevich R, Moles M (1988) The extremely low oxygen abundance of GR 8—a
very low luminosity dwarf irregular galaxy. Astron Astrophys 196:31–38

Skillman ED, Kennicutt RC, Hodge PW (1989) Oxygen abundances in nearby dwarf irregular galaxies.
Astrophys J 347:875–882. https://doi.org/10.1086/168178

Skillman ED, Kennicutt RC Jr, Shields GA, Zaritsky D (1996) Chemical abundances in virgo spiral
galaxies. II. Effects of cluster environment. Astrophys J 462:147. https://doi.org/10.1086/177138.
arXiv:astro-ph/9511019

Somerville RS, Davé R (2015) Physical Models of galaxy formation in a cosmological framework.
Annu Rev Astron Astrophys 53:51–113. https://doi.org/10.1146/annurev-astro-082812-140951.
arXiv:1412.2712

Somerville RS, Hopkins PF, Cox TJ, Robertson BE, Hernquist L (2008) A semi-analytic model for the
co-evolution of galaxies, black holes and active galactic nuclei. Mon Not R Astron Soc 391:481–506.
https://doi.org/10.1111/j.1365-2966.2008.13805.x. arXiv:0808.1227

Somerville RS, Gilmore RC, Primack JR, Domínguez A (2012) Galaxy properties from the ultraviolet to the
far-infrared:� cold darkmattermodels confront observations.MonNot RAstron Soc 423:1992–2015.
https://doi.org/10.1111/j.1365-2966.2012.20490.x. arXiv:1104.0669

Sommariva V, Mannucci F, Cresci G, Maiolino R, Marconi A, Nagao T, Baroni A, Grazian A (2012) Stellar
metallicity of star-forming galaxies at z ∼ 3. Astron Astrophys 539:A136. https://doi.org/10.1051/
0004-6361/201118134. arXiv:1112.2403

Song M, Finkelstein SL, Gebhardt K, Hill GJ, Drory N, Ashby MLN, Blanc GA, Bridge J, Chonis T,
Ciardullo R, Fabricius M, Fazio GG, Gawiser E, Gronwall C, Hagen A, Huang JS, Jogee S, Livermore
R, Salmon B, Schneider DP, Willner SP, Zeimann GR (2014) The HETDEX Pilot survey. V. The
physical origin of Lyα emitters probed by near-infrared spectroscopy. Astrophys J 791:3. https://doi.
org/10.1088/0004-637X/791/1/3. arXiv:1406.4503

Spite M, Cayrel R, Plez B, Hill V, Spite F, Depagne E, François P, Bonifacio P, Barbuy B, Beers T, Andersen
J, Molaro P, Nordström B, Primas F (2005) First stars VI—abundances of C, N, O, Li, and mixing in
extremely metal-poor giants. Galactic evolution of the light elements. Astron Astrophys 430:655–668.
https://doi.org/10.1051/0004-6361:20041274. arXiv:astro-ph/0409536

Spitoni E (2015) New chemical evolution analytical solutions including environment effects. Mon Not R
Astron Soc 451:1090–1103. https://doi.org/10.1093/mnras/stv1008. arXiv:1505.01280

Spitoni E, Matteucci F (2011) Effects of the radial flows on the chemical evolution of the Milky Way disk.
Astron Astrophys 531:A72. https://doi.org/10.1051/0004-6361/201015749. arXiv:1104.4881

Spitoni E,Matteucci F, Marcon-UchidaMM (2013) Effects of the radial inflow of gas and galactic fountains
on the chemical evolution of M 31. Astron Astrophys 551:A123. https://doi.org/10.1051/0004-6361/
201220401. arXiv:1301.5153

Spitoni E, Romano D, Matteucci F, Ciotti L (2015) The effect of stellar migration on galactic chemical
evolution: a heuristic approach. Astrophys J 802:129. https://doi.org/10.1088/0004-637X/802/2/129.
arXiv:1407.5797

Spitoni E, Vincenzo F, Matteucci F (2017) New analytical solutions for chemical evolution models: char-
acterizing the population of star-forming and passive galaxies. Astron Astrophys 599:A6. https://doi.
org/10.1051/0004-6361/201629745. arXiv:1605.05603

SpolaorM,KobayashiC, ForbesDA,CouchWJ,HauGKT (2010)Early-type galaxies at large galactocentric
radii—II. Metallicity gradients and the [Z/H]–mass, [α/Fe]–mass relations. Mon Not R Astron Soc
408:272–292. https://doi.org/10.1111/j.1365-2966.2010.17080.x. arXiv:1006.1698

SpringelV, PakmorR, PillepichA,WeinbergerR,NelsonD,Hernquist L,VogelsbergerM,Genel S, TorreyP,
Marinacci F,Naiman J (2018)First results from the IllustrisTNGsimulations:matter andgalaxy cluster-
ing. Mon Not R Astron Soc 475:676–698. https://doi.org/10.1093/mnras/stx3304. arXiv:1707.03397

Stanghellini L, Haywood M (2010) The galactic structure and chemical evolution traced by the population
of planetary nebulae. Astrophys J 714:1096–1107. https://doi.org/10.1088/0004-637X/714/2/1096.
arXiv:1003.0759

Stanghellini L, Haywood M (2018) Galactic planetary nebulae as probes of radial metallicity gradi-
ents and other abundance patterns. Astrophys J 862:45. https://doi.org/10.3847/1538-4357/aacaf8.
arXiv:1806.02276

123

https://doi.org/10.1051/0004-6361/201322062
https://doi.org/10.1051/0004-6361/201322062
http://arxiv.org/abs/1308.4271
https://doi.org/10.1086/168179
https://doi.org/10.1086/168178
https://doi.org/10.1086/177138
http://arxiv.org/abs/astro-ph/9511019
https://doi.org/10.1146/annurev-astro-082812-140951
http://arxiv.org/abs/1412.2712
https://doi.org/10.1111/j.1365-2966.2008.13805.x
http://arxiv.org/abs/0808.1227
https://doi.org/10.1111/j.1365-2966.2012.20490.x
http://arxiv.org/abs/1104.0669
https://doi.org/10.1051/0004-6361/201118134
https://doi.org/10.1051/0004-6361/201118134
http://arxiv.org/abs/1112.2403
https://doi.org/10.1088/0004-637X/791/1/3
https://doi.org/10.1088/0004-637X/791/1/3
http://arxiv.org/abs/1406.4503
https://doi.org/10.1051/0004-6361:20041274
http://arxiv.org/abs/astro-ph/0409536
https://doi.org/10.1093/mnras/stv1008
http://arxiv.org/abs/1505.01280
https://doi.org/10.1051/0004-6361/201015749
http://arxiv.org/abs/1104.4881
https://doi.org/10.1051/0004-6361/201220401
https://doi.org/10.1051/0004-6361/201220401
http://arxiv.org/abs/1301.5153
https://doi.org/10.1088/0004-637X/802/2/129
http://arxiv.org/abs/1407.5797
https://doi.org/10.1051/0004-6361/201629745
https://doi.org/10.1051/0004-6361/201629745
http://arxiv.org/abs/1605.05603
https://doi.org/10.1111/j.1365-2966.2010.17080.x
http://arxiv.org/abs/1006.1698
https://doi.org/10.1093/mnras/stx3304
http://arxiv.org/abs/1707.03397
https://doi.org/10.1088/0004-637X/714/2/1096
http://arxiv.org/abs/1003.0759
https://doi.org/10.3847/1538-4357/aacaf8
http://arxiv.org/abs/1806.02276


De re metallica: the cosmic chemical evolution of galaxies Page 179 of 187 3

Stanghellini L, Magrini L, Casasola V, Villaver E (2014) The radial metallicity gradient and the history of
elemental enrichment in M 81 through emission-line probes. Astron Astrophys 567:A88. https://doi.
org/10.1051/0004-6361/201423423. arXiv:1403.5547

Stanway ER, Eldridge JJ, Becker GD (2016) Stellar population effects on the inferred photon den-
sity at reionization. Mon Not R Astron Soc 456:485–499. https://doi.org/10.1093/mnras/stv2661.
arXiv:1511.03268

Stark DP, Auger M, Belokurov V, Jones T, Robertson B, Ellis RS, Sand DJ, Moiseev A, Eagle W,
Myers T (2013) The CASSOWARY spectroscopy survey: a new sample of gravitationally lensed
galaxies in SDSS. Mon Not R Astron Soc 436:1040–1056. https://doi.org/10.1093/mnras/stt1624.
arXiv:1302.2663

Stark DP, Ellis RS, Charlot S, Chevallard J, Tang M, Belli S, Zitrin A, Mainali R, Gutkin J, Vidal-García A,
Bouwens R, Oesch P (2017) Lyα and C III] emission in z = 7 − 9 galaxies: accelerated reionization
around luminous star-forming systems?MonNot RAstron Soc 464:469–479. https://doi.org/10.1093/
mnras/stw2233. arXiv:1606.01304

Starkenburg E, Hill V, Tolstoy E, François P, Irwin MJ, Boschman L, Venn KA, de Boer TJL, Lemasle B,
Jablonka P, Battaglia G, Groot P, Kaper L (2013) The extremely low-metallicity tail of the Sculptor
dwarf spheroidal galaxy. Astron Astrophys 549:A88. https://doi.org/10.1051/0004-6361/201220349.
arXiv:1211.4592
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