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ABSTRACT

Polarized radio emission has been mapped with great detail in several Galactic supernova
remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed
a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evo-
lution phase. At first, three-dimensional structure of an SNR has been computed, by modelling
the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The
generation and dissipation of the turbulent component of magnetic field everywhere in SNR
are also considered taking into account its interaction with accelerated particles. Then, in
order to model the emission, we have used a generalization of the classical synchrotron theory,
valid for the case in which the magnetic field has ordered and disordered components. Finally,
two-dimensional projected maps have been derived, for different orientations of SNR and of
interstellar magnetic field with respect to the observer. An important effect to consider is the
Faraday rotation of the polarization planes inside the SNR interior. In this paper, we present
details of the model, and describe general properties of the images.

Key words: acceleration of particles —radiation mechanisms: non-thermal —shock waves —

cosmic rays — ISM: supernova remnants.

1 INTRODUCTION

Supernova remnants (SNRs) are very important objects for high-
energy astrophysics. They provide experimental information, in par-
ticular, on the processes related to magnetic turbulence, cosmic rays
(CRs), their interactions and influence on the fluid dynamics and
the shock properties. Interstellar magnetic field (ISMF, of the order
of few nG) considerably affects the propagation of all CRs with en-
ergies < 3 x 10'5 eV deviating them from their original directions.
Therefore, the only possibility to study these cosmic accelerators
individually is to consider different kinds of emission resulted from
interactions of accelerated particles with magnetic fields (MFs),
with photons or with other particles.

SNRs are observed in all electromagnetic domains, from radio
waves to TeV gamma-rays. There is a wealth of information pro-
duced by many experiments but only a fraction of it has been ex-
ploited.

Fluxes and spectra, both integrated and spatially resolved, are
widely used. In some cases, fine details of the SNR surface bright-
ness distribution have been deeply investigated. For instance, the
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radial thickness of the X-ray SNR rim is associated with the strength
of the MF behind the shock front (Vink & Laming 2003) if the
dominant factor of the fading process is the density decrease and
the energy downgrading (and/or diffusion) of the emitting particles
(Berezhko, Ksenofontov & Volk 2003; Berezhko & Volk 2004,
Bamba et al. 2005; Volk, Berezhko & Ksenofontov 2005; Warren
etal. 2005). Alternatively, it may indicate the length-scale of the MF
damping downstream (Pohl, Yan & Lazarian 2005; Ressler et al.
2014; Pohl, Wilhelm & Telezhinsky 2015; Tran et al. 2015). Addi-
tional constraints on models come from the energy dependence of
the rim thickness (Ressler et al. 2014). The presence (or absence) of
the X-ray emission in the precursor gives hints on the particle accel-
eration properties (Long et al. 2003; Morlino et al. 2010; Winkler
etal. 2014). The azimuthal variation of the radio brightness depends
on the obliquity dependence of the injection efficiency (Fulbright
& Reynolds 1990; Petruk et al. 2009a) while the X-ray azimuthal
profile might help in determining whether the maximum particle
momentum is time or loss limited (Petruk et al. 2011a). High spatial
resolution observations may reveal the distance between the shock
and the contact discontinuity (e.g. Miceli et al. 2009). A consider-
ably reduced distance can be effect of particle acceleration with an
efficient backreaction on the flow (Warren et al. 2005) or otherwise
of protrusions of ejecta beyond the forward shock (Rakowski et al.
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2011). Similar effects may be due to the ejecta clumping (Orlando
et al. 2012). Rapidly varying spots in the SNR shell might be a
sign of the presence of either a highly amplified MF and ongoing
acceleration (e.g. Uchiyama et al. 2007) or of the plasma waves
and steady electron distributions (Bykov, Uvarov & Ellison 2008;
Bykov et al. 2009). The ordered stripes observed in Tycho SNR not
far from the shell (Eriksen et al. 2011) are a challenge for models
of plasma microphysics (Bykov et al. 2011; Malkov, Sagdeev &
Diamond 2012; Laming 2015).

In contrast to the widespread analysis of spectra and local spatial
characteristics of the non-thermal emission from SNRs in different
spectral ranges, the maps of the surface brightness and of the polar-
ized synchrotron emission — which are known for many SNRs — are
lacking an adequate analysis. Such situation should be changed by
developing new analysis methods. In general, there are two ways
to deal with SNR images: to analyse observed maps with mini-
mal assumptions or to model maps starting from basic theoretical
principles.

Using the properties of the emission processes and the observed
maps in different bands, it is possible, for example, to separate the
thermal and non-thermal X-ray images out of the mixed observed
one (Miceli et al. 2009), to predict a gamma-ray image of SNR
(Petruk et al. 2009¢) or to determine the MF strength in the limbs
of SNR (Petruk, Kuzyo & Bocchino 2012).

As to the latter strategy to explore SNR images, a method to
model the synchrotron radio and X-ray images of Sedov SNRs
(that is the shell-like adiabatic remnant of a spherical explosion
in a uniform medium) was developed by Fulbright & Reynolds
(1990) and Reynolds (1998), who also analysed the main features
of the these maps. The method was adapted to the gamma-ray SNR
images due to the inverse-Compton emission (Petruk et al. 2009b,
2011b) and to those due to the hadronic interactions with protons
inside SNR (Beshley & Petruk 2012). The method was generalized
to the case of an SNR evolving in an interstellar medium (ISM)
with non-uniform distributions of density and/or MF: the resulting
asymmetries on the radio maps have been studied by Orlando et al.
(2007) and in X-rays and gamma-rays by Orlando et al. (2011).

The SNR morphologies shown by their maps have the poten-
tial for understanding the plasma microphysics (Reynolds 2004)
and determining the properties of the SNR and its environment. In
particular, they allow for determination of the three-dimensional
orientation of ISMF and even its gradient around SN 1006 (Petruk
et al. 2009a; Bocchino et al. 2011) or, by analysing a sample of
SNREs, to reveal properties of the Galactic MF (West et al. 2016).
By modelling the surface brightness maps, it was shown that a
certain class of SNRs, namely the thermal X-ray composites (or
mixed-morphology SNRs, i.e. remnants with a thermal X-ray peak
within the radio shell), might be explained as a projection effect
of SNR evolving in essentially non-uniform environment (Petruk
2001).

The work of Bandiera & Petruk (2016, hereafter Paper I) and the
present paper continue a series of papers devoted to development
of methods to model SNR images. Namely, we are interested in
maps of the surface distribution of the polarized radio emission that
could also be important to test theories. It is known that random
MF generally reduces the polarization of the synchrotron emitting
sources (e.g. Stroman & Pohl 2009), but it is able also to produce
stochastic small-scale patchy structures, like spots and filaments,
with high polarization fraction in synchrotron X-rays (Bykov et al.
2008; Bykov et al. 2009). Recently, Schneiter et al. (2015) have
considered a task to simulate polarization images of SNR as a
whole under two simplifications: the authors neglected the turbulent
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component of MF and assumed the (variable) Faraday effect in
the SNR interior to be minor comparing to the (uniform) Faraday
rotation of the polarization planes outside. In our model, we consider
both these components and demonstrate that they might essentially
modify polarization images comparing to the cases with vanishing
turbulent MF and internal Faraday rotation.

With Paper [, we have essentially reached two main achievements.
First, we have developed a method to evaluate the synchrotron po-
larized emission in the case in which the MF is the composition
of a uniform plus a random component, and we have computed
exact analytic formulae for all Stokes parameters in some particular
cases, the most useful probably being that of a power-law particle
energy distribution and a Gaussian isotropic MF random compo-
nent: the resulting formulae show strong similarities with those for
the classical case (i.e. of a homogeneous MF), and are in fact a
generalization of them. Then, using a thin-shell approximation, we
have simulated the observed maps of the total radio intensity and
of the Stokes parameters for a wide number of cases. In spite of the
simplification used, we have been able to tackle in detail a number
of effects, like for instance the effectiveness of the internal Faraday
rotation in distorting the polarization pattern as well as in affecting
the observed polarization fraction, and the partial depolarization
also due to projection effects and to the random MF component.
Another advantage of that approach is that it is computationally
rather light.

In the present paper, we present instead a more detailed model;
namely, we consider the distribution of polarized synchrotron emis-
sion not only in the thin shell but everywhere inside a shell-like
SNR. In this way, more reliable maps can be obtained, which may
be used in particular to test various effects as well as to verify
how accurate the simplified models of Paper I can be, under typical
conditions.

2 POLARIZATION IN ADIABATIC SNR

In the present paper, aimed at modelling the radio emission from
shell-type SNRs, we have improved the treatment presented in
Paper I, by implementing a detailed and self-consistent treatment of
SNRs in the adiabatic regime, valid for objects old enough to have
swept up from the ambient medium a mass much larger than the
original mass of the supernova ejecta, but that are still evolving adia-
batically, i.e. the radiative losses and the backreaction of accelerated
particles are inefficient (in fact, the SNR statistics is consistent with
their radio emission to be strongly reduced about the end of the adi-
abatic phase; Bandiera & Petruk 2010). The approach we present
here (Sections 2.2, 2.3, 2.4, 3) is general, in the sense that it may be
used with the numerical 3D magnetohydrodynamic (MHD) simula-
tions of an adiabatic remnant of an asymmetric supernova explosion
in a medium with non-uniform distributions of density and/or ME.
However, in order to simplify the analysis, to make conclusions
clearer and to have a basic reference model, in the present paper, we
apply our model to the so-called Sedov SNR, i.e. the remnant of a
spherical point-like explosion in the uniform medium (Section 2.1).
Polarization maps of SNRs from fully numerical 3D MHD simu-
lations with asymmetric ejecta and/or expansion in a non-uniform
environment are in preparation.

2.1 MHD and relativistic electrons in Sedov SNRs

Before calculations of the polarization maps, one has to simulate
the 3D MHD structure of an SNR.

MNRAS 470, 1156-1176 (2017)

0202 4oquiaoaq G| uo 1senb Aq £GZEE8E/9G | L/1/0.F/SI01E/SeIUW/WO0d"dNo01WapeD.)/:SdjY WOl PaPEOUMOd



1158  O. Petruk et al.

In the simulations reported in the present paper, we assume a
strong unmodified shock (with y = 5/3), adiabatically expanding
in a uniform medium, after a spherical point-like explosion. This
problem admits an analytic solution (Sedov 1959), which is self-
similar: namely, the spatial and temporal variation of parameters
inside the SNR, for example the flow velocity u(r, f), can be written
in the form

u(r,t) =u@)ur), r¥=r/R@), 1)

where the index ‘s’ corresponds to the immediately post-shock
position and the profile ii(7) does not explicitly depend on time. In
other words, it is sufficient to calculate once the normalized profile
ii(7), to obtain (just by scaling) the profile at any given time. The
scaling properties of the Sedov solution reduce the number of free
parameters in simulations and reveal how the supernova and the
environment characteristics combine.! Accurate approximations of
the Sedov solution have been proposed for calculations, either in
the Eulerian coordinate r (Cox & Franko 1981) or in the Lagrangian
coordinate a (section 4.5 in Petruk 2000).2

The model assumes that the MF is a composition of an ordered
(B) and a disordered (§B) component. The distribution of B inside
the SNR may be calculated following Chevalier (1974): the MF in
each point may be treated as the sum of a radial and a tangential
component, which evolve in different ways (for detailed references
and expressions, see section 2.2 in Petruk, Kuzyo & Beshley 2016).
In a Sedov SNR, like for the other hydrodynamic parameters, also
the spatial profiles of these two quantities might be expressed with
self-similar functions of the normalized coordinates 7 or a = a/R.
The MF experiences a compression at the shock, with the compres-
sion factor oy = B;/B, that depends on the shock obliquity angle
0, (the angle between the ambient MF and the shock normal) ac-
cording to the law:

op = (cos2 O, + o sin’ @)0) 1/2 , )

where the index ‘o’ refers to the pre-shock position, and o = ps/p,
is the (density) shock compression factor. Consistently with our
assumptions, we will use ¢ = 4 in our calculations. Therefore, o
runs from 1, for a parallel shock (®, = 0°), to 4, for a perpendicular
shock (0, = 90°). Instead, the model for evolution of the disordered
MF component will be presented in Section 3.

In order to synthesize the SNR synchrotron maps, one has to
know also the spectral and spatial distributions of relativistic elec-
trons. We assume the power-law spectrum of emitting particles with
the index s = 2 and the injection efficiency (defined as the fraction
of accelerated particles) independent of the shock obliquity (unless
otherwise stated). The evolution of the relativistic electron popu-
lation downstream of the shock is also self-similar; we model it
following Reynolds (1998); details are presented in Petruk et al.
(2011b, appendix A).

! The Sedov solution describes the remnant of a point-like explosion and
therefore neglects the structure of ejecta that may give some effect in the
polarization maps at the early stages of SNR evolution.

2 The Lagrangian approach is useful if one needs to trace the evolution of
parameters inside a given fluid parcel. r is the common spatial coordinate,
while a is like a number attached to a fluid element. It is defined as the
radial coordinate of the element before the shock crosses this element and
remains unchanged later, i.e. @ = R(t;), where £ is the time when the fluid
element a was shocked. There is a possibility to convert a to r if one knows
the hydrodynamical structure downstream. Such conversion is a way to find
a spatial distribution of parameters.

MNRAS 470, 1156-1176 (2017)

2.2 Polarized emission

Once the distributions of MF and emitting particles have been eval-
vated for all locations within the SNR, we can compute the local
Stokes parameters, Z, Q and U/, which contain full information on
the (linearly) polarized synchrotron emission per unit path, while
V, the parameter associated with circular polarization, vanishes. We
can then integrate them along the line of sight, to get the observed
Stokes parameters.

For a general orientation x—y of the projected axes (z is the
line-of-sight coordinate with the positive direction towards the ob-
server), the standard formulae give Q = (E.E}) — (E,E}) and
U= (E.E})+ (E,E}). If we choose the special orientation (x'-
y), such that the E’ vector is directed towards the unit vector %’
(namely the B’ vector is directed towards the unit vector '), we
readily derive @' > 0 and /' = 0.

Let P, and P be, respectively, the synchrotron power per unit
frequency v polarized perpendicular and parallel to the projected
MF direction, then 7' = (P, + Pj)/4m and Q' = (P, — P))/4m.
For an arbitrary orientation, the Stokes parameters can be derived
using the standard rotation laws:

=17

Q= 0Q'cos2y —U'sin2y = Q' cos2y
U = Q'sin2y +U cos2x = Q'sin2y
V=V=0

3

where x is an angle between the x-axis and the local polariza-
tion measured anticlockwise, from the observer point of view. This
is the same as an angle between the y and the local vector B,,
(a component of the ordered MF B in the plane orthogonal to the
line of sight?).

In terms of the components B, and B, of the ordered projected MF,
we get cos x = B,/B,,, sin x = —B,/B,,, where B:Ty = Bf + B%
(see Appendix A). Therefore,

) B — B}
COS 2y = I;ETB%,
C))
. 2B.B,
sin 2X = _m
x y

Before integrating the Stokes local values along the line of sight,
to obtain observed Stokes parameters, we must account also for the
rotation of the polarization plane inside the SNR due to Faraday
effect (called ‘internal Faraday rotation’ throughout this paper):

B, z1) = RM(, 1) 4%, &)

where B is the angle of rotation of the polarization plane during
propagation from the emission site / inside the SNR to z;, namely
where the line of sight crosses the edge of the SNR near to the
observer (see Fig. 1), measured in the same direction as x (i.e.
anticlockwise from the observer point of view); A is the wavelength
of emission, and RM(/, z;) is the rotation measure, defined as

3 41
RM(. /) = ze—/ neB.dz. ©)
1

2.4
mim?c

3 In the present paper, y is the rotation angle of the MF vector while in
Paper I it was the rotation angle of the coordinate system. The sign in
this definition is opposite to that in Paper I, and now gives an orientation
consistent with the angle B, for the Faraday rotation. It also applies to
equation (7), cf. equations 10 and 69 in Paper I (see Fig. 1). On the other
hand, this change of definition does not affect the results.
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5, /

Figure 1. MF orientation as it would be derived from the polarized emis-
sion. OZ axis points towards the observer. Line of sight is parallel to the OZ
axis. Emission risen at point /, with orientation of the ordered component of
MEF shown by the green vector (lower right), changes its polarization plane
inside SNR, on the way towards the observer, due to the Faraday rotation
inside SNR. It leaves SNR at point z;. ‘MF orientation” inferred from this
‘portion of emission’ is shown by the red vector (upper right). The angle x
determines the orientation of the ordered component of MF in each point
while the rotation on the angle S is due to the Faraday effect.

The foreground Faraday rotation (i.e. from the point z; to the ob-
server location) is not considered in our simulations because our
goal is to investigate the propagation effects internal to the source
(SNR) rather than those in the ISM.

We detect the composition of the emission from each point /
along the line of sight, propagated until the point z;. Therefore, the
projected Stokes parameters should be calculated as

I = [TT0d
0 = [ QWcos2(x()+ B,z dl, D

U =[] QWsin2(x()+ B z)dl

where z, is the farther edge of the SNR (Fig. 1).

The angle-sum trigonometric identities allow us to use equations
(4) and (5) here.

Once we have the projected Stokes parameters calculated for each
point of the SNR projection, we may obtain the map of polarization
fraction

VO

1

= (®

and of the angle of the ‘observed’ rotation of the polarization plane

W= 1arctan (g) . &)
2 o
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The angle W gives us the orientation of the observed ‘projected’
MF B relative to the projection of the ambient MF B,:

B, « sin\W, (10)

B, o cos V. (11)

In the discussion of results (Section 5), we consider also an aver-
age polarization fraction for an SNR image (IT) that is an arithmetic
average of IT from each (out of N) point over the SNR projection:*

1 N
(1) = NZH,. (12)

It should also be noted that when gradients in Stokes parameters
occur, unless they are fully resolved, they will entail an effective
‘beam depolarization’. That is, the polarized fractions will be reso-
Iution dependent and can be expected to rise with increasing N. In
our simulations, we use a high resolution; therefore, our local po-
larization fractions may reach the maximum theoretical value. It is
important to account for this effect when comparing the simulations
with observations.

2.3 Stokes parameters. Completely ordered MF

In the classic synchrotron emission theory, the Stokes parameter Z’
for particles with the single momentum p is

, J3é v
Tas0.P) = s BoF (7). (4
and the parameter Q' is
V3é v
9= 45806 (1), e

where B,, is the component of MF in the projection plane (i.e.
perpendicular to the line of sight), F' and G are known functions,
and v is the critical frequency.

The Stokes parameters for electrons distributed with the power
law in momentum N(p) = Kp~* are given by convolution over p:

s+7/3 ,

T = 7‘:;{ CKBSH?, (15)
Q =CKBY™"?, (16)
where

J3e3 v\ b2 s 7 s 1
C=—|— r-+—=|r{-——=»>,. 17

e (o) rGr)rGon) @
and ¢; = 3e/(2tm>c?). In the case of the ordered MF, the polariza-
tion fraction is the maximum possible one:

s+1

=575 (18)

max
Results of simulations of the polarized emission from the Sedov
SNR with the only ordered MF are presented in Section 5.1.

4We would like to make clear that this average polarization fraction is
not how observers typically calculate the polarization fraction for an entire
object. The standard practice is the total polarized power divided by the
total flux density [our equation (12) does not weight regions by total flux].
Instead, equation (12) gives an average of the local fractions over the image
and it is used solely to characterize the dominant values of IT in the image,
not the object as a whole.

MNRAS 470, 1156-1176 (2017)
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2.4 Stokes parameters. Ordered plus disordered MF

If a model considers the only ordered MF, then it results in the high
fraction of the polarized emission. Observations reveal rather small
IT in SNRs, around 15 per cent. Therefore, a model of polarized
synchrotron emission should also include the disordered component
of MF inside SNR.

At this point, we face the two problems.

First, the classic theory of synchrotron emission is developed
for MF that is uniform on the length-scale much greater than the
gyroradius of the emitting electron; in other words, it may be used
with the ordered MF only. Thus, the theory of synchrotron emission
should be generalized to the cases when the random MF §B is not
negligible comparing to the ordered MF B. We have developed such
generalization in Paper I. Namely, if the particles with the power-
law momentum distribution emit in MF that has ordered component
of the strength B and the random component represented by the
spherical Gaussian® with the standard deviation 6B, then the Stokes
parameters are (for details see section 2.2 in Paper I)

T — 7 d ot/ s+5
o 4
§B\ TV 1+s 1 /8B\
X 3 1 Fy _T’l’_i 5 ; 19)
0w g (122)
o 4

§B\U7V2 3— 1 /8B\ 7’
« (F) (s (f) )

where | F(a, b, z) is the Kummer confluent hypergeometric func-
tion, Z! and Q, are respective Stokes parameters for the case of the
ordered MF [i.e. given by equations (15) and (16)]. The polarization
fraction is

m— rlmax{s’L5 <‘LB>_'
16 B
1Fi (3 —s5)/4,3, —(8B/B)/2)
1Fi(—(1+5)/4,1,—(8B/B)2/2) |~

2n

The terms in braces {--} — 1 for B/B — 0 and the results of the
classic synchrotron emission theory are recovered for a vanishing
random component of MF. Fig. 2 demonstrates the dependence of
7', @ and IT on the strength of the disordered MF. Note that 7’
increases with 6 B/B; this is of importance for fitting of the observed
synchrotron spectra. In particular, if one assumes §B/B ~ 1, then
the flux is twice the flux given by the classic synchrotron theory.
Similar effect, namely, that the turbulent MF is able to enhance the
synchrotron emission, is noticed also by Bykov et al. (2008).

The second problem is that we have to know the value of §B
everywhere inside SNR. An approach to model the evolution of the
disordered component of MF on the shock and in the SNR interior
is one of the main goals of the present paper. It is developed in Sec-
tion 3 where the equation for the evolution of waves is considered.
Solutions of this equation are analysed in Section 4. In our approach,

3 A possible realization of a turbulent MF by a spherical Gaussian, which
preserves the zero divergence of MF, by an ensemble of Alfvén waves, is
given by Bykov et al. (2008).

MNRAS 470, 1156-1176 (2017)

0.8

0.2

1 ] —= 0
0.1 1 10

dB/B

Figure 2. Dependence of the Stokes parameters Z'/Z/ and Q'/ Q. as well
as the polarization fraction IT on the ratio of strengths of the disordered and
ordered components of MF §B/B, for the power-law index of the electron
spectrum s = 2 (I1 is almost insensitive to s; for the Z'(s), Q'(s) dependence,
see fig. 1 in Paper I).

the wave properties are related to properties of CRs accelerated on
the forward shock and evolved downstream.

Once B and 6B are known in each point of SNR, the projected
Stokes parameters may be calculated by equation (7) with Z" and Q'
given by equations (19) and (20). Note that in our approach to the
synchrotron emission theory (where the random MF is represented
by the spherical Gaussian) neither x (spatial structure of MF) nor
B (internal Faraday rotation) is affected by the disordered MF.

Results of simulations of the polarized emission from the Sedov
SNR including disordered MF are presented in Section 5.2.

3 MODELLING DISORDERED COMPONENT
OF MF IN SNR

One of the basic ingredients needed to calculate detailed syn-
chrotron polarization maps of SNRs is the spatial distribution of
the MF disordered component, everywhere inside the SNR. In this
section, we present a description of the evolution of this MF com-
ponent: this treatment is rather general, in the sense that it may be
applied to a shock moving in a medium with non-uniform distri-
bution of density and/or MF; however, for the calculation of the
numerical models presented in this paper, we will apply it only to
the cases of an SNR Sedov expansion. The present treatment is
based on the following main assumptions: (i) the disordered MF is
essentially the effect of the composition of Alfvén waves and we
are limited therefore to small values of the ratio §B/B; (ii) these
waves, as well as the CRs, behave like ‘test particles’, i.e. they are
developed atop of an MHD structure, which is unaffected by them;
(iii) MHD instabilities are not taken into consideration once we
consider the Sedov SNR; (iv) waves and CRs interact with each
other through resonant interactions only; (v) the wave damping is
described by a non-linear Landau approach.

More sophisticated descriptions of the random MF component
are present in the literature (e.g. Bell 2004; Balsara & Kim 2005;
Giacalone & Jokipii 2007; Mizuno et al. 2011; Guo et al. 2012;
Fraschetti 2013, and others) and should be considered in the future
studies. In the present paper, we adopt instead a rather standard
and ‘simple’ prescription for the wave evolution. This allows us to
reveal the basic trends caused by the disordered MF, as well as the
complexity that arises when taking into consideration the random
ME. Also the choice of modelling a Sedov SNR in the present paper
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is in order to provide some basic ‘reference’ results, for a typical
evolutionary phase.

We leave to future simulations the task of revealing effects
of other, more complex, elements (like MHD instabilities, non-
uniform ISM or ISMF, non-adiabatic or CR-modified shocks, other
types of waves) in the modelling of polarized synchrotron emission
from SNRs.

3.1 Equation for the downstream evolution of §B

The equation that describes the evolution of waves downstream of
the shock is (McKenzie & Volk 1982)
0E, 0F, aP P, TP 2
o T or T 'ar T v 22)
where u is the flow velocity with respect to the shock reference
frame, E,, = 8 B%/4m is the wave (magnetic and kinetic) energy
density, P, =6 B?/8m is the pressure of waves, o Py, and 'y, Py,
are the growth and damping rates for waves, respectively. Note that
the quantities in this equation are not functions of the wavenumber,
but are the integrated ones. Let us assume that the energy flux F\,
is dominated by Alfvén waves, so that

PR LL (23)
VT A g

It accounts for the purely magnetic (the first term to the right) and
kinetic (the second term) contributions (McKenzie & Volk 1982);
va is the Alfvén velocity

B
VA = .
A Jamp
Therefore, behind the shock, E,, = 2Py, F\, = 3uP,, and equation
for Py, becomes

6P+ 0P, +P36u 1( P, TP, 25)
—— = —(owPy — .
ot or Y20r 2T v
Alfvén waves interact resonantly with Larmor radius of acceler-
ated protons: k o 1/p, where k is the wavenumber. The growth rate

is derived by Skilling (1975b):

(24)

dmoalb-a| , of

O= 5w PV (26)
where W(k) is the spectrum of the wave energy density, b is the
unit vector in the direction of MF (Skilling 1975a) and 7 is the unit
vector outwards along the radius. These unit vectors are defined in
such a way in order their dot product to be b - i = cos ®, where ©
is a ‘local’ obliquity angle (between MF and the radial direction).
The absolute value of the dot product is taken because the growth
rate is positive while the dot product may be negative depending on
the local orientations of these vectors. The growth term in equation
(22)is

owPy = /aw(k)W(k)dk. 27
We therefore integrate equation (26) using the property

dk/k = —dp/p and the definition of the CR pressure

47
Po=—= p'v f—, (28)

and derive that

ow Py =

(29)
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The damping term consists of the linear and non-linear contri-
butions (e.g. Ptuskin & Zirakashvili 2003): I'y, = 'L + I'np. The
first one is due to collisions of protons with neutral hydrogen of
the density ny (e.g. Kulsrud & Cesarsky 1971). It is taken as I'. o
ny = 0 assuming that no neutral survive after passage across the
shock front. There is no commonly accepted approach to the de-
scription of the non-linear damping (see e.g. Ptuskin & Zirakashvili
2003, and references therein). We take the expression for the rate
of non-linear Landau damping from Ptuskin & Zirakashvili (2003),
namely from their equation 12:

Ey(> k)

()W (k) = k
NL(R)W (k) = ckva B2 jam

W(k), (30)
where cx = (2Cx)~%/?, Cx ~ 3.6 being the quantity introduced by
Ptuskin & Zirakashvili (2003), and E\,( > k) the energy density of
waves with wavenumbers larger than k. Note that there is no explicit
obliquity dependence in this term because the waves interact with
themselves and this process does not depend on the shock obliquity.
Equation (30) can be integrated over k, giving

CKVUA

/ T (KW (k)dk = B ian

/kEW(> KW (k)dk. 31)

Multiplying this expression by unity

—1
_E, < / W(k)dk) , 32)

and noting that the average (kE,( > k)) is dominated by the lowest
wavenumber in the spectrum (kyin): (kEyw( > k)) =~ kpinE\w, where
Ew( > kmin) = Ey, we have the damping term in equation (22) of
the form

2CKUA 2
l—‘NLP = B2/8 kmmP (33)
Thus, equation (22) is now
0P, o 0P, L P, 3 0u
ot or 2 0r
® 0P,
= BERZCE A L (34)

2 or B/8m

In order to follow more easily the evolution of waves in a given
fluid element, we use the Lagrangian coordinate a and the relations

2, 0\ (d d pla)r(a)’
<at+ E)E (E)L’ (6r)E W(aa)L’ 4

where ‘E’ and ‘L’ denote Eulerian and Lagrangian derivatives, re-
spectively, and the latter relation directly follows from mass con-
servation (pr’dr = p,a’da.) In terms of a, equation (34) has the
form

dPy(a,t) )
T-H]l(éh HPy(a, )+qaa, t)Py(a, 1) = qola, t), (36)
with
vaAcos ® pr2 dP,
= , 37
40 200a? da (37
_ 3pr? Ou 38)
@ = 2p0a2 0a’
CKVUA Kmin
= - 39
2= g gn (39

Equation (36) is the Riccati differential equation and may be
solved numerically. Solutions of equation (36) are considered in
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detail in Section 4. In the rest of this section, we describe how to
model different properties of waves that are needed to solve this
equation.

The solution Py (a, ), with known r(a, 1), p(a, 1), u(a, t), B(a, t),
P.(a, t), describes the wave pressure. The evolution of §B down-
stream is given by

8B(a,t) = \/8mPy(a, 1). (40)

This dependence on a may be converted to the spatial dependence
on r with the use of the relation r(a, t) that is known explicitly from
the hydrodynamic solution.

3.2 Shock compression factor for waves

Let us define the ‘shock compression factor’ for the wave pressure
as the ratio of pressures immediately downstream Py, and upstream
PWO:

Opw = PWS/PWO’ (41)

This ratio may be calculated from the stationary form (0 P, /9t = 0)
of equation (25) written as
1 oP, 310u 1

P or Tauwor 2T

By integrating this equation across the shock, we get
Py, 3 At At At At

Us
-n—=—+ —— — — —— 43
Pyo + 2 u, 41, + 4t,, 4ty 4dtro “3)

I'y) g 42)
dr

In

where 7, = o, ! and v = I',;! are the time-scales for the wave

growth and damping. In order to come to this equation, we estimated
the functions o, and I'y, with their average: (oys + 0wo,)/2 and
(Tyws + Two)/2.

If the time-scale At for the shock to cross the fluid element is
much smaller than all s, 740, Trs and T, then the right-hand side
in equation (43) vanishes and then

opy = 02, (44)

where we have used the relation u, = ous. An important result is
that, since o is constant for strong shocks, the factor op,, neither
depends on time nor on the shock obliquity. The shock jump in 6B
is then simply

8B, (P
S = = =0 (45)
SBO Pwo

3.3 Model for the wave pressure on the shock Py

The energy density of waves is assumed to reach the saturation level
before the shock front. Its value Py, is given by the stationary form
(Amato & Blasi 2006) of equation (25) written in the upstream
region:

0P,
—2u—— = owPy — 'y Py. (46)
or
Let us introduce two parameters
P\ P
%_ _ (O'w w ) 7w’ (47)
l_‘W PW PCO

uPy,

A= P TP (48)
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Note from equations (29) and (33) that £ and X are independent of
P,,. Equation (46) becomes, after multiplication by A& /(uPy,),

2 3<PW =g ﬁz (49)
BRarr Pm)_S _<Pm)'

The solution of equation (49) may be derived by separation of
variables, assuming & = £, and A = A, constant on the scale of the
precursor, i.e. from the shock to distance x, upstream of the shock.
Thus, immediately upstream

exp (£2) — 1
exp (Qo) + 17

where €, = x,/A,. The CR and wave pressures are set to zero
beyond the distance x, because our model does not consider seed
CRs and waves (note that 0 < Py, /(Pco€o) < 1).

In order to see the meaning of the parameters &, and £2,, we use
equations (29) and (33), written for the upstream region and use
some simplifications. For instance, the minimum wavevector ki,
(whose modulus appears in equation 33) is set to k, ~ Eorfol , where
Lo = PmaxC/(eB,) is the Larmor radius of protons with maximum
momentum in the field B,. The value of the CR pressure gradient in
the shock precursor may be estimated as 0 P./0r >~ P, /x,, where
X, is the distance the same protons are able to diffuse off the shock
(the size of the CR precursor); it is directed opposite to 7i,. The
unit vectors EO and 71, are in the directions of the upstream MF
and of the normal to the shock, respectively; their dot product is
130 - i, = cos ©,. The distance x, >~ D(pmax)/uo (Amato & Blasi
2005), where D(pmax) = rioc/3 is the Bohm diffusion coefficient.
So,

Pyo = coéo (50)

O, 3u, Pyo\ '’
£~ (C‘” o 2o B") , 1)
2ck ¢ P
Q ~ Vao COS O _ cos G)O’ 52)
uogo MAO%_O

where 2cx >~ 0.1, and Ma, = u,/va, is the Alfvén Mach number of
the shock.

Now, the post-shock pressure of waves is given by
exp(2,) — 1

Py >~ P .
ws OPpw COSOGXP(QO)-FI

(53)

3.3.1 Limit cases of the wave evolution

Let us introduce the variable « as the ratio of the wave growth to
damping rates

GWPW

= . 54
=T h. (54)
Following definition (47), immediately before the shock
E() = a(!/2Pwo/Pco- (55)

Comparing this relation with the solution (50), we see that the ratio
between the two rates is related to the ratio of the exponents:

2
o = (M) ) (56)
exp (£2,) — 1

The plot «,(€2,) is shown in Fig. 3. The two limiting regimes
of the wave evolution are evident from this plot: the limit A of the
small damping rate at the shock [, = (2/ Q) is larger than unity,
2, < 2] and the limit B of the same rates at the shock («, is unity,
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Figure 3. Ratio of the wave growth to damping rates «, as a function of
Qo.

Q, > 2). The maximum damping rate may not be larger than the
growth one, as expected (we do not assume a seed turbulence).

Fig. 3 demonstrates that the transition between the two limiting
cases is in a rather narrow range. Namely, the first one may be used
already for Q2 < 1 and the second one for Q2 > 4.

It is apparent from the figure that the ratio of the growth to
damping rates increases with obliquity, for the same &, and Ma,,
because €2, decreases with ®,, equation (52).

Equation (53) gives the possibility to calculate the wave pressure
at the present time, on the shock. The wave pressure on the shock
evolves as it follows from equations (53) and (56) and the expression
for this evolution may be found as a ratio:

Pwsi _ Pcsi Eoi O[()(Qo)l/z
Pws Pcs so Olo(gzoi)l/z7

(57

where the index ‘i’ refers to the time #;, i.e. Py and P are the
wave and CR pressures in the element @ when it was shocked. This
formula is general; its limits (which are useful for interpretation of
results) are considered in the next two subsections.

3.3.2 Limit case A: small wave damping at the shock

If the damping rate in the shock precursor is negligible compared
to the growth rate (limit A), then equation (46) becomes

P, _ VpoCOS ®, 0P,

— = 58
or 2u, or (58)

with the obvious solution

Pwo = PcovAo COS(G)O)/(ZMO)- (59)

The same expression may be obtained from the more general for-
mula (53). Namely, if 'y, Py, < 0Py, then 2, — 0. Decomposition
of the exponential terms with small arguments in equation (53) into
series and use of the first-order term and equation (52) result in
equation (59).9

The CR pressure is smooth across the shock: P, = Pc. The
post-shock pressure in form of waves is therefore

Opw PesVao COS O,

Py = N e A0 TR o 60
2, (60)

in this limit.

® This way to derive equation (59) proves also the correctness of equation
(52).
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In a non-uniform medium with a density profile p,(R), the veloc-
ity V of the strong adiabatic shock is well approximated by V(R) o
(0o(R)R?)™'/? (Hnatyk & Petruk 1999, this formula is exact in the
case of a constant density). Numerically, #, = V. In the general case
of an ambient medium with non-uniform distributions of density
and MF, the variation of the post-shock value of the wave pressure
in time follows from equation (60). Namely, the evolution of the
wave pressure on the shock may be found as the ratio

Pwsi _ Pcsi <a )3/2 Bo(a) Cos ®0(a)
Pys P \R Bo(R)cos Ou(R) | °

The term in braces {---} = 1 for a uniform ISMF.

(61)

3.3.3 Limit case B: equal rates at the shock

If I'yPy = oyPy at the shock (limit B), then €, is large. Unity
may be neglected comparing to the exponential term both in the
nominator and denominator in equation (53), i.e. &, = 1 and the
expression for pressure of waves comes simply from equation (55):

Pwo = c0‘§0~ (62)
Therefore, for a general case of non-uniform ISM and ISMF,
Pwsi _ Pcsi 1/2(a>73/4
Pyo  \ P R

Bo(a)cos Oy(a)'? pola)~*

Bo(R) cos @(R)'/2 po(R)~14 |~

(63)

The term in braces {---} = 1 for ISM with uniform distributions of
density and MF. Equation (63) is derived as a ratio Py; /Py directly
from equation (62) using expression (51) and the approximation
V(R) o< (po(RIRY) /2.

3.3.4 Obliquity dependence of P

In order to simulate polarization images, we need to also know
how does the wave pressure vary with obliquity. We will use equa-
tion (53) for this purpose, and have therefore to find the obliquity
dependences for all the quantities there.

The compression factor opy, is constant, equation (44).

The obliquity dependence of &, comes from equation (51). In
order to find it, we write the ratio of this parameter for a parallel
shock (marked with the additional index ||) and for the shock with
a generic obliquity angle (without additional index). Then we have,
for a general case of non-uniform ISM and ISMF, that

Py’ [ Bops R
sll ool 7
&, ~ £ cos B2 = . (64)
o ol ° pln2 Bo\\P$/4R3/4

Ccs

The term in braces is equal to unity for uniform ambient density
and MF. The obliquity variation of €2, is given by definitions (52)
and (64):

Pl [ pl/4 RO
Q = Qo cos O} s (;/471?9/4 ) (65)

cs|| of I

In deriving equations (64) and (65), the approximate formula V(R)
o (0o(R)R*)™/? was used.

Now, we know how &, and 2, vary with obliquity. Thus, equation
(53) gives us the ratio

Puo _ P b o)
PwsH PcsH EOH Olo(Qo)]/z ’

(66)
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which represents the obliquity dependence of the wave pressure.
This reduces, for the Sedov shocks, to

PVVS PCS

= cos ® (67)
Pysi Py °
in the limit A and to
Pys P\
> = ( - > cos (9(])/2 (68)
Py P

in the limit B.

3.4 Evolution of the CR pressure P,

For a given momentum distribution f{p) of CRs, the CR pressure is

4
P.= g/p3v(p)f(p)dp- (69)

In order to simplify the calculations of the evolution of B, we
approximate P, assuming an isotropic test-particle CR distribution
N(p) = 4ntp? f(p) that is represented by a power law N(p) = Kp~,
with s close to 2, in the range between the minimum and maximum
momenta of CRs pp, and pn.x. The CR pressure in this case is

Pmax(a,1)

1
P.a,t) = 5K(a, 1) P u(p)dp. (70)

Pmin(a,1)

Since an approximate treatment of P.(r) is sufficient to our pur-
poses, in this subsection, we fix s = 2, a choice that minimizes the
dependence of the CR pressure on py,, While describing reasonably
well also the cases with s slightly different from 2.

Then, in the regime ppi, <K mc <K pmax, being v > ¢ for p > mc,
we finally derive

cK(t) K(a,1) n (pmax(a, t))

Pe(a,t) = (71)

3 K (1) mc
In all reasonable cases, the logarithmic term can be approximated
with In (pmaxA,s/mc), where Pmax;s = 10°me.
The normalization Kj, related to the injection efficiency 1 by

Pmax,s
/ K,p~2dp = nns, (72)
Pmin,s
evaluates
Ks = NN Pmin,s- (73)

At the shock (a = R), the expression for the CR pressure, equation
(71) with equation (73), coincides with equation 30 in Amato &
Blasi (2009).

The minimum momentum may be estimated by its relation to the
thermal momentum. We assume that the distribution of the thermal
particles downstream may be approximated by the Maxwellian
Fulp) = —=y? exp(—y?) (74)

IR ’
where y = p/pm with py, = /2mkT; being the thermal momentum
and

— 2()/_1) Mol
r+1D* k

the shock temperature and w, the mean particle mass in units
of the proton mass. Further, we assume that all thermal particles

(75)

s
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with momenta p > pn, are to be accelerated. Thus, the injection
efficiency is

o.¢]
n= / fm(y)dy. (76)
Ymin
In general, in order to find the minimum momentum puin, s = YminPth»
one has to solve this equation to find yn;, for a given value of 7.
This formula gives, in particular, y;, = 3.07 forn =3 x 10~* and
Ymin = 3.91 for n = 1075, Since y,;, varies quite slowly for a wide
range of 1, we set in our simulations pyin, s = 3.4pm (7).
Taking all these pieces together,

2.3np,Ve K(a) In <pmax‘,s)

P, ~
c(a) M(l)/Z(y _ 1)1/2 Ks me

a7
where all parameters are referred to the time ¢ and some of them
depend on the shock obliquity.

Let us parametrize the time dependence of the injection efficiency
as n(t) o« V(£)~® + D with a parameter b (i.e. Ky o< V=" because ppin
o V). Then the ratio of CR pressures needed in equation (57) is

Pi  pol@) (V@ \ " [ po@ ' payr s
Pcs‘po(m(wm) _(po(m) (k) - ™

The way to calculate K(a)/Kj is described in Orlando et al. (2007,
2011) for the general case of non-uniform ISM and ISMF and in
Petruk et al. (2011b) for a Sedov shock in ISM with uniform density
and MF. In particular, the evolution of the normalization K behind
the Sedov shock is self-similar: K (a, 1)/ K,(t) = K (a), where

K@) =a"" p@®r (79)

is time independent, @ = a/R and R the radius of the shock. The
profile of the CR pressure, equation (77), is [to the level of approxi-
mation used for the logarithmic factor in equation (71)] self-similar
as well, i.e. it may be written in the form P.(a, t) = P.(t)P.(a),
where

_ 2.37],00VC Pmax,s
Pe(t) = M(l’/Z(y _ 1)1/2 In < mc ) @0
Pu(@) = K (@), @1

We have just described the time evolution of the CR pressure, at
the parallel shock. We also need the prescription for the whole SNR
surface, i.e. at the oblique shocks as well. The obliquity dependence
of P is due to the respective dependence of the injection efficiency
and variations (if any) of the ambient density and the shock radius.
It is given by the ratio

3/2
L (82)
Py | pgf* R
derived from equation (80) where we neglected for simplicity the

obliquity dependence of the logarithmic term and used the approx-
imate formula V(R) o (po(R)R?)~'/2.

3.5 Evolution of &,

The function ¢,, equation (39), contains kp;,. In our model, the
downstream evolution of k.,;, is described as follows. Since W(k)
is a decreasing function, the damping is highest for waves with the
smallest k, equation (30). Therefore, we assume that, in a given
fluid element, at a given time, the only survived waves are those
with the wavenumbers larger than k,,, which is able to interact
resonantly with the Larmor radius of particles of the highest energy:
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kmin =~ 1/rL(Pmax) = eB/(cpmax)- Then, we consider the evolution
of B and pp,x within this fluid element.

In order to describe pn.x(a, f), we parametrize the time evolution
of the maximum momentum that particles reach at the shock as
Pmaxs(£) ¢ V(1); then

pmaxﬁs(li) _ V(a) 4 _[a —3q/2
Ponaxs(t) (V(R)) - (E) : (83)

Numerically, for the Sedov phase, ¢ = 1/3 if ppay is time limited,’
g = 0if it is escape limited and ¢ = 1 if it is limited by the radiative
losses (Reynolds 1998, p. 379). Downstream, even protons with
the maximum momentum p,,,x experience only adiabatic losses,
i.e. Prmax(@) o Enax(a) o p(a)'/? (e.g. Reynolds 1998); the energy
losses due to pion production are neglected assuming that the shock
is propagating in a medium with density less than ~10*cm™3 (e.g.
Beshley & Petruk 2012). The evolution of p,,,x downstream is there-
fore given by

Poas(a.t) (p(an))lﬁ
Pmax,s(ti) B ps(t) ’

Taking equations (83) and (84) together,
Prax(@, 1) _ (g)—w (p(a,w) o (po<a)>““ 85)
Pmaxs()  \R ps(1) Po(R) '

It appears from the above formulae that the evolution of the
minimum wavenumber is self-similar for the Sedov shock:

(84)

kmin(av t) = kmin‘s(t) . Emin(é), (86)
with
eB;
kmin,s([) = s (87)
Pmax,sC
]_Cmin = B/ﬁmax = Ba3q/2pil/3' (88)

4 SOLUTIONS OF EQUATION FOR WAVES

The evolution of the wave pressure P,, within a fluid element a after
its passage through the shock is given by equation (36). In this sec-
tion, we consider solutions of this equation. Section 4.1 deals with a
particular case that allows for analytic expression. The formulae are
presented for the general case and for a particular model of Sedov
shocks in uniform medium and uniform MF. Numerical solutions
are presented in Section 4.2.

4.1 Limit case A: small wave damping

4.1.1 Solution for a general case

If the damping rate is negligible at the shock (i.e. 2, < 1) and
everywhere downstream, then the damping term in equation (36)
may be set ¢, P2 = 0 and the solution of equation (36) is

Py(a, 1) = u(a, 1) (Pws(ti>+ / q‘)(“’t/)dt’), (89)
J b M(av t/)

w(a, t) = exp (—/ qi(a, t')dt') . (90)

7 In this case, Pmax X V2t (Lagage & Cesarsky 1983) and V « 17375 for the
Sedov shock; therefore, ppax Vi3,
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In order to evaluate this solution numerically, one needs to know
the time history of the whole SNR structure; in other words, one
should have the MHD data cube for each time moment #;. It is more
suitable for calculations to express the integrals in terms of a rather
than 7. With the use of

& — dR(')  da
V@) V@)
one has the spatial profile of the wave pressure

_ Pwsi ko 610(0/7 t) ’
pre=wien (2o [ 52+ [ ) o

R() /
_ B Qa0
wia, t) = exp ( /a V@) da ) , 93)

oD

where Py = Py(t) is the value at time #, while other quantities
are referred to time . In this approach, it is enough to know the
present-time SNR structure only. Having the present-time value
of Py and the ratio Py /Pys from equation (61) [which, like the
integrals in equations (92) and (93), depends on the distribution of
MHD parameters at the present time], we may calculate Py, (a, 1)
numerically.

4.1.2 Solution for a Sedov shock

Let us consider this solution for a particular model, namely, for a
Sedov shock in a uniform medium and uniform MF.

For a Sedov SNR evolution in a medium with uniform density
and MF, equation (92) becomes

Pula, 1) = Pus() (Pus@ + Pun(@). (94)

where the profiles P,,(a), Py,(@) are time independent, @ = a/R.
Namely,

Py (@) = a" " ), (95)

- opi(@ ' Bp'?*cos(®)dP. ,_,

P, = da’, 96
D= os©0 J: — mar da 6)

- 3 ' pR?di

(a) = exp ) i dé’da . ©7)

In order to derive equation (95), we made use of equations (61) and
(78) and uy = V/o . In derivation of equation (96), we made use of
equations (60), (44) and V(R)/V (a) = @*/%.

Equations (95)—(97) are written in a way to express the solution
through the basic profiles of MHD parameters. It is clear from here
that the downstream evolution of P, is self-similar. Equation (40)
shows that §B(a) is self-similar as well, 8 B(a, t) = 8 B,(t) - § B(a),
with

8By = /8T Py (98)

and §B = Pl ie.

3B = (Pu(@ + Pu@) . 99)

The profiles 5 B(7) are shown in Fig. 4 in comparison with pro-
files of B(r). In the considered limit A, the turbulent MF has a
flat distribution in the deep interior (no wave damping) while B
decreases. As a result, the ratio §B/B increases towards the centre
of SNR. The obliquity affects the normalized profiles § B(F): the
normalized strength of the turbulent MF is larger for a perpendic-
ular shock. However, in the considered limit, the post-shock value
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o

SB/SB, , B/B,

Figure 4. Normalized radial profiles of B(F) (thin lines) and 8 B(F) (thick
lines) along SNR radius downstream of the parallel shock (solid lines) and
perpendicular one (dashed lines). Limit of the small damping, b =0, g = 0.

8B, o Pl/? o cos ®1/? (equation 67), i.e. it is zero for perpendicu-
lar shock.

4.2 General solution for Sedov shock

In a general case when both the wave growth and damping should be
considered, the solution of equation (36) may be found numerically.

Let us consider Sedov SNR evolution in a medium with uni-
form density and MF and rewrite equation (36) in order to have
an equation for P, (a). First, we substitute equation (36) with the
self-similar form

Py(a,t) = Pys(t) Py (@), a=a-R({). (100)

Then we use the same procedure as before, namely, transform from
the variable ¢ to the variable a with equation (91). These steps yield
the following equation for the normalized wave pressure Py (@):

aPy, -,
— +t 1P+ 3Py =40 (101)
da
with
R © Bp'%72 dP. Q0
o= o = BD 22T e o (102)
V(@@)Pys ocos®, a2 da 2
_ @R 3pir* di
— - ar 103
"=V ~ 2 da (109)
RP B2 g R Qg2
o= T TR (104)
V(a) p° Xo 2
The factor Q7?27 = (Q,/2)? in the limit of small wave
damping. Therefore, g, — 0 in this limit because 2, < 2. In
addition, Q,e}/?27! = 1 and we recover results of Section 4.1.2.

1/2

(8]

In the limit of equal rates, «//> = 1. It should also be g, P> = g

at the shock. This yields

R 1 [dP

R _ 14 (105)
X, o?|da ]|,

where we have used the relation cos ®, = ogcos ;. Though ex-

pression (105) comes from a limit, we shall use it for any o,.
Therefore, we adopt

a}(qul)/Z |:d1'JC:| QOaJI/Z
s

—c 106
da 2 (106)

©= "5
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With equations (81), (79) and for Sedov solutions (Hnatyk & Petruk
1996, 1999)

dp 5 13
L_) — L (107)
da|, (y+1)7
we have
dp, 3b 2 5 13
| 20 2hsoy+ DD (108)
da |, 2 3 (v+1)?

We use s = 2 and y = 5/3 for plots and numerical simulations.

In order to have the spatial profile P, (@), we should start from the
initial value of Py(a, #,) in the fluid element a at time # when it was
shocked, i.e. from Py;(a); its normalized version is Pii(@ini). Then
equation (101) has to be used to evolve the wave pressure in this
fluid element up to the time ¢, i.e. to find Py(a, ?); its normalized
version is Py(1). Note that P, (1) is different for different initial
values P,(a). In other words, the solution P, (@), @ € [@n;, 1], of
equation (101) with the initial value Py;(dj,;) does not represent
the spatial distribution of the wave pressure for different a but the
time evolution of Py, within the element a written in terms of time
in an indirect way. Therefore, in order to have the spatial variation
P,,(a), one needs to solve this equation many times with the initial
conditions for different ai,;. Different values of P, (1) derived from
each solution correspond to the wave pressure in respective fluid
elements &y, = a/R(t) at time ¢ and therefore represent such a
spatial variation, Py, (Giy;).

This could look like a complicate procedure. However, the direct
solution of equation (36) is not simpler from the point of view of
numerical realization. Namely, in our approach, we do not need to
keep the time history of spatial distributions of all the parameters to
make temporal integration. We just take one, the present-time spatial
distribution of parameters, and do the spatial integration instead of
the temporal one (cf. Section 4.1).

The initial condition, as derived from equations (57), (51) and
(78), is

P = Do) _ z36-1ys { (109)

wsi =

(R 177
TPyt } ’

ot(,(§2053(b+3)/4)

where we substituted Q,; = Q,a>**3/* (as from equations 52, 51,
78) and assumed a uniform ambient medium density and MF. In the
limit of small damping, this results in

Py = atth? (110)

(cf. equation 61), while in the limit of equal rates, we obtain
(cf. equation 63)

Py = at= /4, (111)

Fig. 5 shows the radial distribution of the wave pressure down-
stream of the Sedov shock for some values of €2,. The larger the
,, the closer the damping rate to the rate of the wave growth at
the shock (Fig. 3). However, for larger €2,, the values of P, were
higher at previous times (Fig. 6). Combination of these features
results in the larger wave pressure Py, in the interior of SNR for
larger €2, (Fig. 5).

How to know which regime of the wave behaviour (limit A or
B) is more reliable for a certain parameter set? One can note from
equations (52), (51) and (80) that

Q ~ 1.5n1/2§cos o2, (112)

This means that a typical SNR shock ('/%2¢/V ~ 0.1-10) could be
either in the small damping limit or in the limit of the equal damping
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Figure 5. Profiles Py (7) as from equation (101) for Q, = 0.4, 2, 10 (solid
lines). The solution in the limit of negligible damping (equation 94) is shown
by the dot—dashed line. For the plot, we have chosen b = 0, ¢ = 0. The solid
and dot—dashed lines refer to the parallel shock, while the long-dashed line
to a perpendicular shock (€2, = 0 for the perpendicular shock, equation 65).
The profile P.(7), equation (81), is shown by the dotted line for comparison.
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Figure 6. Values of Py (as from equation 109) for the fluid element &
at time #; when it was shocked plotted versus the present position 7 of this
element. All cases are for a parallel shock with b = 0; lines are labelled
with the values of ,. The same for the limit A (equation 110; dashed line
marked by ‘A’) and for the limit B (equation 111; dashed line marked by
‘B’).

and growth rates. The quasi-perpendicular shocks are always in the
regime of the small damping because of the dependence of €2, on
the cosine of the obliquity angle.

The solution for the limit of the small damping, equation (94), is
shown in Fig. 5 by the dot—dashed line. The radial profiles for small
Q, values are close to that approximate solution. The differences
are evident deep downstream. The solution in the limit A is obtained
under assumption that the condition g, P2 < gy is valid everywhere
inside the SNR. However, in the solution of the more general equa-
tion (101), the ratio g, P2/qo increases downstream with distance
from the shock. Therefore, the condition ¢, Py /g9 < 1 could not be
valid at radii lower than some distance from the centre. Neverthe-
less, the differences are not large and the approximate solution may
be used if one needs to reduce the computational cost.

At a first glance, it seems that a similar approximate solution
might be obtained for the limiting case B. In fact, this case as-
sumes equal rates at the shock. If the growth and damping would be
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almost the same everywhere downstream, then the equation would
be much simpler: d P, /da + G, P, = 0. However, the ratio of the
damping to growth rates (a~') increases downstream quite quickly
with decrease of a (less waves survived) preventing us from such a
simplification.

Calculations show that profiles P, (7) are almost insensitive to
the value of g. Smaller values of b result in higher P,, in the SNR
interior because the saturated level Py o< a**/? (@ < 1) was larger
at previous times for smaller values of the parameter b. In order to
reduce the parameter space, b and g are set to zero in our calcula-
tions.

5 POLARIZATION MAPS FOR SEDOV SNRS

In this section, we present the results of numerical simulations
for SNRs evolving in the Sedov regime (adiabatic expansion in
the medium with the uniform distribution of density and MF). For
these simulations, we have used the assumptions and formulae as
described in the above sections. In all our images, the projected
ambient MF is along the horizontal x-axis. Thanks to the semi-
analytic nature of our simulations (Sedov solutions are analytic),
we are not confined by the fixed grid of the numerical simulations
with limited resolution in three dimensions. We can calculate all
the necessary parameters in any point inside SNR and we may have
as large resolution as we need. In practice, all our images have
100 x 100 pixels in the projection plane and very large resolution
(determined automatically by the integration algorithm) along the
line of sight.

5.1 Completely ordered MF

For the sake of comparison with what will follow, let us present first
the results of numerical calculations for the case of a fully ordered
MF.

Fig. 7 shows maps of the Stokes parameter / (surface brightness),
0, U, the polarization fraction I1, the magnetic polarization angle
(angle of ‘projected” MF with the x-axis) W and the associated
vector map of the ‘MF orientations’ inferred from the projected
Stokes parameters, in the absence of the internal Faraday rotation
(B = 0), for the aspect angle (between the ambient MF direction
and the line of sight) ¢, = 90°. The most prominent features are
the quite symmetric patterns for Q and U, the smoothly ordered
‘projected” MF and the high level of polarization: it is close to the
maximum theoretical value, >~ 0.69, over the whole projection.

Fig. 10 of Paper I shows the same set of images but simulated
in the thin-layer approximation. The maps from the present three-
dimensional model (Fig. 7) resemble those images rather well. Some
minor differences can be noticed, especially closer to the SNR
edge: they are essentially a consequence of the fact that we now
model in details the internal structure of SNR that was neglected in
the thin-shell approximation adopted in Paper 1. In particular, the
most apparent differences are the four ‘islands‘ on the map of the
polarization fraction, which were not present in the same image in
Paper L. They are real, not just a numerical effect, and the reason
is the following: in the case of the thin-layer approximation, all the
material is in an infinitely thin layer around the SNR shock and
there are only two emitting ‘points’ along each line of sight with
different orientations of the MF vectors (in the case of an aspect
angle of 90°, the orientations of the MF vectors are aligned on the
two points). In contrast, the present model deals with different MF
orientations in each point in the SNR interior. The depolarization
on the IT image is a bit higher where MF vectors vary to larger

MNRAS 470, 1156-1176 (2017)
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Figure 7. Maps of the Stokes parameter / (surface brightness) (a), Q (b), U (c), polarization fraction IT (d), magnetic polarization angle W (e) and vector
map of ‘MF orientations’ (f) for a Sedov SNR with completely ordered MF (projected along the horizontal axis) and no Faraday rotation. The aspect angle is
¢o = 90° (i.e. B, is in the projection plane). Grey-scale limits (the smaller the darker): (a) from 0.5 to 9.5, step 0.5 in arbitrary units, (b) from —6.5 to 0.5,
step 0.5 in arbitrary units, (c) from —4.5 to 4.5, step 0.5 in arbitrary units, (d) from 0.6895 to 0.6905, step 0.0005, (e) min —90, max 90, step 10, in degrees.
Hereafter, the length of lines in the MF direction maps is proportional to IT with the maximum length for 0.7. In this figure, (IT) = 0.692.

extent along the line of sight. In other words, it is an effect of the
MF jiggling along the line of sight, and IT thus is a ‘measure’ of the
MF disorder along this line.

Fig. 8 shows the same maps, calculated including the internal
Faraday rotation. The polarization fraction is still high in Fig. 8 but
the lowest value is now IT = 0.522 that is smaller than in Fig. 7.
However, the polarization fraction is still high over the most of
the SNR projection, as is demonstrated by the average value of II,
(TT) = 0.686.

Also in this case, the patterns shown in Paper I (see fig. 14
there) are reasonably reproduced. The most apparent differences
are again in the IT map. The regions with the lowest polarization
fraction are not lying on the projected boundary, but slightly inside.
In addition, this map is not symmetric any more with respect to
the horizontal axis: also in this case, because (differently from the
thin-layer case) the level of the MF jiggling along the line of sight
is now no longer symmetric. The internal Faraday effect causes the
asymmetry between the upper and lower half of the Q and U maps.
This translates in an asymmetry in the map of the polarization
fraction. In fact, this effect is not present in the corresponding
figures in Paper I (fig. 14 there) that were simulated in the limit of
the infinitely thin layer.

The pattern of this asymmetry depends on the orientation of
the ambient MF. In our simulations, it is directed towards the right.
Therefore, in the nearer half-sphere of SNR (i.e. for z > 1, see Fig. 1),
the line-of-sight component of the ordered MF (B,) is preferentially
positive (towards the observer) in the left half and preferentially
negative in the right half of image. The orientation of B, in the

MNRAS 470, 1156-1176 (2017)

nearer half-sphere of SNR is dominant for the internal Faraday
rotation (the emission from the rearer part also passes through this
SNR part). Therefore, the rotation is preferentially anticlockwise to
the left (from the observer point of view) and clockwise to the right
(Fig. 9). The polarization planes are rotated by the same angle in
the points symmetric with respect to the horizontal axis. However,
the plane-of-the-sky components of MF have different orientation
in the upper and lower half of image. As a result, the upper—lower
asymmetry appears.

The degree of the asymmetry depends on the ‘strength’ of the
internal Faraday effect. Equations (5) and (6) show that, due to
the scaling property of the Sedov solutions, the angle of internal
rotation 8 in each point of the projection is proportional to the same
product

Bn = noBo;LRpc}\zm, (113)

where B, is the strength of the ambient MF in uG, R, is the
radius of SNR in pc and Ay, is the wavelength in m. The parameter
is, for example, 8, = 2.7 for n, = lem™3, B, =3uG, R =10 pe,
A = 30cm. Thus, the parameter B, determines how strong is the
Faraday effect in the SNR interior.

5.2 Models with the partially disordered MF

In this subsection, we present maps of polarized emission in models
that consider both the ordered B and disordered § B MF components.
The parameters for a number of considered models are summarized
in Table 1. The basic set of parameters is that for the model labelled
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Figure 8. The same as in Fig. 7 but including the internal Faraday rotation, B8, = 1. Grey-scale for (d): min 0.64, max 0.7, step 0.01. (IT) = 0.686.

Figure 9. The schematic representation of the MF orientations, from the
observer point of view: without (green) and with (red) the internal Faraday
rotation; cf. Fig. 1.

as A. Other models have one or at most two parameters changed
with respect to model A and only these parameters are displayed in
the table.

Fig. 10 shows the same set of images as in Figs 7 and 8 but now
including the Faraday rotation and the disordered MF. We can see
that the addition of the disordered MF (with (§ B/B)y less than unity)
does not alter considerably the images of the polarized emission.

However, there are some differences visible. In particular, the
surface brightness is somehow higher in the model that includes

Table 1. Sets of parameters for the numerical simulations.
The parameter §, is defined by equation (113). Set A is
the reference model; while the other models differ from the
case A only for the values shown in the table. ‘iso’ means
isotropic injection (i.e. independent of the shock obliquity),
while ‘qpar’ means quasi-parallel injection (i.e. mostly at the

parallel shocks).
L 8B
Model Bn Injection Qo ( — )
B /s
A 1 iso 0.4 0.3
B 0.2
C 0.5
D 2
E 5
F qpar
G 10
H 1
1 10 1

the partially turbulent MF: the area of the region with brightness
between 2.5 and 3 units is larger in Fig. 10(a) comparing to Fig. 8(a).
This is because the Stokes parameter / is higher if we consider the
turbulent MF, equation (19); this effect should be more prominent
if 6B/B is larger than unity (Fig. 2). Another feature is visible on
the same maps, in the shape of the grey-scale border marked by
the value 3: in Fig. 10(a) it is like } while it is like ) in Fig. 8(a).
The reason of this difference is that the ratio §B/B is smaller in
the perpendicular shock compared to the parallel one: the shock
compression factor for B increases from 1 to 4 respectively while
8B depends on the cosine of the obliquity angle, equation 67; thus,
6B — 0 towards the perpendicular shock (which is projected as a

MNRAS 470, 1156-1176 (2017)
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Figure 10. The same as in Fig. 7 but including the internal Faraday rotation and the disordered MF. Model A from Table 1. Grey-scale for (d): min 0.46, max

0.7, step 0.03. Mmin = 0.488, (IT) = 0.602.

vertical diameter) and the brightness decreases to the value it has
without the turbulent MF.

More prominent differences are in the map of the polarization
fraction (Fig. 10d, to be compared with Fig. 8d). As expected, the
disordered MF depolarizes emission: the area of highly polarized
regions is considerably smaller; these regions are located where
the perpendicular shock is projected with §B — 0. The values of
ITinin = 0.488 and (IT) = 0.602 show how strong is this effect (to be
compared to the maximum possible value 0.692). The polarization
fraction is smaller for the same model if the angle ¢, between
ISMF and the line of sight is smaller. In particular, I, = 0.007
and (IT) = 0.428 for ¢, = 60°.

As we already noticed in Section 5.1, the internal Faraday effect
changes the measured polarization directions and the overall effect
of Faraday rotation on SNR images depends on a parameter §,,
equation (113). The role of B, in determining the pattern of the
‘observed MF directions’ is apparent from Fig. 11 where these
patterns are calculated for models B-E in Table 1 (see also model
A in Figs 10e and f).® The polarization images are sensitive to 8,
> 0.5. The larger the parameter B,, the stronger the effect of the
internal Faraday rotation.

Dickel & Milne (1976) have suggested that a change of the ‘in-
ferred MF’ directions from the radial to the mostly tangential one
could be the evolutional trend from young to old SNRs. Since R is
increasing with the SNR age, we checked if such a temporal trend
is visible with the increase of B, in our model. In fact, there is
no clear trend from preferentially radial to tangential polarization

8 The image of I has the same pattern (though with different amplitude) for
models A—E because B, does not affect the contrasts in the map of this
Stokes parameter.
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directions in our model (Fig. 11). Since we consider here the Sedov
phase only, our results agree with the expectation of Dickel & Milne
(1976) that the change in MF orientation is ‘possibly corresponding
to the first and third evolutionary phases of an SNR discussed by
Woltjer (1970).” In fact, (i) we do not consider ejecta (Sedov model
is just the point explosion) and thus the MHD instabilities that might
result in the radial ‘fingers’ in young SNRs (e.g. Orlando et al. 2012)
are not accounted for; (ii) the radiative losses of the shocked plasma
(efficient after the Sedov stage) increase the tangential component
of MF in old SNRs (Petruk et al. 2016). Future simulations have to
be extended to the SNR ages before and after the adiabatic phase in
order to reconsider the idea of Dickel & Milne (1976), which seems
to be confirmed by recent observations (Dubner & Giacani 2015).

Another observed property — decrease of the polarization at lower
frequencies — is restored in our simulations. In fact, the polarization
is smaller for larger g, (Fig. 11, look at values of I, and (IT))
and B, inversely depends on the frequency 8, oc A2 oc v=2.

Till now, we have considered the SNR projections for the aspect
angle ¢, = 90°, i.e. when the uniform ISMF lies in the projection
plane. The polarization is smaller for other orientations of the am-
bient MF versus the observer (Fig. 12). We see again that the main
factor determining the polarization patterns is the internal Faraday
rotation. Our simulations demonstrate that the SNR images do not
generally reflect the actual orientation of MF inside SNR because
they give the polarization directions of emission affected by the
internal Faraday rotation. The larger the role of the internal Fara-
day rotation (i.e. the higher 8,), the less similar is the observed
polarization pattern to the actual orientation of MF in SNR. There-
fore, observed patterns may not be used to extract the MF orienta-
tions in SNR until it is proved that the internal Faraday rotation is
negligible (i.e. that 8, < 0.5; for example, observing at a high
enough frequency, the Faraday rotation becomes asymptotically
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Figure 11. Maps of W (upper panels) and of the inferred ‘directions of MF’ (lower panels) for different 8, (models B-E, marked on the respective plots; to
be compared to model A, Figs 10e and f). Aspect angle ¢, = 90°. Ty, and (IT) are respectively: 0.505 and 0.607 (B), 0.502 and 0.606 (C), 0.439 and 0.588

(D), 0.183 and 0.501 (E).

negligible, see e.g. the moments approach in Paper I). This is clearly
seen by comparing lower panels in Figs 12 and 13; in the latter one,
the images are calculated for the value 8, = 0 and the maps trace
therefore the orientation of MF.

It is visible in our images that the Faraday effect could be respon-
sible for the spatial domains in the maps with abrupt change of the
polarization directions. This is a feature observed in many SNRs
(e.g. Dubner & Giacani 2015).

If injection preferentially happens at the parallel shocks (model
F), then the images of I and of the polarized emission / Q% + U?
have maxima located around the parallel shock regions, where emit-
ting particles reside (Fig. 14). Some increase of the polarization
fraction from the SNR as a whole is prominent comparing to the
isotropic injection case (compare values of Iy, (IT) and ITpax
given in the figure captions).

How do the properties of the turbulent MF affect images of po-
larized emission of SNRs? Two parameters in our model regulate
behaviour of waves in SNR. The first one, 2, is €2 immediately
before the parallel shock. This parameter, defined by equation (52),
determines the ratio between the rates of the wave growth and damp-
ing (see equation 56). The value ©,, = 0.4 in the basic model A
brings us to the limiting case of the small wave damping (Fig. 3).
In this regime, the pressure of waves decreases to zero towards the
regions of the perpendicular shock, equation (67). The role of the
fluctuating field is therefore prominent mostly around the regions
with the parallel shocks (i.e. around ‘poles’ that are on the left
and right edges of images with ¢, = 90°). Another limit of the
wave evolution, when the growth and damping of waves have the
same rates, is represented by model G. Now, the ratio of the rates
does not depend on the obliquity. Thus, the effect should lead to
overall decrease of the polarization fraction (because of increase

of the volume with turbulent MF) and morphological differences,
mostly where the regions with the perpendicular shocks are pro-
jected. This is what we see in Fig. 15 (models A and G).

The second parameter that determines properties of the waves is
the ratio (8B/B)s;. We have seen that the differences between images
with and without fluctuating component of MF are rather small. The
reason is that the role of the disordered MF in the SNR images is not
strong because of the small value (§B/B)y = 0.3. Such a value was
taken because our model assumes that the nature of the fluctuating
MF is Alfvén waves. Theory for these waves implicitly assumes §B
<& B. Nevertheless, in order to see what could be the effect of the
stronger waves, we run simulations also for models H and I, with
(6B/B)y; = 1 (Fig. 15). These simulations are done just to imagine
an effect of efficient disordered MF on the polarized emission from
SNRs. The main effects are the increase of the surface brightness
with increase of §B/B and the decrease of the polarization fraction,
in agreement with Fig. 2.

The model in the present paper is based on a principal condition
of unmodified shocks. To this extent, our model is self-consistent:
we consider test-particle acceleration, Alfvén waves, no MF ampli-
fication in the precursor due to CR streaming. This is in agreement
with our assumption of adiabatic SNRs, which is typically applied
to evolved SNRs where the CR backreaction is not effective, as
commonly agreed, and as we have shown in Bandiera & Petruk
(2010) with our statistical analysis. We hope that in the future the
effects of the non-linear particle acceleration as well as other modes
(including Bell’s one) of waves on the polarized images of SNRs
may be considered, in a self-consistent way. We would like to note
that there are almost no studies (see review in the introduction)
where the overall maps of the SNR surface brightness are consid-
ered with the non-linear effects included (though there are papers
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Figure 12. Maps of I (upper panels), I1, ¥ and inferred ‘directions of MF’ (lower panels) for model A and different aspect angles ¢: a — 90°, b — 60°, ¢ —
30°, d — 0°. Component of ISMF in the projection plane is along the horizontal axis. Scale for I: min 0.5 (black), max 9.5 (white), step 0.5 (a and b), min 0.25,
max 4.75, step 0.25 (c and d), in arbitrary units. Scale for IT: min 0 (black), max 0.7 (white), step 0.05. Scale for W: min —90° (black), max 90° (white), step
10°. TIpin, (IT) and I,y are respectively: 0.488, 0.602, 0.691 (a), 0.007, 0.428, 0.642 (b), 0.001, 0.331, 0.579 (c), 0.000, 0.187, 0.317 (d).

dealing with such effects locally, e.g. close to the shock only). In
order to study these effects in the polarization images, one has
to invest much more effort than to simulate the brightness maps.’

° Though some aspects of the problem are studied, to our knowledge, there
is neither model nor numerical simulations that consider both MF ampli-
fication and its evolution deep downstream in the whole SNR volume, for
any obliquity. The reason is the different time- and length-scales: the am-

MNRAS 470, 1156-1176 (2017)

However, there is an approximate approach to consider some as-
pects of how the CR shock modification affects the polarization
images. It is suggested by Ellison et al. (2004) and Ferrand et al.

plification involves microphysics that develops on the scale of the shock
precursor while MF evolves downstream on the scales of the SNR radius.
In the present paper, we consider the Alfvén waves because their theory is
well developed.
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Figure 13. The same as lower panels in Fig. 12, for 8, = 0.

(2010) and is implemented, in particular, in our papers on SNR
images (Orlando et al. 2011; Petruk et al. 2011b). It consists in
the use of an ‘effective’ adiabatic index y = 4/3 oreven y = 1.1,
which is intended to mimic, respectively, a moderate and a strong
shock modification. With these indices, the shock compression is
higher: o = 7 and 21, respectively (to be compared to the classical
value o = 4 for y = 5/3). The consequences of such an approach
are the radially thinner features in the brightness images [e.g. fig. 7
in Orlando et al. (2011) and approximate analytical formulation in
Petruk et al. (2011b)]. In addition, the increased compression ratio
decreases the electron spectral index s (s = 1.5 and 1.15, respec-
tively). This results in a small change of the Stokes parameters Q
and U (fig. 1 of Paper I) and [T, [according to equation (18); it is
0.652 and 0.617, respectively, while IT = 0.692 for y = 5/3], and is
completely ineffective to change the ratio I1/I1,.x (fig. 2 of Paper
I). Therefore, we expect that the non-linear acceleration will create
higher order corrections to our test-particle results that are able to
catch the most prominent effects.

6 CONCLUSIONS

The present paper is devoted to development of the model and to
simulations of images of the polarized synchrotron emission from
Sedov SNRs. The main goal is a general analysis of the polarization
maps. Namely, we are interested to see how the properties of SNR,
its internal structure and the turbulent component of MF affect the
polarization patterns of these objects. We leave discussion on certain
objects to future studies.

Some aspects of the problem were considered by Schneiter et al.
(2015), in limits of the negligible internal Faraday rotation and of
the zero turbulent component of MF. The approach we developed
in Paper I and in the present paper accounts for both of these com-
ponents.

In order to model polarized emission from relativistic electrons
in SNRs, we have solved the two essential problems. First, the
classical theory of synchrotron emission has to be generalized to
describe the emissivity in the ordered plus disordered MF. A way
to such generalization is presented in Paper I; it restores, in the
limit §B < B, the known description. Secondly, the distribution
of the disordered MF component has to be known inside the SNR
interior. To this purpose, we developed a model for the evolution of
the random component of MF downstream of the adiabatic shock
under the assumption that it is due to the growth and damping of
Alfvén waves. This type of waves is suitable because the whole task
is complex in itself but the physics of the Alfvén waves is more or

less known. In doing so, we consider the interactions of waves with
particles accelerated by the SNR forward shock. To this extent,
our treatment is non-linear: evolution of waves is connected to
relativistic particles. However, we do not consider possible influence
of particles and waves on the MHD structure of SNR. The evolution
of the random MF component is considered to be on the MHD
‘background’ of Sedov shock.

Having traced the 3D distribution of all the relevant physical
quantities inside SNR, we can consider the detailed spatial distri-
bution of the polarized radio emission and synthesize the projected
images of polarization parameters under different SNR orientations
with respect to the observer.

Our assumption of adiabatic SNRs implicitly shifts the attention
towards not very young SNRs, namely to the cases in which the
effects of the non-linear particle acceleration should not be impor-
tant. Probably, it could be worth specifying this: we miss some part
of generality, but we are right in the frames of the clearly described
model that may be applied to many SNRs.

We have demonstrated that the random MF component reduces
the polarization fraction, as expected. A new effect is that the pres-
ence of the random MF component increases the synchrotron emis-
sivity (Fig. 2). This produces important consequences for fitting the
broad-band SNR spectra. If, for example, 6B ~ B, then the syn-
chrotron flux is twice the flux for the case where the random MF is
neglected.

The role of the Faraday effect in the SNR interior (i.e. the dif-
ferent rotation of the polarization plane from each point along the
line of sight inside SNR) is important in formation of the Stokes pa-
rameter maps. The uniform derotation of the observed polarization
maps might give a ‘true’ image of MF only if the internal Faraday
rotation is negligible, that is the exception rather than the rule. The
uniform derotation corrects for the Faraday effect in ISM (between
the SNR and the observer) but not for the internal rotation that varies
essentially over the SNR projection. The pattern of the polarization
maps is affected by the internal Faraday rotation if the parameter
Bn (equation 113) is greater than >~ 0.5.

Our simulations restore the observed properties: (i) there are po-
larization domains with abrupt change of polarization direction in
SNR maps; (ii) the polarization fraction is small; (iii) the polariza-
tion fraction decreases for larger A.

As discussed in Section 5.1, the simulated maps presented
here show a general agreement with those already presented in
Paper I. The main differences can be noticed close to the SNR pro-
jected edge, as a consequence of the fact that we have released here
the thin-shell approximation. This leads essentially to two kinds of
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Figure 14. The same as Fig. 12, for the quasi-parallel injection (model F). Min, max and step for 7 are 5 times (a) and 10 times (b—d) less than in Fig. 12.
Grey-scale for IT is min 0, max 0.7, step 0.05. ITpyin, (IT) and [Myax are respectively: 0.565, 0.675, 0.691 (a), 0.062, 0.605, 0.691 (b), 0.005, 0.474, 0.665 (c),

0.000, 0.391, 0.570 (d).

effects: (i) the presence of a shell with a finite geometrical thickness
leads to a shift of some features away from the edge, giving rise to
features like, for instance, some ‘islands’ now appearing in maps of
the polarization fraction; (ii) the fact that the direction of projected
MF now can change along the line of sight enhances the level of
depolarization, and this effect is even more apparent in the cases
with a low local random MF component.

In Paper I, we have drawn the basis to treat the synchrotron
emission in a partially ordered MF, as well as to model the basic

MNRAS 470, 1156-1176 (2017)

and most important geometrical aspects in a shell-type SNR. In
the present paper, we have added a treatment of the physics of
particle acceleration and evolution, in a test-particle regime. The
similarity between the results in these two papers should be seen
as a proof of the validity of the simplified approach chosen for
Paper 1. The simpler thin-layer approach may be used in the cases
when one needs an idea about the overall pattern of polarization
images. When, however, the goal is to understand the observed
patterns or to study some details in images, then 3D simulations
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Figure 15. Maps of I (upper panels) and IT (lower panels) for models A, G, H, I (marked on the plots). ¢, = 90°. The only maps of / and IT are presented
because other images (Q, U, W) are very similar in all these models. Min, max and step for / in a and b are the same as in Fig. 7; they are two times larger in
¢ and d. Grey-scale for IT: min 0, max 0.7, step 0.05. ITiin, (IT), [Tnax are 0.488, 0.602, 0.691 (A), 0.456, 0.533, 0.686 (G), 0.127, 0.309, 0.678 (H), 0.105,

0.181, 0.626 (I).

are needed. We believe that an advantage of our approach is that it
could be implemented, with a moderate effort, to some real cases,
with more complicate geometry.

There are pieces of observational evidence (Dickel & Milne 1976;
Dubner & Giacani 2015) that patterns of polarization maps of the
young SNRs demonstrate predominantly radial orientation of the
projected MF directions while maps of the older SNRs have mostly
tangential orientation. Our simulations suggest that, in order to
restore this effect numerically, the model has to go beyond the
‘point-explosion’ approach and beyond the adiabatic stage, in order
to treat the ejecta—ISM interactions in the young SNRs and the
influence of the radiative losses of the shocked plasma on the MF.
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APPENDIX A: COMPONENTS OF MF

In this appendix, we present the formulae to calculate the compo-
nents of MF.

Let us consider the reference frame with z-axis directed towards
the observer. The ambient MF is in the yz plane (without loss of gen-
erality). The aspect angle ¢, is the angle between the ambient MF
B, and the line of sight. The corresponding spherical coordinates
are (r, 0, @).

In each point, MF B is a vector sum of the radial B,
and the tangential B; components that may be rewritten as
B = B,B,, + 0 BB, = B.B,, + 0 B(B, — B,,), where B, =
B./By, B, = B,/ B, indices ‘s’ and ‘0’ mark the immediate post-
and pre-shock values, o is the shock compression factor. Therefore,

B =0 BB, + (B, — 0 B)(B, - m)n, (AD)

where n is the unit vector in the radial direction. The projection of
B on the Cartesian x-axis is given by the dot product

B, =(B-%)=0B/B, + (B. — 0 B)B,cos Oon,, (A2)

where ©, is the shock obliquity angle. Expressions for B, and
B, are the same but the index ‘x’ should be changed to ‘y’ and
‘z’, respectively. The Cartesian components of n are (sin6cos ¢,
sin @sin @, cos #). The components of B, are (0, B,sin ¢, B,cos ¢,).
Taking all these together, we have the MF components:

B./B, = (B; — 0 B))cos ®,sinf cos ¢,

B,/B, = o B;sin¢g, + (B, — 0 B) cos ©, sinf sin ¢, (A3)
B./B, = o B,cos ¢, + (B, — o B;) cos ©, cos 6.

As to the obliquity angle, it is given by the dot product cos ®, =
(B, - n)/B, and is therefore

cos ®, = sin ¢, sin b sin ¢ + cos ¢, cos 6. (A4)
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