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Abstract

There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of
this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which
internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster
type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias).
We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-
point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining
their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-
correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters
is b=1.42±0.35 (1.6σ different from unity). Our measurement is limited by the small number of clusters with
core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray
cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly
bias of CC and NCC clusters and determine the origin of the bimodality.
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1. Introduction

Clusters of galaxies grow hierarchically through mergers and
accretion of galaxies and groups of galaxies. The gas that falls
onto a cluster gravitationally shocks and heats to the observed
virial temperature, T∼108 K. In a simplified gravitationally
governed smooth accretion model, clusters should have self-
similar entropy profiles (Voit 2005). A decade of high-
resolution Chandra X-ray observations of cluster gas has
unveiled relatively self-similar scaled entropy profiles at virial
radius scales (∼1–2Mpc/h), but the central (0.1–0.2 Mpc/h)
entropies differ considerably. Some clusters show relaxed,
cuspy cores with high metallicity and low central temperature
and entropy, and are thus named cool core (CC; Molendi &
Pizzolato 2001), whereas others show a more disturbed core
with flatter central density and high core entropy, dubbed non-
cool core (NCC). Classification schemes vary because CC are
hard to define and quantify (Hudson et al. 2010), but the central
entrophy has been shown to be the best classifier (Cavagnolo
et al. 2009).

In a purely radiative cooling scenario, the plasma in the cores
of clusters is expected to condense in less than a Gyr, with
cooling rates up to 

-M10 yr3 1. This would lead to dramatic
star formation rates and very peaked X-ray surface brightness
profiles. The observed CC show much more gentle cooling
rates, 1%–10% of the pure cooling flow value (for a review, see
Gaspari 2015 and references therein). In contrast to NCC
clusters, observed CCs typically have central temperatures that
are two to three times smaller than the virial value, where
entropy starts to flatten (McNamara & Nulsen 2007, 2012).
Mechanical active galactic nucleus (AGN) feedback is the
current best model to explain the quenching of pure cooling
flows, although other forms of heating may contribute (e.g.,

thermal conduction and cosmic rays; McNamara & Nulsen
2007, 2012 for reviews). Cool cores are indeed correlated with
the presence of X-ray cavities inflated by AGN outflows (e.g.,
Hlavacek-Larrondo et al. 2015), low central entropy/cooling
times (Cavagnolo et al. 2008), large Hα luminosity (e.g., Voit
& Donahue 2015), and multiphase gas down to the molecular
regime (e.g., Tremblay et al. 2016). Such residual cooling
gas is the main triggering mechanism of the AGN, leading to
a tight self-regulated loop between CC condensation and
AGN-feedback energy (e.g., Gaspari et al. 2017 and
references therein).
Hydrodynamic simulations on scales of both individual

halos and cosmological volumes have improved through the
introduction of sub-grid physics models for various forms of
feedback. However, simulating the relevant scales for these
feedback processes is still a prodigious numerical challenge
(Borgani & Kravtsov 2011, and references therein). A
considerable amount of numerical effort has been spent on
understanding the suppression of cooling flows via feedback
mechanisms (e.g., Heinz et al. 2006; Sijacki & Springel 2006;
Battaglia et al. 2010; Dubois et al. 2010; Gaspari et al. 2011;
McCarthy et al. 2011; Martizzi et al. 2012; Li & Bryan 2014;
Li et al. 2015; Steinborn et al. 2015). Recent simulations have
been able to create a diverse sample of CC and NCC clusters
(Rasia et al. 2015; Hahn et al. 2015). However, the
cosmological hydrodynamic simulations are still significantly
limited by the poor resolution within the CC region, which is
crucial to properly track the AGN heating distribution and
turbulent mixing properties, as shown in previous high-
resolution simulations of isolated clusters (e.g., Gaspari
et al. 2011, 2014a). The question remains, what is the physical
origin of the differences between CC and NCC clusters? Were
they created under different physical conditions to begin with,
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or are NCCs simply disturbed CCs that have not yet had the
time to cool back down?

There are two scenarios for how CCs and NCCs form and
evolve—external or internal. In the external scenario, outside
factors such as the large-scale structure would play a central
role in determining the fate of clusters ab-initio. In this model,
NCC would typically be found in denser environments,
whereby merger activity can pre-heat the clusters to higher
levels (∼300 Kev cm2; McCarthy et al. 2011). CC, on the other
hand, would tend to form in isolation. In the internal scenario,
only the immediate (inside ∼1Mpc/h) environment acts to
transform CC to NCC. Here, breaking the tight self-regulated
AGN-feedback loop results in overheating the core and raising
the central cooling time well above the Hubble time (Gaspari
et al. 2014b). Since in this case AGN heating should be
unrealistically strong, it is more plausible that infalling
substructures within the cluster (Sanderson et al. 2006, 2009;
Leccardi et al. 2010; Rossetti & Molendi 2010; Rossetti
et al. 2011; Eckert et al. 2014) are responsible for breaking the
loop, thus inducing the NCC state.

To test how much large-scale environment plays a role in
shaping these cluster cores, one can exploit galaxy clustering.
The clustering of collapsed halos is enhanced relative to the
dark matter distribution, an effect known as bias (Kaiser 1984;
Efstathiou et al. 1988; Cole & Kaiser 1989; Bond et al. 1991;
Mo & White 1996; Sheth & Tormen 1999). This bias depends
mostly on halo mass, making galaxy clusters highly biased
(Bahcall & Soneira 1983; Kaiser 1984). However, numerical
simulations show there is an additional but weaker dependence
on the formation histories of the halos, an effect that is referred
to as assembly bias (Gao et al. 2005; Wechsler et al. 2006; Gao
& White 2007; Jing et al. 2007; Wetzel et al. 2007; Angulo
et al. 2008). On cluster-mass scales, one predicts that late-
forming (low-concentration) objects of a given mass are more
clustered (Wechsler et al. 2006; Jing et al. 2007; Wang
et al. 2007; Zentner 2007; Dalal et al. 2008), but the effect is
expected to be even weaker than on galaxy scales (Gao
et al. 2005). Assembly bias has been difficult to demonstrate
conclusively in observations, because it requires identifying
samples that have similar halo mass, but differ in assembly
histories. A handful of observational studies have tried to
measure assembly bias in the regime of groups (Yang
et al. 2006; Wang et al. 2013; Lacerna et al. 2014) and clusters
(Miyatake et al. 2016; More et al. 2016). However, Lin et al.
(2016) argue that the claimed detections of assembly bias on
group scales could be attributed to samples of different halo
mass or contamination by satellite galaxies rather than
assembly bias. So far, attempts to detect assembly bias have
divided cluster samples according to halo concentration as a
formation epoch proxy (Miyatake et al. 2016; More
et al. 2016), as higher concentration is linked with earlier
formation in numerical simulations (Duffy et al. 2008;
Bhattacharya et al. 2011). No study has yet attempted to detect
it for halos of different X-ray properties, such as entropy.

In this paper, we use spatial cross-correlations between
galaxies and galaxy clusters to explore the large-scale
environments, and hence, the assembly bias of CC versus
NCC clusters. We use a statistical sample of clusters with
information on their entropic core state from the ACCEPT
compilation (Cavagnolo et al. 2009). This paper is organized as
follows. In Section 2 we present the observational data set
used. In Section 3 we lay out our CCF methodology and show

how to derive a relative bias. In Section 4 we present our
results, and in Section 5 we forecast the improvement to our
results with larger cluster samples. We summarize and
conclude in Section 6. Throughout the paper, we adopt a
ΛCDM cosmological model, where W = 0.27m , W =L 0.73,
and = =- -h H 100 km s Mpc 10

1 1 .

2. Data

We compare the clustering of two subsets of galaxy clusters:
CC and NCC. The auto-correlation will be very noisy because
our cluster samples are small (30 clusters in each, see below),
so instead we perform a cross-correlation of each cluster
sample with a parent galaxy sample. In this section we present
the cluster and galaxy samples.

2.1. ACCEPT Cluster Samples

The largest publicly available homogeneous compilation of
X-ray clusters with high-resolution radial entropy profiles4 was
presented in Cavagnolo et al. (2009),5 known as the Archive of
Chandra Cluster Entropy Profile Tables (ACCEPT). This
sample consists of the 241 clusters with enough counts for a
reliable entropy determination that have been observed with the
Chandra X-ray telescope (each cluster temperature profile
listed has at least three concentric radial annular bins contain-
ing a minimum of 2500 source counts each), and were in the
archive as of 2008.6

Cavagnolo et al. (2009) found that most ICM entropy
profiles are well fitted by a power-law model at large cluster
radii and approach a constant value at small radii (100 kpc),
K0. This entropy floor quantifies the typical excess of the core
entropy relative to a strict power law, and was shown to
provide acceptable fits for >90% of the ACCEPT clusters.
However, for clusters with low surface brightness X-ray
emission at the core, the central entropy is not as well
constrained. To avoid this extrapolation, we opt to directly
measure the entropy at 20 kpc, where all the clusters have
resolved entropy information. We use the full entropy profiles
from the ACCEPT database and interpolate the value at 20 kpc.
In Figure 1 (gray points) we compare Cavagnolo’s K0 with K20,
and find good correlation, especially at large central entropies.
We note that the crude threshold of »K 400 keV cm2 used in
Cavagnolo et al. corresponds roughly to K20=60 keV cm2

(magenta dotted line). This entropy translates to a typical
cooling time of 1 Gyr (see Equation (9) in Cavagnolo
et al. 2009), below which clusters are expected to host a
strong CC (Hudson et al. 2010). We chose this value as a
boundary to divide the ACCEPT sample into two cluster
subsamples—those with lower K20 (shorter cooling times) are
considered CC (blue points; after applying spatial and redshift
cuts described below) and those with larger K20 (longer cooling
times) are considered NCC (red points). ACCEPT clusters
appear evenly distributed over the sky (Figure 2; CC in blue
and NCC in red), and span redshifts in the range of
0.05<z<1.1 (see the redshift distribution in Figure 3).

4 There is a larger compilation of X-ray clusters drawn from Chandra—the
ROSAT All-Sky Survey (RASS) and XMM-Newton (Piffaretti et al. 2011)—
but they lack the high spatial resolution that Chandra provides to allow for
homogeneous CC/NCC classification.
5 http://www.pa.msu.edu/astro/MC2/accept/
6 Many clusters have since been observed with Chandra, and an ACCEPT-2
compilation (M. Donahue 2017, private communication) of entropy profiles is
being prepared and will be utilized in a future paper.
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2.2. LOWZ Galaxy Sample

For the large parent sample we use the LOWZ spectroscopic-
redshift galaxy catalog7 (Reid et al. 2016), which is drawn from
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013). BOSS is part of Sloan Digital Sky Survey (SDSS;
Eisenstein et al. 2011) III project Data Release 12 (DR12;
Alam et al. 2015). The LOWZ sample is designed to extend the
SDSS-I/II (York et al. 2000) Cut I luminous red galaxy (LRG)
sample (Eisenstein et al. 2001) to z≈0.4 and fainter
luminosities to increase the number density of LRGs by
roughly a factor of 3. In DR12 the survey is complete—
covering both the north Galactic pole (NGC) and south
Galactic pole (SGC)—with a total effective area of 8337 deg2,
and containing 463,044 galaxies with spectroscopic redshifts
(Reid et al. 2016). The sample distribution over the sky is
presented in Figure 2 (gray) and its redshift distribution is
presented in Figure 3 (gray). In recent analyses of LOWZ
(Cuesta et al. 2016; Reid et al. 2016), the redshift range used
was limited to 0.15<z<0.43, resulting in a total of 361,762
galaxies. The sample is close to volume-limited (constant space
density at ~ ´ h3 10 Mpc4 3 3) over the redshift range
0.2<z<0.4 (Reid et al. 2016). We describe below the
redshift limits we choose to maximize the use of the cluster
sample.

2.3. Catalog Spatial and Redshift Limits

We limit our cluster and galaxy catalogs such that they span
the same sky area and redshift range for our cross-correlation
measurement. In Figure 2 we present the spatial distribution of
all LOWZ galaxies (gray) and ACCEPT clusters (red+blue
points); 102 of the 241 ACCEPT clusters are found within the
BOSS NGC and SGC footprints. We present the redshift
distribution of the LOWZ galaxies (gray) and ACCEPT
clusters found in BOSS footprint (CC in blue and NCC in
red) in Figure 3. The LOWZ sample is typically analyzed
within the 0.15<z<0.43 range, where its selection function
is reasonably uniform and well understood. The completeness
of the LOWZ sample appears robust to z=0.1, so we choose
here to expand the low-redshift limit to z>0.1 to overlap with
low-redshift ACCEPT clusters. We note that a similar lower
limit has been used for other cluster sample analyses using
SDSS, namely the redMaPPer cluster catalog (Rykoff
et al. 2014, 2016; Miyatake et al. 2016). Within the BOSS
footprint and redshift range, 0.1<z<0.43, there are 400,176
LOWZ galaxies and 57 ACCEPT clusters, out of which 23 are
CC and 34 are NCC.

2.4. Mass Difference

To leading order, halo bias depends on mass, thus, it is
important to ensure that the two cluster samples have the same
mean mass before any statement on second order effects such
as assembly bias can be made. We match the ACCEPT clusters
within the BOSS footprint with the Planck SZ cluster sample
(Planck Collaboration et al. 2016) and use the Planck SZ
masses. We match 14 of the 23 CC clusters, and all 34 NCC
clusters. The remaining clusters presumably fall below the
Planck mass detection limit. We find that the ratio of mean
masses as determined from the Planck SZ mass is
á ñ á ñ = M M 1.035 0.032SZ,NCC SZ,CC for this subsample.

Figure 1. Different central entropy definitions compared—K0 from the fitted
profile of Cavagnolo et al. (2009) vs. K20—the entropy measured at =r 20 kpc
for all ACCEPT clusters (gray). The magenta dotted line marks the chosen
boundary, K20=60 keVcm2, that separates CC (blue) from NCC (red)
clusters.

Figure 2. Sky distribution of the LOWZ galaxy sample (gray) and ACCEPT
CC (blue) and NCC (red) clusters.

Figure 3. Redshift distribution of different samples: LOWZ galaxies (gray) and
ACCEPT CC (blue) and NCC (red) clusters within the BOSS FOV. The dashed
vertical lines show our chosen redshift limits. Only 57 clusters are within the
redshift range and the BOSS footprint. The histograms are normalized for
easier comparison. Within the redshift range chosen, the CC and NCC redshift
distributions are statistically indistinguishable. 7 https://data.sdss.org/sas/dr12/boss/lss/
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The mass distributions of the two cluster samples are presented
in Figure 4. A Kolmogorov–Smirnov (KS) test confirms that
the two subsample masses are likely drawn from the same mass
distribution, with =D 0.2KS and a p-value of p=0.9.

3. Cross-correlation Functions and Relative Bias

The two-point correlation function is a measure of how
spatially clustered two populations are. One can formulate the
probability above random of finding a galaxy in a volume
element dV at a distance separation r from another galaxy as

( ) [ ( )] ( )x= +dP r n r dV1 1

where n is the mean number density and ( )x r is the two-point
correlation function (Peebles 1980). If objects are distributed
uniformly in space ξ(r)=0, whereas ξ(r)>0 indicates
clustering. The two-point CCF between galaxies and clusters
in our case relates to the probability as

( ) [ ( )] ( )x= +dP r n n r dV dV1 , 2g c gc g c

where n n,g c are the galaxy and cluster number densities,
respectively. In the linear bias approximation, the galaxy auto-
correlation function is related to the underlying dark matter by

( ) ( )x x=r b rgg g
2

DM . For the galaxy-cluster CCF, this relation is

( ) ( ) ( )x x=r b b r . 3gc g c DM

Since we correlate each of the two cluster samples (CC, NCC)
with the same galaxy sample, the ratio of these cross-
correlations simply traces the relative bias of NCC with
respect to CC clusters,

( )
x
x

º =b b b . 4NCC CC
NCC

CC

/

To estimate the 3D CCF, we count the number of galaxy-
cluster pairs, ( )D D rg c , in bins of comoving separation, r, and
compare with corresponding pair counts drawn from equivalent
random galaxy and cluster catalogs, R R,g c, respectively, in
each bin. We make use of the modified Landy & Szalay (1993;

hereafter LS) estimator to calculate the CCF of these pairs,

( )
( ) ( ) ( ) ( )

( )
( )x =

- - +
r

D D r D R r D R r R R r

R R r
, 5

g c g c c g c g

c g
gc

where each data and random catalog are normalized by their
number density.
The selection function of clusters having Chandra observa-

tions is not defined, thus a cluster random catalog, Rc, is also
impossible to construct. We instead simply match the sky and
redshift distribution of the galaxy sample, as described above,
and use the galaxy random catalog provided by Reid et al.
(2016) for Rc. It is only important that the two cluster samples
be drawn from the same distribution, because we are interested
in the ratio between CC and NCC clustering. Figure 3 shows
that the redshift distributions of the two cluster subsamples are
similar in our chosen redshift range. A KS test supports that the
two samples are drawn from the same redshift distributions,
with =D 0.2KS and a high p-value, p=0.6.

4. Results

We make use of the public code SWOT8 (Coupon et al. 2012)
to calculate the CCF of ACCEPT clusters with LOWZ galaxies
in six logarithmic bins spanning 3–80Mpc/h. We note that
above 3Mpc/h separation we are safely at the two-halo
regime, and thus avoid cross-correlating clusters with their
own satellite galaxies. Finger-of-god effects are also not
expected to be significant in this regime, as will be evident
by the large errors on the resulting CCFs presented below.
SWOT uses a descending k-d tree approach to cross-correlate
catalogs, and has a lower opening angle threshold (OA) below
which k-d trees are not further descended and large-scale
distances are approximated to speed up processing time. We set
OA=0.03 radians, but find this has no effect on our results in
the examined range, r<80Mpc/h. The resulting CCFs are
presented in Figure 5 (left) for the CC subsample (blue circles)
and for the NCC subsample (red triangles). The bias, given as
the ratio of the two, is presented in the bottom panel. We
compare LS with the Davis & Peebles (1983) estimator, and
find that the results are identical.
By construction, adjacent bins of the correlation function are

highly correlated, especially at large separations. Therefore,
Poisson errors underestimate the true variance on the large
scales examined here. There are many different approaches in
the literature to account for this covariance. One popular way is
to divide the sky into equal subregions and derive the
covariance using the jackknife method (Mountrichas
et al. 2009, 2016; Miyatake et al. 2016). Another is to perform
the calculation over many mock simulations that mimic the
samples at hand (see, e.g., Blake et al. 2006; Knobel
et al. 2012). Mock simulations are preferred, as the jackknife
value distribution is not Gaussian for a small sample like the
one presented here. Furthermore, the largest separation that can
be probed is limited by the jackknife region size, because large-
scale modes are not probed by the smaller jackknife box
(Norberg et al. 2009). Thus the errors on all quantities are
derived using simulations, where we cross-correlate samples of
mock galaxies and clusters of sizes comparable to the data at
hand (for full details of the simulations and error analysis, see
Appendix).

Figure 4. Mass distribution of 14 CC (blue) and 34 NCC (red) ACCEPT
clusters within the BOSS FOV that are matched with Planck clusters.

8 http://jeancoupon.com/swot
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As is evident from the size of the errors in the left panel of
Figure 5, the ratio of CCFs at large scales (25Mpc/h) is
noisy because it is dividing two small quantities—the CCF at
these scales approaches zero. When considering the full
covariance derived from the simulations (presented in the right
panel of Figure 5), the mean relative bias is á ñ = b 1.42 0.35,
with a significance of 1.6σ relative to b=1. In short, within
the large uncertainty, we currently do not find a significant
difference in the clustering around NCC and CC clusters.

5. Forecast

We find that the average bias is determined at the
Δb/b≈0.35/1.42=25% level. Although cross-correlating
with a large galaxy sample allowed us to analyze a small cluster
sample (á ñ ~N 24cl ), our analysis is still mostly limited by the
small number of clusters with central entropy measurements.
Here we forecast how a larger cluster sample will help improve
this statistic. We perform the same mock analysis using
simulations as described in the Appendix for increasing
numbers of mock clusters, =N 100, 250, 500cl , in each
subsample. In Figure 6 we plot the size of bias errors, derived
from the covariance of 50 mock simulations, as a function of
cluster sample size. We plot this as a function of scale, r. The
expected slope of this relation according to Poisson statistics,
−1/2, is overlaid to guide the eye (black dashed–dotted line).
For r35Mpc/h, the errors roughly follow the Poisson
expectation, but they do not at 70Mpc/h. Following this
scaling, a future sample of 500 clusters in each CC/NCC
subsample will lead to a constraint on the bias that is 5%, and
best probed over scales r20Mpc/h.

The level of assembly bias we find is in statistical agreement
with the level found by Miyatake et al. (2016),
b=1.41±0.09. The main differences between these two
measurements are the cluster samples and how those samples
are subdivided. Miyatake et al. (2016) use cluster-galaxy
member concentration as a proxy for their formation histories.
Simulations predict the level of bias to be ∼1.2 (Wechsler
et al. 2006; More et al. 2016). Assuming this level of bias, with
∼500 clusters in each subsample we can make a significant
detection of assembly bias using our method at the 3σ level.

6. Discussion and Conclusions

In this paper, we presented a methodology to explore the
origin of the CC-NCC dichotomy. We compared the clustering
of BOSS/LOWZ galaxies around CC and NCC cluster
samples. By comparing these CCFs, we constrain the relative
assembly bias of NCC with respect to CC clusters to be
á ñ = b 1.42 0.35, which is only 1.6σ above unity (a null
detection). Limited by the small number of clusters in our
subsamples (14 CC and 34 NCC), we do not detect a
significant difference between the large-scale environments of
CC and NCC clusters.
The main limitation of the current proposed method is the

number of clusters with resolved X-ray cores available. We
note that our study was done with a sample of Chandra X-ray
clusters compiled nearly a decade ago. Since then, many
follow-up Chandra cluster observations have been carried out,
in particular targeting the Planck z<0.35 clusters
(Jones 2012). An updated compilation of cluster entropy
profiles using deprojected temperatures is currently being

Figure 5. Left: CCFs between LOWZ galaxies and two cluster subsamples: CC clusters (blue curve+circles) and NCC clusters (red curve+triangles). Bottom panel
shows the ratio of NCC to CC correlations, which gives the relative bias, b. Errors are drawn from the scatter of 50 mock MICE CCF and bias measurements (same
errors as in Figure 7, left; see Appendix for details). Right: Correlation coefficients of the bias determined from the simulation’s covariance matrix.

Figure 6. Error in the bias derived from simulations (solid lines) as a function
of mock cluster sample size, plotted for each separation scale separately
(different colors), as noted in the legend. The expected Poisson error scaling,

N , is shown as the dashed–dotted line (with arbitrary amplitude).
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prepared, and will increase the number of clusters from ∼200
(ACCEPT) to at least ∼500 (ACCEPT-2; Baldi et al. 2014).
Currently, no future X-ray mission is under development to
succeed the high-resolution Chandra Observatory. Only one
mission with sub-arcsec resolution, the X-ray Surveyor,9 is
under conceptual consideration, but it may take more than a
decade to launch.

In the near future, several wide-field spectroscopic surveys
(e.g., eBOSS, Dawson et al. 2016; PFS, Takada et al. 2014;
DESI,10 Levi et al. 2013; J-PAS,11 Benitez et al. 2014) will
provide galaxy catalogs for higher redshifts, allowing more
clusters to be considered, although the yield of high-redshift
clusters in the X-ray is not high. Alternatively, a southern
redshift survey with BOSS-like depth could easily allow us to
double the number of clusters in our analysis, as many of the
X-ray clusters in ACCEPT are in the southern hemisphere (see
Figure 2). Unfortunately, no such redshift survey to sufficient
depth currently exists, although the proposed satellite all-sky
redshift survey SPHEREx (Doré et al. 2016) or the planned
Euclid survey (Laureijs et al. 2011) could fill in the void. Using
simple arguments drawn from a careful analysis of mock
simulations, we showed that with a sample of 500 CC and
500 NCC clusters, for which a successor to Chandra is crucial,
one can improve the measurement presented here from
Δb/b=0.25 to Δb/b=0.05, and rule out (or corroborate)
the role of large-scale environment in the creation of the
CC/NCC bimodality.
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Appendix
Errors from Mock Simulations

When using small samples, resampling (e.g., jackknife)
correlation functions can be unrepresentative; we opt to instead
use mock simulations to estimate and explore the behavior
errors on the bias measurement, as determined from the ratio
of CCFs. To that aim, we use the large N-body simulation
from the Marenostrum Institut de Cieńcies de l’Espai (MICE)
collaboration, the MICE Grand Challenge (MICE-GC;
Carretero et al. 2015; Crocce et al. 2015; Fosalba et al.
2015a, 2015b; Hoffmann et al. 2015). The galaxy catalog was
generated using a hybrid of Halo Occupation Distribution
(HOD) and Halo Abundance Matching (HAM) prescriptions to
populate Friends of Friends (FoF) dark matter halos from the
MICE-GC N-body simulation.12

We select both a galaxy and a cluster catalog from the full
catalog by limiting both to 0.1<z<0.43, as in our data.
We also apply the color selection criteria applied to LOWZ
(Reid et al. 2016) using the mock MICE g, r, i magnitudes
in the creation of a mock galaxy sample. For the mock
cluster samples, we require that the galaxy is central
(flag==0). The ACCEPT clusters are massive, spanning

( )< <M M14.4 log 15.1, so that there are not enough
massive simulated clusters in MICE to make a statistically
large mock cluster sample from which multiple mocks can be
drawn, which still match the observed mass distribution of our
CC/NCC clusters. Instead, we construct a cluster sample with a
similar mass distribution as that of our clusters, but at a lower
mass range, ( )< <M M13.5 log 14.6. We furthermore
divide them equally into two distinct cluster samples, clA and
clB, because we are interested in the ratio of CCFs that are of
independent clusters. We then randomly select 14 clusters from
clA and 34 clusters from clB, the same size as our CC/NCC
samples. We repeat this process to produce 50 mock cluster
sets. As with the data, we then calculate the CCF of each
cluster sample and the mock galaxy catalog.
For the calculation, we produce a random galaxy catalog by

drawing a random sample of galaxies in a sphere using
VENICE13 with the same redshift distribution of the MICE-
LOWZ mock galaxies (we verify that the construction of the
cluster random is not important and its effect cancels out). A
simulated “bias” is then constructed from the ratio between any
two CCFs, ( ) ( ) ( )x x=b r r ri j i cl g j cl g, , , , ,B A

(2500 ratios in total).
The error on the bias is simply the covariance of these 2500
simulated bias measurements. The mean CCFs and their
covariance, along with the mean bias and its covariance, are
plotted in Figure 7 (left, lower and upper panels, respectively).
The covariance of the simulated bias is then used as uncertainty
on the bias measured from the data (see Figure 5).
To explore how the errors scale with an increasing number

of clusters, we repeat the above test using samples of
=N 100cl , 250, and 500 clusters in each mock cluster

subsample. In Figure 7 (right) we present the CCFs and bias
estimated using 500 clusters to demonstrate how we can
improve our constraints on the bias. For both small and large

9 http://wwwastro.msfc.nasa.gov/xrs/
10 http://desi.lbl.gov/
11 http://www.j-pas.org/

12 http://cosmohub.pic.es./#/catalogs/MICECAT%20v1.0/prebuilt
13 http://github.com/jcoupon/venice
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samples of clusters, the measured bias is consistent with a null
bias (b= 1) within the errors, as expected.

As discussed above, we selected mock clusters that are less
massive than the real clusters. For this reason, the resulting
simulated CCFs (dashed curves with shaded regions) have
lower amplitudes than the real CCFs (circles with error bars) in
Figure 7. This, however, does not affect the desired quantity
(i.e., the bias between the two), as long as they have similar
mass distributions.
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