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4ARC Center of Excellence for Gravitational Wave Discovery (OzGrav), Swinburne University of Technology, Mail H11, PO Box 218, VIC 3122, Australia
5International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
6INAF - Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy
7Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA
8Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506, USA
9CSIRO Astronomy & Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia
10SKA Organisation, Jodrell Bank Observatory, SK11 9DL, UK
11Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
12Anton Pannekoek Institute for Astronomy, University of Amsterdam, P.O. Box 94249, NL-1090 GE Amsterdam, the Netherlands
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ABSTRACT
We have performed a new search for radio pulsars in archival data of the intermediate and
high Galactic latitude parts of the Southern High Time Resolution Universe pulsar survey.
This is the first time the entire dataset has been searched for binary pulsars, an achievement
enabled by GPU-accelerated dedispersion and periodicity search codes nearly 50 times faster
than the previously used pipeline. Candidate selection was handled entirely by a Machine
Learning algorithm, allowing for the assessment of 17.6 million candidates in a few person-
days. We have also introduced an outlier detection algorithm for efficient radio-frequency
interference (RFI) mitigation on folded data, a new approach that enabled the discovery of
pulsars previously masked by RFI. We discuss implications for future searches, particularly
the importance of expanding work on RFI mitigation to improve survey completeness. In total,
we discovered 23 previously unknown sources, including 6 millisecond pulsars and at least 4
pulsars in binary systems. We also found an elusive but credible redback candidate that we
have yet to confirm.

Key words: methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

The Southern High Time Resolution Universe (HTRU) project (see
Keith et al. 2010, for a complete description) is an extensive survey
of the Southern Sky for pulsars and fast transients performed with

� E-mail: vincent.morello@postgrad.manchester.ac.uk

the Parkes multibeam receiver (Staveley-Smith et al. 1996) between
2008 and 2013. The survey area was partitioned into three sections:
a low, intermediate, and high galactic latitude component referred
to as lowlat, medlat, and hilat, with on-sky integration times of
70, 9, and 4.5 min, respectively. Lowlat was designed to discover
relativistic binaries in the Galactic plane, medlat to find new bright
millisecond pulsars worthy of being included in pulsar timing array
experiments, and hilat to improve the pulsar census at high galactic
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latitudes and explore an undersearched portion of the sky for radio
transient events such as fast radio bursts (FRBs; Lorimer et al. 2007;
Thornton et al. 2013).

Prior to this work, the medlat portion of the survey had already
been entirely searched for periodic pulsar signals once (Bates et al.
2012; Levin 2012), while 32 per cent of hilat had been processed
(Thornton 2013). Due to limited computing resources, none of these
searches were sensitive to pulsars with high orbital acceleration; yet
with more than 80 per cent of the known millisecond pulsar pop-
ulation found in binary systems, running an extensive acceleration
search (Johnston & Kulkarni 1991; Ransom, Eikenberry & Mid-
dleditch 2002) would ensure the fulfilment of the initial science
goals of the survey.

This, however, comes with two major obstacles: high data rates
and the ubiquitous presence of radio-frequency interference (RFI).
The HTRU survey is a prime target to develop and test new soft-
ware with the goal of demonstrating quasi-real time processing with
minimal human intervention in candidate classification, as will be
required on upcoming telescopes such as CHIME (Ng 2017) or
the SKA (Keane et al. 2015). Running new analyses of archival
data with refined tools can also lead to a significant number of
new discoveries even in a previously searched portion of the pa-
rameter space, as demonstrated on the Parkes Multibeam Pulsar
Survey (PMPS; Manchester et al. 2001) by several successful re-
processings (e.g. Keith et al. 2009; Keane et al. 2010; Eatough et al.
2013; Knispel et al. 2013).

Here, we present a new search of the intermediate and high
latitude parts of the HTRU survey. In Section 2, we delve into
the details of our processing pipeline. We also developed a new
efficient RFI mitigation algorithm based on outlier detection, of
which we release a fast python implementation with this paper. In
Section 3, we briefly present the resulting 23 new pulsar discoveries;
full timing solutions will be provided in upcoming publications. We
also report a credible accelerating MSP candidate that we failed
to confirm despite extensive radio re-observations, and invite the
wider community to pursue the effort. In Section 4, we pursue a
comparison of our new search pipeline with the one previously
used on the same data, and finally discuss in Section 5 the potential
implications for future pulsar searches.

2 ME T H O D S A N D DATA A NA LY S I S

Below we describe the pulsar parameter space searched and the
three major operations of the search pipeline: Fourier search, candi-
date folding, candidate classification along with the RFI mitigation
methods employed. The detailed sequence of processing steps is
summarized in Fig. 1.

2.1 Search parameters

The first processing passes of the med- and hilat portions of the
HTRU survey used SIGPROC-based processing pipelines (Keith
et al. 2010). While these pipelines were clearly effective, discov-
ering 122 new pulsars, resource-constraints limited these analyses
to pulsars without significant acceleration. The development of the
GPU-accelerated PEASOUP1 search code removed these constraints
allowing for both regions to be searched out to moderate accelera-
tions. The PEASOUP pipeline does not offer improved sensitivity for
slow or unaccelerated pulsars and as such we selected a parameter

1https://github.com/ewanbarr/peasoup

space to search that focused on the discovery of binary MSPs. Ta-
ble 1 shows the parameters for the searches conducted on medlat
and hilat. These parameters are explained throughout this section.
For medlat we selected a maximum DM to search of 400 pc cm−3.
This corresponds to ∼1 ms of dispersive smearing within the 391
kHz frequency channels of the BPSR backend (described in section
3.2 of Keith et al. 2010). For hilat, we limited ourselves to twice
the maximum line-of-sight DM according to the NE2001 Galactic
free electron density model (Cordes & Lazio 2002) with a cap of
1000 pc cm−3.

In both cases trial DMs to search were generated using the method
explained at length in section 2.3 of Levin (2012), which we briefly
outline here. A pulse of intrinsic width Wint is broadened to a total
width Wtot by three numerical effects, namely sampling, smear-
ing due to intra-channel dispersion, and de-dispersion at an incor-
rect DM. Each have their associated time-scales, respectively τ samp,
τ smear, and τ�DM. These effects add in quadrature so that we have

W 2
tot = W 2

int + τ 2
samp + τ 2

smear + τ 2
�DM. (1)

The first three terms in the sum are predetermined by the observing
set-up and by the DM of the source in the case of τ smear. Only τ�DM

can be reduced by adopting a narrower DM trial spacing. We can
rewrite the above as

W 2
tot = W 2

eff + τ 2
�DM, (2)

where Weff is the effective pulse width once all unavoidable broad-
ening effects have been taken into account. The idea is to choose the
spacing from one DM trial to the next so that τ�DM never exceeds
some small fraction ε of Weff, which can be written

Wtot ≤ (1 + ε)Weff . (3)

The constraint above is usually expressed in terms of a so-called DM
tolerance parameter, defined as DMtol = 1 + ε. DMtol = 1.1 in all
our searches. Wint also constitutes a free parameter and represents
the minimum intrinsic pulse width one expects in the data.

Due to an oversight,2 approximately 3 per cent of the pointings
were searched out to DM values less than the NE2001 model pre-
dictions for their lines of sight. These pointings are predominantly
located close to the Galactic plane where there exists deeper cov-
erage from lowlat (Ng et al. 2015) but also the PMPS (Manchester
et al. 2001) and SUPERB surveys (Keane et al. 2018). For both
medlat and hilat, we selected an acceleration range of |a| < 50 m
s−2. Calculating the maximum line-of-sight acceleration (l.o.s.a.)
for all the binary pulsars in version 1.58 of the ATNF Pulsar Cat-
alogue (Manchester et al. 2005), we find that this range contains
∼97 per cent of the known pulsar population with most of the re-
maining pulsars belonging to more massive double neutron star
systems less likely to be found far from the Galactic plane. As with
the DM trials, the acceleration step size was determined based on
an acceleration tolerance parameter atol of 1.1.

2.2 Search code overview

PEASOUP implements a time-domain resampling acceleration search
(Johnston & Kulkarni 1991) on NVIDIA GPUs. The pipeline includes
dedispersion through the DEDISP library (Barsdell et al. 2012),
dereddening (low-frequency noise removal) in the Fourier domain,

2Beam coordinate offsets from the centre beam were occasionally applied in
degrees instead of radians, before passing the result as input to the NE2001
model.
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GPU-based pulsar searches of the HTRU survey 3675

Figure 1. Detailed overview of the full processing pipeline. Results from the processing of medlat encouraged the use of extra RFI mitigation layers on the
subsequent hilat search, including a new outlier masking algorithm described in Section 2.4.

Table 1. Search parameters for both medlat and hilat searches. Wint and
DMtol control the spacing of consecutive DM trials (details in Section 2.1).
Likewise, Wint and atol control that of the acceleration trials. f5 and f25 are
parameters of the dereddening of the Fourier spectrum (see Section 2.2).

Parameter Medlat Hilat

DMmax (pc cm−3) 400 See the
text

NDMtrials 1347 See the
text

DMtol 1.1 1.1
Wint (μs) 64 40
|amax| (m s−2) 50 50
δa (m s−2) 1.46 3.66
atol 1.1 1.1
Nacctrials 71 30
Nharmonics 16 16
f5 (Hz) 0.05 0.05
f25 (Hz) 0.5 0.5
fmin (Hz) 0.1 0.1
fmax (Hz) 1 100 1 100
Nbeams 95 940 358 644
Fraction processed 100% 81%

resampling, FFT, harmonic summing up to the 16th harmonic, peak
detection and optional time series folding.

To save computing time, PEASOUP performs dereddening only
once per DM trial, producing a time series with reduced low-
frequency noise that is subsequently searched at all trial acceler-
ations. The dereddening method consists of taking the FFT of the
dedispersed time series and scaling the complex-valued Fourier co-
efficients by an appropriate real-valued, frequency-dependent factor
(following section 3.1 of Ransom et al. 2002), before inverse trans-
forming the corrected Fourier amplitudes back to the time domain.
The scaling factor is calculated so that all bins of the corrected
power spectrum follow a chi-squared distribution with 2 degrees of

freedom, i.e.

Bi = Ai

√√√√ 2 ln 2

median
i−m≤k≤i+m

{|Ak|2} , (4)

where Ai are the complex Fourier amplitudes of the original dedis-
persed time series, Bi represent the dereddened amplitudes, the
denominator term is a robust estimate of the Fourier power around
bin number i and m is half the size of a running median window. The
factor 2ln 2 is the expected median value of a chi-squared distribu-
tion with 2 degrees of freedom. An underlying assumption here is
that the expected value of the power spectrum is constant across the
median window; if such is the case, then the Bi can be expected to
have normally distributed real and imaginary components each with
zero mean and unit variance, like the Fourier transform of Gaussian
white noise.

While equation (4) corresponds to scaling by a running median
of width w = 2m + 1, in practice PEASOUP breaks the spectrum
into blocks of w = 5 bins, takes the median of each block and then
interpolates the output to all frequencies to obtain an approximate
running median, which is much better suited to parallel architec-
tures. The process can be iterated multiple times (median of me-
dians) to obtain a local Fourier power estimate over windows of
width 5n. Since large median windows at low frequency tend to
underestimate the red noise power, we define two parameters f5 and
f25, that correspond to the frequencies at which we switch from a
median smoothing window of 5–25 spectral bins and 25–125, re-
spectively. Note that since we deredden only once per DM trial,
the dereddening applied at zero acceleration must also be valid for
higher accelerations. Thus, the selection of the f5 and f25 parameters
is important as the size of the smoothing window should be at least
twice the expected number of Fourier bins drifted by an accelerated
pulsar over the course of an observation. As our smoothing window
size is capped at 125 bins, we start to see reductions in sensitivity
for signals above 1294 Hz at the maximum acceleration of 50 m
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s−2. The reduction in signal-to-noise ratio (S/N) due to this effect is
a function of the true S/N of the given signal. We find empirically
that signals with true S/N � 12 are unaffected, and stronger ones
are never reduced to below S/N ≈12.

Two basic levels of RFI rejection were used in both searches.
First, 158 frequency channels (15.4 per cent of the band) known to
be contaminated by narrow-band RFI were ignored during dedis-
persion. Secondly, a list of Fourier spectral bins known to contain
high-occupancy periodic RFI were zero-weighted such that they
would not affect the acceleration search. These bins amounted to
no more than 0.1 per cent of the Fourier spectrum. As with dered-
dening, this process was performed once per DM trial. Finally, for
the hilat search one further level of RFI rejection was included.
Here, the multibeam RFI detection system of Kocz et al. (2012)
was used to identify time samples affected by near-field impulsive
RFI, which were replaced by representative noise samples drawn
from the distribution of surrounding valid data.

2.3 Processing

The data were processed on the Green II (G2) supercomputer at
Swinburne University of Technology.3 G2 is composed of a 3.4-
petabyte lustre file system and two computing clusters, gSTAR and
SwinSTAR. They host, respectively, 102 NVIDIA Tesla C2070s
(two per node) and 64 NVIDIA Tesla K10 accelerators (one per
node, with two GPUs). Processing of the medlat portion of the sur-
vey used both gSTAR and SwinSTAR, while we restricted process-
ing of the hilat portion of the survey to SwinSTAR due to reduced
availability of the gSTAR cluster. PEASOUP is multiGPU capable
and therefore nodes were assigned processing jobs that used both
GPUs.

The use of GPU accelerators allowed us to greatly reduce the
overall processing time required. The initial processing of medlat,
without acceleration trials, consumed ∼700 000 CPU-h spread over
the 3-yr period during which the survey was being observed. Had
all the data been available when the initial processing started, it
would have taken a minimum of 8 months on the hardware avail-
able at the time (Levin 2012). In contrast, the accelerated repro-
cessing of medlat presented here took only 3 months (∼15 000
GPU-h).

Performance logs taken from the hilat reprocessing show me-
dian execution times per DM trial of 43 ms for dedispersion and
128 ms for the acceleration search. Including overheads, we find
a median execution time of 182 ms per DM trial for the full
search (excluding candidate folding, see Section 2.4). The per-
formance demonstrated here was a driver for the development
of the real-time acceleration search deployed as part of the SU-
PERB survey (Keane et al. 2018). Detailed performance compar-
isons between the old and new pipelines are presented in Section
4.1.

As can be seen in Table 1, the total number of beams processed
(Nbeams) does not match the numbers presented in table 1 of Keith
et al. (2010). In the case of medlat, we exceed the total number
of beams in the survey due to the inclusion of re-observations of
RFI-affected pointings and confirmation observations for newly
discovered pulsars. In the case of hilat we were limited to the data
available on the G2 file system at the time of processing. This
constituted 81 per cent of the full survey.

3https://supercomputing.swin.edu.au/

2.4 Improved candidate folding

For each candidate identified by the FFT search, the original data
need to be phase-coherently folded at the candidate period, in or-
der to obtain more accurate parameters and additional diagnostic
information. It is standard practice to partition the input data in
equal-sized time segments dubbed sub-integrations, and then for
each sub-integration, fold every channel individually. The folded
output is therefore a 3D array with frequency, time, and phase axes.
We refer to it as a data cube below. The optimal candidate param-
eters can then be found via a fine grid search over a range of trial
dispersion measures and periods centred around the best candidate
solution reported by the FFT search.

2.4.1 The need for additional RFI mitigation

For our search of medlat, we used the DSPSR (van Straten &
Bailes 2011) and PSRCHIVE software packages (Hotan, van Straten
& Manchester 2004) to perform, respectively, candidate folding
and time-domain candidate parameter optimization. Our process-
ing strategy was to put the entire burden of RFI rejection on the final
candidate classification algorithm (described in Section 2.5). How-
ever, we subsequently found that this approach was sub-optimal;
for observations affected by strong interference, the optimization
process may not converge to the true pulsar parameters. It is only
guaranteed to report the parameters that maximize a statistical test
for the presence of a pulse in the corresponding integrated profile.
Occasionally, RFI distorts this test to an extent such that the final
candidate plot is impossible to identify as a pulsar even by a trained
eye. The accuracy of the candidate classification stage, regardless
of it being human or algorithmic, is dependent on the quality of the
candidate plots produced.

For the hilat search, we therefore decided to develop our own soft-
ware package to perform candidate folding and optimization called
CUBR (see chapter 4 of Morello 2016),4 which was also integrated
into the SUPERB pulsar search pipeline (Keane et al. 2018). Its main
feature is that it removes interference in the folded data cube before
the optimization process. For this, it uses a simple outlier rejection
algorithm to identify and suppress data that significantly deviates
from the dominant distribution. In what follows, A is the data cube
and i, j, and k indices along the frequency, time, and phase axes,
respectively. Aijk represents a single data point while Aij denotes the
pulse profile for channel index i and sub-integration j. Before we
apply any RFI mitigation, the dispersion measure of the folded data
is set to zero, and we subtract from every profile Aij its own median
value. It should be noted that RFI comes in many forms; however,
by contrast with pulsar emission, it rarely exhibits any dispersion
and often occurs in either a narrow band of frequencies or in a short
interval of time. These properties guided the design of the method
below, which we demonstrate on a folded observation of a known
pulsar affected by interference (Fig. 2, left-hand panel) to serve as
evidence of its effectiveness.

2.4.2 Step 1: removal of bad frequency and time intervals

Here, we flag abnormal profiles Aij based on three numerical profile
features:

(i) Standard deviation.

4hdl.handle.net/1959.3/434704
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Figure 2. A folded 9-min observation of PSR J0736–6304 (P = 4.86 s, DM = 19.4 pc cm−3) before and after the RFI mitigation algorithms described in
Section 2.4 have been applied (left and right columns, respectively). Top: frequency-phase plots, where we have grouped and summed the original 1024
frequency channels into 64 sub-bands for readability. Centre: time-phase plots. Bottom: integrated pulse profiles over the entire observation. In both cases,
integrated profiles have been normalized by a factor s

√
N , where N is the number of unmasked profiles in the cube, and s the standard deviation of unmasked

data. The top 150 frequency channels are permanently occupied by telecommunication signals and masked by an RF filter (Keith et al. 2010). The peak S/N
of the pulse increases noticeably from 31 to 37. Improving the general quality of candidate plots reduces the probability of genuine pulsars being improperly
rejected in the classification stage of a blind search.

(ii) Difference between maximum and minimum value (peak-to-
peak difference).

(iii) Absolute value of the second bin of the profile’s Fourier
transform. This helps identify strong low-frequency noise and sig-
nals with a sine-wave shape.

Every profile is associated to a point in this 3D feature space
(Fig. 3), which reveals a number of outliers. To identify them, we
apply Tukey’s rule (Tukey 1977; Chandola, Banerjee & Kumar
2009) to each feature: a value is considered anomalous if it falls
out of the interval [Q1 − qR, Q3 + qR], where Q1 is the 25th
percentile of the distribution, Q3 the 75th percentile, and R = Q3

− Q1 is called the interquartile range. q is a free parameter that can
be accurately mapped to a false rejection probability if most of the
data follow a normal distribution. Tukey’s original recommendation
is q = 1.5; we set q = 2.0 in our processing following tests on a
sample of RFI contaminated pulsar observations. Q1, Q3, and R are
not distorted by the presence of outliers, which make them a good
choice as opposed to the mean or the standard deviation. A profile
that stands out as anomalous with respect to any of the three features
above is flagged as bad (Fig. 4) and zero-weighted before further
processing.

2.4.3 Step 2: removal of zero-DM interference pulses

Next, we identify short duration bright interference bursts that fre-
quently appear in Parkes data. These are not dispersed, so they are
more easily identified in the so-called sub-integrations plot, i.e. the
sum of the data cube along the frequency axis that we denote Ijk:

Ijk =
nc∑
i=1

Aijk, (5)

where nc denotes the number of frequency channels, 1024 in the case
of HTRU data. A short interference burst manifests itself in a single
sub-integration as a small interval of phase bins with an abnormally
high value. We may therefore identify them by separately applying
Tukey’s rule to every column of I, where a given column corresponds

to a constant phase. For a bad data point (j0, k0) thus flagged in I, we
replace the associated data Aij0k0 across the frequency dimension
of the cube according to

Aij0k0 = 1

nc

median
1≤j≤nt

{Ijk0}, (6)

where nt is the number of sub-integrations, which was set to 32 in
our processing. The replacement is performed for every i from 1 to
nc. The overall effect of the application of the cleaning algorithms
described here can be seen in the right-hand panel of Fig. 2. Once
RFI mitigation has been applied, we proceed with a standard opti-
mization stage and produce a candidate plot to be evaluated in the
final classification stage.

2.4.4 Possible limitations

The upside of our proposed method lies in that it requires no explicit
manual parametrization of RFI, having only a single free parameter
q defined above. Instead, interference is defined as a small sub-set
of the data cube that significantly differs from the rest, a flexible ap-
proach that should in principle work in any RFI environment. We do
however make a few implicit assumptions about what the properties
of a pulsar signal should be: broad-band, dispersed, with no pulses
vastly brighter than the others. Should any of these assumptions
not hold, there is a risk of erasing a significant part of a pulsar’s
signal, but that situation should occur infrequently. For the first step
to remove a pulse of a genuine pulsar source in a given channel
and sub-integration, it should at least be distinguishable from white
noise; however, its S/N can be expected to be

√
nc × nt � 181 times

lower than the S/N of the pulse integrated over the whole band
and observation length. The second step can potentially remove
sub-integration samples containing bright individual pulses of an
intermittent or nulling pulsar with low DM. Such sources should
be more easily detected in a single pulse search however, which are
now routinely performed on most pulsar surveys including HTRU
(Burke-Spolaor et al. 2011).
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Figure 3. Visualization of the outlier rejection algorithm based on Tukey’s rule, here applied to the pulsar observation shown in the left-hand panel of Fig. 2.
For each profile in the data cube, we compute three features (see Section 2.4), and project all profiles in the resulting 3D space of which we show two 2D slices
in the scatter plots above. For each dimension of the feature space, we determine an acceptable value range based on the median and inter-quartile range of the
whole distribution; their histograms are displayed along scatter plot axes. The resulting decision boundary in feature space is a 3D box whose 2D projections
are visible as dashed lines in the scatter plots above.

Figure 4. Profile mask determined from the analysis shown in Fig. 3. Each pixel corresponds to a pulse profile, which is part of a given frequency channel
(X-axis) and sub-integration (Y-axis). Outliers appear in black and the corresponding data are zero-weighted before further processing. Bad frequency channels
are successfully flagged in this example. Arc-like patterns are visible, revealing narrow-band interference sources whose frequencies change over a time-scale
of ≈10 s.

2.4.5 Code release

A fast, standalone PYTHON implementation of the two RFI miti-
gation algorithms described above is made publicly available.5 It
comes with an interface to the PSRFITS format, via the PYTHON bind-
ings of the PSRCHIVE package. We also note that it can be readily
applied to perform RFI excision on pulsar timing data.

2.5 Candidate classification

Most large scale pulsar searches of the past two decades have pro-
duced candidate numbers large enough that visual inspection of the
entire search output is not a reasonable option (Lyon et al. 2016).
Our re-processing was no exception and left us with 17.6 million
candidates to sort through. Furthermore, medlat had been entirely
searched once before, making the number of expected discoveries
lower than on fresh data and the cost effectiveness of extensive
visual inspection worse. Developing an accurate Machine Learn-
ing (ML) classifier was therefore a requirement to make our search
successful.

Our classification algorithm SPINN consists of a simple two-
layer artificial neural network (ANN). Its first version (SPINN v1
hereafter) has previously been described at length in Morello et al.

5https://github.com/v-morello/clfd

(2014), and was used to evaluate candidates from the medlat por-
tion of the survey. The changes subsequently made to the folding
software and candidate format prior to running the hilat search
(Section 2.4) were also an opportunity to make adjustments to the
classification stage of the pipeline, resulting in an improved SPINN
v2. In this section, we will limit ourselves to a description of the
design guidelines we followed for SPINN v2 and an evaluation of
its classification accuracy and speed. Further details and an in-depth
explanation of ANNs can be found in chapter 3 of Morello (2016).

2.5.1 Candidate features

In any ML problem, each data instance must be converted into a set
of descriptive numerical properties called features, that are then fed
as an input vector to the ML algorithm. The choice of features plays
a critical role in the algorithm’s success. For the design of features,
we followed the general guidelines below:

(i) Keep the feature count below 10. An important constraint
encountered in pulsar candidate classification is the low number of
available real pulsar training examples, on order of 1000 at best for a
given instrument. Intuitively, these can only sparsely sample a 10D
feature space, leaving vast volumes where the classification function
to be learned is undefined, but where unseen real pulsar examples
may nonetheless lie. This is an aspect of the so-called curse of
dimensionality (e.g. Hastie, Tibshirani & Friedman 2009). Some
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Table 2. List of candidate features used as an input to SPINN v2, used on
the hilat search. The formulas used to compute these features can be found
in chapter 3 of Morello (2016).

No. Name Short description

1 snr S/N of the integrated profile
2 deq Equivalent duty cycle of the integrated profile
3 cider Confidence index in true source DM being higher than

2.0 pc cm−3

4 cscore Level of presence of candidate period in other receiver
beams during the same observation

5 actime Average correlation coefficient between integrated
profile and individual sub-integrations

6 acfreq Average correlation coefficient between integrated
profile and individual sub-bands

7 zratio Ratio between profile S/N at best DM and at DM=0

Table 3. A confusion matrix tracks the four possible outcomes of binary
classification on a dataset where the true class labels (noted + and −) are
known.

Predicted + Predicted −
Actual + True positive (TP) False negative (FN)
Actual − False positive (FP) True negative (TN)

learning algorithms such as decision trees and forests (Breiman
2001) are intrinsically robust to high dimensional data because they
operate only on select subsets of the feature space, but such is not
the case of ANNs.

(ii) Choose only features with high relevance, i.e. highly cor-
related to the class labels (but not necessarily in a linear sense).
This is in line with properly spending the limited feature budget we
imposed above.

(iii) Prefer monotonic features. A monotonic feature is such that
an increase (or decrease) in its value always corresponds to an in-
creased probability of positive data class membership. When using
only monotonic features, both the positive and negative data classes
tend to lie in distinct corners of the feature space, which means
that the optimal decision boundary between both classes has a sim-
ple parametrization. We found monotonic features to facilitate the
training process of our ANN and help to increase the accuracy of
its predictions.

The list of features we use as inputs to SPINN v2 can be found
in Table 2. We relied heavily on domain knowledge to design them,
but we note that more systematic approaches can be adopted. Given
a large feature set on a learning problem where high dimensionality
is undesirable, a nearly optimal subset of useful features can be
determined using so-called feature selection algorithms. Section 5
of Lyon et al. (2016) covers in detail the topic of feature selection
in the context of pulsar candidate classification.

2.5.2 Classifier evaluation

A classifier’s performance is measured by deploying it on a test
sample of labelled data that was not seen during training. The to-
tal number of successful or failed predictions on each data class,
positive and negative, can be conveniently tracked in a so-called
confusion matrix (Table 3) from which several figures of merit can
be derived. In the case of pulsar candidate classification, there are
two simultaneous goals: maximize discovery potential while sig-
nificantly reducing the number of false positive candidates to be

viewed by human operators. An inevitable trade-off exists between
the two, that can only be fully captured by measuring the two types
of error rates:

FNR = FN

FN + TP

FPR = FP

FP + TN
, (7)

where FNR is the false negative rate, here the fraction of pulsars
missed, and FPR the false positive rate or fraction of spurious can-
didates incorrectly reported as pulsars. In place of FNR we may also
use Recall, defined as the fraction of positives properly identified:

Recall = TP

FN + TP
= 1 − FNR. (8)

We trained SPINN v2 on a sample of labelled candidates from
medlat and tested it on all the candidates produced by searching the
first year of observations of the recent SUPERB survey. SUPERB
also uses the Parkes multibeam receiver with the same backend,
similar integration times on the sky, and the raw data were processed
with the same infrastructure described in Sections 2.2 and 2.4. Most
importantly, SUPERB covers a region of the sky that does not
overlap with medlat by design, ensuring the fairness of the test. The
test set contained 139 known pulsar observations and 1 418 598
negatives, whose class labels were determined by a combination
of cross-referencing with the ATNF pulsar catalogue (Manchester
et al. 2005) and visual inspection for all potential positives. All
known pulsars were thus identified; a few undiscovered pulsars may
have remained in the set of negatives, but the potential impact on the
measured error rates is negligible. Every test candidate was assigned
a score between 0 and 1 by SPINN v2, where a higher score indicates
a higher likelihood of being a pulsar. This allowed us to evaluate
classification error rates as a function of score threshold. The results
can be seen in fig. 8 of Keane et al. (2018). The balance between
recall and false positive rate is left to the user; for example, one can
expect to find 99 per cent of known pulsars while still dividing the
size of the metaphorical haystack of spurious candidates by a factor
of nearly 1000.

As for classification speed, one instance of SPINN v2 runs on
a single CPU and scores approximately 180 candidates per second
on an Intel Xeon E5 2.2GHz CPU. This takes into account the time
required to read the candidate from disc, compute the features, ac-
tivate the neural network to obtain a score and store the results.
Any classification problem can be trivially parallelized by deploy-
ing multiple identical classifier instances. The G2 supercomputer
allowed us to run 64 SPINN v2 instances at a time, which means
that the entire output of the pulsar searches described here (17.6
million candidates) could be processed in less than 30 min. We de-
cided for both searches to visually inspect candidates with a score
above a threshold corresponding to 99 per cent recall; this returned
less than 0.1 per cent of the total output of the search (Table 4). The
detailed visual inspection of these high-scoring candidates from the
hilat portion of the survey required less than 30 person-hours.

3 D I SCOVERI ES

We have found a total of 23 new, confirmed pulsars whose dis-
covery parameters are presented in Table 5. Here, we only provide
positions of the discovery beam and spin periods to six significant
figures, leaving full timing solutions to future publications (Keith
et al., in preparation; Barr et al., in preparation). The observation
IDs in which these pulsars were found and the date of their initial
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3680 V. Morello et al.

Table 4. Candidate classification and inspection summary. In both searches, candidates were selected for visual
inspection down to a score threshold corresponding to a recall of 99%.

Search Candidates Classifier Recall Candidates Fraction Discoveries
inspected inspected

Medlat 4 375 642 SPINN v1 99% 4 909 0.11% 8
Hilat 13 240 927 SPINN v2 99% 11 849 0.09% 14

Table 5. Confirmed pulsar discoveries. Where no DM-dependent distance estimation is given, the pulsar’s DM lies beyond the limits of the Galaxy according
to that model, which likely points at model flaws for some lines of sight. Some of these pulsars, although not formally published, have been independently
found by other survey teams.

PSR J R.A. Decl. l b P0 DM S/N DNE2001 DYMW16 Indep.
(hh:mm:ss) (dd:mm:ss) (◦) (◦) (s) (pc cm−3) (kpc) (kpc) discovery

J0125–23a 01:25:10 −23:27:26 189.1 − 81.5 0.003 675 86 10 33 0.4 0.9 G
J0636–3044b 06:37:09 −30:50:42 239.7 − 16.3 0.003 945 76 16 11 1.0 0.7
J0753–0816b 07:53:33 −08:19:35 227.6 9.8 2.093 62 38 15 1.9 1.7
J0839–66 08:39:37 −66:34:52 281.4 − 14.9 0.449 339 83 15 3.2 0.4
J0951–71 09:51:24 −71:19:01 289.5 − 13.3 0.212 378 77 16 2.5 1.7
J1000+08 10:00:38 +08:19:58 229.7 45.5 0.440 372 21 16 0.9 1.7 L
J1403–0314b 14:03:41 −03:15:28 335.6 55.0 0.362 634 31 21 – –
J1517–32a 15:17:01 −32:26:05 335.4 21.1 0.064 401 9 26 36 1.0 0.9 G
J1558–67 15:58:21 −67:35:59 319.3 − 10.9 0.267 268 105 10 2.7 5.1
J1654–26 16:54:39 −26:36:18 355.5 10.6 1.623 73 129 18 3.6 11.5
J1703–18 17:03:26 −18:48:54 3.1 13.6 1.270 24 46 12 1.4 1.4
J1705–1903c 17:05:27 −19:08:04 3.1 13.0 0.002 480 22 58 16 1.7 2.4
J1708+02 17:08:39 +01:48:06 22.3 23.6 0.410 772 29 24 1.3 1.5
J1754+0032c 17:54:52 +00:36:33 26.9 12.8 0.004 410 80 70 10 2.4 3.7
J1804–2858c 18:04:19 −28:58:31 2.0 − 3.6 0.001 492 68 232 11 4.9 8.8
J1842–27 18:42:02 −27:58:19 6.7 − 10.5 0.815 269 62 11 1.9 2.6
J1843–40 18:43:03 −40:33:51 355.0 − 15.8 0.324 187 66 16 1.8 3.9
J1921–05 19:21:04 −05:23:08 31.5 − 9.0 2.227 59 98 16 3.2 5.7 G
J1940+0239b 19:40:33 +02:36:41 40.9 − 9.7 1.232 24 90 26 3.5 5.7 G
J1942+0147b 19:42:27 +01:50:11 40.5 − 10.5 1.405 04 151 15 7.0 –
J1947–18 19:47:31 −18:58:12 21.5 − 20.6 0.002 603 23 25 16 1.0 1.1
J2228–65 22:28:18 −65:11:47 323.5 − 45.8 2.745 98 36 31 1.8 – S
J2354–22a 23:54:26 −22:51:53 48.1 − 76.4 0.557 996 8 13 0.4 0.9 G

Notes. aDate of identification in other survey predates ours.
bTiming solutions will be presented in Keith et al. (in preparation).
cTiming solutions will be presented in Barr et al. (in preparation).
G: Green Bank Northern Cap Celestial survey, http://astro.phys.wvu.edu/GBNCC/.
S: SUPERB survey, https://sites.google.com/site/publicsuperb/discoveries.
L: LOTAAS survey, http://www.astron.nl/lotaas/.

identification as candidates worthy of confirmation can be found in
Table 6. While none of the pulsars reported here have been previ-
ously published formally in the literature, we acknowledge that five
have been independently found by other survey teams and listed on
their official websites. Of the 23 confirmed discoveries, 6 are mil-
lisecond pulsars (MSPs) and another one (PSR J1517 − 32) appears
to be mildly recycled. At least four are part of binary systems: PSRs
J0636–3044, J1517 − 32, J1705–1903, and J1754 + 0032.

PSR J1705–1903 is a millisecond pulsar with a spin period
of 2.48 ms and a very low mass companion (0.047 M	 median
mass) indicative of a black widow. It undergoes eclipses for about
15 per cent of its orbit at 1400 MHz and has an extremely narrow
pulse width of ≈40 μs. Its usefulness as a timing array pulsar might
be hindered by the presence of long-term timing noise likely caused
by a non-uniform density of ablated companion material dispersed
in its orbital plane (e.g. Fruchter et al. 1988). However, its narrow
pulse width gives it excellent short-term timing properties which
can be leveraged to accurately measure DM and scattering varia-

tions throughout its orbit; this can in turn be used to characterize
the eclipses and the ablation process the companion is undergoing,
following work previously done on other similar black widow sys-
tems such as PSR J2051–0827 (Stappers et al. 2001), PSR J1544 +
4937 (Bhattacharyya et al. 2013), or PSR J1810 + 1744 (Polzin
et al. 2018).

PSR J1804–2858 has a spin frequency of 670 Hz, the third high-
est currently known. Despite being isolated, it shows a positive Ṗ

that is likely caused by acceleration in the local Galactic potential;
the possibility of a multiyear eccentric orbit around a massive com-
panion cannot be ruled out however, as was recently demonstrated in
the case of PSR J2032 + 4127 (Lyne et al. 2015). PSR J1804–2858
has the second highest DM/P ratio of any known pulsar, behind
that of the globular cluster pulsar PSR J1748-2446ad (Hessels et al.
2006). The highest DM/P a survey finds has previously been put
forward as a measure of survey depth (e.g. Lazarus 2013), which in
the case of MSPs is limited by so-called DM smearing: the artifi-
cial pulse widening caused by the uncorrected dispersion delay �t
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Table 6. Pointing and beam number for each of the newly discovered pulsars. Pointings are uniquely identified by their
start UTC date and time. Discovery date refers to the first visual identification as a candidate worthy of re-observation.

PSR Survey Observation UTC Beam Discovery date
(Y-m-d H:M:S) (Y-m-d)

J0125–23 H 2010-12-31 07:13:55 6 2015-05-07
J0636–3044 H 2011-06-26 00:01:54 13 2015-05-07
J0753–0816 H 2013-01-24 10:57:05 3 2015-06-11
J0839–66 H 2012-03-26 09:31:39 10 2015-05-28
J0951–71 M 2008-12-10 20:37:06 1 2014-01-07
J1000+08 H 2013-12-28 17:40:54 3 2015-05-28
J1403–0314 H 2013-12-30 22:21:55 3 2015-05-28
J1517–32 H 2013-04-05 12:48:51 8 2015-05-07
J1558–67 M 2010-01-21 22:22:30 5 2014-01-07
J1654–26 M 2008-11-23 23:33:40 1 2014-01-07
J1703–18 M 2009-08-21 10:26:40 8 2014-02-23
J1705–1903 M 2010-04-21 16:56:27 10 2013-10-14
J1708+02 H 2013-12-05 23:27:05 4 2015-05-28
J1754+0032 M 2009-08-19 08:37:33 12 2014-01-16
J1804–2858 M 2009-03-08 01:45:33 13 2013-11-02
J1842–27 M 2008-11-24 06:06:51 8 2014-02-19
J1843–40 H 2011-12-08 07:23:15 3 2015-05-28
J1921–05 H 2012-03-31-00:30:01 12 2015-06-11
J1940+0239 H 2013-05-01 17:13:28 7 2015-06-11
J1942+0147 H 2013-10-17 10:30:42 6 2015-06-11
J1947–18 H 2013-07-12 18:01:34 4 2015-05-07
J2228–65 H 2012-01-29 05:18:35 1 2015-06-11
J2354–22 H 2009-04-16 21:19:11 13 2015-05-28

within a single frequency channel, given by

�t = 8.3 × 103

(
DM

pc cm−3

)(
�ν

MHz

)( ν

MHz

)−3
s, (9)

where DM is the dispersion measure of the source, �ν the width
of a frequency channel and ν the central observing frequency. For
the HTRU survey observing set-up �t = 285μs at the pulsar’s
DM = 232 pc cm−3, compared to 2.2 ms for the previous gener-
ation of highly successful Parkes surveys (e.g. Manchester et al.
2001). The increased frequency resolution of HTRU made this dis-
covery possible, and pursuing this trend of finer channelization on
the next generation of telescopes will push the MSP detectability
horizon further into the Galactic plane, unless limited by interstellar
scattering.

Finally, one MSP candidate deserves mention. J1618–36 was
found in the medlat portion of the survey with a period of 5.78 ms
and an unusually high acceleration (16.3 ms−2) for a millisecond
pulsar. The parameters of its original detection can be found in
Table 7, and the candidate plot in Fig. 5. We note that the positive
sign on the acceleration means that the source is accelerating away
from the observer, and would correspond to the near side of an orbit.
The detection is not due to random noise fluctuations (S/N = 14),
and has all the properties that indicate a pulsar nature; it was detected
in a single beam, is broad-band with a very significantly non-zero
dispersion measure and all candidates reported with a similar score
by our classifier are genuine pulsars. Its period also lies within an
RFI-quiet range. We have unfortunately failed to detect it again after
spending a cumulated 6 h of Parkes time over the years 2015–2017,
mostly in 9- and 18-min integrations.

To constrain the possible nature of J1618–36, we need to place
its acceleration at the time of detection in a broader context. We

Table 7. Original detection parameters of the highly accelerating MSP
candidate J1618–36. The FWHM of a beam of the Parkes multibeam receiver
is 14 arcmin.

Parameter Value

α (J2000) 16h18m32.1s
δ (J2000) −36d03m42s
l 343.11◦
b 10.18◦
MJD 55065.240992
Pbary 5.778747 ms
DM 104 pc cm−3

Acc 16.3 ms−2

S/N 14
DNE2001 2.7 kpc

calculated6 the maximum l.o.s.a. of all binary pulsars for which or-
bital parameters are available in the ATNF pulsar catalogue. Defin-
ing MSPs as pulsars with spin periods below 20 ms, we find that the
only known MSP to reach a maximum l.o.s.a. higher than 16.3 ms−2

is PSR J2215+5135 (Hessels et al. 2011), a redback in a 0.17-d or-
bit around a main-sequence companion star with a median mass of
0.24 M	. The top six millisecond pulsars ranked by maximum ac-
celeration all have companions with ≥ 0.1 M	 and orbital periods
shorter than a day. Combined with the sequence of non-detections,
this tentatively suggests that J1618–36 is a redback eclipsed for
the vast majority of its orbit, or a new specimen of transitional
millisecond pulsar (see e.g. Campana & Di Salvo 2018, and ref-
erences therein). If such is the case, it should be detectable as a
low-mass X-ray binary when in an accreting state. There are two
faint ROSAT X-ray sources within one Parkes beam error radius

6https://github.com/ewanbarr/pyorbit
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Figure 5. Candidate plot for J1618–36, generated with PSRCHIVE. The phase versus time plot (centre left) was generated without correcting for acceleration
to make the residual quadratic phase drift visible; the overplotted thin blue line shows the best-fitting quadratic phase model. The upper right plot shows
folded S/N as a function of trial acceleration, giving a best-fitting value between 15 and 18 m s−2 consistent with the 16.3 m s−2 reported by the Fourier
search.

around the discovery position, namely 1RXS J161835.3–360329
and 1RXS J161820.8–360306 whose angular separation from the
candidate position are 41 and 142 arcsec, respectively. Both sources,
if placed at a distance of 2.7 kpc, would have 0.5–10 keV X-ray
fluxes of ≈1033 erg s−1, which would be broadly consistent with
a transitional MSP hypothesis. We were granted a 2 ks Swift ob-
servation (Observation ID: 00033792002, taken on 2015 May 28)
to put this idea to the test. If the flux of the source matched that
described above then a 46-count source would be detected, but un-
fortunately no significant source was visible in the field. In spite
of the elusiveness of J1618–36, we encourage further confirma-
tion attempts and checking of any archival data available due to
the very high quality of the initial radio detection, which remains
very unlikely to be explained by radio frequency interference or
noise.

4 C OMPARISON W ITH PREVIOUS SEARCHES
O F T H E SA M E DATA

Pulsar searches can be evaluated using three major criteria,
namely speed, completeness, and human effort involved in
candidate classification. In this section, we compare the pre-
viously used SIGPROC-based pipeline and candidate classifica-
tion tools with the new pipeline presented in Section 2. We
will mostly focus on the case of hilat, the survey section on
which we used our new RFI mitigation algorithm (see Section
2.4).

4.1 Speed

The speed evaluation was focused on estimating how long it would
have taken to perform a complete acceleration search of hilat with
the old pipeline, using the same search parameters we selected
(Table 1) and the same computing cluster. The old pipeline was
purely CPU-based. It performed brute-force dedispersion with the
dedisperse all routine and periodicity search withseek, both
of which are part of SIGPROC. Candidate summary plots were pro-
duced with the DSPSR (van Straten & Bailes 2011) and PSRCHIVE

(Hotan et al. 2004) software packages, using dspsr for folding,
paz for masking a static list of bad channels, and finally pdmp
for candidate optimization. For the sake of this comparison, the
programs that could only use a single CPU core (seek and pdmp)
were parallelized using the multiprocessing PYTHON library,
with negligible overhead.

We measured the execution times of every major pipeline step on
G2 (see Section 2.3), allocating to each of them three Intel Xeon
E5-2660 CPU cores and one Tesla K10 accelerator to process a
single 270-s hilat beam. This resource allocation simulated optimal
cluster usage conditions in a large scale search, since users are
simultaneously limited to a maximum of 64 concurrent jobs, 64
GPUs, and 192 CPU cores. Based on the average number of DM
trials in our own hilat processing, we performed the benchmark
with 650 DM trials, 30 acceleration trials, and 50 candidates folded
per beam. The benchmark results are shown in Table 8. We note
that under the ’Search’ operation are included red noise removal,
time domain re-sampling, FFT, and harmonic summing. We then
scaled those results by the total number of beams in hilat (Nbeams =
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Table 8. Speed comparison between major steps of the old and new processing pipelines on a single hilat beam with a
270-s integration time. Benchmarks were performed on the Green II supercomputer, assuming an average of 650 DM
trials, 30 acceleration trials, and 50 folded candidates produced per beam. See 4.1 for details. It is interesting to note
that folded candidate production could now become the main bottleneck of pulsar searching in some use cases at least.

Operation Old pipeline New pipeline Speed-up factor
(s) (s)

Periodicity search Dedispersion 380 28 14
Search 5577 83 67

Sub-total 5957 111 54

Candidate production Folding 142 53 2.7
RFI mitigation 5 40 0.12
Optimization 97 65 1.5

Sub-total 243 158 1.5

TOTAL 6200 269 23.1

Table 9. Estimated resource consumption of a complete hilat acceleration
search with both the old and new pipelines, based on the run times given in
Table 8.

Old pipeline New pipeline

CPU-hours 2 300 000 58 000
GPU-hours 0 41 000

443287) to evaluate the total cost of a complete search of the survey
(Table 9). Although faster single-beam run times could be obtained
for the old pipeline by allocating it more CPUs, this would translate
into more total CPU-hours used in a full-scale search.

From these results, it is clear that using the GPU-based PEASOUP

pipeline made an acceleration search of HTRU possible with the
specific resources we had at our disposal, running Fourier searching
between 1.5 and 2 orders of magnitude faster than on CPUs. We
note however that contrary to PEASOUP, seek was not designed
to efficiently process multiple acceleration trials concurrently. This
large speed-up factor also created an interesting situation where
folding candidates takes more time than a wide-range acceleration
search.

4.2 Output candidate quality and search completeness

An in-depth output comparison between the old and new pipelines
on the hilat survey section has been performed in chapter 5 of Cooper
(2017), of which we briefly summarize the results relevant to this
section. This study was limited to slow pulsars with periods longer
than 100 ms and our discussion will carry the same restrictions.
Of interest is the survey area processed by both pipelines, called
the overlap region hereafter and which contains 10 427 pointings,
amounting to 31 per cent of the survey and nearly all the data that had
been searched prior to this work. It was found that 42 known pulsars
were detected by either pipeline in this overlap region; successful
detection means that an associated candidate plot has been produced
and is identifiable as a pulsar by eye. All 42 were detected by the
new pipeline versus 38 for the old one. Furthermore, three of the
new discoveries lying in the overlap region were not detected by the
old pipeline either: PSR J0753–0816, PSR J1942 + 0147 and PSR
J2228–65. The parameters of all seven pulsars are summarized in
Table 10. In at least two cases (PSR J0536–7543 and PSR J2048–
1616), the old pipeline produced a candidate plot where the pulsar
could not be identified due to the presence of RFI.

With small sample caveats in mind, the fact that three slow pul-
sar discoveries were not detected by the old pipeline over 10 427
pointings can be taken to be very significant: linearly scaled to the
amount of data we searched (27 588 pointings), this would amount
to an expected eight pulsars missed. Considering that the current
slow pulsar yield of hilat stands at 22 including the 11 new ones
reported here (Table 5), it means that changes in RFI mitigation
schemes and other low-level processing steps have the potential to
increase the slow pulsar yield by tens of percent.

This validates the efficiency of the RFI mitigation algorithm pre-
sented in Section 2.4, in real large-scale search conditions: no pul-
sars were lost due to its use and extra discoveries were enabled. But
more importantly, this comparison underlines the large impact that
various data manipulations (RFI mitigation being an important one,
but not the only one) in the processing chain can have on search
completeness before candidates even have a chance to reach the
classification stage. We discuss this further in the next section.

4.3 Candidate selection accuracy and human effort

Two methods have been previously used to deal with candidate
selection in HTRU med- and hilat searches: interactive candidate
selection software such as JREAPER (Keith et al. 2009), and another
ANN (Bates et al. 2012). With the first method, users project a
batch of candidates on scatter plots where the axes are typically
period and S/N ratio, or period and DM; from there they make a
reduced selection of candidate plots to view in detail, exploiting
tendencies of RFI candidates to cluster in narrow ranges of periods
or around a dispersion measure of zero (Levin 2012). Due to its
subjectiveness, the accuracy of this pre-selection process cannot
be measured, precluding any comparison with ML algorithms. In
terms of human effort, the total time spent viewing candidates to
complete the initial medlat search using interactive software was
approximately 100 person-hours.

The ANN of Bates et al. (2012) provides a more interesting
point of discussion. It was both trained and evaluated on medlat
candidates produced with the previous SIGPROC pipeline, and was
found to have a false positive rate (FPR) of 0.3 per cent but a re-
call limited to 85 per cent (70 per cent on millisecond pulsars).
Such an FPR is low enough to make the inspection of the entire
survey output easily manageable by a single person, but a recall
rate of 85 per cent offers a more limited discovery potential. We
managed to significantly improve on the accuracy figures above,
mainly due to the larger amount of training data we had at our dis-
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Table 10. Parameters of the seven pulsars not detected by the old pipeline in hilat. Four were previously known, three
are part of the new discoveries (Table 5) and are marked with a star symbol. Their candidate plots were either not
produced, or not recognizable. Dbeam is the beam offset from the true source position in arcmin, and the S/N is that
reported by the new pipeline.

PSR J P0 DM S1400 Dbeam S/N
(s) (pc cm−3) (mJy) (arcmin)

J0536–7543 1.246 18 13.0 12.3 33
J0753–0816∗ 2.093 38 – – 15
J1332–3032 0.650 15 0.30 7.1 17
J1714–1054 0.696 51 – 7.0 18
J1942+0147∗ 1.405 151 – – 15
J2048–1616 1.962 12 13.0 9.0 366
J2228–65∗ 2.746 36 – – 31

posal. Bates et al. (2012) trained their classifier soon after survey
observations first started, on a limited data sample containing 70
candidates of the positive (pulsar) class. We were fortunate to have
access to the whole survey and more than 1000 such data instances,
including discoveries from previous searches. They also used more
candidate features (22 in total) in spite of having less training exam-
ples, which may have had a negative impact on accuracy (Section
2.5).

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have described a pipeline with the two main
functional elements that will be needed for future searches: a fast
search code that leverages many-core architectures and an accurate
candidate classification ML algorithm. We also devised and applied
a new RFI mitigation method based on a simple outlier detection
algorithm, which operates on folded data and has just one free
parameter. The pipeline was used to search the intermediate and
high latitude regions of the HTRU survey up to an acceleration of
50 ms−2 and 23 new pulsars were discovered, including 6 MSPs
and at least 4 in binary systems. The new search described here is
shown to exceed the performance of previous searches on the same
data both in terms of speed and completeness, and requires a much
lower amount of human involvement in the candidate selection
process. The improved completeness is evidenced by the fact that
the majority of the new discoveries are isolated, slow pulsars that
lie in a previously searched area of the parameter space.

The acceleration search of medlat and hilat was made possible by
moving the time-domain re-sampling and Fourier search operations
to the GPU, as they were by far the most time consuming in the
previous CPU-based pipeline. The resulting search code PEASOUP

performs those tasks on order of 50 times faster (Table 8), mak-
ing candidate folding the new bottleneck. Speeding up candidate
folding will likely become a requirement in the future, considering
that, for example the folding of up to 1000 candidates per beam is
currently being considered for SKA pulsar searches (Levin et al.
2017). GPUs are also a promising solution here. The folding of
high time resolution spectra into a small number of phase bins is
equivalent to histogram computation, and optimizing this operation
on GPUs is an area of active research in computer science (e.g.
Nugteren et al. 2011; Gómez-Luna et al. 2013). Large speed-ups
over CPU implementations have already been demonstrated.

The most important lesson learned from the hilat search is the
large impact of RFI mitigation on search completeness, and the
need to invest more effort into it. Since their introduction less than

a decade ago (Eatough et al. 2010), candidate classification algo-
rithms have greatly improved in accuracy, almost enough to be
used on surveys envisioned with the 1500-beam SKA1-Mid (Keane
2017). SPINN v2 would still have made the sifting of a 1500-beam
version of HTRU med- and hilat doable within a few person-days,
if a recall of 90 per cent can be considered acceptable (fig. 5.1 of
Morello 2016). Lower error rates have since been achieved using
ensemble classification (Yao, Xin & Guo 2016). While this is wel-
come news, investing further effort in pushing classifiers to higher
levels of accuracy is not the most cost-effective avenue if more than
10 per cent of potential discoveries can be lost in earlier stages of
the processing chain.

We have pointed out the large potential impact of RFI mitigation
on search completeness, but major concerns have also been raised
about red noise removal schemes negatively affecting the detectabil-
ity of pulsar signals (Lazarus et al. 2015; van Heerden, Karastergiou
& Roberts 2017). Other processing steps such as harmonic sum-
ming, clustering of Fourier detections into candidates, or the time-
domain candidate optimization process also have their own free pa-
rameters and the values chosen for these parameters impact search
completeness in a way that is not quantitatively known. If one is ever
to evaluate the recall and false positive rate of a pipeline as a whole
then it must be extensively tested on data generated by injecting
simulated pulsar signals in randomly selected survey observations.
Setting up such an evaluation framework may be computationally
challenging but it would allow one to submit all internal pipeline pa-
rameters to an optimization process, similar to the training of an ML
algorithm where its internal weights are fit to a sample of training
data. And with a wide variety of generated pulsar signals available,
candidate classifiers could be trained with nearly unlimited amounts
of data, and the search completeness could be accurately known
as a function of many physical pulsar parameters. Similar testing
frameworks are already employed on the LIGO and Virgo gravita-
tional wave detectors (e.g. Abbott et al. 2016; Biwer et al. 2017) to
characterize detections caused by non-Gaussian noise, and one is
planned to monitor the sensitivity of the CHIME FRB search (The
CHIME/FRB Collaboration et al. 2018). Artificial signal injection
has also been used as part of the PALFA survey to better evaluate
the sensitivity of periodicity searches (Lazarus et al. 2015; Parent
et al. 2018). As we move towards massively multibeam systems
and real-time pulsar searches where the raw data are immediately
discarded, with the additional requirement of automating the discov-
ery process, pulsar searching pipelines are in danger of becoming
completely opaque unless their whole processing chain is tested
thoroughly.
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