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Abstract

We present limits on the 21 cm power spectrum from the Epoch of Reionization using data from the 64 antenna
configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) analyzed
through a power spectrum pipeline independent from previous PAPER analyses. Previously reported results from
PAPER have been found to contain significant signal loss. Several lossy steps from previous PAPER pipelines
have not been included in this analysis, namely delay-based foreground filtering, optimal fringe-rate filtering, and
empirical covariance-based estimators. Steps that remain in common with previous analyses include redundant
calibration and local sidereal time (LST) binning. The power spectra reported here are effectively the result of
applying a linear Fourier transform analysis to the calibrated, LST-binned data. This analysis also uses more data
than previous publications, including the complete available redshift range of z∼7.5 to 11. In previous PAPER
analyses, many power spectrum measurements were found to be detections of noncosmological power at levels of
significance ranging from two to hundreds of times the theoretical noise. Here, excess power is examined using
redundancy between baselines and power spectrum jackknives. The upper limits we find on the 21 cm power
spectrum from reionization are 1500 mK 2( ) , 1900 mK 2( ) , 280 mK 2( ) , 200 mK 2( ) , 380 mK 2( ) , and 300 mK 2( ) at
redshifts z=10.87, 9.93, 8.68, 8.37, 8.13, and 7.48, respectively. For reasons described in Cheng et al., these
limits supersede all previous PAPER results.

Key words: dark ages, reionization, first stars

1. Introduction

The Epoch of Reionization (EoR) represents a global phase
transition for intergalactic hydrogen from a neutral to ionized
state. In most models, this phase transition is fueled by the first
luminous bodies, which condensed from hydrogen clouds and
began heating and ionizing the surrounding intergalactic
medium (IGM; Barkana & Loeb 2001; Oh 2001). Observa-
tional constraints limit the timing of this event to somewhere in
the redshift range (12<z<6).

The 21 cm photons emitted from the spin–flip transition of
hydrogen are predicted to be a powerful probe of cosmic
evolution during this time (Furlanetto et al. 2006). For in-depth
reviews of the physics of 21 cm cosmology, refer to Barkana &
Loeb (2007), Morales & Wyithe (2010), Loeb & Furlanetto
(2013), and Pritchard & Loeb (2010).

As observed from Earth, the 21 cm line is redshifted into the
100MHz radio band, where it competes with human
interference and astrophysical emission from both the Milky
Way and other galaxies. Interference is mitigated by careful
radio frequency (RF) design and choosing a remote and
regulated location for observation,18 leaving astrophysical
foregrounds as the principal contaminant, dominating the
cosmological 21 cm background by four or five orders of
magnitude. The foreground challenges faced by modern radio
arrays have been discussed in detail in previous literature (e.g.,
Santos et al. 2005; Ali et al. 2008; de Oliveira-Costa et al.
2008; Bernardi et al. 2009, 2010, 2013; Ghosh et al. 2011;
Pober et al. 2013; Yatawatta et al. 2013).
Detection of 21 cm emission by the neutral hydrogen

medium is the target of multiple experiments including those
aimed at a globally averaged total power measurement
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(EDGES, Bowman & Rogers 2010; LEDA, Bernardi et al.
2016; SARAS, Patra et al. 2015; BIGHORNS, Sokolowski
et al. 2015; SCI-HI, Voytek et al. 2014) and the fluctuations
caused by heating, cooling, collapse, and ionization (GMRT,
Paciga et al. 2013; LOFAR,19 Yatawatta et al. 2013; MWA,20

Tingay et al. 2013; HERA,21 DeBoer et al. 2017).
The Donald C. Backer Precision Array for Probing the Epoch of

Reionization (PAPER22; Parsons et al. 2010) was an exper-
imental interferometer with the goal of placing some of the first
limits on these fluctuations. The PAPER experiment observed
in stages, with the number of antennas increasing by factors of
2 roughly every year. Previous PAPER publications include the
eight-station results (Parsons et al. 2010), the 32 element power
spectrum estimates (Pober et al. 2013; Parsons et al. 2014;
Jacobs et al. 2015; Moore et al. 2017), the 64 element power
spectrum estimates (Ali et al. 2015; hereafter A15), and our
companion paper (Cheng et al. 2018, hereafter C18).

Through the reanalysis described in C18, additional signal
loss in the empirical covariance inversion method was
discovered (Ali et al. 2018). Signal loss is the unintentional
removal of the target cosmological signal during analysis.
In A15, this results from the use of empirically estimated
covariance matrices as a weighting matrix in the quadratic
estimator (QE) during power spectrum estimation. An empiri-
cally estimated covariance matrix contains terms related to the
data; this dependence induces higher order (i.e., non-quadratic)
terms in the estimator. Applying QE normalization despite these
terms then violates the assumptions of the statistics of the QEs
and produces a biased result with incorrect power levels (e.g.,
signal loss). This effect is described more thoroughly in Section
3.1.1 of C18. C18 also describes how the amount of signal loss
in the A15 analysis was underestimated and was further
obfuscated by similarly underestimated uncertainties (from both

analytic noise estimates and bootstrapped error bars). The C18
analysis presents a detailed look at the origin of these issues but
does not deliver a revised analysis for the same data. In this
paper, we take a different look using an independently developed
pipeline, which conservatively has had many lossy steps
removed (see Figure 1).
Specifically, we aim to make improvements in two areas. First,

we use the independently developed pipeline SIMPLEDS,23 which
has minimal common code with the original PAPER pipeline
built for A15 and extended by C18. Second, this analysis
reduces the number of pipeline steps. The basic concept of the
delay spectrum is retained with a power spectrum measurement
coming from each type of baseline; however several steps have
been removed and others replaced. The steps used in this type
of analysis can be broken into three sections: calibration and
averaging over multiple nights (LST binning), foreground
filtering and time averaging, and power spectrum estimation.
The reanalysis described in C18 focused almost exclusively

on the final stage. In this analysis, the intermediate stages (like
foreground filtering) have been re-examined, and in all cases
either removed or simplified. This paper uses data sets that
have been previously interference flagged, calibrated with
redundant calibration, LST binned, and absolutely calibrated to
Pictor A. As this analysis takes advantage of archival LST-
binned data products, the stages prior to binning are unchanged
from previous analyses.
This paper is organized as follows: we discuss the three

pipeline inputs by reviewing the data used in this analysis in
Section 2, the input noise simulation in Section 3, and the
simulated sky input used to calibrate power spectrum normal-
ization and examine additional signal loss in Section 4. The
major changes in the analysis pipelines between this work
and A15 are discussed in Section 5. We investigate how closely
the PAPER baselines adhere to the redundant layout in
Section 6. In Section 7, we review the revised power spectrum
estimation techniques and uncertainties. The multiredshift

Figure 1. Comparison between the prior PAPER analysis by Ali et al. (2015) and “simpleDS.” The frequency-independent fringe-rate filter has a smoother delay
response compared to the one used in A15 and C18 in order to reduce leakage of foreground power outside the wedge. The delay filter for foreground removal has
been omitted from this analysis to keep the pipeline as simple as possible. While the foreground removal technique should not affect cosmological signals outside the
wedge (Parsons & Backer 2009; Parsons et al. 2012b, 2014), recent works have shown that the use of this filter does not produce a statistically significant reduction in
power at high-delay modes (Kerrigan et al. 2018). Also, we find that the Fourier transform from frequency into delay is not dynamic range limited when including the
foreground signals. Most importantly, in order to avoid signal loss during power spectrum estimation, we use a uniformly weighted fast Fourier transform (FFT)
estimator instead of the empirical inverse covariance weighted OQE used in previous PAPER works.

19 www.lofar.org
20 mwatelescope.org
21 reionization.org
22 eor.berkeley.edu 23 github.com/RadioAstronomySoftwareGroup/simpleDS
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power spectrum results are presented in Section 8, and upper
limits on the 21cm power spectrum are presented in Section 9.
Finally, we provide some concluding remarks in Section 10.

2. Data

In the next three sections, we discuss the three major inputs
to our power spectrum pipeline: the observed data, simulated
thermal noise, and the simulated foreground visibilities in
Sections 2–4, respectively.

2.1. Data Selection

The PAPER-64 antennas were arranged in an 8×8 grid as
illustrated in Figure 2. The grid arrangement enables many
repeated measurements of a single spatial Fourier mode to be
averaged together before squaring, which delivers higher
sensitivity for these PAPER elements than a nonredundant
configuration (Parsons et al. 2012a). This configuration is also
well matched to the delay spectrum method of measuring the
power spectrum where visibilities are Fourier-transformed
along the spectral dimension to make a one-dimensional slice
through the three-dimensional Fourier domain (Parsons et al.
2012b).

In principle, the delay spectrum method can be used to
approximate a power spectrum for every pair of antennas,
which allows a great deal of freedom to explore systematic
effects that vary from antenna pair to antenna pair. However, in
this analysis, we limit our data volume by only forming power
spectra from select baselines. Specifically, we use only three
baseline types of the shortest length (30 m) as illustrated in
Figure 2. The shortest baselines are the most numerous and
therefore provide the most sensitive measurements. The
shortest baselines also probe what are likely to be the brightest
modes of the diffuse reionization power spectrum. However,
the shortest spacings are also sensitive to diffuse foreground
power, which is known to be brighter than the extragalactic
point source background on these scales (Beardsley et al.
2016). The exact tradeoffs between foregrounds, calibration
error, and sensitivity are a matter of ongoing research.

The data used here come from the PAPER-64 season which
ran for 135 nights between 2012 November 8 (JD 2456240)
and 2013 March 23 (JD 24563745). Three antennas (19, 37,
and 50) have been flagged due to higher levels of spectral
instability and were also flagged in A15.

2.2. Calibration and LST Binning

The analysis described here begins with data that were
previously compressed, calibrated, and LST binned. The
details of the compression, calibration, and binning process
are described more completely in A15; here, we briefly
describe the salient details. Compression is achieved with the
application of a fringe-rate filter (FRF; described in more
detail in Section 5.1) and a wideband iterative deconvolution
algorithm (WIDA; described in more detail in Section 5.2) to
limit the data to fringe rates less than f23 mHz and delays
less than t m 1 s∣ ∣ . It also decimates along both time and
frequency axes to Nyquist-sample the data from the correlator
output. These values are the same as those of A15, and
the compression process is described in more detail in
Parsons et al. (2014). This compression process may imprint
systematic biases in the data but those are not investigated in
this work. After compression, data were first calibrated
redundantly using logarithmic calibration and linear calibra-
tion techniques (Liu et al. 2010; Zheng et al. 2014; Dillon
et al. 2018). An imaging-based flux density calibration was
also applied using Pictor A fluxes derived from Jacobs et al.
(2013).
The data are then grouped into bins according to local

sidereal time. Within each bin, samples with modified z-scores
above ∼4.5 are flagged. As opposed to z-scores, which use a
sample set’s mean and standard deviation to find outliers,
modified z-scores use the median and median absolute
deviation (MAD). Modified z-scores are discussed in more
detail in Section 6 and thoroughly in Iglewicz & Hoaglin
(1993). Data are binned into two sets, one containing odd-
numbered days and the other even. These can then be
differenced to estimate the noise and cross-multiplied for a
power spectrum unbiased by noise.

2.3. Flagging and Subband Selection

We find that compared to all other antennas in the LST-binned
data set, antennas 3 and 16 have an anomalously low number of
samples. After LST binning, most baselines have samples from
between 30 and the full 64 days in each frequency/time bin;
baselines associated with antennas 3 and 16 contain bins with as
few as 10 days sampled during the transit of Fornax A (∼3 hr in
the LST). In the interest of uniformity, these two antennas were
therefore flagged and excluded from analysis. In a similar way,
we limit the range of LSTs included in the final power spectrum
to times that are sampled repeatedly throughout the observing

Figure 2. The antenna positions of PAPER-64. Highlighted are the three baseline types used in this analysis. These baselines consist of east–west baselines from
adjacent antenna columns with no row separation (e.g., 49–41, 1–4, 0–26), baselines with one column separation and one positive northward row separation (e.g.,
10–41, 1–48, 0–38), and baselines with one column separation and one negative northward row separation (e.g., 49–3, 1–18, 0–46). A red “×” denotes antennas that
have been flagged from analysis. Reasons for flagging include previously known spectral instability (19, 37, and 50), low number of counts in LST binning (3 and 16),
and suspected nonredundant information (31).
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season, corresponding to a time window between
LSTs 00 30 00 and 08 36 00h m s h m s.24

The data are then divided along the frequency axis into
smaller redshift bins for further power spectrum analysis. A
practical limitation in redshift selection comes from a desire to
avoid including channels with significant RFI flagging. Bands
with the most continuous spectral sampling span the redshift
range 11–7.5. We select redshift ranges that are approximately
coeval, i.e., bandwidths over which limited evolution of the 21
cm signal is expected. To accommodate this constraint, we
adopt a band size of 10MHz.

This band size allows us to choose a number of spectral
windows with very little to no RFI flagging. The specific
windows chosen here are centered on z=10.87, 9.93, 8.68,
8.13, and 7.48 (119.7, 130.0, 146.7, 155.6, and 167.5 MHz
respectively). These bands are illustrated visually in Figure 3.
Two subbands centered at 112 and 178MHz could also be
constructed with minimal RFI flagging; however, these bands
contain significant high-delay systematics even after the
application of the FRF and provide little unique information
both cosmologically and toward the identification of persistent
systematics. The model of the beam is dominated by
extrapolation in some or all of the frequencies in these
subbands, and as a result, data products that depend heavily on
the beam (the input simulation, thermal noise estimate, and
input noise simulation) are not credible outside of the selected
bands. As a validation check, we also include a reprocessing of
the z=8.37 bin centered at 151.7 MHz, which was analyzed
in A15 and C18.

3. Noise Simulation

In parallel with the observed PAPER data, we process a
simulation of thermal noise to help validate the simpleDS
pipeline’s normalization, power spectrum estimation, and
bootstrapped variance estimation techniques. To generate the
input noise simulation, we assume that the per-baseline noise is
drawn from a complex Gaussian distribution s 0, n( ). To
determine the width, σn, of this distribution, we use the

radiometer Equations (9)–(15) from Clark (1999),

s
h n

=
D t

SEFD

2
, 1n

2
2

2
acc

( )

where SEFD is the system equivalent flux density, η is the
antenna efficiency, Δν is the observing bandwidth in a
frequency bin, and tacc is the accumulation time of the
observation.
The quantity hSEFD/ is a measure of the expected variance

of samples of the total noise power. Assuming the noise is
Gaussian, the noise power is the variance of the underlying
distribution, often described by a system temperature, Tsys. This
quantity then is a measure of the variance of the sample
variance of a Gaussian distribution, which equates to
s µ T2n

2
sys
2 . This factor of 2 will cancel with the factor in

Equation (1).
Substituting this into Equation (1) yields an expression for

the variance of a realization of noise,

s
n

=
D

T

t N
, 2n

2 sys
2

acc days
( )

where we added the term Ndays to account for the averaging of
individual samples during LST binning, assuming the noise is
independent between days.
We assume that the system temperature, Tsys can be

described by the relations from Rogers & Bowman (2008),

n
= +

-
T T180 K

180 MHz
, 3sys

2.55

rcvr⎜ ⎟⎛
⎝

⎞
⎠ ( )

where we retain the parameters as measured or noted in past
PAPER reports, most recently by A15: a sky temperature model of
T180=180K with a spectral index of α=−2.55, a frequency-
independent receiver temperature Trcvr=144K (this parameter is
taken from C18), a resolution of nD = 100 MHz 203/ and an
integration time tacc=42.95 s.
Using Equation (2), we create a data set of Gaussian random

noise matched in shape to the observed PAPER data. These
simulated noise data are processed through simpleDS in
parallel with the PAPER data.

Figure 3. The six frequency bands used in this analysis plotted over the relative occupancy of flags from RFI. Redshift bands are denoted by the Blackman–Harris
window functions used during the Fourier transform from frequency to delay in order to reduce foreground leakage to high delays. The specific windows chosen here
are centered on z=10.87, 9.93, 8.68, 8.13, and 7.48 (119.7, 130.0, 146.7, 155.6, and 167.5 MHz respectively). Two subbands centered at 112 and 178 MHz could
also be constructed with minimal RFI flagging; however, these bands contain significant high-delay systematics even after the application of the fringe-rate filter and
provide little unique information both cosmologically and toward the identification of persistent systematics. The model of the beam is dominated by extrapolation in
some or all of the frequencies in these subbands, and as a result, data products that depend heavily on the beam (the input simulation, thermal noise estimate, and input
noise simulation) are not credible outside of the selected bands. Frequency bands used in this analysis include the 150 MHz, z=8.37, band used in C18 and A15.
This redshift bin is included in order to properly compare with previous works, but it is worth noting that the information obtained from this bin is not entirely
independent from the two redshift bins with which it overlaps.

24 Note that the LST range here is slightly different from A15 but is identical
to the one used in C18.
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4. Simulated Sky

There are several challenges in making an accurate
simulation of 21 cm instruments, ranging from the limited
accuracy of catalogs to the computational challenges in
simulating large fields of view and large bandwidths. A
simulation of millions of sources from horizon to horizon over
hundreds to thousands of channels and baselines is a
formidable challenge. Simulators addressing these challenges
include PRISim25 (Thyagarajan et al. 2019), OSKAR26 (Mort
et al. 2010), FHD27 (Sullivan et al. 2012), and to a limited
extent CASA28 (McMullin et al. 2007). The pyuvsim Python
package (Lanham et al. 2019) is currently being developed to
produce exactly such simulations as well.

Testing the power spectrum code on a foreground-only
instrumental simulation can reveal internal inconsistencies,
including scaling errors and other code errors; it can also help
provide estimates of uncertainties in calibration and other
sources of error. PAPER’s wide field of view (∼45° FWHM
beam with significant sensitivity all the way to the horizon;
Pober et al. 2012) drives a requirement for a simulation which
does not employ flat-sky assumptions or approximations. One
such simulator is PRISim, which performs a full-sky visibility
calculation given lists of catalogs (Thyagarajan et al.
2015a, 2015b). Using PRISim, we generate ∼8 hr of simulated
PAPER data matching the observing parameters of the LST-
binned data set.

The goal of this simulation is not to produce an accurate
model of the sky suitable for subtraction or calibration, but
rather to provide a sky-like input to the simpleDS power
spectrum pipeline for power spectrum internal checks and
rough comparison. The simulation can confirm the overall scale
of our final power spectrum and helps identify sky-like modes
which may leak outside of the horizon under a the delay
transformation.

The sky model used by PRISim includes a GSM diffuse
model (de Oliveira-Costa et al. 2008), point sources from the
GLEAM sky survey with flux density >1 Jy at 150MHz
(Wayth et al. 2015; Hurley-Walker et al. 2017), a model of
Pictor A created from GLEAM, and a model of Fornax A
created by using clean components derived from the deconvo-
lution techniques described in Sullivan et al. (2012; R. Byrne &
P. Carrol 2018, personal communication). This Fornax A
model has a total flux of 541.7 Jy at 180MHz, consistent with
the low-frequency observations assuming a spectral index of
−0.8 (McKinley et al. 2015). PRISim simulates diffuse
emission as collections of Gaussian point sources, much like
CLEAN components. The GSM component list is generated by
interpolating the GSM HEALPix map to be oversampled by a
factor of 4, and each pixel is then treated as an independent
point source.

It is expected that this simulation will not perfectly reproduce
the PAPER data, due not only to incompleteness in the sky model
and imperfections in the instrument model, but also because of
potential errors or approximations in the methodology simulation
code itself (e.g., the choice to model the sky as made of point
sources). To avoid the overinterpretation of the simulation results,

we limit our use of PRISim foreground simulations to checking
the flux scale (Section 4.2), understanding the impact of time
averaging (Section 5.1.1), computing foreground error bar
components (Section 7.1.3), constraining the general shape of
the foreground power spectrum (Section 8), and establishing the
expected change in foreground power with LST (Section 8.2.2).

4.1. Simulation Results

We begin the comparison of the input data and simulated
PRISim data by noting that PRISim has, in the past, been
primarily used to simulate delay power spectra rather than in
the image domain; as such, we omit any detailed comparison of
simulated phases with data. Similarly, the PRISim implementa-
tion of the PAPER beam has not been tested at a detailed level
(for example, by imaging), and so delay modes near the
horizon limit are not expected to be simulated as accurately as
those well within the foreground wedge (see, e.g., Pober et al.
2016)
A comparison of the simulated and observed data is shown

in Figure 4. Though some of the detailed fringing structures are
not reproduced in the simulation, the relative shape of the
fluctuations appear well matched between the two data sets.
The overall amplitude, however, of the two data products
differs significantly.

4.2. Absolute Calibration Check

One key question is the absolute calibration of the power
spectrum amplitude scale. This scale combines a number of
factors including the absolute calibration performed on the data
described in Section 2.2, the conversion from Jansky to mK, the
Fourier transform convention, and the cosmological scaling of
delay modes. Each is relatively simple but important to check
(for example, an error in h scales as h3 on Δ2).
Figure 5 shows the ratio of amplitudes between observed and

simulated visibilities, averaged over redundant baselines. While
both the observed and simulated data exhibit similar fringe
patterns, the largest differences occur between LSTs of 5 and 7
hr. This is near the galactic anticenter and may be indicative of
an incomplete sky model. The PAPER beam model used is a
polynomial fit of the spherical harmonic coefficients (alm) fit
from laboratory measurements taken between 120 and
180MHz; beyond this range, the simulated data are excluded
from further analysis.

Figure 4. An LST–frequency plot of the amplitude of representative observed
visibilities (left) and the PRISim simulation (right) for the ∼8 hr of data
analyzed in this work. While many details in the visibility amplitude structure
do not match, there is general agreement, particularly near LST ∼3 hr when
Fornax A transits over the instrument.

25 The Precision Radio Interferometry Simulator (PRISim) is publicly
available at github.com/nithyanandan/PRISim.
26 https://github.com/OxfordSKA/OSKAR
27 https://github.com/EoRImaging/FHD
28 https://casa.nrao.edu/
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The ratio also becomes large where interference between
fringing sources drives the visibility amplitudes close to zero,
but overall the ratio is generally close to unity. These zero
crossings make a mean value difficult to interpret; here we
make a best estimate by computing the likelihood of a range of
scale values (g) given the baseline to baseline variation,

å n n
n

=
- * -

*n
 g

g V t V t

V t
log

, ,

2 var ,
, 4

t, ,bl

sim bl
2

bl
( ) ( ( ) ( ) )

( ( ) )
( )

where the subscript “bl” refers to a unique redundant group,
and the variance (var(V(ν, t)bl) is computed over all baselines in
a redundant group.

The scale factor is fit over the domains [0.5, 4.5] hr in LST
when the foreground simulation fringe pattern shows the most
agreement with the observed visibilities and over the
frequencies [120, 180] MHz where the PAPER beam model
is most reliable.

The maximum likelihood scale factor is 1.54±0.04 at 95%
confidence. This is consistent with the ratio observed during the
first half of the data set in LSTs 1h to 5h (the dashed line
plotted in Figure 5). This scaling factor is used when estimating
the expected foreground signal in Section 7.1.3 and as an
overall scaling factor on the power spectrum estimated from the
simulated data in Section 8.

4.2.1. Model Scale Discussion

The 50% difference in scale between the model and the data
is notable enough to merit further discussion. There are many
possible sources for this difference, including uncertainty in
catalog inputs to the PRISim simulator, the instrument model
itself, the calibration of the PAPER data, or some combination
of all three. Deeper investigation requires careful testing of

each component separately, work that is beyond the scope of
the present study. However, it is worth reviewing some of these
aspects.
The original absolute calibration reported in A15 was done

by imaging the Pictor field (at LST=4 hr) in each channel,
correcting for a primary beam model and fitting a Gaussian to
the extracted Pictor A source. This was done in 10 minute
snapshots with the resulting spectra averaged together. The
standard deviation of the flux estimate was of order ∼25 Jy at
68% confidence on each channel. A similar scale variation seen
from channel to channel was consistent with sidelobe
confusion. The change in scale due to that effect was on the
order of a few percent.
The difference could also be attributed to the calibration of

the simulator. Work is in progress to better verify the accuracy
of array simulation codes; lacking firm conclusions, we only
expect PRISim simulations of diffuse structure to be accurate in
amplitude to within a factor of 2 (Thyagarajan et al. 2015a).
Because the flux calibration of the simulations has not been

rigorously independently tested, and the flux scale for the data
is tied to a well-established model in Jacobs et al. (2015), we
scaled the simulation to match the data. The flux calibration in
this paper is thus unchanged from A15.

5. Analysis Pipeline Comparison

In this section, we describe the differences in the analysis
steps prior to Fourier transform and power spectrum estimation
between this work and A15: the time averaging and foreground
removal techniques (see Figure 1).

5.1. Time Averaging

The LST-binned data were initially averaged into 43s bins,
a timescale that is short compared to the ≈3500s fringe

Figure 5. Ratio of the amplitude of the simulated to observed visibilty (left) and the uncertainty of the ratio (right); notice the difference in color scales. The observed
is obtained by an unweighted average over all baselines and the uncertainty from the variance across baselines. Also plotted are the mean of the ratio and uncertainty
averaged along the time axis (bottom panel) and frequency axis (right panel) with the maximum likelihood scale factor overplotted (black dashed). While both the
observed and simulated data exhibit similar fringe patterns, the largest differences occur between LSTs of 5 and 7 hr. This is near the galactic anticenter and could be
indicative of an incomplete sky model. The most likely model scale factor is 1.54±0.04 at 95% confidence.
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coherence time of the 30 m baselines (see Section 3.5 in A15).
Here, as in past PAPER analyses, we choose to perform
additional time averaging by convolving the time stream with a
windowing function. This function is defined as a filter in
fringe-rate space (the Fourier dual to LST), which can be tuned
to maximize sensitivity to sky-like modes and exclude slowly
varying systematics. Parsons & Backer (2009) showed that a
fringe rate corresponds to sky-like rates of motion which map
geometrically to a great circle on the sky. Parsons et al. (2016)
then showed that an FRF can be defined with weights
corresponding to the square root of the instrument’s primary
beam power squared and integrated along the line of constant
fringe rate. Applying an FRF with this weighting provides
optimal thermal sensitivity in power spectrum estimation.

Previous PAPER analyses have used variations on such a
filter. A15 formed the beam-weighted filter, fitted a Gaussian in
fringe-rate space, and then artificially increased the width of the
Gaussian to provide easy parameterization across the PAPER
bandpass and decrease the effective time integration. A similar
Gaussian fit was also used and discussed in C18, but the width
of the fit was not increased in this analysis.

However, as can be seen in the right-hand side of the top of
Figure 6, this filter is frequency dependent. In particular, the
maximum fringe-rate range probed by a baseline increases
linearly with frequency. This spectral dependence may
introduce additional structure during the delay transform;
further investigation is needed to find the best approach for
mitigating this effect.

Additionally, the use of these “aggressive” FRFs has also
been shown to contribute to signal loss (C18) especially when
used in conjunction with quadratic power spectrum estimators.

While QE formalism is not used in this work, as a
simplification to avoid potential signal loss and reduce
contamination of high-delay modes, we adopt a top-hat filter
that weights all fringe rates evenly across frequency, similar to
the filter used in Parsons et al. (2012b). The maximum fringe
rate passed by our filter is set by the highest frequency included
in the data set; the lowest fringe rate passed is chosen to
exclude known common-mode signals with zero fringe rates.
This results in an effective integration time of ∼940s
measured as the equivalent noise bandwidth of the windowing
function. While the filter results in suboptimal thermal
sensitivity on the estimated power spectrum, it is designed to
remove a common-mode signal observed in previous PAPER

analyses while providing a moderate increase in thermal
sensitivity.

5.1.1. Common Mode

Past PAPER analyses have noted signals that vary on
timescales longer than would be expected from an ideal
interferometer (Ali et al. 2015). Such common modes29 are
excluded here by setting the minimum fringe rate included in
the filter to 3.5×10−5 Hz; this excludes all modes with
periods longer than ∼45 minutes.
Suppressing slowly or negatively fringing sources will

suppress sources with elevations at or below the south celestial
pole. These modes are generally low in the ∼45° PAPER
primary beam. When applying this filter to our foreground
simulation, the total simulated power is observed to decrease
by 7.97%; as a result, we apply a correction factor of 1.086 to
our power spectrum estimates and their uncertainties to account
for the associated signal loss.
Waterfall plots of a representative baseline before and after

the application of the fringe-rate filter are shown in Figure 7.
The application of the FRF removes very fast fringe modes but
preserves the structure of eastward-moving sky-like modes.
Also visible is the common mode at fringe rate=0 mHz,
which is suppressed by the the application of the FRF. Without

Figure 6. Comparison of the top-hat fringe-rate filter (TH, left) and the filter
used in C18 (right) in the fringe-rate–frequency domain. The C18 filter varies
with frequency, and this spectral variation can cause additional structure when
performing a delay transform of the visibilities. In the interest of simplicity in
this analysis, we choose to perform time averaging with the TH filter.

Figure 7. Top: LST and frequency waterfalls of representative baselines taken
from the even LST-binned set before (left) and after (right) application of the
top-hat FRF. The baseline illustrated is the antenna pairs (1, 4). The application
of the fringe-rate filter removes very fast fringe modes but preserves the
structure of sky-like modes. Bottom: the same baseline before (left) and after
(right) the application of the FRF plotted in fringe rate and delay space. The
Fourier representation of the data illustrates the common mode at fringe
rate=0 mHz suppressed by the filter.

29 Previously referred to as “crosstalk.” These common-mode signals may not
necessarily result from signals observed in one antenna and leaked to another (a
time-delayed sky signal) but rather any time-independent signal that is
observed by all antennas.
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filtering, the common mode would create a strong bias at high-
delay modes during power spectrum estimation.

5.2. Foreground Removal

To mitigate foreground contamination during power spec-
trum estimation, PAPER analyses have used a WIDA often
referred to as a “clean-like” iterative deconvolution algorithm.
This algorithm relies on the underlying mathematics of
CLEAN as described in Högbom (1974) to remove delay
components from PAPER data inside of some range of delays.
This type of deconvolution and its specific application to radio
data are described in Parsons & Backer (2009). The WIDA was
used in Parsons et al. (2012b, 2014), Jacobs et al. (2015), A15,
Kerrigan et al. (2018), and C18.

The use of this filtering technique has been omitted from this
analysis. While the technique should not affect cosmological
signals outside the user-defined range of delays to clean
(Parsons & Backer 2009; Parsons et al. 2012b, 2014, and
explored further in Kerrigan et al. 2018), recent works have
also shown the use of this filter does not produce a statistically
significant reduction of power at high-delay modes (Kerrigan
et al. 2018). Because our analysis aims to focus on upper limits
set at high-delay modes, we omit this step in the interest of
simplicity. Even without any attempt to remove foregrounds
from the visibility data, we find that our delay transform used to
estimate the cosmological power spectrum is not limited by the
inherent dynamic range of the transform.

6. Redundancy of PAPER Baselines

Before estimating the power spectrum of the data, we
conduct statistical tests on the observations to determine the
degree to which the baselines are redundant. The per-baseline
delay spectrum estimation technique described in Parsons et al.
(2012b) can be averaged across all baseline cross-multiples
only for perfectly redundant baselines.30 While it is unrealistic
to assume that the PAPER baselines are perfectly redundant,
this analysis can help identify extreme outliers which should
not be used in the power spectrum estimation.

As discussed in Section 2.1, the 8×8 antenna configuration
used in the PAPER-64 deployment was chosen to increase
sensitivity on baselines with many redundant observations.
Each of the three baseline vectors are sampled many times
across the grid-like array. Rather than averaging baselines
together (as was done in previous PAPER analyses for
computational simplicity), we cross-multiply all redundant
pairs and then bootstrap-average for an estimate of the
variance. This is described in more detail in Section 7.1.1.

A first test of the array’s redundancy is to compare the
measured variation between baselines with that expected due to
thermal noise, using the input noise simulation discussed in
Section 3.

As a measure of variance between baselines, we take the
MAD of the visibility amplitude across redundant baselines for
each frequency and time, defined as

n n n= -t V t V tMAD , median , median , , 5i j,( ) (∣∣ ( )∣ (∣ ( )∣)∣) ( )

where the median visibility amplitude is taken at each time and
frequency across the redundant baseline group.

The MAD for both data and our noise simulation is shown in
Figure 8. For perfectly redundant sky measurements, the
individual baseline measurements will only differ by thermal
noise. Some frequency–time pairs have an MAD consistent
with thermal noise; however, the larger deviations observed at
other frequencies and times illustrate a significant amount of
nonredundant information in the data.
We then use the MAD to estimate the significance of each

baseline’s deviation from the median baseline measurement
using the modified z-score (Mz(t, ν)) defined as

n
n n

=
-

M t
V t V t

, 0.6745
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MAD
, 6z
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which can be thought of as the number of “sigmas” each data
point is away from the median. The 0.6745 scaling factor is
introduced to normalize the modified z-score for a large number
of samples (Iglewicz & Hoaglin 1993).
These scores, Mz, are calculated for each set of LST-binned

data (even and odd). In order to provide an estimate of a single
Mz for every baseline, the modified z-scores are initially
averaged in quadrature of the LST day dimension. The
histograms of these modified z-scores averaged in quadrature
over LST day for both the input data and noise simulation are
shown in the left-hand side of Figure 9. A quadrature average is
chosen to identify absolute outliers as opposed to an
unweighted averaged, where a hypothetical baseline with an
even distribution of positive and negative outliers could
average to zero.
The distribution of modified z-scores for all frequencies and

times illustrates a significance of nonredundant signal beyond
the contributions from thermal fluctuations. To better identify
the baselines (or antennas) contributing to this nonredundant
information, a quadrature average is performed over the
frequency and time dimensions for all baselines, and the
resulting distribution is shown in the right-hand side of
Figure 9.
Because the noise simulation is a model of perfect

redundancy, the quadrature averaging produces a very narrow
distribution centered near 1. As a result, it is impossible to
remove only a small number of outlier baselines (or antennas)

Figure 8. A representative median absolute deviation (MAD) for both data
(left) and noise simulation (right) computed for each time and frequency
observed by PAPER in the LST range -00 30 00 08 36 00h m s h m s. The data
shown here corresponds to strictly east–west baselines in Figure 2. For
perfectly redundant sky measurements, the individual baseline measurements
will only differ by thermal noise. The large amplitude of the deviations
observed illustrates that there is a significant amount of nonredundant
information in the data.

30 Or if the nonredundant component of an ensemble of baselines is described
by a random variable with mean 0 (like Gaussian noise).
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using a cut based on the distribution of scores from the noise
simulation. The variance of the distribution of the noise is ∼40
times smaller than the distribution from the data. As such,
performing a statistical cut based on the distribution of the
noise simulation would result in removing ∼85% of all
baselines. This redundancy analysis is aimed to only remove
the worse antenna (or two) from the analysis, not drastically
reduce the number of input baselines. Therefore, a visual
analysis of the distribution of modified z-scores is necessary to
identify potential outliers.

The two baselines (21, 31) and (31, 45) present as obvious
candidates for removal. Both baselines have modified z-scores
greater than 4, and removing them is consistent with a cut at
Mz=3.5 as suggested in Iglewicz & Hoaglin (1993). The
removal of these two baselines also flags antenna 31 entirely
from the analysis as it contributes only to these baselines. The
distribution of modified z-scores without this outlier antenna is
also plotted in Figure 9.

Although no other baselines qualify as outliers, the
difference in distributions between the data and noise
simulation indicates an amount of nonredundancy significantly
inconsistent with thermal noise fluctuations from the baselines
in this analysis and may affect the interpretation of our final
power spectrum estimates.

7. Power Spectrum Estimation

Our analysis pipeline uses a delay-based power spectrum
estimation technique first developed in Parsons et al. (2012b).
The highly redundant baseline configuration in PAPER provides
high thermal sensitivity on a small subset of short (∼30 m)
baselines by observing repeated samples of the same sky signals

with independent noise (Parsons et al. 2012a). Also, the fringe
spacing corresponding to the baselines and observing frequencies
probe a single spatial fluctuation scale (k⊥-mode) as a function of
frequency. By Fourier-transforming along the frequency axis into
delay space, foregrounds are expected to be constrained to an
area bound by the maximum geometric delay of the chosen
baseline (Parsons et al. 2012b). Additionally, Kerrigan et al.
(2018) showed that an application of foreground subtraction
applied to delay-based power spectrum estimators only affects
delay modes just outside of the geometric delay limit of a
baseline. As such, thermal sensitivity at delay modes larger than
the maximum geometric delay of a baseline should be unaffected
whether or not foregrounds are subtracted. The high thermal
sensitivity and constrained foreground in delay space make
PAPER well suited for a delay-based power spectrum estimation.
The power spectrum of the 21 cm emission can be estimated

directly from interferometric visibilities following Parsons et al.
(2012a, 2014):

l
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where λ is the observed wavelength, X2Y converts from
interferometric units to cosmological units, kB is the Boltzmann
constant, Ωeff is the effective area of the primary beam
depending on the units of the input visibility (Parsons et al.
2014, 2016), ò n f n=B dpp

2∣ ( )∣ is the effective bandwidth of
the power spectrum estimation where f(ν) is the spectral taper
function used during Fourier transformation, and tV t,ĩ ( ) is the
delay-transformed visibility observed by baseline i. This
formula assumes the baselines over which the delay transform

Figure 9. A histogram of modified z-scores of data averaged in quadrature over LST day (even/odd; black line) and input noise simulation also averaged over LST
day (orange) before (left) and after (right) averaging in quadrature over frequencies and times. Also plotted is the distribution of z-scores after removing any identified
outliers (dashed red). The visual shoulder in the left-hand plot nearMz∼50 is evidence of nonredundant contributions larger than the fluctuations from thermal noise.
To identify the contaminating baselines, a quadrature average of the frequency and time axes is performed to produce a single modified z-score per baseline. The
variance of the distribution of the noise is ∼40 times smaller than the distribution from the data. As such, performing a statistical cut based on the distribution of the
noise simulation would result in removing ∼85% of all baselines. This is a result of the noise simulating a perfectly redundant set of baselines. Therefore, a visual
inspection is necessary to identify potential outliers. The two baselines (21, 31) and (31, 45) present as obvious candidates for removal. Both baselines have modified
z-scores greater than 4 and removing them is consistent with a cut at Mz=3.5 as suggested in Iglewicz & Hoaglin (1993). The removal of these two baselines also
flags antenna 31 entirely from the analysis as it contributes only to these baselines.
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is taken have a minimal change in length over the bandwidth of
the transform. This allows for a one-to-one correspondence
between the delay modes as a function of τ and the
cosmological modes, kP (Liu et al. 2014a).

The power spectrum is estimated by selecting subsets of
available bandwidth, weighting by a tapering function (f(ν)) to
improve dynamic range, delay-transforming visibilities with an
FFT, cross-multiplying different baseline pairs, and then
bootstrap-averaging cross-multiplication pairs. Foreground
leakage in the FFT is minimized with a Blackman–Harris
(BH) tapering function before the Fourier transform over
frequency. The BH window does induce a correlation between
directly adjacent Fourier modes, however, and the resulting
bandwidth/redshift range sampled by each power spectrum
window is effectively halved for each redshift band.

These steps are implemented with the publicly available
simpleDS31 Python package. This package and analysis
pipeline have been developed specifically to provide a simple
alternate analysis to other pipelines that take more aggressive
strategies with regard to weighting and foreground removal.

7.1. Power Spectrum Uncertainties

In this section, we present several different methods for
estimating the uncertainties on our power spectrum estimates.
Combined, these alternative approaches help provide a
consistent picture of the uncertainties on our results.

7.1.1. Bootstrapped Variance

Power spectrum errors can come from thermal, instrumental,
and terrestrial (RFI) sources. Biases and additional variance can
also be unintentionally introduced in analysis steps (e.g.,
calibration, time averaging). Those with a known covariance
(like thermal noise) can be propagated through the data
processing and power spectrum estimation steps into an
analytically estimated error bar. The other sources are harder
to estimate from first principles. However, the total variance of
the data—independent of the exact source of error—can be
estimated by bootstrapping: estimating the power spectrum
from subsets of data and then calculating the variance of these
estimates. In the redundant PAPER array, the axis most
amenable to bootstrapping is the selection of baseline pairs
which are cross-multiplied to get a power spectrum.

We provide an overview of the bootstrapping technique used
in this work below. This method incorporates the bootstrapping
revisions described in more detail in Section3.2.2 of C18.
Specifically, we perform the power spectrum estimation by
cross-multiplying all pairs of baselines within a redundant set
and between the two even and odd LST-binned data sets
described in Section 2. These cross-multiplications are then
randomly sampled with replacement and then averaged over all
cross-multiple products, resulting in a single waterfall of power
spectra. An average is then taken across the LST axis to form a
single power spectrum versus delay.

We repeat this process by selecting different baseline cross-
multiplications to find new realizations of the power spectrum.
The variance of these bootstrap samples is interpreted as the
uncertainty in the power spectrum estimate. This bootstrap
estimation is designed to probe the underlying distribution of

allowed values given our observed values (Efron & Tibshirani
1994; Andrae 2010).

7.1.2. Thermal Variance

Liu et al. (2014a, 2014b) showed that when estimating the
power spectrum in the regime ^k k , the delay axis (the
Fourier dual to frequency) can (to a good approximation) be
reinterpreted as the cosmological k axis. Under this assump-
tion, to provide a theoretical estimate of the thermal variance,
we use the expected noise power derived in Parsons et al.
(2012a) and applied in Pober et al. (2013, 2014) and C18:

=
W

P k
X Y T

t N N N N N2
, 8N

2
eff sys

2

int days bls pols lst sep

( ) ( )

where X2Y converts from interferometric units to cosmological
units, Tsys is the system temperature, Ωeff is the effective size of
the primary beam in steradians (Parsons et al. 2014), Nlst is the
number of independent LST samples, Npols is the number of
polarizations used in the analysis, tint is the integration time of
an LST sample, Ndays is the effective number of days used in
LST binning, Nbls is the effective number of baselines
combined, and Nsep is the number of independent baseline
types. See C18 for a thorough definition of all the terms in this
thermal noise estimate.
This estimate assumes that the number of times each LST is

observed is the same number of times across the full course of
the season, when in practice LSTs were observed between 5
and 60 times (a consequence of only observing at night with a
drift-scanning telescope). These counts are tabulated during the
LST binning process. If the noise is constant from night to
night, an effective Ndays can be calculated by averaging the
inverse sum of squares over the sidereal period as described in
Jacobs et al. (2016). The observations here yield an effective
integration length varying between 27 and 29 days depending
on the redshift bin.
As an aid to future repeatability, the values used here are

listed in Table 1 and the calculation is documented as a Python
module called 21CMSENSE_CALC available at github.com/
dannyjacobs/21cmsense_calc.
Equation (8) is an analytic form that serves as a useful

“sanity check” on the expected noise levels, but is not expected
to be highly accurate in the absence of simulations to calibrate
its terms. Simulation of Tsys through the power spectrum
pipeline (the noise input described in Section 3) is likely to be
the most robust estimate of thermal noise errors.

7.1.3. Foreground Error Bars

The propagation of the thermal error above does not fully
capture the variance expected on modes with significant non-
noise-like power (i.e., foregrounds). To demonstrate this fact,
let us assume each visibility, = +V s ni i˜ , to be the sum of a
signal component, s, and some noise term, ni. Assuming the
signal component is constant across all baselines and

~ n P0,i N( ) is independent on every baseline i, we show
in Appendix that the variance of each power spectrum cross-
multiple can be written as

s º = +P k P k P PVar 2 , 9P k s N N
2 2( ( )) ( ) ( )( )

where Ps(k) is the true power spectrum of the sky signal and PN

is the noise power spectrum from Equation (8).31 github.com/RadioAstronomySoftwareGroup/simpleDS
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The signal noise cross-term in Equation (9) will dominate
delay/k modes inside the horizon where the expected fore-
ground signal exceeds thermal noise levels. At the highest
delay/k modes, the uncertainty will be dominated by the
thermal variance.

Here we use the simulated PRISim observation as a rough
estimate of Ps(k), with the simulation scaled to match the data
on average across the entire band,

=P k g P k , 10s
2

PRISim( ) ( ) ( )

where g is the model scale factor computed in Section 4.

7.1.4. Comparison of Power Spectrum Uncertainties

As an internal consistency check, we compare the sizes of
the bootstrapped uncertainties to the analytical thermal noise
and simulated foreground uncertainties. This comparison is
made by taking the ratios of each type of uncertainty, which is
plotted in Figure 10.

As a basic test, we see that the bootstrap variation of the
external noise simulation (plotted in orange) is never further
than a factor of 0.7 away from the theoretical prediction of
purely thermal noise. Considering the 109 dynamic range
spanned by power spectrum values and remembering that the
theoretical error bar includes several approximations, a 30%
worst-case difference is within expectations.

Bootstrapped error bars of the data are significantly larger
than the purely thermal variance, sometimes reaching 105×
larger in the horizon and nearly 5× the thermal noise at the
highest redshifts in what, according to the simulations, should
be noise-dominated bins. In general, the overly large error bars
seemingly trace out all areas where the mean power spectrum
itself manifests a notable excess.

However, accounting for the PRISim-simulated foreground
terms in the expected variance in the denominator of this ratio,
agreement increases by orders of magnitude (the dashed curve),
with the largest discrepancies now only a factor of ∼10. The
remaining disagreement is concentrated in the modes where

simulations show the weakest foreground amplitude that is still
detectable above the noise. This remaining discrepancy at
t ~ 400∣ ∣ ns may be sourced from an incomplete sky model.
The addition of simulated foreground power to the noise

calculation accounts for the largest discrepancies in error
estimation; however, it does not decrease the discrepancy at
high delays. At redshifts 8.68 and below, the difference
between the calculated error estimates, the bootstrapped errors,
and the noise simulation all generally agree. However, in the
two highest redshift bins, the bootstrapped error estimate
remains roughly 2×–5× larger. In all subsequent analyses, we
include all three noise estimates as useful comparisons.

8. Multiredshift Power Spectrum Results

Figure 11 shows the delay power spectrum estimates for all
three of our principal products: the observed data (black), the
PRISim-simulated observation (blue), and the noise-only
simulation (orange). Within delay modes between ∼±400
ns, both the observed and simulated data illustrate similar
shapes. This suggests that the statistically significant detections
of power observed in PAPER immediately outside the horizon
limits are consistent with foreground signals (as suggested by
the study of foreground subtraction applied to PAPER data in
Kerrigan et al. 2018). At larger delays, however, the PAPER
power spectra are a mix of statistically significant detections
and null results. The most statistically significant detections at
high delays are seen to occur at the lowest frequencies.

8.1. Evaluation of FRF

The effectiveness of the FRF in downweighting contaminat-
ing delay modes, can be evaluated after performing power
spectrum estimation.
The power spectrum estimates before and after the

application of the FRF are shown in Figure 12. While the
application of the FRF provides some improvement in thermal
noise, it also provides suppression of the highly significant
detections at delays t > 400∣ ∣ ns. These detections are

Table 1
PAPER-64 Theoretical Noise Estimate Values

Term Description Value in Redshift Bin Units
10.87 9.93 8.68 8.37 8.13 7.48

X2Y Conversion from interferometric (u, v, η) to cosmological ^ ^k k k, ,x y, ,( ) a 578.77 533.36 471.06 454.90 442.58 408.52
h

Mpc

sr Hz

3

3

Ωeff Effective beam areab 1.645 1.664 1.489 1.487 1.496 1.580 sr
Tsys System temperature 653.37 556.33 446.75 422.31 404.69 360.30 K
Trcvr Receiver temperature K144K K
Nlst Number of effective LST samples K31K
Nsep Number of independent baseline typesc K3K
tint Integration time of LST sampled K938K s
Ndays Number of effective days used in LST binning 27.63 27.81 28.07 28.33 28.44 28.79
Npols Number of polarizations combined in analysis K2K
Nbls Number of effective baselines K47K

Notes.
a This value is also a function of the assumed background cosmology. See Furlanetto et al. (2006) and Liu et al. (2014a) for more information.
b The effective beam area is influenced by the choice of fringe-rate filter applied (Parsons et al. 2016). The computation for this value is also found in Appendix B of
Parsons et al. (2014).
c The “sep” subscript refers to the separation of antennas on the PAPER-64 grid. These separations are what define the different baseline types described in Figure 2.
d This value is computed as the equivalent noise bandwidth (ENBW) of the FRF applied to the data. See C18 and Parsons et al. (2016) for more information.
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inconsistent with the expected leakage from the simulated
foreground signal (also filtered with the FRF) and are
signatures of the common mode described in Section 5.1.1
and also visible in Figure 7.

Even for less aggressive filters than the ones used in A15
and C18, filtering can significantly reduce systematic contam-
ination during the delay transformation. The choice of the
shape of filters is contingent on the acceptable amount of signal
loss. As described in Section 5.1.1, when applying this filter to
our foreground simulation, the total simulated power is
observed to decrease by 7.97%; as a result, we apply a
correction factor of 1.086 to our power spectrum estimates to
account for the associated signal loss.

8.2. Investigation of High-delay Detections

In this section, we present several analyses designed to help
determine the cause of the remaining statistically significant
detections at high delays seen in the PAPER observations.

8.2.1. The Imaginary Power

The power spectrum is computed by cross-multiplying
different baseline pairs within redundant groups. Ideally, this
cross-multiplication of complex-valued delay spectra will
result in any sky-like power being confined to the real part in
the power spectrum, leaving the imaginary part dominated by
noise. However, effects can leak real sky power into the

Figure 10. The ratio of the bootstrap error bars of both data and noise to estimates of the predicted uncertainties for each redshift bin. Panels are ordered such that
redshift increases toward the upper left. A ratio helps to compare different estimates of power spectrum error bars together. Bootstrapped errors of simulated noise
(orange) over PN(k) (Equation (8)) are very close to unity ratio, an important consistency check. The ratio of data variance to PN(k) (solid black line) is nearly unity like
at high delay but is 104× higher where the simulated foregrounds dominate (refer to Figure 11 to identify these regions). Accounting for the foreground-dependent
term in the theoretical error bar in the ratio denominator (dashed black line, σP(K ); Equation (9)), agreement is improved by three orders of magnitude, with the largest
discrepancies now only a factor of 10 in the modes with the weakest foreground amplitude. This order of magnitude of disagreement outside the horizon at
t > 100∣ ∣ ns may be the result of an incomplete sky model.
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imaginary part of the power spectrum. A perfectly calibrated
array with nonredundant baselines—for example, with
slightly different antenna positions—will cause two nomin-
ally “redundant” baselines to have slightly different phases.
The imaginary parts of these cross-multiplied visibilities will
therefore not cancel out, and nonzero power will be seen
in the imaginary component of the power spectrum estimate.
The same effect would come from a perfectly redundant but
imperfectly calibrated array. It is also important to note that
because of the foreground-dependent error bars derived in
Section 7.1.3, imaginary power should increase at low delay,
though continue to be consistent with zero. In a sense, the
amount of statistically significant power in the imaginary

component of the power spectrum, compared to power in the
real part, is a measure of the net redundancy and calibration
quality of the array.
A comparison of the real and imaginary parts of the power

spectrum is shown in Figure 13. The statistically significant
imaginary components at t < 400∣ ∣ ns are generally at a power
level, which is ∼ 20% of the real components at the same
delay. All the detections in this region are also biased to
negative power levels. This may result from nonredundancies
in calibration or baseline orientation.
At delay modes t > 400∣ ∣ ns, the imaginary component of

the power spectrum displays comparable power to the real part.
This is especially prominent in the two highest redshift bins,

Figure 11. Power spectrum estimates computed for the observed data (black), simulated noise (orange), and simulated observation (blue). Error bars on points are the
bootstrapped uncertainty. The solid green line indicates the theoretical thermal noise estimate for each redshift bin, and the dashed green line includes the foreground
error from Equation (9). Gray shaded regions are the foreground-dependent uncertainties plotted around each data point. The vertical black dotted lines indicate the
horizon/wedge/light travel time for a 30m baseline. As shown in Figure 10, the simulated noise is consistent with the theoretical thermal noise predictions. At delay
τ=0 ns, both the data and PRISim simulation show good agreement in the total power observed; generally, the power at all delays inside the horizon agrees between
the two simulations within a factor of ∼5. The simulated data set also shows some power leakage outside the horizon, consistent with the power observed by PAPER
out to ≈ 400 ns. The PAPER data also show numerous statistically significant detections beyond 400 ns, however, which are not predicted by the PRISim simulation.
To investigate the origin of these signals, multiple jackknives and null tests are performed as described in Section 8.2.2.
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but is observable across the entire band. The disagreement
between the imaginary component and the foreground-
dependent thermal uncertainty is indicative of some non-
redundant information, systematic biases introduced by data
analysis or calibration steps, or residual contaminants like
improperly flagged RFI

8.2.2. Null Tests

While the imaginary power suggests at least some presence
of calibration error or nonredundancy, it does not fully explain
the origin of the excess power at delays greater than 400 ns.
Calibration errors, as long as they do not introduce spectral
structure, should not necessarily scatter power to high delays.
Null tests—i.e., differences between power spectra of different
data selections—can provide hints of the origin of these
detections.

For example, differencing the power spectra of two distinct
stretches of sidereal time will remove isotropic cosmological
signals32 but leave signals with strong dependence on sidereal
time (like foregrounds). Dividing the data set in half by
LST into ranges 00 30 00 , 04 30 00h m s h m s[ ) and 04 30 00 ,h m s[
08 36 00h m s) creates two sets of roughly equal sensitivity. The
resulting differenced power spectrum is shown in Figure 14,
along with a matching calculation for the foreground simula-
tion. The two are broadly consistent at delays less than 400 ns,
i.e., they have the same sign and a similar amplitude. Galactic
synchrotron emission and bright point sources (like Fornax A
and Pictor A) are the most obvious contenders for strong
variability. We also see that the significant power seen in

Figure 12. The estimated power spectrum value before (purple) and after (black) application of the fringe-rate filter. The simulated data points (blue) have also been
filtered with the FRF (the same as in Figure 11). All other points and lines are the same as Figure 11. While the application of the fringe-rate filter provides some
improvement in thermal noise, it also provides suppression of the highly significant detections at delays t > 400∣ ∣ ns. These detections are inconsistent with the
expected leakage from the simulated foreground signal (blue) and are signatures of the common mode described in Section 5.1.1.

32 Cosmological signals can only be removed through this method up to
cosmic variance. However, because thermal uncertainties dominate the cosmic
variance, it is a decent approximation for this work.
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modes well beyond the horizon (for example, the strong
positive offset at redshift 9.93 seen in the Figure 11 power
spectrum) is reflected in this null test.

We also see that the imaginary component of the power
spectrum null test is comparable to the real component at most
delay modes across all redshifts. This suggests a sidereal time
dependence of phase differences between baselines. In
particular, note that the strong bias seen at redshift 9.93 is
associated with a strong imaginary bias, implying a phase
rotation between baselines. Such an LST dependence of the
imaginary component might be expected for nonredundancy
(slightly different sky seen by nominally redundant baselines)
or repeatable differences in calibration which depends on the
sky configuration (for example, one calibration solution when
Fornax is transiting and a different one for when Pictor

dominates). This kind of variation in redundant calibration with
sky flux density was shown in Joseph et al. (2018). Variations
in calibrations from ionospheric fluctuations can also impact
power spectrum estimation by introducing spectral structure
and nonredundant information (Cotton et al. 2004; Intema et al.
2009). This picture of nonredundancy strengthens the earlier
hints provided by Section 6ʼs z-score analysis, which suggested
that redundancy was particularly low around 120–130MHz
(redshifts 9 and 10).
A second easily constructed null test is to difference power

spectra made from only the even and odd binned data sets.
Recall that these sets were constructed by separating even- and
odd-numbered days during the LST binning. A significant
difference in this test would be suggestive of a variation at the
night-to-night level, which departs significantly from the mean,

Figure 13. The real (black) and imaginary (red) components of the power spectrum of PAPER data. The red shaded region is the foreground-dependent theoretical
error bar drawn around the imaginary components; all other lines are the same as in Figure 11. There are statistically significant imaginary components at t < 400∣ ∣ ns,
generally at a power level that is ∼20% of the real components at the same delay. All of the detections in this region are also biased to negative power levels. This may
result from nonredundancies in calibration or baseline orientation. At delay modes t > 400∣ ∣ ns, the imaginary component of the power spectrum displays comparable
power to the real part. This is especially prominent in, but not isolated to, the two highest redshift bins. The statistically significant imaginary power is indicative of
some nonredundant information during power spectrum estimation, systematic biases introduced during data analysis or calibration, or residual contaminants like
improperly flagged RFI.
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as these two sets are otherwise expected to have identical sky
signals with different realizations of noise.

The resulting differenced power spectra for each redshift band
are shown in Figure 15. Across all redshifts, there are points well
beyond the horizon which are inconsistent with both the analytic
purely thermal variance and the foreground-dependent uncer-
tainty. However, there are two important differences from the
LST null test. First, the overall amplitude of the difference power
spectrum is much less. Within the horizon, the difference
amplitude is at most a few ×1013, or less than 0.1% of the power
spectrum. Second, the imaginary power spectrum is consistent
with uncertainty across most modes. This is particularly notable
within the horizon where even a small percent difference would
drive a significant deviation. This suggests that whatever causes
the small but detectable difference between even and odd is not
attributable to a phase difference between baselines. A variation

in calibration as a function of JD can also cause the excess at
delays less than 400 ns: days calibrated with the same solutions,
but actually possessing some night-to-night gain variations, will
result in some nonredundant signals between days.
The two highest redshift bins again show the most significant

differences at high delay; the observed power values in this test are
comparable to or even exceed the power spectrum estimates shown
in Figure 11, and the imaginary leakage is 10% of that. This result
may provide evidence of a signal contaminating a single day that is
averaged into the LST-binned data set, which is suppressed during
the cross-multiplication of days during power spectrum estimation.
Examples of such a systematic are improperly flagged RFI, a low-
amplitude signal not detected before cross-multiplication, or a large
transient gain isolated to a single night.
Another interesting feature can be seen in the redshift 8.68

bin in Figure 15. Here we see a consistent bias which was not

Figure 14. Null tests constructed by splitting the LST range ( 00 30 00 , 08 36 00h m s h m s[ )) in half (at 04 30h m), making two power spectrum estimates, and differencing the
result. Real (black) and imaginary (red) are both shown, along with the null-test results when applied to the simulated data (blue). Such a difference would remove
isotropic cosmological signals, leaving anything with dependence on sidereal time. Noise curves are as described in Figure 11. Statistically significant detections in
the real part suggest power varying across the sky while significant imaginary power suggests a time dependence to phase-calibration errors. The observed variations are
consistent with simulation up to delays of 400 ns. The detections’ higher delay modes indicate large LST dependence, which is inconsistent with cosmological power.
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present in the mean power spectrum (Figure 11). However,
there is a similarly shaped bias in the imaginary part of the
mean power spectrum. A plausible hypothesis is that, in this
part of the spectrum, phase error between baselines is larger in
one of the even/odd LST-binned sets than the other. However,
there is no clear significant difference in redundancy seen in the
z-score/MAD analysis, so further evidence would be required
to support this conclusion.

8.2.3. Null-test Discussion

Our two null tests provide evidence that the foregrounds,
which vary significantly as a function of LST, are likely the
cause of some of the residual power detected at high delays

during power spectrum estimation. There is also some evidence
that suggests significant phase differences exist between
nominally redundant baselines, which introduce nonredundant
signals into the power spectrum estimates.
The presence of highly significant detections in the even–

odd null test also suggests there may be some net nonredundant
signal between the two LST-binned data sets. These points are
significant compared to the propagated error bar (∼10σ to
∼100σ inside the horizon) but represent a small fraction of the
total power observed (�1% of the power in Figure 11).
However, the agreement of the imaginary part of the power
spectrum with the foreground-dependent error bar suggests that
each of the even–odd sets has internally redundant baselines
but the data sets themselves are slightly different.

Figure 15. In the LST binning process, data were split and binned into sets containing only even- or odd-numbered days; plotted here is the difference between the
power spectra from these two sets. We use the same color scheme as Figure 14. Where the largest difference in the LST null test (Figure 14) was on the order of 10%
of the measured value, here differences are less than 1% at delays less than 400 ns, and the imaginary points are nearly all consistent with the predicted error bars. At
delays larger than 400 ns, statistically significant detections in the three highest redshift bands are at comparable levels to the power spectrum values in Figure 11. This
may be the result of contamination in only one set of the even or odd data (positive values for even, negative values for odd) which is mitigated during the cross-
multiplication of these sets during power spectrum estimation. A variation in calibration as a function of JD can also cause the excess at delays less than 400 ns: days
calibrated with the same solutions, but actually possessing some night-to-night gain variations, will result in some nonredundant signals between days.
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Both the null tests discussed in this work and the presence of
a significant fraction (∼20%) of power leaking from the real to
the imaginary component of the power spectrum indicate the
presence of nonredundant and non-isotropic signals. The latter
is not surprising because this analysis is performed on data with
no foreground subtraction, and the sky varies with LST as the
galaxy and strong point sources rise and set over an
observation. In some places, particularly at low frequencies,
this power couples to larger delays, presumably because of
instrumental spectral structure. The even–odd null test suggests
that this spectral structure potentially varies in time while the
imaginary component suggests that the spectral structure is not
the same across nominally redundant baselines.

8.3. Possible Future Directions

8.3.1. Jackknives in LST Binning

An additional jackknife could be used to identify and
possibly remove residual RFI and night-to-night variations
identified in the even–odd null test. The variation is significant
enough to be observable after differencing data averaged over
the entire season. If a specific night is the source of this result, it
could potentially be further tracked down with additional
jackknives with smaller sets of binned days or by performing a
null test by differencing data from the first and second half of
the observing season. This would provide information about
the stability of antennas and observations over the life of the
PAPER experiment. Unfortunately, returning to the initial raw
visibility data set is outside the scope of this analysis.

8.3.2. Beam Null Test

Nonredundancy happens when baselines, which in theory
should see the same sky, in fact measure slightly different
skies. Two obvious ways for this to happen are variations in
antenna position and variation in beam pattern. In theory, an
element like PAPER should produce a symmetric beam, though
this is not true in practice. A simple test for nonredundancy due
to beam differences would be to test for deviations from
symmetry by recording observations with antennas rotated by
180°. Differencing the 0° and 180° data sets would highlight
abnormalities in the beam response to the sky between
antennas. For an ideal, symmetric beam, all sky signals will
cancel and leave thermal noise fluctuations at all times;
however, imperfections in beam response will not cancel,
resulting in a net signal in the visibility data. Characterizing
these net signals can help inform more precise beam models
and place constraints on the level of beam-to-beam variation
between different antennas.

9. 21 cm Upper Limits

We use the PAPER data to place upper limits on the 21 cm
signal strength using the dimensionless power spectrum:

pD =k k P k22 3 2( ) (∣ ∣ ) (∣ ∣)/ . To convert from interferometric
delay to cosmological comoving wavenumber, we assume
Planck 15 cosmology. These power spectra are shown in
Figure 16.

As a summary and comparison of progress across the field,
we also report, from each published power spectrum, the lowest
upper limits in each redshift band, shown in Figure 17. This
minimum is taken across the k ranges reported by each
experiment to be free of possible signal loss or other extraneous

factors (for example, early PAPER results reported values
inside the filtered wedge but indicated they were not to
be used).
To encapsulate the results of this work, the most sensitive

limit is reported from the range < < -k h0.3 0.6 Mpc 1, where
both null tests pass for most k modes in each redshift bin. These
limits on the 21 cm power spectrum from reionization are
1500 mK 2( ) , 1900 mK 2( ) , 280 mK 2( ) , 200 mK 2( ) , 380 mK 2( ) ,
and 300 mK 2( ) at redshifts z=10.87, 9.93, 8.68, 8.37, 8.13,
and 7.48, respectively. Table 2 also provides a summary of
this data.
These upper limits represent a significant increase compared

to prior limits published by the PAPER instrument (a factor of
∼10 in mK). They also exceed the expected amplitude of a
fiducial 21CMFAST33 model by a factor of ∼100 in mK
(Mesinger et al. 2011). These limits supersede all previous
PAPER results for reasons described in C18.

10. Conclusion

We reanalyzed the PAPER-64 data first presented in A15
and presented 21 cm power spectra and uncertainties in five
independent redshift bins. These estimates are made using an
independently developed pipeline which skips foreground
subtraction and simplifies time averaging. Simulations of noise
and foregrounds are used to build a basic picture of internal
consistency. The resulting power spectra reach the noise limit
across much of the spectrum but above redshift 9 (below
130MHz), they demonstrate a statistically significant excess of
power. Null tests support a picture where these power spectrum
detections are caused by foregrounds modulated by spectrally
dependent deviations from redundancy or calibration error. In
particular, the z-scores and imaginary power tests suggest that
residuals could be the result of some net nonredundant signal
between baselines in a nominally redundant group.
Future analyses of highly redundant sky measurements will

require strict comparisons between nominally redundant
samples before cross-multiplication to ensure effects like these
can be mitigated. Also, further jackknives and comparisons of
data should be done before or as part of LST binning to detect
likely contributions to excess. They will also require more
precise antenna placement to ensure baselines designed to be
redundant do not introduce signal in the imaginary component
of the power spectrum.
These results represent the most robust results from the

PAPER experiment and supersede all previous PAPER power
spectrum limits. This includes results both from PAPER-32
(Parsons et al. 2014; Jacobs et al. 2015; Moore et al. 2017),
which used a different covariance estimation technique but
have not been subjected to a rigorous reanalysis à la C18, and
previous PAPER-64 results (Ali et al. 2015, 2018). Any
constraints on the spin temperature of hydrogen made by Pober
et al. (2015) and Greig et al. (2016) based on the previously
published upper limits should also be disregarded. Though
these measurements do not place significant constraints on the
IGM temperature, the analysis presented in these two papers
remains relevant to any future limits on the 21 cm power
spectrum at levels similar to the original results of A15.
The current best limits from 21 cm power spectrum

experiments are shown in Figure 17. To date, all power
spectrum estimates have been reported as upper limits.

33 github.com/andreimesinger/21cmFAST
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However, to discern and characterize the physics of reioniza-
tion, high-significance detections of the 21 cm power spectrum
are necessary. Next generation radio telescopes, like the fully
realized 350 element configuration of HERA (Pober et al.
2014; DeBoer et al. 2017; Liu & Parsons 2016) and the future
Square Kilometre Array (SKA; Mellema et al. 2013), are
predicted to be able to make these detections and put stringent
constraints on reionization.
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Appendix A
Foreground-dependent Variance

To find the variance of P(k), begin by assuming each
visibility t = +V u v w s n, , ,i i˜ ( ) is the sum of the true sky
signal, s, and a noise component, ni.

For convenience, define the cosmological conversion factor

l
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Also for simplicity in this analysis, we ignore cosmic variance
in the signal term. This results in the signal term being not a
random variable but related to the power spectrum of the
sky by s2=Ps(k)/Φ, where Ps(k) is the true power spectrum
of the sky signal for a delay-transformed visibility. Let
the noise term be drawn from the complex distribution

~ Fn P k0, ,i N( ( ) ) where ni is independent for each
baselines.34

Then, we can propagate the variance in P(k) as
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where we assumed each ni are independent random variables as
mentioned above, and all constants of proportionality were
used to transform the power spectra from functions of delay, τ,

Figure 17. A comparison of the lowest limits achieved by various instruments in the k ranges reported by each instrument. The results reported from this paper are
taken in the range - k h0.3 0.6 Mpc 1. Data are taken from the MWA (stars; Dillon et al. 2014, 2015; Beardsley et al. 2016), the GMRT (pentagon; Paciga
et al. 2013), LOFAR (hexagons; Patil et al. 2017), and PAPER (diamonds; this work). We include the z=8.37 redshift bin analyzed both here and in C18, although it
is worth noting this redshift bin is not entirely independent from the z=8.13 and 8.68 bins, as can be inferred from the overlapping window functions from Figure 3.
For reasons described in C18, these PAPER results should supersede all previous PAPER limits.

Table 2
The Minimum Volume-weighted Power Spectrum Estimates D k2(∣ ∣) (mK)2

from This Analysis Computed over the Range < <k0.3 0.6∣ ∣

Redshift k∣ ∣ D k2(∣ ∣) dD k2(∣ ∣)a

(h/Mpc) (mK)2 (mK)2

7.49 0.39 5.6×104 3.5×104

8.13 0.32 1.2×105 2.0×104

8.37 0.37 1.0×104 3.2×104

8.68 0.36 3.8×104 4.1×104

9.93 0.34 3.5×106 1.9×105

10.88 0.33 2.1×106 1.5×105

Note.
a All uncertainties are 2σ.

34 This assumption does ignore the correlations induced between visibilities
that share a common antenna and thus have correlated noise.
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to cosmological wavenumber, k. This derivation assumes noise
is independent across all baselines. It also assumes the power
spectrum and noise are independent in time. In general, these
assumptions may not be true and would contribute to additional
covariance terms in the expansion of the ensemble average in
Equation (12).

At high-delay modes, foreground signals are predicted to
have little power (e.g., P k 0s ( ) ), and the variance reduces to
the thermal variance PN. Conversely, inside the horizon and at
delay modes just outside the horizon, this variance will be
dominated by the term dependent on the power spectrum of the
true sky Ps(k).
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