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Abstract

Data from the newly commissioned Transiting Exoplanet Survey Satellite has revealed a “hot Earth” around
LHS 3844, an M dwarf located 15pc away. The planet has a radius of 1.303 0.022 R⊕ and orbits the star every
11 hr. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is
bright enough (I=11.9, K=9.1) for this possibility to be investigated with transit and occultation spectroscopy.
The star’s brightness and the planet’s short period will also facilitate the measurement of the planet’s mass through
Doppler spectroscopy.

Key words: planetary systems – planets and satellites: detection – stars: individual (LHS 3844, TIC 410153553)

1. Introduction

The Transiting Exoplanet Survey Satellite (TESS ) is a
NASA Explorer mission that was launched on 2018 April 18.
The mission’s primary objective is to discover hundreds of
transiting planets smaller than Neptune, around stars bright
enough for spectroscopic investigations of planetary masses
and atmospheres (Ricker et al. 2015). Using four 10 cm
refractive CCD cameras, TESS obtains optical images of a
rectangular field spanning 2300square degrees. The field is
changed every 27.4 days (two spacecraft orbits), allowing the
survey to cover most of the sky in 2 yr. TESS is a wider-field,
brighter-star successor to the successful space-based transit
surveys CoRoT (Baglin et al. 2006; Auvergne et al. 2009) and
Kepler (Borucki et al. 2010).

Another way in which TESS differs from the previous space
missions is that M dwarfs constitute a larger fraction of the stars
being searched, mainly because of a redder observing bandpass
(600–1000 nm). Compared to solar-type stars, M dwarfs are
advantageous for transit surveys because the signals are larger
for a given planet size, and because the transits of planets in the
“habitable zone” are geometrically more likely and repeat more
frequently (see, e.g., Gould et al. 2003; Charbonneau & Deming
2007; Latham 2012). We also know that close-orbiting planets
are very common around M dwarfs, based on results from the
Kepler survey (Dressing & Charbonneau 2015; Muirhead et al.
2015). By focusing on nearby M dwarfs, the pioneering ground-
based transit surveys MEarth and TRAPPIST have discovered
four of the most remarkable planetary systems known today:
GJ 1214 (Charbonneau et al. 2009), GJ 1132 (Berta-Thompson
et al. 2015), LHS 1140 (Dittmann et al. 2017a; Ment et al. 2018),
and TRAPPIST-1 (Gillon et al. 2016).

Simulations have shown that TESS should be capable of
detecting hundreds of planets around nearby M dwarfs (Sullivan
et al. 2015; Bouma et al. 2017; Ballard 2018; Barclay et al. 2018;
Huang et al. 2018; Muirhead et al. 2018). Here, we report the first
such detection, based on data from the first month of the survey.
The planet has a radius of 1.32±0.02 ÅR , and orbits the
Mdwarf LHS 3844 every 11 hr. The star, located 15parsecs
away, has a mass and radius that are about 15% and 19% of the
Sun’s values. The proximity and brightness of the star make this
system a good candidate for follow-up Doppler and atmospheric
spectroscopy.

This Letter is organized as follows. Section 2 presents the data
from TESS along with follow-up observations with ground-based
telescopes. Section 3 describes our method for determining the
system parameters. This section also explains why the transit-like
signal is very likely to represent a true planet and not an eclipsing
binary or other types of “false positives.” Section 4 compares
LHS 3844b with the other known transiting planets, and discusses
some possibilities for follow-up observations.

2. Observations and Data Analysis

2.1. TESS

TESS observed LHS 3844 between 2018 July 25 and August
22, in the first of 26 sectors of the two-year survey. The star
appeared in CCD2 of Camera3. The CCDs produce images
every 2 s, which are summed on board the spacecraft into
images with an effective exposure time of 30 minutes. In
addition, 2 minute images are prepared for subarrays surround-
ing preselected target stars, which are chosen primarily for the
ease of detecting transiting planets. LHS 3844 was prioritized
for 2 minute observations on account of its brightness in the
TESS bandpass (T=11.877), small stellar radius, and relative
isolation from nearby stars (Muirhead et al. 2018; Stassun et al.
2018). LHS 3844 will not be observed again in the TESS
primary mission.
The 2 minute data consist of 11 by 11 pixel subarrays. They

were reduced with the Science Processing Operations Center
(SPOC) pipeline, originally developed for the Kepler mission
at the NASA Ames Research Center (Jenkins 2015; Jenkins
et al. 2016). For LHS 3844, the signal-to-noise ratio of the
transit signals was 32.4, using the definition of Twicken et al.
(2018). The 30 minute data were analyzed independently with
the MIT Quick Look Pipeline (C. X. Huang et al. 2018, in
preparation). A transit search with the Box Least Square
algorithm (BLS; Kovács et al. 2002) led to a detection with a
signal-to-noise ratio of 31.6, using the definition of Hartman &
Bakos (2016).
For subsequent analysis, we used the 2 minute Pre-search

Data Conditioning light curve from the SPOC pipeline (Stumpe
et al. 2012), which was extracted from the photometric aperture
depicted in the lower right panel of Figure 1. The resulting light
curve is shown in the top panel of Figure 2. To filter out low-
frequency variations, we fitted a basis spline to the light curve
(excluding the transits and 3σ outliers) and divided the light
curve by the best-fit spline. The result is shown in the second
panel of Figure 2. The interruption in the middle of the time
series occurred when the spacecraft was at perigee, when it
reorients and downlinks the data. There was also a 2 day
interval when the data were compromised by abnormally
unstable spacecraft pointing. In addition, we omitted the data
collected in the vicinity of “momentum dumps,” when the
thrusters are used to reduce the speed of the spacecraft reaction
wheels. These lasted 10–15 minutes and took place every
2.5 days.

2.2. Ground-based Photometry

LHS 3844was observed by the ground-based MEarth-South
telescope array as part of normal survey operations (Irwin et al.
2015; Dittmann et al. 2017b). A total of 1935 photometric
observations were made between 2016 January 10 and 2018
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August 25. No transits had been detected prior to the TESS
detection, but when the data were revisited, a BLS search
identified a signal with a period and amplitude consistent with
the TESS signal (Figure 2). The MEarth data (Figure 3) also
revealed the stellar rotation period to be 128±24 days, based
on the least-squares periodogram of Irwin et al. (2006) as
implemented by Newton et al. (2016, 2018).48

Additional ground-based transit observations were per-
formed as part of the TESS Follow-up Observing Program
(TFOP). A full transit was observed on UT 2018 September 06
in the IC band, using the El Sauce Observatory Planewave
CDK14 telescope located in El Sauce, Chile. Five more transits
were observed in the Sloan i′ band using telescopes at the Cerro
Tololo International Observatory (CTIO) node of the Las
Cumbres Observatory (LCO49) robotic telescope network
(Brown et al. 2013). The transit of UT 2018 September 08
was observed with a 0.4 m telescope, and the transits of
UT2018 September 08, 09, 10, and 16 were observed with a
1.0 m telescope. The data are shown in the lower panels of

Figure 2. Together, they confirm the fading events are
occurring and localize the source to within 2″ of LHS 3844.

2.3. High-resolution Spectroscopy

We obtained optical spectra on UT2018 June 1850 and
September 08 using the CTIO HIgh ResolutiON (CHIRON)
spectrograph on the 1.5 m telescope of the Cerro Tololo Inter-
American Observatory Small and Moderate Aperture Research
Telescope System (Tokovinin et al. 2013). We used the image
slicer mode, giving a resolution of about 80,000. The signal-to-
noise ratio of each spectrum is about 7, and the spectral range is
411–877nm. The first observation was a pair of 30 minute
exposures centered at an orbital phase of 0.355. The second
observation comprised three 30 minute exposures centered at
phase 0.880. The data were analyzed as described by Winters
et al. (2018b), using a spectrum of Barnard’s Star as a template.
The spectra show no evidence of additional lines from a stellar
companion, no sign of rotational broadening, no detectable Hα
emission, and no radial-velocity variation.
Additional spectroscopy was performed with the CORALIE

spectrograph (Queloz et al. 2000; Pepe et al. 2017) on the

Figure 1. Images of the field surrounding LHS 3844. Left: from the Anglo-Australian Observatory Second Epoch Survey, obtained with a red-sensitive photographic
emulsion in 1996. The red point is the location of LHS 3844 in this image, and the red cross indicates the current position. The blue points are stars that are bright
enough to potentially be the source of the transit signal, while blue crosses are stars that are too faint. The blue circle shows the 10σ upper limit on the motion of the
center of light during transits. The lack of motion rules out the possibility that any of the surrounding stars is the source of the transit signal. Upper right: from the
Science and Engineering Research Council J survey, obtained with a blue-sensitive photographic emulsion in 1978. Middle right: from the Two Micron All Sky
Survey (2MASS) in J-band. Lower right: summed TESS image.

48 Although Newton et al. (2018) did not detect rotational modulation,
subsequent data have allowed for a “Grade B” detection, in the rating system
described in that work.
49 https://lco.global

50 The spectra on UT2018 June 18 were obtained as part of the program
described by Winters et al. (2018a), before TESS started observations.
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Swiss Euler 1.2 m telescope at La Silla Observatory in Chile.
Spectra were obtained on UT2018 September 10 and 11, at
phases 0.211 and 0.645, near the expected radial-velocity
extrema. Radial-velocity calibration was performed with a

Fabry–Pérot device. With exposure times of 45 and 60 minutes,
the signal-to-noise ratio per pixel was about 3 in the vicinity of
600nm. Cross-correlations were performed with a weighted
M2 binary mask from which telluric and interstellar lines were

Figure 2. Light curves of LHS 3844. The top two panels show the TESS data, before and after high-pass filtering. The middle panel is from the MEarth Observatory,
after correcting for systematics. The lower grid of four panels are phase-folded light curves, along with the best-fitting transit model. The TESS data points with error
bars represent 5 minute averages. The MEarth data points represent 8 minute averages. The bottom two panels show data from the TESS Follow-up Observing
Program, both the original data and 5 minute averages.
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removed (Pepe et al. 2002). Only a single peak was detected.
The difference in radial velocities was 60±110 -m s 1, i.e.,
not statistically significant.

To place an upper limit on the radial-velocity variation using
both data sets (see Table 1), we fitted for the amplitude of a
sinusoidal function with a period and phase specified by the
TESS transit signal. The free parameters were the amplitude K,
and two additive constants representing the zero-points of the
CHIRON and CORALIE velocity scales. The result was

= - -
+ -K 28 m s60

64 1, which can be interpreted as a 3σ upper
limit of 0.96MJup on the mass of the transiting object.

3. Analysis

3.1. Stellar Parameters

Using an empirical relationship between mass and Ks-band
absolute magnitude (Benedict et al. 2016), and the parallax
from Data Release 2 of the Gaia mission (Gaia Collaboration
et al. 2016, 2018; Lindegren et al. 2018), the mass of LHS 3844
is 0.151±0.014 ☉M . The uncertainty is dominated by the
scatter in the mass–Ks relation. Based on this mass determina-
tion, and the empirical mass–radius relationship of Boyajian
et al. (2012), the stellar radius is 0.188±0.01 ☉R . These
results are consistent with the empirical relationship between
radius and absolute Ks magnitude presented by Mann et al.
(2015), which gives 0.189±0.006 ☉R . The bolometric
luminosity is  ´ -( )2.72 0.4 10 3

☉L , based on the observed
V and J magnitudes and the bolometric correction from Table 3
of Mann et al. (2015). Based on these determinations of Rå and
Lå, the Stefan–Boltzmann law gives an effective temperature of
3036±77K. The spectral type is M4.5 or M5, based on a
comparison with MEarth survey stars of known spectral types
on a color–magnitude diagram (Gaia G versus H− Ks).

As a check on the preceding calculations, we fitted stellar
atmosphere models to the spectral energy distribution, based on
the apparent magnitudes and the Gaia parallax, including the
correction proposed by Stassun & Torres (2018). This yielded a
luminosity of  ´ -( )2.56 0.4 10 3

☉L , an effective temperature
of 2900±75K, and stellar radius of 0.201±0.012 ☉R . These
values are all consistent with the stellar parameters derived above.

3.2. Light-curve Modeling

We jointly analyzed the light curves from TESS, MEarth,
and TFOP, using the formalism of Mandel & Agol (2002) as
implemented by Kreidberg (2015; batman). We assumed the
orbit to be circular and used a quadratic limb-darkening law
allowing the coefficients to be free. Because of the differing
bandpasses of TESS, MEarth, and the TFOP instruments, each
data set was allowed to have different values for the limb-
darkening parameters. We imposed a prior constraint on the
mean stellar density based on the results of Section 3.1. The
model was evaluated with a 0.4 minute sampling and averaged
as appropriate before comparing with the data. We used the
emcee Markov Chain Monte Carlo code of Foreman-Mackey
et al. (2013) to determine the posterior distributions for all the
model parameters. The results are given in Table 2. Figure 2
shows the best-fitting model. The best-fit planet radii is
1.32±0.02 ÅR indicating that it is likely to be rocky (see,
e.g., Rogers 2015, Wolfgang et al. 2016).
We also performed a fit to the TESS data only, without any

prior constraint on the mean stellar density, in order to allow
for a consistency check between the two density determina-
tions. Based on the stellar parameters derived in Section 3.1,
the mean density is 31.36±0.23 -g cm 3, while the light-curve
solution gives -

+30.0 2.8
7.4 -g cm 3. The agreement between these

Figure 3. Long-term photometric monitoring of LHS 3844 by the MEarth Observatory. One-day averages are plotted, with error bars representing the standard error of
the mean. Data points with higher precision are plotted with more opaque symbols. Based on the sinusoidal modulation observed in the most recent data, the rotation
period is approximately 128 days.

Table 1
Radial Velocities of LHS 3844

BJD Orbital Phase RV sRV Instrument
( -km s 1) ( -km s 1)

2458287.9183 0.33 −10.626 0.056 CHIRON
2458287.9393 0.375 −10.667 0.108 CHIRON
2458369.6266 0.833 −10.719 0.031 CHIRON
2458369.6476 0.878 −10.732 0.046 CHIRON
2458369.6686 0.924 −10.724 0.048 CHIRON
2458371.653268 0.211 −10.600 0.090 CORALIE
2458372.780028 0.645 −10.540 0.068 CORALIE

Note. The 100 -m s 1 difference between the average CHIRON and CORALIE
velocities is due to differences in the instrumental zero-points, and is not
indicative of velocity variation.
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two results is a sign that the transit signal is from a planet, and
is not an astrophysical false positive. A related point is that the
ratio τ/T between the ingress/egress duration and the total
duration is -

+0.11 0.02
0.01, and less than 0.14 with 99% confidence.

This information is used in Section 3.4 to help rule out the
possibility that the fading events are from an unresolved
eclipsing binary. In general, t T R Rp , even when the
photometric signal includes the constant light from an
unresolved star (Morris et al. 2018).

3.3. Photocenter Motion

Many transit-like signals turn out to be from eclipsing
binaries that are nearly along the same line of sight as the
intended target star, such that the light from the binary is
blended together with the constant light of the intended target
star. These cases can often be recognized by measuring any
motion of the center of light (“centroid”) associated with the
fading events (Wu et al. 2010). To do so, we modeled the time
series of the X and Y coordinates of the center of light in the
TESS images as though they were light curves, after removing
long-timescale trends by fitting out a cubic spline. Based on the
fitted depths of the “centroid transits” we were able to put s3
upper limits on centroid shifts of D < ´ -X 2 10 4 and
D < ´ -Y 6 10 4 pixels, corresponding to 4.4 and 13.2 mas.
Thus, there is no evidence for photocenter motion.

3.4. Possible False Positives

As mentioned previously, not all transit-like signals are from
transiting planets. Below, we consider the usual alternatives to
a transiting planet, and explain how the available data render
them very unlikely.

1. The signal is an instrumental artifact. This is ruled out by
the detection of the transit signals with ground-based
telescopes (Section 2).

2. LHS 3844 is an eclipsing binary star. This is ruled out by
the upper limit on radial-velocity variations, corresponding
to a secondary mass of 0.96MJup (Section 2.3). In
addition, the absence of detectable phase variations in
the TESS light curve requires that any companion be
substellar. An 80 MJup companion would have produced
ellipsoidal variations of order 0.1% (see, e.g., Shporer
2017), which can be excluded.

3. Light from a distant eclipsing binary, or a distant star with
a transiting planet, is blended with that of LHS 3844. We
can rule out this possibility thanks to the star’s high proper
motion (800mas yr−1). Because the star moves quickly
relative to background stars, images from previous wide-
field surveys allow us to check for faint stars along the
current line of sight. No sources are detected within 6mag
of LHS 3844, the brightness level that would be required to
produce 0.4% flux dips. In addition, the ground-based
observations require the fading source to be within 2 of
LHS 3844 (Section 2.2), and the TESS images reveal no
detectable motion of the stellar image during transits
(Section 3.3).

4. LHS 3844 is physically associated with an eclipsing
binary star. The light-curve analysis (Section 3.2)
requires the eclipsing object to be smaller than 16% of
the size of the eclipsed star. Since the spectrum is that of

Table 2
Stellar and Planet Parameters for LHS 3844

Parameter Value Source

Catalog information
R.A. (h:m:s)  22:41:59.089 Gaia DR2
Decl. (d:m:s) −69:10:19.59 Gaia DR2
Epoch 2015.5 Gaia DR2
Parallax (mas)  67.155±0.051 Gaia DR2
mR.A. (mas yr−1) 334.357±0.083 Gaia DR2

mDecl. (mas yr−1) −726.974±0.086 Gaia DR2

Gaia DR2 ID 6385548541499112448
TIC ID 410153553
LHS ID 3844
TOI ID 136
Photometric properties
TESS (mag) 11.877 TIC V7
Gaia (mag) 13.393 Gaia DR2
Gaia RP (mag) 12.052 Gaia DR2
Gaia BP (mag) 15.451 Gaia DR2
VJ (mag) 15.26±0.03 RECONSa

RKC (mag) 13.74±0.02 RECONSa

IKC (mag) 11.88±0.02 RECONSa

J (mag) 10.046±0.023 2MASS
H (mag) 9.477±0.023 2MASS
Ks (mag) 9.145±0.023 2MASS
Derived properties
 M ( ☉M ) 0.151±0.014 Parallax +Benedict

et al. (2016)b

 R ( ☉R ) 0.189 0.006 Parallax +Mann
et al. (2015)c

 glog (cgs) 5.06±0.01 empirical relation
+ LCd

 L ( ☉L ) 0.00272±0.0004 Mann et al. (2015)
 Teff (K)e 3036±77 3

MV (mag) 14.39 0.02 Parallax
MK (mag) 8.272 0.015 Parallax
Distance (pc) 14.9 0.01 Parallax
 r ( -g cm 3) 31.73 0.39 empirical relation

+ LCd

Light-curve parameters
P (days) 0.46292913 0.0000019
Tc ( -BJD 2457000)b 1325.72558 0.00025
T14 (minutes)b 31.27 0.28
 =T T12 34 (minutes)b -

+3.73 0.7
0.4

 a R 7.109 0.029
Rp/ R 0.0635 0.0009

 ºb a i Rcos 0.186 0.064
i (degree) 88.50 0.51
Limb-darkening coefficients
c1, MEarth (linear term) -

+0.15 0.10
0.16

c2, MEarth (quadratic term) 0.29±0.20
c TESS,1 -

+0.17 0.11
0.14

c TESS,2 -
+0.26 0.19

0.22

c i,1 -
+0.64 0.14

0.12

c i,2 -
+0.18 0.12

0.18

Planetary parameters
Rp ( ÅR ) 1.303 0.022

a (au) 0.00622 0.00017
Teq (K) 805 20

á ñFj (109 - -erg s cm1 2) 0.0954 0.00070

Notes.
a
The optical photometry is from the RECONS survey, and was measured according to

the procedures described in Jao et al. (2005) and Winters et al. (2015).
b
We adopted the error bar based on the scatter in the empirical relations described by

Benedict et al. (2016).
c
We adopted the error bar based on the scatter in the empirical relations described by

Mann et al. (2015).
d
We fitted the transit light curves with a prior constraint on the stellar mass and radius

derived from Gaia and broadband photometry.
e
The effective temperature was determined from the bolometric luminosity and the stellar

radius.
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an M4-5 dwarf, any secondary star would need to be of
that size or smaller, implying that the eclipsing object is
smaller than ´ ☉R0.16 0.19 or 3.0 ÅR . This rules out a
stellar binary.

5. LHS 3844 is a binary star and the transiting planet is
around the secondary star. The companion would have
to be faint and close to LHS 3844 in order to escape
detection by Gaia (Rizzuto et al. 2018; Ziegler et al.
2018). Another indication that any secondary star needs
to be faint is that the Gaia parallax and apparent
magnitude are consistent with the properties of a single
M dwarf. However, if the transiting planet is around such
a faint companion, then the true transit depth must be less
than about 2% in order for the transiting object to be
smaller than 16% the size of the eclipsed star. Thus, in
order to produce the 0.4% transit we observe, a secondary
star would have to contribute at least 20% of the total flux
in the TESS aperture while still escaping detection by
Gaia and seeing-limited imaging.

Thus, almost all of these scenarios are ruled out, except for
the possibility that the planet is actually orbiting a low-
luminosity secondary star. This scenario seems contrived, and
is a priori unlikely because of the low companion fraction for
mid-M dwarfs (Winters et al. 2018b), the small parameter
space for companions that could produce the transits we
observe, the lower probability for an M dwarf to host a larger
planet compared to a 1.3 R⊕ planet (Berta et al. 2013; Mulders
et al. 2015), and the tendency of selection effects to favor
finding transits around primary stars (Bouma et al. 2018).
Probably the only way to rule out this possibility, or more
exotic scenarios, is through precise Doppler monitoring and
adaptive optics imaging. The vespa code (Morton 2015),

applied to LHS 3844, confirms that the false positive
probabilities due to background eclipsing binaries and
hierarchical eclipsing binaries are extremely low (it returns a
false positive probability of order 10−16).

4. Discussion

LHS 3844b is one of the closest known planets, both in
terms of its distance from the Earth and its distance from its
host star (see Figure 4). It joins the small club of transiting
planets around the Sun’s nearest M dwarf neighbors, which
also includes GJ 1214b (Charbonneau et al. 2009), GJ 1132b
(Berta-Thompson et al. 2015), TRAPPIST-1 b-h (Gillon et al.
2016), and LHS 1140 b-c (Dittmann et al. 2017a; Ment et al.
2018). LHS 3844b is also the most easily studied example of an
ultra-short-period (USP) planet, defined by the simple criterion
<P 1 day (Sanchis-Ojeda et al. 2014; Winn et al. 2018). It has

the largest transit depth of any known sub-Jovian USP planet,
and is closer to Earth than the other well-known systems
CoRoT-7 (Léger et al. 2009), Kepler-10 (Batalha et al. 2011),
Kepler-42 (Muirhead et al. 2012), and Kepler-78 (Sanchis-
Ojeda et al. 2013).
As such, LHS 3844b provides interesting opportunities for

atmospheric characterization through transit and occultation
(secondary eclipse) spectroscopy. With an equilibrium temp-
erature of about 805 K, and an orbital distance amounting to
only 7.1 stellar radii, it is unclear what type of atmosphere the
planet might have, if any. If the planet formed at or near this
location, its primordial atmosphere could have been completely
stripped away during the host star’s youth, when it was much
more luminous and chromospherically active. The observed
radius function of the short-period Kepler planets has a dip at
around 1.8 R⊕ that has been interpreted as a consequence of

Figure 4. LHS 3844 b in the context of other known exoplanets. Left: planet radius and orbital distance for confirmed transiting planets. Right: planet radius and
distance from Earth. The area of each circle is proportional to the transit depth of the planet. Pink circles represent host stars with Teff <3500 K. Planets in the same
system are connected by lines. Based on data from the NASA Exoplanet Archive, accessed on 2018 September 13 (https://exoplanetarchive.ipac.caltech.edu/cgi-
bin/TblView/nph-tblView?app=ExoTbls&config=planets).
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atmospheric loss (Fulton et al. 2017; Fulton & Petigura 2018;
Van Eylen et al. 2018). Planets smaller than 1.8 R⊕ seem to
have lost their primordial hydrogen–helium atmospheres due to
photoevaporation (Lopez & Fortney 2013; Owen & Wu 2013).
With a radius of 1.32 R⊕, we might expect LHS 3844b to have
suffered this process, too. In this case, transit spectroscopy
would show no variation in the planetary radius with
wavelength, although occultation spectroscopy could still be
used to measure the emission spectrum of the planet’s surface.

Indeed, of all the known planets smaller than 2 R⊕,
LHS 3844b has perhaps the most readily detectable occulta-
tions. This is based on a ranking of the 907 planets in the
NASA Exoplanet Archive by a crude signal-to-noise metric,


 

µ ( )F
R T

R T
S N , 1

p p
2

2

which assumes that the star and planet are both radiating as
blackbodies in the Rayleigh–Jeans limit. Here, Få is the star’s
K-band flux, Tp is the planet’s equilibrium temperature, and Tå
is the star’s effective temperature.51 According to this metric,
LHS 3844b ranks second, closely trailing HD 219134 b, which
orbits a much brighter, but larger, star. Even then, LHS 3844b
will likely be easier to observe than HD 219134 b thanks to its
significantly deeper secondary eclipse, which should avoid
observational systematic noise floors, and the planet’s ultra-
short period, which simplifies scheduling observations.

The ultra-short period will also facilitate the measurement of
the planet’s mass through Doppler spectroscopy. Short periods
lead to stronger signals: assuming the planet’s mass is 2.8 ÅM ,
as it would be for a terrestrial composition, the expected
semiamplitude of the Doppler signal is 8 -m s 1, which is
unusually high for a rocky planet. The orbital period is short
enough for the signal to be measured in its entirety in just a few
nights. The stellar rotation period is also 280 times longer than
the orbital, allowing for a clear separation of timescales
between the orbital motion and any spurious Doppler signals
related to stellar activity.

The discovery of a potential rocky planet around a nearby M
dwarf during the first TESS observing sector suggests that the
prospects for future discoveries are bright. It is worth
remembering that 90% of the sky has not yet been surveyed
by either TESS or Kepler.
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