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ABSTRACT
We derived the three-dimensional velocities of individual stars in a sample of 62 Galactic
globular clusters using proper motions from the second data release of the Gaia mission
together with the most comprehensive set of line-of-sight velocities with the aim of
investigating the rotation pattern of these stellar systems. We detect the unambiguous signal of
rotation in 15 clusters at amplitudes which are well above the level of random and systematic
errors. For these clusters, we derived the position and inclination angle of the rotation axis
with respect to the line of sight and the overall contribution of rotation to the total kinetic
energy budget. The rotation strengths are weakly correlated with the half-mass radius, the
relaxation time, and anticorrelated with the destruction rate, while no significant alignment
of the rotation axes with the orbital poles has been observed. This evidence points towards a
primordial origin of the systemic rotation in these stellar systems.

Key words: methods: data analysis – methods: statistical – techniques: radial velocities –
proper motions – stars: kinematics and dynamics – globular clusters: general.

1 IN T RO D U C T I O N

Among old (>10 Gyr) stellar systems, globular clusters (GCs) are
those with the largest ratio between age and half-mass relaxation
time. A typical GC star completed hundreds of orbits within the
cluster potential and the chance of interaction with another star,
which changes its orbit, is significant. The effect of a large number
of interactions is to randomize the directions of individual orbits
and to lead towards a velocity distribution tending to a Maxwellian-
like distribution. For this reason, GCs are the prototype of pressure-
supported stellar system, in which the gravitational potential energy
of the cluster is balanced by the kinetic energy residing in random
motions. On the basis of the above considerations, the kinematics
of GCs has been widely investigated through the comparison with
isotropic non-rotating models (like e.g. King 1966, models) in
a large number of past studies (McLaughlin & van der Marel
2005; Baumgardt 2017; Hénault-Brunet et al. 2019, and references
therein).

Nevertheless, deviations from isotropy can be present in the
velocity distribution of GC stars in the form of ordered motions (i.e.
rotation) and/or preferential orientation of the velocity ellipsoid (i.e.
anisotropy). Neglecting such effects can affect the determination of
dynamical parameters of GCs like e.g. their masses (Sollima et al.
2015). In particular, the presence of rotation has deep relevance for

� E-mail: antonio.sollima@inaf.it

the equilibrium of these stellar systems contributing to their kinetic
energy budget and possibly leading to a flattening of their shape in
the direction parallel to the rotation axis (Wilson 1975).

Rotation in GCs can either be relic of the initial conditions of
these objects at the epoch of their formation or originate from the
interaction with the Galactic tidal field within which they move
(Keenan & Innanen 1975; Mapelli 2017). Although the formation
mechanism of GCs is still not completely understood, a possible
picture of their birth environment is provided by theoretical simula-
tions of star-forming complexes. In these environments turbulence-
supported molecular clouds possess several clumps which merge
over a time-scale of a few Myr (Mapelli 2017). The large-scale
torques occurring during the hierarchical assembly of these clumps
imprint a significant rotation to the embedded cluster which is
enhanced during its early collapse because of angular momentum
conservation. During the subsequent long-term evolution, two-body
relaxation tends to erase such a rotation pattern. The dampening of
the rotation signal is additionally caused by the ever-continuing
mass-loss experienced by the cluster which carry away angular
momentum (Tiongco, Vesperini & Varri 2017). Part of the original
rotation can however survive till the present day and be observable
in the velocity distribution of GC stars. A certain degree of rotation
can also develop in the cluster outskirts because of tidal effects.
Indeed, at large distance from the cluster centre Coriolis force is
directed inward/outward according to the direction of the stellar
motion with respect to the systemic cluster orbit, with stars on
prograde orbits more easily expelled by the cluster (Henon 1970;
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The rotation of Galactic GCs 1461

Vesperini et al. 2014). On the long term this effect produces
a low-amplitude retrograde rotation whose axis is aligned with
the cluster orbital pole and with a period synchronized with the
cluster orbital period (Tiongco, Vesperini & Varri 2016, 2018). The
measure of rotation in a statistically meaningful sample of GCs is
therefore crucial to study the efficiency and frequency of the above
processes.

The main effect of rotation is a shift in the mean tangential
motion along a preferential axis. Such a shift reflects in the velocity
distribution along all the three components in proportions depending
on the position angle and the inclination with respect to the line of
sight of the rotation axis. Thus, a thorough analysis of rotation
requires an estimate of all three velocity components. The lack of
accurate proper motions has represented a major issue in the analysis
of rotation of GCs till recent years. For this reason, the large majority
of the studies conducted in the past on this topic were performed for
GCs which are under favourable projection conditions (i.e. in case
of edge-on rotation), where rotation leaves a detectable sinusoidal
modulation of the mean line-of-sight velocity as a function of the
azimuthal position of the stars (see Section 3.3). The most recent
and comprehensive studies based on large samples of line-of-sight
velocities analysed a few tens of GCs (Lane et al. 2010; Bellazzini
et al. 2012; Fabricius et al. 2014; Kimmig et al. 2015; Lardo et al.
2015; Ferraro et al. 2018; Kamann et al. 2018). In these studies, only
the rotation velocity projected along the line of sight was determined
and no information on the actual inclination of the rotation axis
could be derived. In spite of this limitation, these studies revealed
correlations between the rotation strength and various general
(horizontal branch morphology, absolute magnitude, metallicity;
Bellazzini et al. 2012; Lardo et al. 2015), structural (e.g. ellipticity;
Fabricius et al. 2014), and dynamical (half-mass relaxation time;
Kamann et al. 2018) parameters. On the other hand, recent studies
based on the analysis of proper motions measured have been
conducted for the most massive and nearby clusters ω Centauri
(van Leeuwen et al. 2000; van de Ven et al. 2006; Libralato et al.
2018) and 47 Tucanae (Anderson & King 2003; Bellini et al. 2017)
and NGC 6681 (Massari et al. 2013).

A revolution in this field is provided by the astrometric mission
Gaia which measures parallaxes and proper motions for ∼109 stars
in both hemispheres with accuracies <30μas (corresponding to
<1.5 km s−1 at a distance of 10 kpc) sampling also thousands of
stars in the outer regions of all Galactic GCs (Gaia Collaboration
2018a). In a recent paper, Bianchini et al. (2018) used the data from
the Gaia second data release to investigate rotation in a sample of
51 GCs and detected a 3σ significant evidence in 11 of them. For a
subsample of eight GCs with available line-of-sight velocities they
also provide an estimate of the inclination angle of the rotation axis
with respect to the line of sight. This last work constitutes the most
extensive survey for rotation in Galactic GCs in terms of accuracy
and completeness to date. They confirm the correlation between
the relevance of rotation over random motions and the half-mass
relaxation time. On the other hand, their work is based on proper
motions only, thus suffering a similar detection bias of studies based
on line-of-sight velocities only. In particular, while their analysis has
an excellent sensitivity in detecting rotation in the plane of the sky,
a rotation along the line of sight would not leave any significant
signal in the proper motions domain. Moreover, the presence of
covariances and small-scale systematics in the Gaia proper motions
(Arenou et al. 2018) enhance the chance of false detections. Finally,
the lack of line-of-sight velocity information does not allow to derive
the actual rotational velocity and inclination of the rotation axis for
all the GCs of their sample.

In this paper we correlate the proper motions from the Gaia
second data release with the most extensive survey of line-of-sight
velocities collected by Baumgardt & Hilker (2018). This allows to
derive 3D velocities for more than 42 000 stars in 62 Galactic GCs
which are used to search for any significant rotation signal among
these stellar systems. We introduce the observational material and
the sample selection in Section 2. The method adopted to detect
rotation in our sample is described in Section 3. Section 4 is
devoted to the modelling of the observed kinematics of GCs with a
significant signal of rotation. We analyse correlations with various
general and dynamical parameters in Section 5. Finally, we discuss
and summarize our results in Section 6.

2 O BSERVATI ONA L MATERI AL

The analysis performed in this paper is based on two main data
bases: (i) the sample of line-of-sight velocities collected by Baum-
gardt & Hilker (2018), and (ii) the proper motions of the Gaia second
data release (Gaia Collaboration 2018a). The line-of-sight velocity
sample consists of 45 561 velocities measured in 109 Galactic
GCs. It is a compilation of homogeneous measures from spectra
obtained at the Very Large Telescope of the European Southern
Observatory and Keck telescope with different instruments, which
are complemented by published line-of-sight velocities in the
literature. A detailed description of the sample selection, reduction,
and data analysis process as well as the complete list of references
for the data resources is provided in Baumgardt & Hilker (2018)
and Baumgardt et al. (2019). The sample covers a wide portion of
the clusters’ extent with a median uncertainty of 0.5 km s−1.

For each target cluster we extracted from the Gaia public
archive1 the proper motions of all stars within the tidal radius
(from McLaughlin & van der Marel 2005). We do not apply any
selection on either the Gaia quality flag, parallaxes, or colour–
magnitude diagram. Indeed, we found that any selection made
on these basis provides only a marginal improvement in terms of
accuracy and purity against fore/background contaminants while
significantly reducing the sample size (see Section 3.2). Proper
motions (μRA cosDec., μDec,) and their corresponding uncertainties
have been converted into velocities (vRA, vDec.) using equation 2
of Gaia Collaboration (2018b) assuming the distance listed in the
Harris (1996, 2010 edition) catalogue and corrected for perspective
rotation using equations 4 and 6 of van de Ven et al. (2006).

The two above samples have been cross-correlated providing
3D velocities for a subsample of stars in each cluster. The celestial
coordinates (RA, Dec.) have been converted into projected distances
from the cluster centre (X,Y) using equation 1 of van de Ven
et al. (2006) and adopting the centres of Goldsbury, Heyl & Richer
(2013).2 The systemic motion of each cluster (〈vLOS〉, 〈vRA〉, 〈vDec.〉)
has been determined by maximizing the likelihood

lnL = −1

2

∑
i

[
(vLOS,i − 〈vLOS〉)2

s2
LOS,i

+ ln(s2
LOS,i(1 − ρ̃i

2))

+
∑

j=RA,Dec.

(
(vj,i − 〈vj 〉)2

(1 − ρ̃i
2)s2

j,i

+ ln(s2
j,i)

)

− 2ρ̃i(vRA,i − 〈vRA〉)(vDec.,i − 〈vDec.〉)
(1 − ρ̃i

2)sRA,i sDec.,i

]
, (1)

1http://gea.esac.esa.int/archive/.
2For those clusters not included in the Goldsbury et al. (2013) sample, we
adopted the centres listed in the Harris (1996, 2010 edition) catalogue.
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1462 A. Sollima, H. Baumgardt, and M. Hilker

Figure 1. Comparison between the systemic proper motions estimated by Gaia Collaboration (2018b, top panels), Baumgardt et al. (2019, middle panels),
Vasiliev (2019, bottom panels), and this work. The dashed line marks the one-to-one relation in all panels.

where

s2
j,i = σ 2

j,i + ε2
j,i j = LOS, RA, Dec.

ρ̃i = ρi

εRAεDec.

sRAsDec.

In the above equation σ j,i and εj,i are the velocity dispersion and
error of the i-th star in the j-th component (either LOS, RA, or
Dec.) and ρ i is the covariance between vRA and vDec. We neglected
the covariances involving RA and Dec. (because of their negligible
amplitudes) and those involving parallax (since this parameter does
not enter in equation 1 and its uncertainty is therefore marginalized
over the other parameters).

The intrinsic velocity dispersion in any one direction at the
projected distance of each star from the cluster centre (σ j,i ≡
σ (Ri); assumed the same in all the three components) has been
calculated by multiplying the amplitude of the line-of-sight velocity
dispersion profile of the best-fitting King (1966) model provided by
McLaughlin & van der Marel (2005) by the normalization factor
providing the best fit to observational data. We decided to normalize

the amplitude of the velocity dispersion profile using only line-of-
sight velocities since proper motions have systematically larger
dispersions. This possibly arises from either an underestimate of
the reported uncertainty or the possible presence of small-scale
systematics (see also Section 3.2).

An iterative algorithm has been employed to calculate the mean
velocities by excluding at each iteration stars with

∑
j

(
(vj,i − 〈vj 〉)

sj

)2

> 25

and renormalizing the σ profile on the sample of retained stars.
The above algorithm generally converges after a few iterations
providing the systemic velocity along the three components, the
amplitude of the intrinsic velocity dispersion profile, and a sample
of bona fide cluster members. In Fig. 1 the estimated systemic
proper motions are compared with the results by Gaia Collaboration
(2018b), Baumgardt et al. (2019), and Vasiliev (2019). We find an
excellent agreement between our estimates and those provided by
these works.
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The rotation of Galactic GCs 1463

The sizes of the final samples range from 10 to ∼2500 stars
according to the cluster distance and mass. Among the whole set of
109 GCs we selected only those 62 GCs with at least 50 member
stars with measurements in all the three velocity components. We
used these samples to search for rotation signals as described in
Section 3. For those clusters with positive detections, in Section 4
we fit dynamical models to extended samples containing all stars
with at least one measured velocity component and within 3sj, i

from the systemic velocity.
In the following sections we will refer to a system of coordinates

in space (X,Y,Z) and velocity (vX, vY, vZ) where the coordinates
of the cluster centre and the systemic cluster motion have been
subtracted

vX = vRA − 〈vRA〉
vY = vDec. − 〈vDec.〉
vZ = vLOS − 〈vLOS〉 .

3 ME T H O D

3.1 Algorithm

The effect of rotation can be detected as a modulation of the mean
velocity as a function of the position angle. In particular, for a solid-
body rotation with angular velocity ω the mean velocity in the three
components is

vZ = ω R sin(θ − θ0)sin i

v‖ = ω R sin(θ − θ0)cos i

v⊥ = ω [R cos(θ − θ0)cos i + Zsin i] , (2)

where R is the projected distance from the cluster centre, i is the
inclination angle of the rotation axis with respect to the line of
sight, θ is the position angle (defined anticlockwise from the Y-
axis), θ0 is the position angle of the rotation axis, v� and v⊥ are the
velocity components in the directions parallel and perpendicular to
the rotation axis, respectively (see Appendix A).

In a real cluster the angular velocity ω is a function of the
distance from the rotation axis. In particular, past studies found that
rotating stellar systems show a solid-body rotation in their innermost
region with an increasing mean rotational velocity till a projected
distance where the rotation amplitude reaches a maximum (ω ∼
constant at R < Rpeak) and then declines monotonically at larger
distances (Wilson 1975). To account for this effect in a rigorous
way a rotating model should be fitted to the data. However, this
would introduce a dependence of the detection efficiency on the
assumptions of the adopted model. To perform a model-independent
analysis we considered an average projected rotation velocity A =
〈ω R〉 amplitude which has been assumed to be independent on
distance. Note that this approximation does not introduce any bias
in the estimate of the position angle and inclination of the rotation
axis since these quantities are calculated from the ratio of amplitudes
in vZ, v�, and v⊥ and the term ω R appears as a multiplicative factor
in all the three equation 2. So, as long as the same stars are used to
compute the mean amplitudes in the three components, any change
in the ω R factor of individual stars erases when relative amplitudes
are computed.

In principle, the first two equations of 2 allow to determine the
values of θ0, i, and A. However, part of the information is lost
in neglecting the third equation which can increase the detection
efficiency while reducing the chance of false detections. The third
equation is complicated due to the presence of the unknown

distance along the line of sight (Z) as an independent variable.
The dependence on Z does not affect the mean trend of v⊥ (since
〈Z〉 = 0) but introduces an additional spread in v⊥ equal to σ⊥,Z =
σ Z A sini/R, where σ Z is the spread in Z as a function of the projected
distance R. Although σ⊥,Z can be calculated from the cluster density
profile and the first two equations of 2, we decided to neglect this
spread. Indeed, the term σ Z/R is negligible outside the innermost
cluster region. On the other hand, at such a small distance the
assumption of constant A is no more reliable and in real clusters we
expect A ∝ R implying small values of σ⊥,Z also in this region.

For each cluster of our sample we searched for the values of θ0,
i, and A which maximize the likelihood

lnL = −1

2

∑
i

[
(vZ,i − vZ,i)2

s2
Z,i

+ ln(s2
LOS,i(1 − ρi

2))

+
∑

j=‖,⊥

(
(vj,i − vj )2

(1 − ρi
2)s2

j,i

+ ln(s2
j,i)

)

− 2ρi(v‖,i − v‖,i)(v⊥,i − v⊥,i)

(1 − ρi
2)s‖,i s⊥,i

]
(3)

where

s2
j,i = σ 2

j,i + ε2
j,i j = LOS, ‖, ⊥

ε2
‖,i = ε2

RA,isin2θ0 + ε2
Dec.,icos2θ0 − 2ρiεRA,iεDec.,isinθ0cosθ0

ε2
⊥,i = ε2

RA,icos2θ0 + ε2
Dec.,isin2θ0 + 2ρiεRA,iεDec.,isinθ0cosθ0

ρi = 1

s‖,i s⊥,i

[
(ε2

Dec.,i − ε2
RA,i)

2
sin2θ0 + ρiεRA,iεDec.,icos2θ0

]

vZ,i = A sin(θi − θ0)sin i

v‖,i = A sin(θi − θ0)cos i

v⊥,i = A cos(θi − θ0)cos i

In the above notation 0◦ < i < 90◦ is defined with respect to the line
of sight, 0◦ < θ0 < 360◦ grows anticlockwise from North to West
and A is positive for clockwise rotation in the plane of the sky.

The above algorithm returns best-fitting values of θ0, i, and A for
all the 62 GCs of our sample. An example of best fit of the velocity
distribution in the three components is shown in Fig. 2 for NGC
104.

To evaluate the significance of rotation we employed a Monte
Carlo technique: for each cluster, 104 mock observations of a
non-rotating system have been simulated by randomly extracting
velocities in the three components from Gaussian functions centred
at vZ, vRA, vDec. = 0 and with dispersion equal to the local velocity
dispersion σ i at the position of the real stars. The measurement
errors have been then added as Gaussian shift with amplitude equal
to the observational uncertainties of real stars (including covariances
between vRA and vDec.) and the best-fitting value of the rotation
amplitude has been calculated using the same technique adopted for
real data. The fraction of simulations with best-fitting amplitudes
smaller than the one obtained on real data gives the probability
that the observed rotation signal is not produced by fluctuations.
An additional set of Monte Carlo simulations has been run for the
clusters with positive detection of rotation assuming the position-
dependent velocity shift in the three velocity components predicted
by the best-fitting models (see Section 4). The standard deviations
of the derived parameters (i, θ0, A, ξ ) have been assumed as the
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1464 A. Sollima, H. Baumgardt, and M. Hilker

Figure 2. Distribution of the three velocity components as a function of the
position angle for NGC 104 (the entire set of best fits for the 15 GCs with
positive detection of rotation is available in the online version of the paper).
The position angle is defined from North to West (see Section 3.1). The red
solid lines show the best-fitting trend in all panels.

corresponding uncertainties. They do not include the uncertainty
on the adopted cluster heliocentric distance, which affects both the
rotation amplitude and the inclination angle as a systematic error in
the following way

A =
√

A2
LOS + A2

μd2

i = tan−1

(
ALOS

Aμd

)

where ALOS and Aμ are the amplitude measured in the line-of-sight
velocity and proper motion spaces, respectively.

We list the best-fitting amplitudes and the corresponding rotation
probabilities for the entire set of 62 GCs of our sample in Table 1.

3.2 Effect of sample selection, random, and systematic errors
in Gaia proper motions

We find a rotation signal at >3σ significance level in 24 GCs (see
Table 1). However, as stated in Section 2, we found that the intrinsic
dispersion of proper motions is systematically larger than that of
line-of-sight velocities. This effect can indicate an underestimate
of the uncertainties of proper motions, the presence of small-
scale systematics or by a significant contamination from Galactic
interlopers. In the following we will check if these effects can
produce false detections in our sample.

In principle, random fluctuations increase the spread of the
velocity distribution without affecting the mean trend produced
by rotation. However, an underestimate of random errors affects
the results of the Monte Carlo technique spuriously increasing the
significance level of the rotation signal. To quantify such an effect,
we run the Monte Carlo simulations for the GCs with positive
detection multiplying the proper motion errors by the fudge factor
required to match the intrinsic dispersion of line-of-sight velocities.

With this approach we confirm a significant rotation signal in 23 out
of 24 GCs, with only NGC 5824 being excluded from the sample.

A more subtle effect can be produced by systematic errors. It is
indeed known that the inhomogeneous sampling of Gaia is respon-
sible for the presence of systematic shifts in proper motions. These
errors have amplitudes μ < 0.07 mas yr−1 and follow a patchy
structure with both small- and large-scale variations (Lindegren
et al. 2018). The presence of an inhomogeneous distribution of
proper motions within the cluster field of view can produce an
azimuthal variation mimicking a spurious rotation in the plane of the
sky. Actually, if we convert the rotation velocity component on the
plane of the sky into proper motion we find that 19 GCs among those
with positive detections have amplitudes <0.1 mas yr−1, with the
exception of NGC 104, NGC 5139, NGC 6266, and Ter 5. However,
to produce a spurious rotation signal, the amplitude of proper motion
systematics must be accompanied by a negligible amplitude in line-
of-sight velocity at the same position angle. To test this effect, we
calculate rotation amplitudes in our Monte Carlo simulations only
from line-of-sight velocities and fixing the position and inclination
angles of the rotation axis to those measured in real clusters. In this
case, only 15 GCs maintain a significant rotation signal. They are
listed in Table 2 together with their best-fitting rotation amplitudes,
position, and inclination angles. For the eight GCs excluded by
this last criterion (namely, NGC 1904, NGC 5272, NGC 6093,
NGC 6218, NGC 6341, NGC 6752, NGC 6809, and NGC 7099;
hereafter referred as ‘uncertain’) we cannot exclude the presence of
a genuine rotation mainly in the plane of the sky with amplitudes
below the typical level of Gaia systematics. Nevertheless, in the
following sections we will conservatively consider only the 15 GCs
with an unambiguous evidence of rotation.

Another possible source of missing/false detection could be in
principle due to the contamination from Galactic field stars or
astrometric artefacts. Velocity gradients in the fore/background
Galactic component surrounding our analysed GCs are indeed
present and can potentially produce a spurious rotation signal.
However, the 3D velocity selection criteria described in Section 3.1
are extremely effective in selecting a genuine sample of bright
member stars: a comparison with the Robin et al. (2003) Galactic
model predicts a contamination < 0.2 per cent in all the GCs of
our sample with the exception of those GCs immersed in the
bulge for which a few per cent contamination is possible close to
their tidal radii, where only a few stars are sampled. Moreover,
over the relatively small extent of our GCs (< 1 deg for the most
extended GCs in the halo and <0.3 deg for bulge GCs), the Galactic
rotation pattern translates into a non-negligible signal only along the
Galactic bar.

Astrometric artefacts can also increase the noise in the v–θ plane
thus reducing the detection efficiency. Consider however that the
detection efficiency is only marginally dependent on errors. This
is because the rotation signal depends on the amplitude of the
mean velocity. So, by including stars with a large (or slightly
underestimated) error would increase the spread around the mean
trend without affecting the amplitude.

As stated in Section 2 we have not applied any selection criteria
based on neither Gaia quality flags nor on the distance from the
cluster centre. To test the effect of more strict member selection on
our results, we also performed the analysis adopting two different
selection criteria: (i) we exclude stars outside half of the nominal
tidal radius (from McLaughlin & van der Marel 2005) and those
with a proper motion error exceeding 1.5 times the central velocity
dispersion, and (ii) select only stars included in the member list
provided by Gaia Collaboration (2018b). In both cases, we confirm
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The rotation of Galactic GCs 1465

Table 1. Results for all the analysed GCs. The classes are assigned to GCs in any of the following categories: r: rotating (P > 99.7 per cent and satisfying all
the performed tests), u: uncertain (P > 99.7 per cent but fails one of the tests against random/systematic uncertainties; see Section 3.2).

Name A P Class Name A P Class Name A P Class
km s−1 per cent km s−1 per cent km s−1 per cent

Arp 2 4.06 ± 4.15 67.6 NGC 5904 4.11 ± 0.42 100.0 r NGC 6522 1.43 ± 2.21 24.4
NGC 104 5.00 ± 0.32 100.0 r NGC 5927 0.93 ± 0.72 82.2 NGC 6539 1.94 ± 1.15 95.9
NGC 288 0.42 ± 0.32 84.3 NGC 5986 1.65 ± 0.93 97.7 NGC 6541 3.73 ± 1.15 100.0 r
NGC 362 0.51 ± 0.56 53.0 NGC 6093 1.97 ± 0.84 99.7 u NGC 6553 2.33 ± 0.82 100.0 r
NGC 1261 0.90 ± 0.64 86.9 NGC 6121 0.22 ± 0.17 81.8 NGC 6569 0.81 ± 0.91 52.3
NGC 1851 0.45 ± 0.42 71.2 NGC 6171 0.70 ± 0.46 93.9 NGC 6624 0.87 ± 1.04 46.7
NGC 1904 2.24 ± 0.46 100.0 u NGC 6205 1.53 ± 0.61 99.9 r NGC 6626 2.42 ± 1.08 100.0 r
NGC 2808 2.25 ± 0.56 100.0 r NGC 6218 0.93 ± 0.37 100.0 u NGC 6656 3.38 ± 0.71 100.0 r
NGC 3201 0.80 ± 0.41 98.8 NGC 6254 0.26 ± 0.56 12.0 NGC 6712 0.58 ± 0.69 45.8
NGC 4372 1.36 ± 0.68 99.2 NGC 6266 6.22 ± 1.53 100.0 r NGC 6715 0.57 ± 1.11 18.5
NGC 4590 0.27 ± 0.51 17.2 NGC 6273 4.19 ± 1.12 100.0 r NGC 6723 0.84 ± 0.55 93.0
NGC 4833 1.14 ± 0.83 86.6 NGC 6304 1.30 ± 0.91 89.4 NGC 6752 0.91 ± 0.34 99.9 u
NGC 5024 1.17 ± 0.62 99.5 NGC 6341 1.46 ± 0.61 99.9 u NGC 6779 1.09 ± 1.52 35.1
NGC 5053 0.36 ± 0.90 15.5 NGC 6362 0.47 ± 0.40 75.2 NGC 6809 0.88 ± 0.38 99.9 u
NGC 5139 4.27 ± 0.52 100.0 r NGC 6366 0.63 ± 0.60 66.6 NGC 6838 0.74 ± 0.42 97.8
NGC 5272 1.75 ± 0.42 100.0 u NGC 6388 1.51 ± 0.65 99.5 NGC 7078 3.29 ± 0.51 100.0 r
NGC 5286 0.76 ± 0.95 40.6 NGC 6397 0.48 ± 0.17 100.0 r NGC 7089 3.01 ± 0.70 100.0 r
NGC 5466 0.84 ± 0.65 81.3 NGC 6402 1.58 ± 0.88 97.7 NGC 7099 1.10 ± 0.40 100.0 u
NGC 5694 5.62 ± 6.40 62.3 NGC 6440 3.93 ± 2.74 87.5 Terzan 5 7.97 ± 2.38 100.0 r
NGC 5824 6.47 ± 2.28 99.7 u NGC 6441 1.52 ± 1.66 55.3 Terzan 8 0.79 ± 1.51 37.5
NGC 5897 1.02 ± 0.79 82.0 NGC 6496 1.21 ± 0.63 97.1

Table 2. List of rotating GCs.

Name A θ0 i ξ

km s−1 deg deg

NGC 104 − 5.00 ± 0.32 224.3 ± 4.6 33.6 ± 1.8 0.102 ± 0.003
NGC 2808 − 2.25 ± 0.56 36.1 ± 8.4 88.5 ± 10.3 0.020 ± 0.005
NGC 5139 4.27 ± 0.52 170.2 ± 7.6 39.2 ± 4.4 0.045 ± 0.002
NGC 5904 4.11 ± 0.42 221.6 ± 6.0 42.6 ± 3.2 0.137 ± 0.011
NGC 6205 − 1.53 ± 0.61 165.5 ± 14.2 85.9 ± 11.6 0.131 ± 0.032
NGC 6266 6.22 ± 1.53 104.2 ± 46.1 15.0 ± 12.8 0.043 ± 0.006
NGC 6273 4.19 ± 1.12 56.9 ± 13.2 41.9 ± 7.1 0.065 ± 0.010
NGC 6397 − 0.48 ± 0.17 8.6 ± 15.6 72.8 ± 11.9 0.004 ± 0.001
NGC 6541 − 3.73 ± 1.15 83.2 ± 18.3 65.4 ± 13.9 0.083 ± 0.027
NGC 6553 2.33 ± 0.82 237.7 ± 38.4 75.6 ± 29.5 0.003 ± 0.007
NGC 6626 − 2.42 ± 1.08 28.6 ± 17.7 83.5 ± 13.3 0.018 ± 0.011
NGC 6656 3.38 ± 0.71 252.8 ± 9.2 62.1 ± 6.3 0.091 ± 0.008
NGC 7078 3.29 ± 0.51 52.6 ± 28.8 15.4 ± 5.4 0.071 ± 0.009
NGC 7089 − 3.01 ± 0.70 346.6 ± 12.1 52.9 ± 11.2 0.071 ± 0.015
Terzan 5 7.97 ± 2.38 260.4 ± 48.5 26.9 ± 34.6 0.026 ± 0.007

the significant rotation in the same 15 GCs. Regarding the selection
criterion (i), we also confirm the uncertain signal in eight out of
nine GCs listed in Table 1, with the exception of NGC 5824 for
which the number of member stars reduces below the threshold set
at 50 objects. As already noticed in Baumgardt et al. (2019), the
application of a proper motion error selection criterion improves
the agreement between the dispersion measured along the line-of-
sight and the transverse directions. The estimated inclination angles
and rotation strengths agree within the combined uncertainties with
those measured in the unselected sample, although in the selected
sample the uncertainties are larger because of the reduced sample
sizes. The application of the selection criterion (ii) excludes from
our sample a small fraction <2 per cent in all the analysed GCs
with no significant effect in the resulting detection as well as in the
estimated inclination angles and rotation strengths.

On the basis of the above test we conclude that, for the purpose
of this work, quality and radial selection criteria do not affect the
detection efficiency while reducing the accuracy of the estimated
quantities. In the following sections we report the results obtained
with the unselected sample.

3.3 Comparison with literature results

The results presented in this paper can be compared with those
obtained by previous groups in the past. In particular, a natural
comparison can be made with the work by Bianchini et al. (2018)
who detected rotations in 11 GCs using only proper motions form
the same data base adopted here. We restrict ourselves to those GCs
with a 3σ detection in both works. Seven GCs have been found to
rotate in both analyses (NGC 104, NGC 5139, NGC 5904, NGC
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1466 A. Sollima, H. Baumgardt, and M. Hilker

6273, NGC 6656, NGC 7078, and NGC 7089). Three GCs (NGC
5272, NGC 6752, and NGC 6809) also classified as rotating in
both analyses have been excluded in our sample because of their
low-rotation amplitude in proper motion which could be mimicked
by small-scale systematics. In this regard, Bianchini et al. (2018)
claimed that systematics should be negligible within the field of
view covered by these clusters. However, as already reported in
Section 3.2, although such a low-amplitude rotation cannot be ex-
cluded for these GCs, we conservatively exclude them from our final
sample. We find only a 2σ (95.4 per cent < P < 99.7 per cent)
significant rotation signal in NGC 4372. This cluster is the one with
the smallest rotation amplitude in the sample of Bianchini et al.
(2018). Being at the border of the significance limits in both works,
the actual rotation in this cluster is not clear. NGC 6553 and Ter 5
are not included in the sample analysed of Bianchini et al. (2018).
For three clusters (NGC 2808, NGC 6205, and NGC 6626) we
measured inclination angles larger than i > 80◦ implying a rotation
signal almost entirely contained in the line-of-sight velocity space.
Since the work by Bianchini et al. (2018) uses only proper motions,
they are insensitive to the rotation in the plane perpendicular to
the line of sight and it is therefore not surprising that they do not
detect any significant rotation in these GCs, although they report a
2σ significance level for NGC 6205. For the remaining three GCs
(NGC 6266, NGC 6397, and NGC 6541) Bianchini et al. (2018)
found a 2σ rotation signal. Note that our work, being based on all
the three velocity components, has a higher detection efficiency than
that of Bianchini et al. (2018) and thus is able to detect rotation also
in these clusters. The comparison between the estimated amplitudes,
position, and inclination axis for the clusters in common is shown
in Fig. 3. A good agreement is found for all these quantities.

The same conclusions hold for the rotation claimed by Gaia
Collaboration (2018b) in the Gaia Science verification paper, who
find rotation in eight GCs: five included in our final sample (NGC
104, NGC 5139, NGC 5904, NGC 6656, and NGC 7078) and three
excluded in our analysis because of their low-rotation amplitudes
(NGC 5272, NGC 6752, and NGC 6809; see above).

Recently, Vasiliev (2018) analysed Gaia proper motions in ∼80
Galactic GCs and studied their rotation pattern adopting stringent
thresholds to account for the effect of systematic errors. We confirm
the rotation detected by this author in the eight GCs for which he
states a 3σ level detection. Of the 10 GCs with a 2σ level detection,
five are classified as ‘uncertain’ in our work (NGC 5272, NGC
6093, NGC 6341, NGC 6752, and NGC 6809), three show a 2σ

significant rotation (NGC 4372, NGC 5986, and NGC 6341), one
is found to be non-rotating (NGC 6388) and one is not included
in our sample (IC 1276). As for the Bianchini et al. (2018) work,
no rotation could be detected by Vasiliev (2018) in the six rotating
GCs with inclination angles i > 65◦ (NGC 2808, NGC 6205, NGC
6397, NGC 6541, NGC 6553, and NGC 6626), while Ter 5 is not
included in his sample.

Among works based on line-of-sight velocities, Lane et al. (2010)
analysed the kinematics of 10 GCs and found a significant rotation
in three of them. We find the same rotation signal in two of them
(NGC 104 and NGC 6656) while we do not obtain a significant
detection in NGC 6121.

Bellazzini et al. (2012) merged literature data with their own
results for a sample of 24 Galactic GCs. Although they do not
report a list of significant rotators, 13 GCs of their sample have
amplitudes at 3σ above the statistical errors. We find significant
rotation for six of them (NGC 104, NGC 2808, NGC 5139, NGC
5904, NGC 6656, and NGC 7078), while we do not confirm rotation
in the remaining seven (NGC 1851, NGC 3201, NGC 4590, NGC

6121, NGC 6388, NGC 6441, and NGC 6715), although NGC 3201
has a rotation signal at a 2σ significance level. They do not find
rotation in NGC 6397. However, for this cluster we find a very small
rotation amplitude in the radial component (A sini ∼ 0.46 km s−1;
i.e. similar to their reported measurement error). It is therefore not
surprising they were not able to detect such a small signal.

Fabricius et al. (2014) claimed the presence of rotation in all
the 11 GCs of their sample. We confirm rotation for only three
of them (NGC 5904, NGC 6205, and NGC 6626 i.e. those with
the largest rotation amplitude in Fabricius et al. 2014), while four
GCs (NGC 5272, NGC 6093, NGC 6218, and NGC 6341) were
classified as ‘uncertain’ in our analysis. It is worth stressing that
rotation in the work by Fabricius et al. (2014) is measured as a
mean slope in the velocity field derived through integrated spectra
of the cluster core. This technique can in principle be affected
by spurious detections due to the inhomogeneous distribution of
individual bright stars. While they report uncertainties as small as
0.1 km s−1 arcmin−1, it is possible that their 100 per cent detection
rate might be overestimated.

Lardo et al. (2015) analyse seven GCs and detect significant
rotation in four of them. We confirm their result for NGC 2808
and NGC 7078 (those with the largest rotation amplitude in their
sample), while we do not find any significant signal in NGC 1851
and NGC 5927.

Similarly, Kimmig et al. (2015) detected rotation in four GCs
in common with our sample (NGC 104, NGC 5904, NGC 7078,
and NGC 7089) and in NGC 5466 (for which we do not confirm
rotation). On the other hand, the rotation signal they measured in
NGC 2808 and NGC 6656 was not significant in their analysis,
likely because of their small sample.

We confirm rotation in 9 among the 12 GCs in common with
the study of Kamann et al. (2018) (NGC 104, NGC 2808, NGC
5139, NGC 5904, NGC 6266, NGC 6541, NGC 6656, NGC 7078,
and NGC 7089) while we classified as ‘uncertain’ the detection in
NGC 6093 and NGC 7099. We instead do not find any significant
signal in NGC 1851. Note that the study by Kamann et al. (2018)
uses several thousand stars per cluster being more sensitive than our
study in those clusters with a small rotation amplitude and aligned
with the line of sight. Moreover, the samples used by Fabricius et al.
(2014) and Kamann et al. (2018) cover the innermost 30 arcsec of
their GCs, while our work sample the clusters mainly outside their
cores.

Finally, among the six GCs classified as rotating GCs by Ferraro
et al. (2018) we find only a 2σ significant rotation in NGC 3201 and
classified as ‘uncertain’ two of them (NGC 1904 and NGC 5272).
No rotation has been instead found in NGC 288, NGC 362, and
NGC 6171 in our analysis. Note that Ferraro et al. (2018) define a
detection when a significant asymmetry in the velocity distribution
about the rotation axis is apparent in any radial bin, while they report
no significant signal when the entire sample is considered (like in
our analysis).

The comparison with the above literature results is summarized
in Table 3.

Other studies devoted to individual clusters detected rotation in
many GCs of our final list: NGC 104 (Meylan & Mayor 1986;
Strugatskaya 1988; Gebhardt et al. 1995; Gerssen et al. 2002;
Anderson & King 2003), NGC 5139 (Woolley 1964; Merritt,
Meylan & Mayor 1997; Norris et al. 1997; van Leeuwen et al.
2000; Reijns et al. 2006; van de Ven et al. 2006; Pancino et al.
2007; Sollima et al. 2009), NGC 5904 (Lanzoni et al. 2018), NGC
6397 (Gebhardt et al. 1995), NGC 6656 (Peterson & Cudworth
1994), NGC 7078 (Dubath & Meylan 1994; Gebhardt et al. 1994;
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The rotation of Galactic GCs 1467

Figure 3. Comparison between the rotation amplitudes in the plane of the sky (left-hand panel), position angle (middle panel), and inclination angle (right-hand
panel) of the rotation axis estimated by Bianchini et al. (2018) and this work. The dashed line marks the one-to-one relation in all panels.

Drukier et al. 1998), and NGC 7089 (Pryor et al. 1986). On the other
hand, we detect a rotation at a 2σ level in NGC 3201 (Cote et al.
1995) and NGC 4372 (Kacharov et al. 2014), and an ‘uncertain’
classification has been given to NGC 5272 (Kadla & Strugatskaya
1985). We do not confirm instead the rotation found in NGC 5024
(Boberg et al. 2017), NGC 6388 (Lanzoni et al. 2013), and NGC
6121 (Malavolta et al. 2015).

4 DY NA M I C A L M O D E L L I N G

The algorithm described in Section 3.1 provided a measure of the
mean rotation amplitude in our sample of GCs. However, in a real
cluster the rotation velocity depends on position. On the other hand,
the efficiency of the radial sampling of our samples is given by the
combination of the selection function of the considered data bases.
These depend on many factors like the heliocentric distance, the
crowding conditions, etc. resulting in an inhomogeneous sampling
of the clusters. Thus, the derived mean amplitudes are biased
estimates of the actual rotation of our GCs and should not be
compared with each other. A more appropriate way to derive the
characteristics of the rotation of our GCs is to compare our data set
with suitable dynamical models. As specified in Section 2, for this
comparison we used for each cluster the extended samples of stars
i.e. those stars having at least one measure of their line-of-sight
velocities or proper motions. Additionally, the surface-brightness
profiles of Trager et al. (1995) have been employed as further
constrains.

Many self-consistent models of rotating stellar systems have been
developed in the past (e.g. Wilson 1975). These models are defined
from a distribution function depending on two integrals of motions
(energy and angular momentum along the rotation axis) which
is integrated in a cylindrical coordinate system. Indeed, rotating
stellar systems generally present a flattening along the direction of
the rotation axis due to the kinetic energy excess along the radial
direction in the equatorial plane produced by ordered motions. As
a side effect, both the projected density profile and the resulting
velocity distributions depend on the same model parameters. Un-
fortunately, the adopted set of structural and kinematic data has
very different accuracies with the fractional uncertainty in the
surface brightness being about one order of magnitude smaller than
that in the velocity dispersion in the same radial intervals. As a
consequence, the fit of the dynamical model is entirely dominated
by the fine details of the surface-brightness profile while kinematics
have only a little impact. In this case, it is possible to obtain a

best fit to the data in which the distribution of velocities is poorly
reproduced. However, differences in the projected density can be
also produced by other factors (e.g. small variations in the shape of
the adopted distribution function, tidal effects, etc.) which are out of
control.

To overcome this problem, we constructed parametric models
of rotating stellar systems by assuming a priori density profile and
deriving kinematics from the Jeans equation, assuming spherical
symmetry. Briefly, for an adopted density profile the associated pro-
file of the second moment of the velocity 〈v2〉 ≡ 〈v2

φ〉 + 〈v2
r 〉 + 〈v2

θ 〉
has been calculated using the Jeans equation in spherical coordinates
(equation B1; here vr, vθ and vφ are the velocity component in the
radial, polar and azimuthal directions,3 respectively). The relative
contribution of ordered and random motions to 〈v2〉 at a given
position inside the cluster has been calculated adopting a parametric
relation depending on the distance to the rotation axis.

f = 〈vφ〉2

〈v2
r 〉 + 〈v2

θ 〉 + 〈v2
φ〉 = b

3

exp(R/R0) − 1

exp(R/a R0) + 1
, (4)

where b governs the strength of rotation, R0 is a scale radius at
which rotation approaches its maximum contribution to the kinetic
energy, and a is a dampening factor at large radii. A comprehensive
description of the modelling technique is provided in Appendix B.

Of course, the use of the Jeans equation does not ensure self-
consistency (i.e. it is possible to obtain a model with a corresponding
distribution function which is negative in some point of the energy-
angular momentum space). Moreover, while spherical rotating
models can exist (Lynden-Bell 1960), deviations from spherical
symmetry have been observed in almost all GCs (White & Shawl
1987; Chen & Chen 2010). The models adopted here thus provide
only an empirical representation of the rotation of GCs which is
supported by a general physical justification.

The advantage of the above technique is that the density and
velocity distribution profiles depend on non-degenerate sets of
parameters. The fitting procedure has been performed in two
subsequent steps: first, for each cluster we adopted the 3D density
profile of the best-fitting King (1966) model (defined by the W0

and rc parameters from McLaughlin & van der Marel 2005) and
we then searched the combination of parameters (a, b, R0) which
maximize the likelihood of equation 3, where the values of vj,i

and σ j,i were calculated from equation B7. A Markov Chain Monte

3In this notation vφ corresponds to the rotational velocity.
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1468 A. Sollima, H. Baumgardt, and M. Hilker

Table 3. Detection of rotation in GCs from literature results: checkmarks, crosses, and tildes mark positive, negative, and 2σ detections, respectively.
Checkmarks within parenthesis mark those GCs with uncertain detections found in this work. References: Lane et al. (2010, L10), Bellazzini et al. (2012, B12),
Fabricius et al. (2014, F14), Lardo et al. (2015, L15), Kimmig et al. (2015, K15), Kamann et al. (2018, K18), Ferraro et al. (2018, F18), Gaia Collaboration
(2018b, G18), Bianchini et al. (2018, B18), Vasiliev (2018, K18). Only GCs with at least a 2σ detection have been listed.

Name L10 B12 F14 L15 K15 K18 F18 G18 B18 V18 This work

NGC 104 � � � � � � � �

NGC 288 X X X � X X X
NGC 362 X ∼ � X X X
NGC 1261 ∼ X
NGC 1851 � � � ∼ X X
NGC 1904 X � X (�)
NGC 2808 � � X � X X �

NGC 3201 � � � ∼ X ∼
NGC 4372 X � ∼ ∼
NGC 4590 X � X X X X
NGC 5024 X X � X ∼
NGC 5139 � � � � � �

NGC 5272 � X � � � ∼ (�)
NGC 5286 ∼ X X
NGC 5466 � X
NGC 5824 (�)
NGC 5904 � � � � � � � �

NGC 5927 � ∼ X X X
NGC 5986 X X ∼
NGC 6093 � � ∼ X (�)
NGC 6121 � � ∼ ∼ ∼ X X
NGC 6171 ∼ � X X X
NGC 6205 � ∼ X �

NGC 6218 X X � X X X (�)
NGC 6254 X � � ∼ ∼ X X
NGC 6266 � ∼ � �

NGC 6273 � � �

NGC 6293 � X
NGC 6341 � ∼ X X (�)
NGC 6388 � � X X X
NGC 6397 X ∼ X �

NGC 6402 X ∼ X ∼
NGC 6441 � X ∼ X X
NGC 6496 ∼ X
NGC 6522 ∼ X X
NGC 6539 ∼ X ∼
NGC 6541 � ∼ X �

NGC 6553 X �

NGC 6626 � X X �

NGC 6656 � � X � � � � �

NGC 6681 ∼ X X
NGC 6715 � X X X
NGC 6723 ∼ X X
NGC 6752 X X X X ∼ � � ∼ (�)
NGC 6779 � ∼ X X
NGC 6809 ∼ ∼ ∼ � � ∼ (�)
NGC 6838 ∼ X X X ∼
NGC 6934 � X
NGC 7078 � � � � � � � �

NGC 7089 � � � � �

NGC 7099 X X X ∼ X X (�)
Terzan 5 �

Carlo has been used to survey the parameter space searching for
the parameters a, b, and R0 providing the maximum likelihood.
The position (θ0) and inclination (i) angles or the rotation axis have
been fixed to those calculated through the algorithm described in
Section 3.1. Indeed, tests performed on the synthetic catalogues (see
Section 3.1) indicate that the adopted algorithm provides unbiased

estimates of these quantities while systematic offsets are obtained
by leaving them as free parameters.

The best-fitting models for the 15 GCs of our final sample
are shown in Figs 4 and 5. In these figures, the line-of-sight
velocity dispersion and rotation profiles have been computed (for
visualization purposes only) by binning the samples of line-of-sight
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The rotation of Galactic GCs 1469

Figure 4. Best-fitting model of NGC 104 (the entire set of models for the 15 GCs with positive detection of rotation is available in the online version of the
paper). Top left-hand panel: projected density profile, black points represent the profile of Trager, King & Djorgovski (1995). Bottom left-hand panel: rotation
(solid line) and velocity dispersion (dashed line) profiles. Filled and open dots represent the corresponding observed profiles. The location of the half-mass and
tidal radii are marked by arrows. Right-hand panels: distributions of velocities in the three components as a function of the distance along (
Y) and from (
X)
the rotation axis. Red shaded area indicates the 1, 2, and 3σ intervals. Grey points mark observational data. For clarity, only velocities with errors smaller than
5 km s−1 are plotted.

velocities and proper motions and applying the technique described
in Section 3.1 to individual bins. The distribution of velocities in
the three components are plotted as a function of the distance along
(
Y) and from (
X) the rotation axis


X = −R sin(θ − θ0)


Y = R cos(θ − θ0)

From Figs 4 and 5 it is apparent that while the considered models
provide a good fit to the density and rotational/dispersion velocity
profiles in most GCs of our sample, significant discrepancies are
noticeable for a few clusters (e.g. NGC 6656 and Ter 5). Note

however that in these GCs the mismatch between models and data
is confined to the outer bins containing only a few stars. Instead, the
model parameters are fitted using individual velocities so that the
strongest constraint is provided by regions where more data points
are available.

Usually, the ratio between the projected rotation amplitude and
the central line-of-sight velocity dispersion (vφ,max/σ 0) is used as an
indicator of the relative importance of rotation (Davies et al. 1983).
However, the use of this ratio has many drawbacks since it does not
account for the different cluster concentrations and different shapes
of the rotation curve (Binney 2005). To overcome this limitation
and to assess the strength of rotation for each cluster, we calculated
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Figure 5. Same as Fig. 4 for NGC 6656.

the fraction of kinetic energy in rotational motions ξ ≡ 〈v2
φ〉/〈σ 2〉

of the corresponding best-fitting model. These fractions are listed
in Table 2 . Note that ξ is a global parameter and it is therefore a
more robust rotation indicator in comparison with other estimators
like e.g. vφ,max/σ 0, which are measured at different distances from
the centre, depend on the binning and use small subsamples of
stars.

Moreover, we also calculated the model rotation period at the
half-mass radius as

Prot = 2πrh

vφ(rh)
. (5)

5 G LOBU LAR C LUSTER PARAMETER
C O R R E L AT I O N S

The values of ξ calculated in the previous section have been used to
search for correlations with other general and dynamical parameters.
We considered the horizontal branch morphology parameter (HBR;
from Lee, Demarque & Zinn 1994), Galactocentric distance, height
above the Galactic plane (RGC, Z; from Harris 1996) mass, half-
mass radius, half-mass relaxation time (M, rh, trh; from Baumgardt &
Hilker 2018) metallicity (Fe/H; from Carretta et al. 2009), ellipticity
(ε; from Chen & Chen 2010), and destruction rate (ν defined as the

inverse of the time needed by the cluster to completely dissolve;
from Baumgardt et al. 2019). Ellipticities have been deprojected
using the technique described in Cappellari et al. (2007) and
assuming the same inclination angles of the rotation axis, based
on the hypothesis that rotation and flattening are linked.

To evaluate the significance of such correlations we performed
both the Spearman rank correlation test and a permutation test for
Pearson’s weighted correlation coefficient. For the latter test, we
assume ξ as the dependent variable and constructed 104 random
permutation of each independent variable. For each set the weighted
Pearson’s correlation coefficient has been calculated. The fraction
of randomized sets with a correlation coefficient smaller than the
one measured on the original data gives the probability that the two
variables are correlated.

The entire set of correlations is shown in Fig. 6 together with the
corresponding correlation probabilities. Unfortunately, given the
small size of our data base, we are not able to confirm or exclude
any of the considered correlations at a significant confidence level.
On average, both the performed tests provide similar results with the
Spearman test giving generally larger significance levels than the
permutation one. The largest correlation probabilities (still below
the 3σ level) are those with the half-mass radius and relaxation
time, in agreement with what was found by Kamann et al. (2018)
and Bianchini et al. (2018). Also noticeable is the anticorrelation
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The rotation of Galactic GCs 1471

Figure 6. Correlation between the fraction of rotational kinetic energy (ξ ) and various parameters. The correlation probability is indicated in each panel.

with the destruction rate. An interesting outlier in the above
planes is NGC 5139 showing a relatively small rotation strength
in spite of its long half-mass relaxation time and low destruction
rate.

A relatively small correlation probability is instead that with the
ellipticity. To further investigate the relation between rotation and
flattening, we also calculated the angle in the plane of the sky
between the position angle of the rotation axis with the direction of
the isophotal minor axis (from Chen & Chen 2010). A one-tailed
Kolmogorov–Smirnov indicates a probability of 6.2 per cent that
such a correlation occurs by chance. It is worth noting that the
ellipticity of Chen & Chen (2010), based on star counts in infrared
images, are less affected by foreground extinction than the optical
data, but more affected by individual star count numbers and by
features at larger radius such as tidal tails or outer stretching of the
cluster distribution. So, we also used the ellipticities provided by
White & Shawl (1987) which are based on the overall integrated
light profiles and are therefore more representative of the (inner)
brightest parts of the clusters. With this data set we find a more
significant correlation probability (99.8 per cent and 85.7 per cent
according to the permutation and the Spearman tests, respectively)
although the alignment of the minor and rotation axes is not

significant (11.6 per cent that the angle difference is extracted from
a random distribution).

An interesting test for the impact of the tidal field on internal
rotation has been done by calculating the angle between the rotation
axes and the orbital poles of the GCs in our sample. For this purpose,
we computed the orientation of the axes in the Galactic reference
system and calculated the angles with the North (South) Galactic
pole if the cluster has a positive (negative) angular momentum
along the direction perpendicular to the Galactic plane (from Gaia
Collaboration 2018b). Indeed, all the 15 GCs of our sample move
in a region of the Galactic potential which is dominated by the disc,
and their orbital poles oscillate during the cluster orbit around the
Galactic pole. Therefore, the average orientation of the orbital pole
over many orbits is always pointed towards the Galactic pole. A one-
tailed Kolmogorov–Smirnov indicates a probability of 1.5 per cent
that such an angle is distributed following a constant probability per
solid angle corresponding to a random orientation (P(
i) ∝ sin 
i).
We also calculated the angle between the rotation axes and the
instantaneous orbital poles, defined as the normal vectors to the
planes containing the present-day position and velocity vectors.
Also in this case, we found a probability of 11.3 per cent that such
an angle comes from a random orientation of the rotation axes.
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Figure 7. Left-hand panel: cumulative distribution of the angle between the rotation axis and the plane of the sky (black solid line), the Galactic pole (red
line), and the present-day orbital pole (blue line). The behaviour of a randomly oriented distribution is shown by the dashed line. Right-hand panel: comparison
between the rotation period at the half-mass radius and the orbital period. Red and black dots mark GCs with Galactocentric distances smaller and larger than
6 kpc, respectively.

For comparison, if we perform the same test on the inclination
angle with respect to the plane of the sky, and neglecting the
dependence of the detection efficiency on it, the probability that
it is randomly distributed is 19.4 per cent (see the left-hand panel of
Fig. 7).

Finally, in the right-hand panel of Fig. 7 we compare the rotation
period at the half-mass radius with the cluster orbital period (from
Gaia Collaboration 2018b). While these two variables are not
significantly correlated when considering the entire sample (the
permutation and Spearman tests give probabilities of 70.5 per cent
and 92.0 per cent, respectively), a strong correlation of these two
variables is apparent for GCs with RGC < 6 kpc. A least-square fit
to this subsample of clusters gives a ratio Pφ /Prot = 9.2 ± 2.5.
Note however that, as it is immediately apparent from equation 5,
the rotation period at the half-mass radius is proportional to the
half-mass radius itself. On the other hand, it is well known that a
half-mass radius versus Galactocentric distance relation is present
among Galactic GCs (van den Bergh, Morbey & Pazder 1991),
with the GCs at large distances from the Galactic centre (i.e. those
which take a long time to complete their orbits) being on average
more extended. So, since both the orbital and the rotational periods
depend on the Galactocentric distance, the correlation between these
two time-scales could be spurious. Indeed, this correlation is not
associated with an alignment of the rotation axes with the orbital
poles: if we restrict the sample to GCs with RGC < 6 kpc, the
probability that the angle between these two directions is randomly
distributed increases to 2.4 per cent.

6 SU M M A RY

We constructed the most extensive set of kinematic information
for stars in 62 Galactic GCs, sampling ∼40 per cent of the GC
system of the Milky Way, matching Gaia proper motions with
the most comprehensive survey of line-of-sight velocities. We
explored for each analysed cluster the velocity distribution in
the three components searching for statistically significant signals

of rotation. We found robust evidence of rotation in 15 GCs
of our sample at an amplitude which cannot be explained by
neither random nor systematic errors. For nine more GCs we
found a signal of rotation mainly in the plane of the sky at
a level below the claimed amplitude of systematic uncertainties
possibly present in the Gaia catalogue. Although the presence of a
genuine rotation is well possible in these GCs, we cannot exclude
that this evidence might be spuriously produced by the patchy
distribution pattern of systematics. The present analysis adds an
important piece of information to the recent work by Bianchini et al.
(2018) since taking advantage of the information on the velocity
along the line of sight, (i) it has a higher efficiency in detecting
GCs rotating with large inclination angles, and (ii) it allows to
determine the inclination of the rotation axis with respect to the line
of sight.

The relative strength of ordered over random motions (ξ ) has
been also calculated by means of the comparison with dynamical
models. The derived values of ξ appear to weakly correlate with
the half-mass relaxation time, with the GCs with longer relaxation
times rotating faster. This evidence, already noticed by Kamann
et al. (2018) and Bianchini et al. (2018), is in agreement with
the predictions of N-body simulations (Tiongco et al. 2017). It
could suggest a primordial origin for the rotation of these stellar
systems which is progressively erased by both internal and ex-
ternal dynamical processes. Indeed, two-body relaxation tend to
randomize the orbits of stars thus erasing the effect of ordered
motions. In this picture, less evolved GCs (i.e. those with a longer
half-mass relaxation time) still maintain the evidence of their
original rotation. Moreover, the observed anticorrelation between
ξ and the destruction rate suggests that GCs subject to a fast
destruction process lost much of their original angular momentum.
The massive GC NGC 5139 presents a remarkably small rotation
strength in spite of its long half-mass relaxation time and low
destruction rate. This finding suggests peculiar initial conditions
for this stellar system characterized by a relatively small primordial
rotation.
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We also checked the importance of the Galactic tidal field in deter-
mining the rotation of GCs. The comparison between the orientation
of the rotation axis with the average and the instantaneous orbital
pole does not provide any significant conclusion. It is interesting to
notice the strong correlation between the rotation period at the half-
mass with the orbital period of those GCs at small Galactocentric
distances (RGC < 6 kpc). However, although a synchronization of
internal and orbital rotation is predicted by simulations (Tiongco
et al. 2016, who found however a much smaller ratio Pφ /Prot ∼
0.5 close to the tidal radius), this evidence could be spuriously
produced by the half-mass radius versus Galactocentric distance
relation present in the Galactic GC system (van den Bergh et al.
1991). This is also suggested by the lack of any significant alignment
of the rotation axis with the orbital poles in this subsample of
clusters. Note that tidal effects are expected to be effective in
creating a retrograde rotation only at large distances from the cluster
centre (Vesperini et al. 2014), while our data sample mainly the
inner region of GCs. Therefore, the lack of a clear correlation
between the rotation properties of our GCs and the strength of
the tidal field is not surprising. In this context, the rotation found
in the GCs of our sample is more likely reminiscent of their initial
conditions.

At odds with what was found by Fabricius et al. (2014) and
Kamann et al. (2018), we do not find evidence of a link between
rotation and flattening, in terms of neither the correlation between
the rotation strength and the deprojected ellipticity nor the alignment
of the rotation axis with the isophotal minor axis. The lack of
such a correlation, already reported by Bellazzini et al. (2012) and
Lardo et al. (2015), could be due to the effect of anisotropy and
tidal distortions in shaping the outermost regions of the clusters
which introduce a spread in the ξ diagram (see Kamann et al.
2018).

Unfortunately, all the conclusions drawn on the basis of the
explored correlations suffer from the small size of our sample.
In this situation, it is well possible that some of the explored
correlations are actually real but remain hidden in the Poisson noise
resulting statistically non-significant. An important improvement
is expected in the near future when the next Gaia releases will
be available. According to the performance prediction of the Gaia
consortium, the end of mission accuracy should improve by a factor
of two and the amplitude of systematics is expected to significantly
decrease. In that condition, the same analysis performed here should
be able to clarify the presence of rotation in the GCs with uncertain
detections and to construct a much larger sample of rotating
GCs which can allow to verify the correlations analysed in this
work.
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Figure 4. Best-fitting model of NGC 104 (the entire set of models
for the 15 GCs with positive detection of rotation is available in the
online version of the paper).
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A P P E N D I X A : D E R I VAT I O N O F TH E ROTAT I O N V E L O C I T Y C O M P O N E N T S

Consider a reference frame defined such that a cluster rotates clockwise in the x–y plane with the z-axis directed in towards the direction of
the angular momentum. The systemic velocities along the three components can be written as

vx = ωy

vy = −ωx

vz = 0

where ω ≡ ω(x, y, z) is the angular velocity. The velocity components measured by an observer looking at the cluster from an inclined
perspective (vX, vY, vZ) can be obtained by sequentially applying two rotations along the x- and z-axes by angles i and θ0, respectively

vX = vxcosθ0 − vysinθ0cosi + vz sinθ0sini = ω (x sinθ0cos i + y cosθ0)

vY = vxsinθ0 + vycosθ0cosi − vz cosθ0sini = −ω (x cosθ0cos i − y sinθ0)

vZ = vysini + vz cosi = −ω x sin i . (A1)

Defining the position angle θ anticlockwise from the Y-axis we have

X = −R sinθ Y = R cosθ

where R = √
X2 + Y 2 is the projected distance from the cluster centre. The coordinate transformation between the two reference systems

are

x = Xcosθ0 + Y sinθ0 = −R sin(θ − θ0)

y = −Xsinθ0cos i + Y cosθ0cos i + Zsin i = R cos(θ − θ0)cos i + Zsin i

z = Xsinθ0sin i − Y cosθ0sin i + Zcos i = −Rcos(θ − θ0)sin i + Zcos i . (A2)

Consider the projections of the velocity vector in the plane of the sky in the directions parallel and perpendicular to the rotation axis

v‖ = −vXsinθ0 + vY cosθ0

v⊥ = vXcosθ0 + vY sinθ0 . (A3)

Combining equations A1, A2, and A3 we finally find

vZ = ω R sin(θ − θ0)sin i

v‖ = ω R sin(θ − θ0)cos i

v⊥ = ω [R cos(θ − θ0)cos i + Zsin i] .

APPENDIX B: PARAMETRIC JEANS MODELS OF ROTATI NG SPHERI CAL SYSTEMS

Consider the Jeans equation in spherical polar coordinates (r, θ , φ)

δρ〈v2
r 〉

δr
+ 1

r

δ〈vrvθ 〉
δθ

+ ρ

r
(2〈v2

r 〉 − 〈v2
θ 〉 − 〈v2

φ〉 + 〈vrvθ 〉cotθ ) = −ρ
δ�

δr

δ〈vrvθ 〉
δr

+ 1

r

δρ〈v2
θ 〉

δθ
+ ρ

r
[3〈vrvθ 〉 + (〈v2

θ 〉 − 〈v2
φ〉)cotθ ] = −ρ

r

δ�

δθ
, (B1)

where ρ is the 3D density, vr, vθ , and vφ are the velocities along the three components, r is the distance from the cluster centre, and � is the
gravitational potential.

An obvious solution can be found by assuming

〈vrvθ 〉 = 0

〈v2
r 〉 = 〈v2

θ 〉 = 〈v2
φ〉

δρ

δθ
= δ�

δθ
= δ〈v2

r 〉
δθ

= 0 . (B2)

Thus, equation B1 reduces to the spherical Jeans equation

δρ〈v2
r 〉

δr
= −ρ

δ�

δr
(B3)
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The second velocity moments can be written separating the contribution of random and systematic motions assuming

〈v2
r 〉 = σ 2

r

〈v2
φ〉 = σ 2

φ + 〈vφ〉2 . (B4)

We adopted an empirical relation linking the fraction of kinetic energy in rotational motion as a function of the distance to the rotation axis.

f = 〈vφ〉2

〈v2
r 〉 + 〈v2

θ 〉 + 〈v2
φ〉 = b

3

exp(R/R0) − 1

exp(R/a R0) + 1
, (B5)

where b governs the strength of rotation, R0 is a scale radius at which rotation approaches its maximum contribution to the kinetic energy,
and a is a dampening factor at large radii.

From equations B2, B4, and B5 we have

σ 2
φ = (1 − 3f ) σ 2

r

〈vφ〉2 = 3f σ 2
r . (B6)

For a given density profile, the potential derivative is given by the gravitational acceleration

δ�

δr
= −4πG

r2

∫ r

0
ρ(r ′)r ′2 dr ′

while the velocity dispersions in the r and φ components, as well as the mean rotational velocity can be calculated from equations B3 and B6.
For a given density profile and a combination of parameters (a, b, R0) the ratio between rotational and overall kinetic energy is given by

ξ ≡ 〈〈vφ〉2〉
〈3 σ 2

r 〉 =
∫ rt

0

∫√
r2
t −z2

0 Rρf σ 2
r dR dz∫ rt

0

∫√
r2
t −z2

0 Rρσ 2
r dR dz

.

The mean velocities and dispersions along the projected components (⊥, �, LOS) can be calculated as a function of the inclination angle i

〈v⊥〉 = 1

�

∫ +∞

−∞
ρ 〈vφ〉 y cos i + z sin i√

(y cos i + z sin i)2 + x2
dz

〈v‖〉 = − 1

�

∫ +∞

−∞
ρ 〈vφ〉 x cos i√

(y cos i + z sin i)2 + x2
dz

〈vLOS〉 = − 1

�

∫ +∞

−∞
ρ 〈vφ〉 x sin i√

(y cos i + z sin i)2 + x2
dz

σ 2
⊥ = 1

�

∫ +∞

−∞
ρ σ 2

r dz − 〈v⊥〉2

σ 2
‖ = 1

�

∫ +∞

−∞
ρ σ 2

r dz − 〈v‖〉2

σ 2
LOS = 1

�

∫ +∞

−∞
ρ σ 2

r dz − 〈vLOS〉2 , (B7)

where

� =
∫ +∞

−∞
ρ dz

is the projected density, x is directed orthogonal to the projection of the rotation axis into the plane of the sky, z is the distance along the line
of sight, and 〈vφ〉, σ 2

r are calculated at intrinsic coordinates x’,y’ and z’

x ′ = x

y ′ = y cosi + z sini

z′ = −y sini + z cosi ,

where z’ is the height above the equatorial plane and R =
√

x ′2 + y ′2 is the distance from the rotation axis.
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