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ABSTRACT

Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond
the number known today. Finding these rare objects will require picking them out of at least tens of millions of images, and deriving scientific
results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be
developed. Because gravitational lenses are rare objects, reducing false positives will be particularly important. We present a description and results
of an open gravitational lens finding challenge. Participants were asked to classify 100 000 candidate objects as to whether they were gravitational
lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including
visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the
methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses
after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a
single false-positive identification. This is significantly better than direct inspection by humans was able to do. Having multi-band, ground based
data is found to be better for this purpose than single-band space based data with lower noise and higher resolution, suggesting that multi-colour
data is crucial. Multi-band space based data will be superior to ground based data. The most difficult challenge for a lens finder is differentiating
between rare, irregular and ring-like face-on galaxies and true gravitational lenses. The degree to which the efficiency and biases of lens finders
can be quantified largely depends on the realism of the simulated data on which the finders are trained.

Key words. gravitational lensing: strong – methods: data analysis

1. Introduction

Strong gravitational lenses are rare cases in which a distant
galaxy or quasar is aligned so closely with a foreground galaxy
or cluster of galaxies that the gravitational field of the fore-
ground object creates multiple, highly distorted images of the
background object. The first strong lens was discovered in 1979
by Walsh et al. (1979) and since then several hundred of them
have been found. When the lens is an individual galaxy and the
source a quasar, there are two, four or five distinct images of
the source. The time-delay between images, the magnification
ratios between images and the image positions can all be used to
model the mass distribution of the lens and measure cosmologi-
cal parameters. When the lens is a cluster of galaxies the images
of background galaxies are multiplied and distorted into many
thin arcs. When the lens is an individual galaxy and the back-
ground source also a galaxy, the lensed images can take the form
of a partial or complete ring seen around or through the lens
galaxy, an Einstein ring.

Strong lenses have to date provided very valuable scien-
tific information. They have been used to study how dark mat-
ter is distributed in galaxies and clusters (e.g., Kochanek 1991;
Cohn et al. 2001; Koopmans & Treu 2002; Rusin et al. 2003;
Koopmans & Treu 2003; Wayth et al. 2005; Dye & Warren
2005; Vegetti & Koopmans 2009; Tessore et al. 2016) and to
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measure the Hubble constant and other cosmological parame-
ters (e.g., Refsdal 1964; Blandford & Narayan 1992; Witt et al.
2000; Suyu et al. 2013; Treu & Marshall 2016). Their magnifi-
cation has been used as a natural telescope to observe other-
wise undetectable objects at high redshift (e.g., Marshall et al.
2007; Bellagamba et al. 2017; Shu et al. 2016). They have put
limits on the self interaction of dark matter and on the theory of
gravitation (Markevitch et al. 2004). Through microlensing they
have been used to study the structure of quasars (Morgan et al.
2008; Poindexter et al. 2008; Blackburne et al. 2011). To expand
on this wealth of information we must study more lenses. The
first step in doing this is to find more of these rare objects.

So far, less than a thousand lenses have been found in
total across many heterogeneous data sets. The Square Kilo-
meter Array (SKA)1, the Large Synoptic Survey Telescope
(LSST)2 and the Euclid space telescope3 are expected to
increase the number of potential lenses by orders of magnitude
(Oguri & Marshall 2010; Collett 2015; SLWhitePaper 2017;
McKean et al. 2015). For example it is estimated that there will
be approximately 200 000 observable galaxy-galaxy lenses in
the Euclid data set among tens of billions of potential objects.
These surveys will bring a new era for strong lensing where
large relatively well defined samples of lenses will be possible.

1 http://skatelescope.org/
2 https://www.lsst.org/
3 https://www.euclid-ec.org/
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It will also require handling much larger quantities of data than
has been customary in this field.

Up to this point, the most widely used method for finding
lenses in imaging surveys has been by visual inspection of can-
didates that have been selected on the basis of luminosity and/or
colour. This has been done in the radio (Browne et al. 2003)
and in the visible with space and ground based data (Jackson
2008; Faure et al. 2008; Sygnet et al. 2010; Pawase et al. 2014).
A related method pioneered by the SPACE WARPS project
(Marshall et al. 2016; More et al. 2016; Geach et al. 2015) has
been to crowd source the visual inspection through an online
platform. These efforts have proved very fruitful, but they deal
with orders of magnitude fewer candidates and lenses than will
be necessary in the future. Dealing with such large quantities of
data will not be practical for any visual inspection approach. In
addition, the efficiency and detection bias of human inspection
methods are difficult to rigorously quantify.

Spectroscopic searches for galaxy scale lenses have also
been done by looking for high redshift stellar lines in the spec-
tra of lower redshift large galaxies. Notably this was done in the
Sloan Lens ACS (SLACS) survey, producing a relatively well
defined and pure sample of Einstein ring lenses (Willis et al.
2006; Bolton et al. 2006; Brownstein et al. 2012; Smith et al.
2015). New spectrographs such as the Dark Energy Spectro-
scopic Instrument (DESI; DESI Collaboration 2016) and Subaru
Prime Focus Spectrograph (PFS; Tamura et al. 2016) have the
potential to greatly expand spectroscopic lens searches. How-
ever, spectroscopy is telescope-time consuming and for the fore-
seeable future we are not likely to have spectroscopic surveys
that cover anywhere near the number of objects as the planned
imaging surveys.

Some automated algorithms have been developed in the
past to detect lenses by their morphology in images. These
have been designed to detect arc-like features (Alard 2006;
Seidel & Bartelmann 2007; Bom et al. 2017) and rings
(Gavazzi et al. 2014; Joseph et al. 2014). They have been applied
to survey data and found of order 200 lenses (Cabanac et al.
2007; More et al. 2012; Paraficz et al. 2016).

Marshall et al. (2009) pioneered an automated technique for
finding Einstein ring type lenses that uses a lens modelling code
to fit a model to all candidates and picks out the ones that fit
the model well (see also Sonnenfeld et al. 2018). This approach
has the attractive feature that it distinguishes lenses from non-
lenses by their similarity to what we expect a lens to look like
and priors can be put on the model parameters that are physi-
cally motivated, unlike the next category of finders below. Chal-
lenges arise in making the modelling fast and automatic enough
to handle large data sets while allowing it to be flexible enough
to find unusual lens configurations. The YattaLens entrant to this
challenge was of this type.

More recently, machine learning techniques that have
become widely used in the fields of computer image process-
ing and artificial intelligence have been applied to this and other
problems in astronomy; in particular, artificial neural networks
(ANNs), support vector machines (SVM), and logistic regres-
sion. SVMs and some logistic regression methods belong to
the family of reproducing kernel Hilbert Space methods. They
learn from a training set how to classify objects using fea-
tures given by predefined kernel functions. ANNs, and a popular
variant convolutional neural networks (CNNs), are even more
flexible in learning directly from a training set which features
are the most important for distinguishing categories of objects.
These have been used widely for such tasks as handwriting and
facial recognition. In astronomy, these families of algorithms

are beginning to be used for categorising galaxy morpholo-
gies (Dieleman et al. 2015), photometric redshifts (Cavuoti et al.
2017; Sadeh et al. 2016; Samui & Samui 2017), supernova clas-
sification (Lochner et al. 2016) and the lens finding problem
(Petrillo et al. 2017; Jacobs et al. 2017; Ostrovski et al. 2017;
Bom et al. 2017; Hartley et al. 2017).

Given the future of this field, with large amounts of data
coming soon and many new ideas emerging, it is timely to stage
a series of challenges to stimulate new work, determine what can
realistically be done in lens finding and get a better idea of the
strengths and weaknesses of different methods. The long term
goal is to get a set of algorithms that can handle Euclid, LSST or
SKA data sets and produce high purity and high completeness
lens samples with well defined efficiency or selection. We antic-
ipate further challenges in the future in which the realism of the
data simulations will become progressively better. Here we have
chosen to concentrate on galaxy/small group scale lenses where
the background source is a galaxy because we feel that this is
where the most progress can be made and the scientific return is
the highest, but QSO lens and cluster/group lens challenges may
follow.

The paper is organised as follows. The form of the challenge
and its rules are described in the next section. The methods used
to simulate mock images of galaxies and gravitational lenses are
described in Sect. 3. In Sect. 4, each of the methods that were
used to solve the challenge are briefly described. We discuss the
metrics used to evaluate entries in Sect. 5.1. The performance of
each of the methods is presented in Sect. 5.2. Finally, in Sect. 6,
we conclude with a discussion of what was learned and how
methods can be improved in the future.

2. The challenge

The challenge was in fact two separate challenges that could
be entered independently. One was designed to mimic a single
band of a future imaging data set from a satellite survey such
as Euclid. The other was designed to mimic ground based data
with multiple bands, roughly modeled on the Kilo-Degree Sur-
vey (KiDS)4 (de Jong & Verdoes 2013). In neither case were the
simulated images meant to precisely mock these surveys, but the
surveys were used as guides to set noise levels, pixel sizes, sen-
sitivities, and other parameters.

In each case, a training set of 20 000 images in each band
was provided for download at any time along with a key giving
some properties of the object including whether it was a gravi-
tational lens. Each image was 101 × 101 pixels. These specifi-
cations were not of particular significance except that the image
size would encompass almost all galaxy-galaxy lenses and that
the number of images (including ones with and without noise,
lens and source which were needed for later analysis) was not too
large. The participants were free to download these sets and train
their algorithms on them. To enter the contest, the participants
needed to register with a team name at which point they would
be given a unique key and the address of a test data set. These
data sets contained 100 000 candidates. In the case of the multi-
band ground-based set this was 400 000 images. The participants
had 48 h to upload a classification of all candidates consisting of
a score between 0 and 1, 0 signifying the lowest confidence that
it is a lens and 1 signifying the highest. This ranking could have
been a simple binary (0 or 1) classification or it could have been
a continuous range of numbers representing the probability of
being a lens or it could have been a finite number of confidence

4 http://kids.strw.leidenuniv.nl/
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levels. The challenge was opened on November 25, 2016 and
closed on February 5, 2017.

3. The simulations

Creating the mock images started with a cosmological
N-body simulation, in this case the Millennium simulation
(Boylan-Kolchin et al. 2009). A catalogue of dark matter halos
and galaxies within a light-cone was constructed within the Mil-
lennium Observatory project (Overzier et al. 2013). The chal-
lenge sets were based on a 1.6 sq. deg light cone extending out to
redshift z = 6 using all the simulation snapshots. The halos were
found with a friends-of-friends algorithm and characterised by
a total mass, size and half mass radius. They included subhalos
of larger halos. The halos where populated with galaxies based
on their merger history using the semi-analytic model (SAM) of
Guo et al. (2011).

The halo catalogue was read into the GLAMER lensing code
(Metcalf & Petkova 2014; Petkova et al. 2014) to do all the ray-
tracing. Within this code a Navarro, Frenk & White (NFW;
Navarro et al. 1996) profile is fit to the three parameters given
above to represent the dark matter component of the lens. The
halos are projected onto a series of 20 lens planes and the deflec-
tion angle at any point on each plane are calculated by summing
the effects of all the halos with a hybrid tree method. In this way
the halos have the mass, concentration and clustering properties
from the N-body simulation, but within each strong lens the mass
resolution is not limited by the original simulation, but follows the
analytic mass profile. An additional mass component that will be
discussed later is added to each halo to represent the stellar
mass.

With GLAMER we identify and map out all the caustics
within the light-cone for 33 source planes – z = 1 to 3 in intervals
of 0.1 and 3 to 6 in intervals of 0.25. We take every caustic that
corresponded to a critical curve with an Einstein radius larger
than 1.5 times the resolution of the final images. The Einstein
radius is estimated here and in all that follows as Rein =

√
Aein/π

where Aein is the angular area within the critical curve.
In the light cone there are many thousands of caustics for the

higher source redshifts. These lenses could be used as is, but we
wanted to produce a much larger number with more randomness.
For each caustic we identify the lens plane with the highest con-
vergence and identify all the halos within a three dimensional
distance of 0.5 Mpc from the centre of the critical curve and on
this and its neighbouring lens planes. This collection of halos is
then used as the lens and rotated to produce more random lenses.
It contains all the sub-halos and nearby companion halos, but not
the large scale structure surrounding it.

To model the background objects that are lensed we use
sources from the Hubble Ultra Deep Field (UDF) that have been
decomposed into shapelet functions to remove noise. This is the
same set of images as used in Meneghetti et al. (2008, 2010) (see
also Plazas et al. 2019). There are 9350 such sources with red-
shifts and separate shapelet coefficients in 4 bands.

To construct a mock lens, first a caustic on the highest red-
shift source plane is selected. This is done in order of Einstein
area, but all the critical curves are used more than once. Since
every lens with a caustic at a lower redshift will have a caustic
at the highest redshift this is a selection from all of the caus-
tics in the light-cone. The lens is extracted as explained above
and rotated randomly in three dimensions. A source is selected
at random from the shapelet catalogue subject to a magnitude
limit in a reference band. The redshift of the UDF source is
used as the source redshift. If the source is at a lower redshift

than the lens or within ∆z = 0.4 another random source is
selected.

The furthest point in the caustic is found from its own centre
and the source is placed randomly within 3 times this distance.
This is a somewhat arbitrary length designed to be a compro-
mise between producing only very clear strong lenses, because
all the sources are right in the centre of the caustic, and mak-
ing the process inefficient because most of the sources are too
far away from the caustic to produce clear lenses. If the source
positions were taken completely at random the fraction of clear
lenses would be very low.

The visible galaxies associated with the lens must also be
simulated. There are too few bright galaxies in the UDF cat-
alogue to make enough mock lens galaxies for this purpose.
Instead, for most of the lenses, we used an analytic model for
the surface brightness of these galaxies. The Millennium Obser-
vatory provides parameters for the galaxies that inhabit the dark
matter halos using the semi-analytic galaxy formation models
of Guo et al. (2011). The parameters used here were the total
magnitude, the bulge-to-disc ratio, the disc scale height and the
bulge effective radius. The magnitude and bulge-to-disc ratio are
a function of the pass band. Each galaxy is given a random ori-
entation and inclination angle between 0 and 80◦. The disc is
exponential with no vertical height which is why the inclination
is limited to 80◦. The bulge is represented by an elliptical Sérsic
profile with an axis ratio randomly sampled between 0.5 and 1.
The Sérsic index, ns, is given by

log(ns) = 0.4 log
[
max

( B
T
, 0.03

)]
+ 0.1x, (1)

where B
T is the bulge to total flux ratio and x is a uniform ran-

dom number between −1 and 1. This very approximately repro-
duces the observed correlation between these quantities (Graham
2001).

In addition to the basic disc and bulge models we introduce
some spiral arms. The surface brightness of the discs are given
by

S (θ, r) = e−r/Rh
[
1 + A cos(Naθ + φr)

]
,

φr = α log(2r/Rh) + φd, (2)

where Rh is the scale height of the disc. The phase angle of the
arms, φd, is chosen at random. The parameters A, α and Na are
chosen from distributions that are judged by eye to produce real-
istic galaxies. The bulge is also perturbed from a perfect Sérsic
profile by multiplying the surface brightness by

1 +

6∑
n=1

an cos (nθ + φn) , (3)

where φn is a random phase. The coefficients are picked ran-
domly from between −0.002 and 0.002.

These foreground galaxies are rotated in three dimensions
with the halos of the lens each time a random lens is produced
so that they remain in the same positions relative to the mass. All
the random parameters are also reassigned with every realisation
of the lens.

These images of the foreground galaxies are not intended to
reproduce the true population of galaxies, but only to be suffi-
ciently irregular to make them difficult to fit to a simple analytic
model that might make them unrealistically easy to distinguish
from a foreground plus a lensed image. As will be discussed
later, more realistic models will be needed in the future and are
a subject of current investigation.
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To represent the mass of the galaxies we make a gridded map
of the surface brightness at 3 times the resolution of the final
image. The surface brightness map is converted into a mass map
within GLAMER by assuming a uniform mass-to-light ratio of
1.5 times solar in the reference band. These mass maps are added
to the NFW dark matter halos discussed before to make the total
lens mass distribution. The deflections caused by the mass maps
are calculated by Fast Fourier Transform (FFT) and added to the
halos’ deflections for the ray tracing.

The code is able to produce any combination of foreground
galaxies, lensed image and noise that is desired. For the training
set, an image of the total lens with noise, an image of the fore-
ground galaxies with noise and image of the lensed background
source without noise were provided. For the test sets only the
final images were provided to participants although all the infor-
mation was stored for analysing the challenge entries.

3.1. Space-based

The space-based datasets were meant to roughly mimic the data
quality which is expected from observations by the Euclid tele-
scope in the visible channel. To this end, the pixel size was
set to 0.1 arcsec and a Gaussian point spread function (PSF)
was applied with a FWHM of 0.18 arcsec. The Gaussian PSF
is clearly a simplified model, but a realistic treatment of the
PSF is outside the scope of this paper. The reference band for
background and foreground galaxies was SDSS i, which is over-
lapping with the broader Euclid VIS band. The realisation of
the mock images followed the same procedure described in
Grazian et al. (2004) and Meneghetti et al. (2008). As a result,
the noise follows a Gaussian distribution with a realistic width
and is uncorrelated between pixels. Characteristics of the instru-
ment, filter and exposure times were taken from the Euclid Red
Book (Laureijs et al. 2011).

In the challenge set the limiting magnitude for background
sources was 28 in i. 60% of the cases had no background source
and were thus labelled as non-lenses.

3.2. Ground-based

For the ground-based images four bands (SDSS u, g, r, and i)
where simulated. The reference band was r. For the challenge
set, 85% of the images where made with purely simulated
images as outlined above and the other 15% used actual images
taken from a preliminary sample of bright galaxies directly from
the KiDS survey. Lensed source images where added to these
real images at the same rate as for the mock images, in this
case 50%. No attempt was made to match the halo masses to
the observed galaxies in these cases. These real images where
added for more realism and so that, by comparing the results for
real and mock images, we can evaluate how realistic our sim-
ulations are in this context. There were about 160 000 of these
stamps from KiDS.

The KiDS survey provided a representative PSF map in each
band that was applied to all mock images. The pixel size in this
case was 0.2 arcsec. Weight maps for the KiDS images were also
provided. Some of these had masked regions from removed stars,
cosmic rays, and bad pixels. For the mock images the noise was
simulated by adding normally distributed numbers with the vari-
ance given by the weight maps. The weight maps were also ran-
domly rotated and flipped. This resulted in many of the images
having large masked regions in them.

By chance one of the original KiDS images appears to have
been a lens. When an additional lensed source was added this
made a double lens or “jackpot” lens (Gavazzi et al. 2008).

4. Lens finding methods

There were 24 valid entries into the challenge which are listed
in Table 1. There were a variety of different methods used and
participants came from a variety of different backgrounds, most
were professional astronomers, but there were also entries from
researchers outside of the field.

The following sections contain short descriptions of the lens
finding methods that were used in the challenge. Each sub-
section refers to a team which gave a separate entry. We have
grouped the methods into four categories according to the type
of method used. The Receiver Operating Characteristic (ROC)
curve and the area under this curve are referred to in these sec-
tions. The ROC is defined in Sect. 5.1 where methods for evalu-
ating the entries is discussed. A reader unfamiliar with the ROC
might want to refer to that section.

4.1. Visual inspection

All images (a total of 100 000) were examined for each of
the space- and ground-based datasets. This was done by two
observers; AT (Amit Tagore) examined 30 000 images in each
case and NJ (Neal Jackson) examined 70 000. Observation was
carried out over a 48 h period, at the rate of 5000 h (NJ) and
2500 h (AT). The overall results, in terms of area under the ROC
(see Sect. 5.1) curves, were very similar for both observers. The
space-based challenge produced areas of 0.800 and 0.812 for
NJ and AT respectively, and the ground-based challenge yielded
0.891 and 0.884.

The Python scripts used for manual examination of multiple
images are available on GitHub5 and are described in more detail
in Hartley et al. (2017). For one-colour data such as the space-
based training set, the images are individually colour-scaled
using square-root scaling. The bright limit of the colour-scale
is determined from the pixel values in a rectangle comprising
the inner ninth of the image area, with the limit being chosen
as the nth centile of the pixel values in this area. Values between
n = 95 and n = 98 give optimum results, judging by experiments
on the training set. The number of images in each grid was also
optimised using the training set, with 16 × 8 or 8 × 4 giving
good results on one-colour data. For three-colour data, such as
the ground-based challenge data, the individual bands for each
object are colour-scaled and then combined into an RGB image.
In this case 8 × 4 grids were used for examination, due to the
generally lower resolution of the images. The script also allows
the user to adjust the colour-scale in real time when examining
and marking images, and records the image name corresponding
to the image within which the cursor resides at the time any key
is pressed, together with the key.

Images were classified by both observers into 5 categories,
ranging from 0 (no evidence of any lensed objects in the image)
to 4 (certain lenses). For both observers, the rate of false pos-
itives in the “certain” lenses was between 0.1% and 0.3%. The
exception was the ground-based imaging for one observer, where
a 4.6% rate resulted mainly from a single decision to allow a
false-positive “double lens” which occurred repeatedly through-
out the data at different orientations. The false-negative rate

5 https://github.com/nealjackson/bigeye
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Table 1. Entries to the challenges.

Name Type Authors Section

1 AstrOmatic Space-based Bertin 4.4.1
2 GAHEC IRAP Space-based Cabanac 4.2.1
3 CAS Swinburne Melb Ground-based Jacobs 4.4.8
4 ALL-star Ground-based Avestruz, Li & Lightman 4.3.2
5 Manchester1 Space-based Jackson & Tagore 4.1
6 CMU-DeepLens-Resnet-Voting Space-based Ma, Lanusse & Li 4.4.5
7 Manchester SVM Ground-based Hartley & Flamary 4.3.1
8 CMU-DeepLens-Resnet Space-based Francois Lanusse, Ma, Li & Ravanbakhsh 4.4.5
9 CMU-DeepLens-Resnet-Voting Ground-based Ma, Lanusse & Li 4.4.5

10 YattaLensLite Space-based Sonnenfeld 4.2.2
11 NeuralNet2 Space-based Davies & Serjeant 4.4.7
12 CAST Ground-based Roque De Bom, Valentín & Makler 4.4.4
13 CMU-DeepLens-Resnet-ground3 Ground-based Lanusse, Ma, Ravanbakhsh & Li 4.4.5
14 GAMOCLASS Space-based Huertas-Company, Tuccillo, Velasco-Forero & Decencière 4.4.3
15 LASTRO EPFL (CNN) Space-based Geiger, Schäfer & Kneib 4.4.2
16 Manchester SVM Space-based Hartley & Flamary 4.3.1
17 CMU-DeepLens-Resnet-aug Space-based Ma, Lanusse, Ravanbakhsh & Li 4.4.5
18 LASTRO EPFL Ground-based Geiger, Schäfer & Kneib 4.4.2
19 CAST Space-based Bom, Valentín & Makler 4.4.2
20 AstrOmatic Ground-based Bertin 4.4.1
21 ALL-now Space-based Avestruz, Li & Lightman 4.3.2
22 Manchester2 Ground-based Jackson & Tagore 4.1
23 YattaLensLite Ground-based Sonnenfeld 4.2.2
24 Kapteyn Resnet Space-based Petrillo, Tortora, Kleijn, Koopmans & Vernardos 4.4.6

Notes. Descriptions of the methods are in the sections listed on the right.

Fig. 1. GAHEC IRAP. From top-left to bottom right: 1) a simulated arc
extracted from the strong lensing challenge in which an tuned Arcfinder
selects 3 candidates (green circles), 2) the smoothed image on which
pixel wise elongation is computed, 3) the resulting elongated pixels after
threshold, 4) the set of pixels selected for the computation of arc candi-
date properties.

among the class-0 identifications was similar for both observers,
at around 25% for the space-based images and 20% for the
ground-based.

4.2. Arc-finders

These methods seek to identify gravitationally lensed arcs and
differentiate between them and other objects such as spiral arms
and edge on spirals using their width, colour, curvature and other
pre-selected criterion.

Fig. 2. Example of our feature extraction procedure used to transform
a ring. The image on the right shows the response of a set of Gabor
filters after convolution with a polar transformed image of an Einstein
ring. The strongest response is seen in the orientation perpendicular to
the radial direction and at the frequency most closely matching that of
the ring.

4.2.1. GAHEC IRAP (Cabanac)

Arcfinder (Alard 2006; Cabanac et al. 2007; More et al. 2012)
illustrated in Fig. 1, is a fast linear method that computes a
pixel wise elongation parameter (ratio of first-order moments
in a n-pix window oriented in proper reference frame) for all
pixels of mexican-hat-smoothed FITS images. Arcfinder then
extracts contiguous pixels above a given background and com-
putes the candidate arc’s length, width, area, radius of curva-
ture and peak surface brightness. A final thresholding is set to
maximize purity over completeness on a few typical arcs of
the dataset. For the current strong lensing challenge, arcfinder
was tuned to detect long and narrow arcs, and was optimized
on a subset of 1000 simulated images with a grid covering a
range of elongation windows and arc areas. A python wrapper
allows users to change parameters in a flexible way and run
the arcfinder C code from the linux command line. Arcfinder
took a couple of hours to run on the entire dataset with some
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overheads due to the dataset format. The code is publicly
available6.

4.2.2. YattaLensLite (Sonnenfeld)

YattaLensLite is a simpler version of the algorithm YattaLens
(Sonnenfeld et al. 2018), modified to meet the time constraints
of the challenge. YattaLensLite subtracts a model surface bright-
ness profile describing the lens galaxy from the g-band image,
then runs SExtractor to detect tangentially elongated or ring-
shaped objects, which are interpreted as lensed images. In the
ground-based challenge, the model lens surface brightness pro-
file is obtained by taking a rescaled version of the i-band image.
The difference in colour between lens and source usually allows
the lensed images to still be detectable after the lens subtrac-
tion process. However, in order to avoid subtracting off the
lensed images in systems with similar colours between lens and
source, we radially truncate the model lens surface brightness.
The model lens light is truncated at the smallest radius between
the position where the surface brightness is comparable to the
sky background level, or the position of a positive radial gradi-
ent in surface brightness, if detected.

In the space-based challenge, it is not possible to separate
lens and source based on colour, because only data in one band
is provided. The lens light model then is produced by taking a
centrally-inverted image and then using the same truncation pre-
scription used with ground-based data. The central inversion step
is taken to reduce the chances of subtracting flux from lensed
images, which are in general not centrally symmetric as opposed
to typical lens galaxies.

In the full version of YattaLens, a lens modelilng step is per-
formed to improve the purity of the sample. However, such a
procedure is too time consuming and was not performed in this
challenge.

4.3. Machine learning methods that use pre-selected
features

These are methods that classify the objects by making linear or
nonlinearboundaries ina featurespace.Thefeaturesareproperties
of the image and are typically chosen by the user with a combina-
tion of knowledge, intuition, and trial-and-error. Using the train-
ing set, the optimal boundaries are found according to a criterion
that depends on the method. The machine learns how to use the
features best for distinguishing between lenses and non-lenses.

4.3.1. Manchester-SVM (Hartley, Flamary)

A Support Vector Machine (SVM) is a supervised machine
learning method which uses labelled training data to determine
a classification model (see e.g., Vapnik 1979; Cortes & Vapnik
1995; Burges 1998). A preprocessing stage first extracts a set
of useful features from input samples, before projecting each
sample as a vector into a high-, possibly infinite-dimensional
space. The model then separates classes of data by maximising
the margin between a defining hyperplane and a set of so-called
support-vectors at the inner edge of each class. The process of
classification is computationally inexpensive since the optimi-
sation depends only on the dot products of the support vector
subset. Feature extraction, however, requires both an extensive
exploration of the feature space during the development of a
model, and potentially intensive computer resources in order to

6 https://github.com/rcabanac/arcfinder

transform the original samples. Our full method is described
in detail in Hartley et al. (2017) and was developed using the
Python scikit-learn and scikit-image packages (Pedregosa et al.
2011; Van der Walt et al. 2014).

During our development of an SVM classifier for lens
finding, feature extraction initially involved the decomposi-
tion of each image into a set of objects, using SExtractor
(Bertin & Arnouts 1996) and GALFIT (Peng et al. 2002) to
recover and subtract objects iteratively. This method had pre-
viously been used in a static algorithm approach which assigned
points according to the morphological properties of each image
(see Joseph et al. 2014). Lensed-like objects displaying, for
example, greater ellipticity and tangential elongation were
awarded more points. Since the SVM operates in a fixed dimen-
sional space, properties of individual objects were collapsed into
a fixed set describing the mean and variance of morphological
properties of all the objects within an image. After training an
SVM using these features we recorded a modest separation of
lens and non-lens classes.

An alternative approach was to design a set of Gabor filters
to be applied to each sample. The Gabor kernel is described
by a sinusoidal function multiplied by a Gaussian envelope.
We discard the imaginary part of the function to leave, in two-
dimensional space:

Gc[i, j] = Be−
(i2+ j2)

2σ2 cos
[
2π
λ

(i cos θ + j sin θ)
]
, (4)

where harmonic wavelength λ, Gaussian spread σ and ori-
entation θ define the operation performed on each point i, j
in an image. Such a kernel is a popular image process-
ing choice for edge detection and texture classification (e.g.,
Petkov & Kruizinga 1997; Feichtinger & Strohmer 1998) and is
thought to mimic some image processing functions of the mam-
malian brain (Jones & Palmer 1987).

Our final feature extraction procedure first applied a polar
transform to each image in order to exploit the edge detection
of the Gabor filter, picking out tangential components typical of
galaxy-galaxy lensing. Each image was then convolved with sev-
eral Gabor filters of varying frequency and rotation (see Fig. 2).
Stability selection methods were used to investigate the classifi-
cation performance using different combinations of filters. The
responses for each Gabor filter when applied to each image were
measured by calculating statistical moments for each filtered
image. These moments formed our final input data on which the
SVM could be trained and applied. We used brute-force opti-
misation methods to select a non-linear SVM containing radial
basis function (RBF) kernel and tuned a small set of regular-
isation hyperparameters to achieve good generalisation perfor-
mance. During training and testing, our final and best scores
achieved when testing on the training data were an area under
the ROC curve of 0.88 for the space set and 0.95 for the ground
set. Classification was performed using a modest desktop PC.

4.3.2. ALL (Avestruz, Li, Lightman)

The ALL team methodology is detailed in Avestruz et al. (2017).
The pipeline was originally developed to automatically classify
strong lenses in mock HST and LSST data generated with code
described in Li et al. (2016) and Collett (2015). We apply exactly
the same steps for the single-band data for Euclid, but modify the
feature extraction step for the four-band KIDS data. We summa-
rize the steps below.

Tools from Scikit-learn (Pedregosa et al. 2012) are used and
some minimal image preprocessing is performed. First, we
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Table 2. LASTRO EPFL architecture.

Layer type Shape Activation # parameters

Convolutional 4 × 4 101 × 101 × 1/4→ 98 × 98 × 16 Rectifier 256/1024 + 16
Convolutional 3 × 3 98 × 98 × 16→ 96 × 96 × 16 Rectifier 2304 + 16
Max pool/2 96 × 96 × 16→ 48 × 48 × 16 – –
Batch normalization 48 × 48 × 16 – 16 + 16
Convolutional 3 × 3 48 × 48 × 16→ 46 × 46 × 32 Rectifier 4608 + 32
Convolutional 3 × 3 46 × 46 × 32→ 44 × 44 × 32 Rectifier 9216 + 32
Max pool/2 44 × 44 × 32→ 22 × 22 × 32 – –
Batch normalization 22 × 22 × 32 – 32 + 32
Convolutional 3 × 3 22 × 22 × 32→ 20 × 20 × 64 Rectifier 18 432 + 64
Convolutional 3 × 3 20 × 20 × 64→ 18 × 18 × 64 Rectifier 36864 + 64
Max pool/2 18 × 18 × 64→ 9 × 9 × 64 – –
Batch normalization 9 × 9 × 64 – 64 + 64
Dropout 9 × 9 × 64 – –
Convolutional 3 × 3 9 × 9 × 64→ 7 × 7 × 128 Rectifier 73 728 + 128
Dropout 7 × 7 × 128 – –
Convolutional 3 × 3 7 × 7 × 128→ 5 × 5 × 128 Rectifier 147 456 + 128
Batch normalization 5 × 5 × 128 – 128 + 128
Dropout 5 × 5 × 128 – –
Fully-connected 5 × 5 × 128→ 1024 Rectifier 3 276 800 + 1024
Dropout 1024 – –
Fully-connected 1024→ 1024 Rectifier 1 048 576 + 1024
Dropout 1024 – –
Fully-connected 1024→ 1024 Rectifier 1 048 576 +1024
Batch normalization 1024 – 1024 + 1024
Fully-connected 1024→ 1 Sigmoid 1024 + 1
Total – – ≈5 674 000

Input image convolution 3x3 (ReLu) + pooling layer convolution 3x3 (ReLu) + pooling layerconvolution 3x3 (ReLu) + pooling layer Fully connected layers

depth 2* depth 4* depth
64

1

Fig. 3. GAMOCLASS schematic.

replace masked pixels with the average of surrounding pixels,
then enhance contrast in the image by taking the normalized log
of pixel values. The next step consists of a feature extraction
stage, where our feature vector is a histogram of oriented gra-
dients (HOG; Dalal & Triggs 2005) that quantifies edges in the
image. HOG has three main parameters that determine the bin-
ning and resolution of edges captured by the features. The result
is a one dimensional feature vector corresponding to the mag-
nitude of oriented gradients across the image. With the KIDS
data, we extract a feature vector for each of the four bands and
concatenate the vectors to create a final feature vector for each
object that we use to train a model classifier.

We use Logistic Regression (LR) to train a classifier model.
LR requires a parameter search over the regression coefficient,
CLogReg. The parameters from both the feature extrator, HOG,
and the linear classifier, LR, contain parameters that we optimize
for peak model performance. We use GridSearchCV from Scikit-
learn to select cross-validated parameters for HOG parameters
and a subset of CLogReg values with 20% of the test images
provided. We then run a finer parameter search over CLogReg,

splitting the test images into 80% training and 20% test to avoid
overfitting the data. We use the best parameters to then train the
entire dataset for the final model classifier that we used to evalu-
ate the competition data.

4.4. Convolutional Neural Networks

Since Convolutional Neural Networks (CNNs) are central to
many of the methods that will be described later, here we provide
a brief general description of them. A CNN (Fukushima 1980;
LeCun et al. 1998) is a multi-layer feed-forward neural network
model, which is particularly well-suited for processing natural
images. With the very recent advances of the Deep Learning
framework (LeCun et al. 2015), models based on CNN architec-
tures have reached or even surpassed human accuracy in image
classification tasks (He et al. 2015a).

The fundamental building block of a CNN is the convolu-
tional layer. This element applies a set of convolution filters on
an input image to produce a series of so-called feature maps. The
coefficients of these filters are free parameters that are learned by
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the model. The notation n × n − nc will signify a convolutional
layer using filters of size n × n pixels and outputting nc feature
maps. In typical architectures, the size of these convolution fil-
ters is kept small (i.e. 3×3 or 5×5 pixels) to limit the complexity
of the model.

Similarly to conventional fully-connected neural networks,
convolution layers are typically followed by an element-wise
activation function, which allows for the modelling of complex
functional forms by introducing non-linearities in the model.
Classical choices for activation functions include the sigmoid-
shaped logistic function (or just sigmoid) f (x) = 1/(1+exp(−x))
or the hyperbolic tangent function f (x) = tanh(x). However,
much of the success of Deep Learning is due to the introduction
of activation functions that do not saturate (become very close
to one with very small derivatives), allowing for the efficient
training of very deep architectures. The most common choice
in modern deep learning models is the simple ReLU activa-
tion (for rectified linear unit; Nair & Hinton 2010) defined as
f (x) = max(x, 0). A closely related common alternative is the
ELU activation (for exponential linear unit; Clevert et al. 2015)
defined as

f (x) =

{
x if x ≥ 0
ex − 1 otherwise,

(5)

which often leads to better results in practice.
Because the filters used in convolution layers are typically

just a few pixels in size, to capture features on larger scales,
CNNs rely on a multi-resolution approach by interleaving convo-
lutional layers with pooling layers, which apply a downsampling
operation to the feature maps. The most common downsampling
schemes are the max-pooling and average pooling strategies,
which downsample an input image by taking respectively the
maximum or average values within a given region (e.g., 2 × 2
patches for a downsampling of factor 2).

A CNN architecture is therefore a stack of convolution layers
and pooling layers, converting the input image into an increas-
ing number of feature maps of progressively coarser resolution.
The final feature maps can capture information on large scales
and can reach a high-level of abstraction. To perform the clas-
sification itself from these feature maps, the CNN is typically
topped by a fully-connected neural network outputting the class
probability of the input image.

For a binary classification problem such as the one involved
in strong lens detection, the training is performed by optimizing
the weights of the model so that it minimizes the binary cross-
entropy :

S = −

N∑
n=1

y[n] log ŷ[n] + (1 − y[n]) log(1 − ŷ[n]), (6)

where N is the number of training instances, y ∈ {0, 1} is the
true class of the image and ŷ ∈ [0, 1] is the class probabil-
ity predicted by the model. This optimization is usually per-
formed by a Stochastic Gradient Descent (SGD) algorithm or its
variants (e.g., ADAM Kingma & Ba 2014, Adagrad Duchi et al.
2011, RMSprop Tieleman & Hinton 2012, or accelerated gra-
dients Nesterov 1983). SGD updates the model iteratively by
taking small gradient steps over randomly selected subsamples
of the training set (so called mini-batches). All the CNN-based
methods presented in this work rely on the ADAM optimisation
algorithm, which also uses past gradients from previous itera-
tions to adaptively estimate lower-order moments. Empirically it
has been found that in many problems ADAM converges faster
than SGD (Ruder 2016).

Neural networks often suffer from overfitting to the training
set. A common way to mitigate this is to use a regularisa-
tion scheme. For example, the Dropout regularisation technique
(Hinton et al. 2012; Srivastava et al. 2014a), were a certain per-
centage of the neurons and their connections are randomly
dropped from the neural network. This regularisation techniques
reduces overfitting by preventing complex co-adaptations of
neurons on training data.

Training multi-layer neural networks with gradient descent
based approaches can be very challenging. One of the main rea-
sons behind this is the effect of vanishing gradients: it has been
empirically observed that in many multi-layer neural networks
the gradients in higher-level (further from the image) layers often
become too small to be effective in gradient descent based opti-
misation. Another difficulty is that the distribution of each layer’s
inputs changes during training as the parameters of the previ-
ous layers change. These issues make it difficult to find the best
learning rates.

Batch normalisation layers (Ioffe & Szegedy 2015) are one
way of addressing these challenges. Let the activities of a given
neuron in a mini-batch be denoted by x1, . . . , xm. The batch nor-
malisation layers i) calculate the empirical mean (µ = 1

m
∑m

i=1 xi)
and variance (σ2 = 1

m
∑m

i=1(xi−µ)2) of the neural activities using
the mini-batch data, ii) standardise the neuron activities to make
them zero mean with unit variance, that is x̂i = (xi − µ)/σ,
iii) linearly transform these activities with adjustable parameters
β, γ ∈ R: yi = γx̂i + β. Here yi denotes the output after applying
the batch normalisation layer on the neuron with activities xi.
It has been empirically demonstrated that batch normalisation
can often accelerate the training procedure and help mitigate the
above described challenges.

There are many variations on these techniques and concepts
some of which are represented in the following descriptions of
particular methods.

4.4.1. AstrOmatic (Bertin)

The lens detector is based on a CNN, trained with the provided
training datasets. The CNN is implemented in Python, using the
TensorFlow framework7. Both ground multichannel and space
monochannel image classifiers have the exact same CNN archi-
tecture.

The network itself consists of three convolutional layers
(11 × 11−32, 5 × 5−64 and 3 × 3−64), followed by two fully-
connected layers (256 and 64 neurons) and an output softmax
layer. The first five layers use the ELU activation function, which
in our tests led to significantly faster convergence compared to
ReLU and even SoftPlus activation. Dropout regularization is
applied to both convolutional and fully connected layers, with
“keep” probabilities p = 2/3 and p = 1/2, respectively.

Prior to entering the first convolutional layer, input image
data are rescaled and the dynamic-range compressed with the
function f (x) = arcsinh(1011x), and bad pixels are simply set to
0. Data augmentation (increasing the amount of training data by
modifying and reusing it) is performed in the form of random up-
down and left-right image flipping, plus kπ/2 rotations, where
k is a random integer in the [0, 3] range. Additionally, a small
rotation with random angle θ is applied, involving bicubic image
resampling. the angle θ is drawn from a Gaussian distribution
with mean µ = 0 and standard deviation σθ = 5◦. No attempt
was made to generate and randomize bad pixel masks in the data
augmentation process.

7 http://www.tensorflow.org/
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Fig. 4. CAST Lens finder pipeline for the ground based sample. Illus-
tration of the chosen architecture for the CAST search in the case of
ground-based simulated images.

The CNN weights are initialized to random values using a
truncated Gaussian distribution with mean µ = 0 and standard
deviation σ = 0.05. The network is trained on a Titan-X “Pas-
cal” nVidia GPU using the ADAM gradient-based optimizer dur-
ing 800 epochs, with an initial learning rate η(t = 0) = 10−3

and a learning rate decay η(t + 1)/η(t) = 0.99, where t is the
epoch. Because of a lack of time, tests were limited to assess-
ing the basic classification performance on a subset of the of
1000 images/datacubes, using the 19 000 others for training.

4.4.2. LASTRO EPFL (Geiger, Schäfer)

We used a CNN (Fukushima 1980; LeCun et al. 1998) with a
simple architecture of 12 layers (inspired by Dieleman et al.
2016), see Table 2. To avoid the problem of the data flow
distribution getting out of the comfort zone of the activation
functions (“Internal Covariate Shift”), we used a mix of normal-
ization propagation (Arpit et al. 2016) (without the constraint on
the weights but a proper initialization) and batch normalization
(Ioffe & Szegedy 2015) (slowly disabled over the iterations). As
activation function, we used a scaled and shifted ReLU, defined
as

1
√
π − 1

(√
2πmax(0, x) − 1

)
, (7)

to satisfy the properties required by the normalization propa-
gation. Our batch normalization implementation computes the
mean of the activation function µ̄i using the following equation

µ̄i ←− (1 − η) µ̄i−1 + η µi(batch) . (8)

µ̄i is computed using the mean value µi over the batch in
combination with the previous mean µ̄i−1 using an inertia value
η set to 1 at the beginning and decaying with the iterations. For
the training, the 20 000 provided images were split into two sets,
17 000 for training and 3k for validation. Each iteration of the
gradient descent (more precisely ADAM Kingma & Ba 2015)
minimizes the cross entropy,{
− log(p) if the image is a true lens
− log(1 − p) if the image is a nonlens, (9)

where p is the output of the neural network, computed over a
batch of 30 images, 15 lenses and 15 nonlenses, picked from
the training set. The small batches with only 30 images were
easier to handle computationally but added more noise to the
gradient which we considered negligible due to there being only
two classes to classify.

To augment the training set, each image of the batch is
transformed with a random transformation of the dihedral group

(rotations of 90◦ and mirrors), its pixel values multiplied by
a factor picked between 0.8 and 1.2 and shifted by a random
value between −0.1 and 0.1. To prevent the overfitting, we used
some dropout (Srivastava et al. 2014b) (with a keeping proba-
bility decreasing with the iterations). The masked regions of the
ground based images are handled by simply setting them to zero.
Each final prediction is made of the product of the predictions of
the 8 transformations of the image by the dihedral group. The
architecture is implemented in Tensorflow8. Our code is accessi-
ble on github9. Additional details can be found in Schaefer et al.
(2018).

4.4.3. GAMOCLASS (Tuccillo, Huertas-Company,
Velasco-Forero, Decencière)

GAMOCLASS is a CNN based classifier. We used the full train-
ing data set in the proportion of 4/5 for training and 1/5 for
validation. The training images were labelled with 1 if show-
ing strong lensing and 0 otherwise. Our CNN gives as output a
probability [0,1] of the input image being a strongly lensed sys-
tem. The final architecture of our model is illustrated in Fig. 3.
The input image (101 × 101 pixels) is first processed by a 2D
convolution layer with a 3 × 3 filter size, then subsampled by
a 3 × 3 max pooling layer. Another two identical units follow,
with a growing dimensionality of the output space in the con-
volution, for a total of 3 convolutional layers and 3 max pool-
ing layers. Each of these convolutional layers is followed by a
ReLU step. The output of these units is then processed through
a single fully-connected layer follower by a dropout layer, and,
finally, by a one-neuron fully connected layer with sigmoid acti-
vation functions. For the classification problem we used the
binary cross-entropy cost function and found the weights using
ADAM Kingma & Ba (2014) optimization method. The use of
the ADAM optimizer improved the learning rate compared to
tests with stochastic gradient descent (SGD). In order to increase
the size of the training set and make the model invariant to spe-
cific transformations, we perform these data augmentation steps:
(1) we introduce random rotations of the image in the range
[0,180◦], using a reflection fill mode to keep constant the size
of the images; (2) the images are randomly shifted of 0.02 times
the total width of the image; (3) the images are randomly flipped
horizontally and vertically.

During the training we initialize the weights of our model
with random normal values and we “warm up” the training of
the CNN for 25 epochs, using an exponential decay rate (10−6)
(Huang et al. 2016) and then a staring learning rate of 0.001.
Then the network was trained using an early stopping method,
and for a maximum number of 300 epochs. The early stopping
method is an effective method of preventing overfitting and con-
sists in stopping the training if a monitored quantity does not
improve for a fixed number (called patience) of training epochs.
The quantity that we monitored was the accuracy of the classifi-
cation of the validation sample. The best architecture was trained
over 220 epochs with a parameter of patience equal to 20. We
implemented our code in the Keras framework (Chollet 2015)
on top of Theano (Bastien et al. 2012). Our architecture con-
verges with a classification accuracy of 91% on the validation
sample. We further evaluated the performance of our classifier
calculating the ROC (see Sect. 5.1) curve of the classifier, i.e.
the true positive rate (TPR) against the false positive rate (FPR).
We reached a TPR higher than the 90% with a FPR< 8%.

8 http://tensorflow.org/
9 https://github.com/antigol/lensfinder-euclid
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Table 3. AUROC, TPR0, and TPR10 for the entries in order of AUROC.

Name Type AUROC TPR0 TPR10 Short description

CMU-DeepLens-Resnet-ground3 Ground-based 0.98 0.09 0.45 CNN
CMU-DeepLens-Resnet-Voting Ground-based 0.98 0.02 0.10 CNN
LASTRO EPFL Ground-based 0.97 0.07 0.11 CNN
CAS Swinburne Melb Ground-based 0.96 0.02 0.08 CNN
AstrOmatic Ground-based 0.96 0.00 0.01 CNN
Manchester SVM Ground-based 0.93 0.22 0.35 SVM/Gabor
Manchester2 Ground-based 0.89 0.00 0.01 Human Inspection
ALL-star Ground-based 0.84 0.01 0.02 Edges/gradiants and Logistic Reg.
CAST Ground-based 0.83 0.00 0.00 CNN/SVM
YattaLensLite Ground-based 0.82 0.00 0.00 SExtractor
LASTRO EPFL Space-based 0.93 0.00 0.08 CNN
CMU-DeepLens-Resnet Space-based 0.92 0.22 0.29 CNN
GAMOCLASS Space-based 0.92 0.07 0.36 CNN
CMU-DeepLens-Resnet-Voting Space-based 0.91 0.00 0.01 CNN
AstrOmatic Space-based 0.91 0.00 0.01 CNN
CMU-DeepLens-Resnet-aug Space-based 0.91 0.00 0.00 CNN
Kapteyn Resnet Space-based 0.82 0.00 0.00 CNN
CAST Space-based 0.81 0.07 0.12 CNN
Manchester1 Space-based 0.81 0.01 0.17 Human Inspection
Manchester SVM Space-based 0.81 0.03 0.08 SVM/Gabor
NeuralNet2 Space-based 0.76 0.00 0.00 CNN/wavelets
YattaLensLite Space-based 0.76 0.00 0.00 Arcs/SExtractor
All-now Space-based 0.73 0.05 0.07 Edges/gradiants and Logistic Reg.
GAHEC IRAP Space-based 0.66 0.00 0.01 Arc finder

4.4.4. CAST (Bom, Valentín, Makler)

The CBPF Arc Search Team (CAST) tested several arcfinding
schemes with CNNs at their core. For both the space-based and
ground-based samples we used a simple preprocessing phase to
enhance the objects in the images to check to see if this improved
the automated arc detection with the CNN. We chose a contrast
adjustment with 0.1% pixel saturation and apply a low pass band
Wiener filter (Wiener 1964) to reduce the effect of the noise.

We used a native CNN from Matlab10, which has Convo-
lutional 2D layers with 20 5 × 5 filters. This CNN can work
either with one or three input images, representing grey-scale
and colour images. We employed different strategies for the two
samples available for the challenge, which involve combinations
of the available bands running in one or more CNN, using or not
the preprocessing, and combining the output with the aid of other
machine learning methods. In each case we used the simulations
made available for the challenge both to train and to validate the
results and we used the area under the ROC (see Sect. 5.1) to
determine which combination of methods gives the best result.
We selected 90% of the images, chosen randomly, for the train-
ing and 10% to validate. We repeated the process 10 times to
avoid bias due to a specific choice of training/validation set and
to define an uncertainty in our ROC.

For the space-based data set we tested only two configura-
tions: (i) using the CNN straightforwardly for classification and
(ii) with the preprocessing described above. We found that the
results, accounting for the uncertainties, were clearly superior in
terms of the area under the ROC with the preprocessing. There-
fore, this is the configuration we used for the challenge entry.

10 https://www.mathworks.com/products/matlab.html,
https://www.mathworks.com/help/nnet/
convolutional-neural-networks.html

As mentioned above, the CNN we used can take 3 colour
images as input. To use the information on the 4 available bands,
we needed to either combine 2 of the 4 bands to end up with
3 bands for a single RGB CNN (configuration I below) or we use
multiple CNNs (configuration II–VI below). To combine the out-
puts of several CNNs we use a Support Vector Machine (SVM;
see e.g., Rebentrost et al. 2014) also implemented in Matlab. The
SVM is used to combine the outputs pi of the several CNNs
(configurations II, III, IV and VI). Instead of using only pi
as inputs to the SVM we also tested providing the SVM with
image features obtained by the CNN (feature maps, configura-
tion V) as inputs. In all cases we tested with and without the
preprocessing

A more detailed description of each configuration tested is
presented below:

I. Combination of bands r and i with the average between
bands u and g. Use one CNN for classification.

II. Creation of 1 CNN for each band (total of 4). The 4 outputs
are used as input to a SVM classifier which returns the final
classification p.

III. Combination into 4 different combinations of bands: RGB
→ (u,g,r), (u,g,i), (u,r,i) and (g,r,i). One CNN for each com-
bination of bands and then use of the output score as input
to an SVM classifier.

IV. Average of bands in different combinations RGB→ (ug,r,i),
(u,gr,i) and (u,g,ri). The outputs of these 3 CNNs are inputs
to a SVM classifier.

V. Use of CNN-activations (CNN feature maps) as inputs to
a SVM classifier, using same combinations of bands of III.
The output of each CNN is used as input to a SVM classifier.

VI. Use of wiener filter and contrast adjustment on each band,
then using the resulting images in the same architecture as
in (III).
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Table 4. AUROC, TPR0, and TPR10 for the entries in order of TPR0.

Name Type AUROC TPR0 TPR10 Short description

Manchester SVM Ground-based 0.93 0.22 0.35 SVM/Gabor
CMU-DeepLens-Resnet-ground3 Ground-based 0.98 0.09 0.45 CNN
LASTRO EPFL Ground-based 0.97 0.07 0.11 CNN
CMU-DeepLens-Resnet-Voting Ground-based 0.98 0.02 0.10 CNN
CAS Swinburne Melb Ground-based 0.96 0.02 0.08 CNN
ALL-star Ground-based 0.84 0.01 0.02 Edges/gradiants and Logistic Reg.
Manchester2 Ground-based 0.89 0.00 0.01 Human Inspection
YattaLensLite Ground-based 0.82 0.00 0.00 SExtractor
CAST Ground-based 0.83 0.00 0.00 CNN/SVM
AstrOmatic Ground-based 0.96 0.00 0.01 CNN
CMU-DeepLens-Resnet Space-based 0.92 0.22 0.29 CNN
GAMOCLASS Space-based 0.92 0.07 0.36 CNN
CAST Space-based 0.81 0.07 0.12 CNN
All-now Space-based 0.73 0.05 0.07 Edges/gradiants and Logistic Reg.
Manchester SVM Space-based 0.80 0.03 0.07 SVM/Gabor
Manchester1 Space-based 0.81 0.01 0.17 Human Inspection
LASTRO EPFL Space-based 0.93 0.00 0.08 CNN
GAHEC IRAP Space-based 0.66 0.00 0.01 Arc finder
AstrOmatic Space-based 0.91 0.00 0.01 CNN
Kapteyn Resnet Space-based 0.82 0.00 0.00 CNN
CMU-DeepLens-Resnet-aug Space-based 0.91 0.00 0.00 CNN
CMU-DeepLens-Resnet-Voting Space-based 0.91 0.00 0.01 CNN
NeuralNet2 Space-based 0.76 0.00 0.00 CNN/wavelets
YattaLensLite Space-based 0.76 0.00 0.00 Arcs/SExtractor

For the ground based cases, the three configurations with
highest area under ROC were III, IV and VI. Although the areas
are very similar between IV and VI the last one is superior in the
low fake positives end. Thus, for the Strong Lensing Challenge
in the ground base sample, we used configuration VI. This final
scheme is illustrated in Fig. 4.

The area under ROC, in both space based configurations
were, in general, smaller than in the multi-band case, which sug-
gests how the CNNs are sensitive to colour information to find
strong lensing. Particularly, ground base configuration II used
one CNN per band and has the similar area under ROC as our
best single band configuration.

4.4.5. CMU DeepLens (Lanusse, Ma, Li, Ravanbakhsh)

CMU DeepLens is based on a residual network (or resnet) archi-
tecture (He et al. 2015a), a modern variant of CNNs which can
reach much greater depths (over 1000 layers) while still gaining
accuracy. We provide a short overview of our model below but a
full description of our architecture can be found in Lanusse et al.
(2018).

Much like conventional CNNs, resnets are based on convo-
lutional and pooling layers. However, resnet differ from CNNs
by the introduction of so-called shortcut connections bypassing
blocks of several convolutional layers. As a result, instead of
learning the full mapping from their input to their output these
residual blocks only have to learn the difference to the iden-
tity transformation. In practice, this difference allows residual
networks to be trained even for very deep models. For a more
thorough description of this architecture, we refer the interested
reader to Sect. 2.3 of Lanusse et al. (2018).

Our baseline model is composed of a first 7 × 7−32 con-
volutional layer which can accommodate either single-band or
multi-band images. The rest of the model is composed of 5 suc-
cessive blocks, each block being made of 3 resnet units (specif-
ically, pre-activated bottleneck residual units He et al. 2016).
At each block, the signal is downsampled by a factor 2 and
the number of feature maps is in turn multiplied by 2. The
model is topped by an average-pooling layer followed by a sin-
gle fully-connected sigmoid layer with a single output. Apart
from the final layer, we use the ELU (Exponential Linear Unit)
activation throughout. The weights of the model are initialized
using random normal values, following the strategy advocated in
He et al. (2015a).

Training was performed using the ADAM optimizer with
mini-batches of size 128 over 120 epochs, with an initial learn-
ing rate of α = 0.001, subsequently decreased by a factor 10
every 40 epochs. This multi-step training procedure is impor-
tant to progressively refine the model parameters and achieve
our final accuracy.

We adopt a minimal pre-processing strategy for the input
images, removing the mean image and normalising by the noise
standard deviation σ in each band, this statistic being evaluated
over the whole training set. In addition, we clip extreme values
above 250σ to limit the dynamic range of the input. Bad-pixels
are simply set to 0 after this pre-processing step.

Given the relatively small training set preventing overfitting
is an important consideration. In our final model, we combine
several data augmentation strategies: random rotations (in the
range [−90, 90◦]), random mirroring along both axes, and ran-
dom resizing (by a small factor in the range [0.9, 1]).

The architecture presented above is the one that lead
to our best results in both branches of the challenge, i.e.
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Fig. 5. ROC curves for the space-based
entries.
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Fig. 6. ROC curves for the ground-based
entries. Notice that these are generally
better than in Fig. 8 indicating that colour
information is an important discriminant.

CMU-DeepLens-Resnet for space-based and CMU-DeepLens-
Resnet-ground3 for ground-based. We also submitted results
for two variants of this baseline model, named -aug and
-Voting. The first variant introduced several data-augmentation
schemes, including the ones mentioned above and the addition
of Gaussian noise to the input images. We found however that
the introduction of noise was not necessary as the other meth-
ods were enough to prevent overfitting. The second variant was
used to explore a voting strategy between three different models.
These models differed by the type of residual blocks (bottleneck
vs wide) and by their handling of missing pixels (setting to 0 or
to the median value of the image). The predictions of the best 2
out of 3 models were then averaged to produce the final classifi-
cation probability.

Our model is implemented using the Theano11 and
Lasagne12 libraries. On an Nvidia Titan Xp GPU, our full train-
ing procedure requires approximately 6 h on the ground-based
challenge, but classification of the whole testing set is performed
in a couple of minutes. Finally, in the interest of reproducible
research, our code is made publicly available on GitHub13. This
repository also contains a notebook detailing how to reproduce
our challenge submission.

11 http://deeplearning.net/software/theano/
12 https://github.com/Lasagne/Lasagne
13 https://github.com/McWilliamsCenter
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Fig. 7. ROC curves for the ground-
based entries including only the cases
with authentic images taken from the
KiDS survey. It can be seen that in all
cases these are lower than in Fig. 6.
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Fig. 8. AUROC, TPR0, TPR10 and the fraction of lenses in the test sample after discarding the lenses with Einstein radii larger than the number
indicated on the x-axis. The vertical dotted lines indicate where no more than 100 lenses in the test sample had larger Einstein radii. Beyond this
point one should be suspicious of small number statistics.

4.4.6. Kapteyn Resnet (Petrillo, Tortora, Vernardos, Kleijn,
Koopmans)

Our lens-finder is based on a CNN, following the strategy
adopted recently in Petrillo et al. (2017). We decide to treat the

problem as a three-class classification problem where the classes
are non-lenses, clear lenses and dubious lenses. We define the
dubious lenses as the lenses with lensing features with less than
160 pixels and the clear lenses those with more than 160 pixels
belonging to the lensed source. This choice is motivated by the
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Fig. 9. Same as Fig. 8, but for ground-
based entries. The AUROC, TPR0,
TPR10 and the fraction of lenses in the
test sample after discarding the lenses
with Einstein radii larger than the num-
ber indicated on the x-axis. The vertical
dotted lines indicate where no more than
100 lenses in the test sample had larger
Einstein radii.

fact that specializing the network in recognizing different classes
could lead to a more robust classification. In addition, in a hypo-
thetical application of the method to real data from a survey, this
could be a way to select the most blatant lenses.

The CNN is implemented in Python 2.7 using the open-source
libraries Lasagne14 and Theano15 (Theano Development Team
2016). The training of the CNN is executed on a GeForce GTX
760 in parallel with the data augmentation performed on the CPU
using the scikit-image16 package (Van der Walt et al. 2014).

We used the CNN architecture called Resnet described in
(He et al. 2015b) with three stacks of residual blocks of 5 layers.
The output layer is composed by three units. Each unit gives as
an output a number between 0 and 1 that represents, respectively,
the probability of being a non-lens, a dubious lens, a certain lens.
We then collapsed one of the classes into another to give a binary
classification: 0 when a source is classified as a non-lens and a 1
when is classified as a clear lens or as a dubious lens. This choice
did not allow for building a continuous ROC (see Sect. 5.1) curve

14 http://github.com/Lasagne/Lasagne/
15 http://deeplearning.net/software/theano/
16 http://scikit-image.org/

but only a binary one. The final submission was produced by
averaging the values of the predictions from three CNNs with
the same architecture.

The training image files were preprocessed with the software
STIFF17 which automatically converts the fits files to grey-scale
TIFF images operating a non-linear intensity transformations to
enhance the low-brightness features of the image. Due to mem-
ory limitations we down-sampled the images to 84 by 84 pixels.
We augmented the training images in the following way: (i) ran-
dom rotation of 90, 180 or 270◦; (ii) random shift in both x and
y direction between −2 and +2 pixels; (iii) 50% probability
of horizontally flipping the image. Finally, the image border is
cropped in order to have 80 by 80 pixel input images.

The network is trained by minimizing the categorical cross-
entropy loss function

L = −
∑

j

t j log p j, (10)

where the t j and p j are respectively the label and the predic-
tion for the class j. The minimization is done via mini-batch

17 http://www.astromatic.net/software/stiff
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Fig. 10. AUROC, TPR0, TPR10 and the fraction of lenses in the space-based test sample after discarding the lenses with fluxes within the pixels
that are above 1σ in the lensed source as indicated on the x-axis. The vertical dotted lines indicate where no more than 100 lenses in the test sample
had larger Einstein radii.

stochastic gradient descent with ADAM updates (Kingma & Ba
2014). We used a batch size of 56 and performed 46 000 gradient
updates. We started with a learning rate of 4×10−4, decrease it to
4×10−5 after 35 000 updates and to 4×10−6 after 43 000 updates.
The weights of each filter are initialized from a random normal
distribution with variance 2/n where n is the number of inputs of
the unit and a mean of zero (He et al. 2015a). We use L2-norm
regularization with λ = 9 × 10−3.

4.4.7. NeuralNet2 (Davies, Serjeant)

Our lens finder included wavelet prefiltering. The image was
convolved with the Mallat wavelet with a kernel size of 4 in
both the horizontal and vertical directions, then combined and
compared to the original image to make the input image; input
image =

√
H2 + V2. This prefiltering was performed to empha-

sise the edges in the images. It was found to improve the results
compared to the CNN without this pre-filter. The CNN had 2
convolution layers each containing 3 × 3−32 filters, incorporat-
ing dropout and max-pooling, and then 3 dense fully-connected
layers to classify each image. The network was trained on 18 000
of the 20 000 training images; training took 15 epochs and was
completed once the validation loss was minimised. The training
was validated on the remaining 2000 images. Validation loss was

calculated using binary cross entropy

L =

n∑
i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
, (11)

where L is the loss function, n is the number of inputs, yi is the
true value of the ith input, and pi is the predicted value for the ith
input from the network. A perfect loss of 0 was generated once
every predicted value matched the true value for every input. The
network was made and trained in Python 2.7 using the open-
source libraries theano and keras18. A more developed version
of our lens finder will appear in Davies et al. (in prep.).

4.4.8. CAS Swinburne (Jacobs)

Our model is a CNN-based classifier. The architecture of our net-
work was simple, similar to that of AlexNet (Krizhevsky et al.
2012), with three 2D convolutional layers (with kernel sizes 11,
5, and 3), and two fully-connected layers of 1024 neurons each.
The activation function after each convolutional layer was a
ReLU. After each convolution we employed a 3×3 max pooling
layer. To avoid over-fitting, we included a dropout layer of 0.5
after each of the two fully-connected layers. We implemented

18 https://github.com/keras-team/keras
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Fig. 11. Same as Fig. 10, but for
ground-based entries.

our network using the Keras python framework (Chollet 2015)
and Theano (Bastien et al. 2012).

The training set was augmented with three rotations, and
20% of the images were reserved for validation. The training
set consisted of 4-band FITS files of simulated lenses and non-
lenses. We imported the training set into HDF5 database files.
The data was normalised on import, such that the mean value of
the data cube, across all bands, is zero and the standard deviation
is one, i.e. X′ = (X − µ)/σ; the dynamic range was not altered.
We also include batch normalisation step after the first convolu-
tion, which normalises the outputs of this layer to the same range
(µ = 0, σ = 1). This has been shown empirically to aid in more
rapid convergence of the training process.

The training process using a categorical cross-entropy loss
function, and a stochastic gradient descent optimizer with an
initial learning rate of 0.01, learning rate decay of 10−6, and
Nesterov momentum (Nesterov 1983) of 0.9. Training con-
verged (validation loss stopped decreasing) after approximately
30 epochs.

We note that experiments indicated that training on 4-band
FITS data, as opposed to RGB images produced from the fits
files, resulted in improved validation accuracy, of order a few
percent.

5. Results

In this section we summarize the analysis of the submissions. In
Sect. 5.1 we discuss how to judge a classifier in this particular
case and define some metrics of success. The results for all the
submissions are given in Sect. 5.2.

5.1. Figures of merit

In deriving a good figure of merit for evaluating lens finding
algorithms one needs to take into account the particular nature
of this problem. The traditional method for evaluating a clas-
sification algorithm is with the receiver operating characteristic
curve, or ROC curve. This is a plot of the TPR versus the FPR.
In this case these are defined as

TPR =
number of true lenses classified as lenses

total number of true lenses
, (12)

FPR =
number of non − lenses classified as lenses

total number of non − lenses
· (13)

The classifier generally gives a probability of a candidate
being a lens, p, in which case a threshold is set and everything
with p greater is classified as a lens and everything smaller is
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Fig. 12. AUROC, TPR0, TPR10 and the fraction of lenses as a function of the lens image size for the space-based test set. The x-axis is the number
of pixels that are above 1σ in the lensed source only image. This is an indication of the lensed arcs’ size. The vertical dotted lines indicate where
no more than 100 lenses in the test sample had larger Einstein radii.

classified as not a lens. The TPR and FPR are then plotted as a
curve parametrised by this threshold. At p = 1 all of the cases are
classified as non-lenses and so TPR = FPR = 0 and at p = 0 all of
the cases are classified as lenses so TPR = FPR = 1. These points
are always added to the ROC curve. If the classifier made ran-
dom guesses then the ratio of lenses to non-lenses would be the
same as the ratio of the number of cases classified as lens to the
number of cases classified as non-lenses and so TPR = FPR. The
better a classifier is the smaller the FPR and the larger the TPR
so the further away from this diagonal line it will be. When a
classifier provides only a binary classification or a discrete rank-
ing, the ROC connects the endpoints to the discrete points found
by using each rank as a threshold.

A common figure of merit for a classifier is the area under the
ROC (AUROC). This evaluates the overall ability of a classifier
to distinguish between cases. This was the criterion on which
the challenge participants were told to optimise. However, in the
case of gravitational lensing this is not the only thing, and not
the most important thing, to consider. Gravitational lenses are
rare events, but to improve the discrimination and training of
the classifiers the fraction of lenses in test and training sets are
boosted to something around half. In these circumstances it is
important to consider the absolute number of cases that will be

misclassified when the fraction of true cases is closer to what is
expected in the data.

If the rates of false positives and false negatives remain the
same in real data the contamination of the sample will be

FP
TP
'

FPR
TPR

(
number of non − lenses in sample

number of lenses in sample

)
· (14)

Since only about one in a thousand objects will be a lens (per-
haps somewhat more depending on pre-selection) the contami-
nation will be high unless the FPR is much less than the TPR.
For this reason we consider some additional figures of merit.

The TPR0 will be defined as the highest TPR reached, as a
function of p threshold, before a single false positive occurs in
the test set of 100 000 cases. This is the point were the ROC
meets the FPR = 0 axis. This quantity highly penalizes classi-
fiers with discrete ranking which often get TPR0 = 0 because
their highest classification level is not conservative enough to
eliminate all false positives. We also define TPR10 which is the
TPR at the point were less than ten false positives are made.
If the TP rate is boosted from the FPR by a factor of 1000
in a realistic data set this would correspond to about a 10%
contamination.
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Fig. 13. Same as Fig. 12, but for ground-
based entries.

In addition to these considerations, the performance of a
classifier is a function of many characteristics of the lens system.
It might be that one classifier is good at finding systems with
large Einstein radii and incomplete arcs, but not as good at find-
ing small complete Einstein rings that are blended with the light
of the lens galaxy. Also a lens may have a source that is too faint
to be detected by any algorithm or is too far from the lens to be
very distorted, but will be classified as a lens in the test dataset.
We do not impose a definitive arc/ring magnification, brightness
or surface brightness limit for a system to be considered a lens
because we want to include these “barely lensed” objects to test
the limits of the classifiers. As we will see, if one restricts the
objectives to detecting only lensed images with surface bright-
ness above some threshold, for example, the “best” algorithm
might change and the TPR will change. For this reason we plot
the AUROC, TPR0 and TPR10 as a function of several variables
for all the entries. This is done by removing all the lenses that do
not exceed the threshold and then recalculating these quantities,
while the number of non-lenses remains the same.

5.2. Performance of the methods

Table 3 shows the AUROC, TPR0, and TPR10 for the entries in
order of AUROC and dataset type. It can be seen that CMU-
DeepLens-Resnet-ground3 had the best AUROC for the ground-
based set and LASTRO EPFL the best for the space-based set.

The order is different if TPR0 is used to rank the entries as seen
in Table 4. Here Manchester SVM and CMU-DeepLens-Resnet
get the best scores.

Figures 5 and 6 show the ROC curves for all the entries. We
note that ROC curves for the ground-based challenge (Fig. 6)
are uniformly better than those for the space-based challenge
(Fig. 5). This is because of the importance of colour informa-
tion in discriminating lensed arcs from pieces of the foreground
lens galaxy.

In addition, Fig. 7 shows the ROC curves for only the
ground-based images where an actual KiDS image was used
(see Sect. 3.2). It can be seen that the classifiers do uniformly
less well on this subset. This indicates that the simulated galaxy
images are different from the real ones and that the classifiers are
able to distinguish fake foreground galaxies from lenses more
easily than from real galaxies. Some methods are more affected
by this than others, but none seem to be immune, not even the
human classification. This is perhaps not unexpected, but does
show that the simulated lenses need to be improved before the
raw numbers can be directly used to evaluate the performance of
a classifier on real data.

Figures 8 and 9 show the AUROC, TPR0, TPR10 and fraction
of lenses as a function of a lower cutoff on the Einstein radius
(area). There is also a vertical dotted line that indicates where no
more than 100 lenses in the test sample had larger Einstein radii.
Beyond this point one should be suspicious of small number
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Fig. 14. Same as Fig. 13, but here the x-axis is the ratio of the flux coming from the lensed source to the total flux in the image in the index band.
This is for the space-based test set.

statistics. When deriving the distribution of Einstein radii from
data these curves would need to be used to correct for detection
bias. It can be seen that CMU-DeepLens-Resnet, Manchester1,
Manchester SVM and GAMOCLASS obtain significantly higher
TPR0 and TPR10 for larger Einstein radii. Manchester1 is the
human inspection method. In some cases the TPR0’s are above
50% of the lenses that meet this criterion. Remember that many
of the so called lenses are very dim or there is no significant
arc because the source position is well outside the caustic. If an
additional requirement was placed on the definition of a lens,
such as the brightness of the arc being above a threshold, the
TPRs would go up.

Figures 10 and 11 are the same except that the flux in the
lensed images is used as the threshold. We count only the flux
in pixels with flux over one σ of the background. In some cases
one can see an abrupt rise in the TPRs at some flux threshold.

CMU-DeepLens-Resnet in particular reaches a TPR0 above 75%
for the brightest ∼10% of the lenses.

A lensed image can be bright without being visibly distorted
as in the case of unresolved images. Figures 12 and 13 use the
number of pixels in the lensed image(s) that are over one σ of
the background. In this case also some classifiers show an abrupt
improvement when the image is required to be larger than some
threshold. Interestingly in some cases the TPRs go down with
lensed image size after reaching a peak. This could be because
they are not differentiating the arcs from companion galaxies as
well in this regime. There were also cases where the arc inter-
sects with the borders of the image that might cause them to be
missed.

Figures 14 and 15 investigate how the flux contrast between
the foreground objects and the lensed source affects the classi-
fiers. Interestingly some methods’ TPRs go up with this quantity
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Fig. 15. Same as Fig. 14, but for ground-
based entries.

and some go down. We have not yet found any clear explanation
for this variety of behaviours.

The two human inspectors, NJ and AT, got significantly
different scores on the ground based test set with individual
AUROCs of 0.88 and 0.902 and TPR10s of 0.01 and 0.06 respec-
tively. They did not inspect the same images however so differ-
ences cannot be considered conclusive, but it does suggest that
different inspectors will have different detection efficiencies and
biases.

6. Conclusions and discussion

A large variety of lens finding methods were tested on simulated
images that were developed separately. Based on Figs. 8 and 9,
we found that some methods could recover more than 50% of the
lenses above a lensed image brightness or size threshold with-
out a single false positive out of 100 000 candidates. If the data
closely resembled the simulations we would already have rea-
sonably good methods whose efficiency and biases can be quan-
titatively characterized.

We have done a fairly good job of determining that lenses can
be identified in a population of fairly “normal” galaxies. It is the
rare “abnormal” objects that pose the greatest challenge. When

real KiDS data was used in the simulations the classifiers were
all less accurate and it was only human inspection that found the
one jackpot lens (a double Einstein ring with two background
sources) in the data. Things like ring galaxies, tidal tails in merg-
ing galaxies and irregular galaxies can be mistaken for lenses
and were not well represented in the simulated data. Accurately
reproducing these objects will be an objective of future work.
This might be done by including more real images in the chal-
lenge or images based on real images with some random ele-
ments added.

It was surprising to some of the authors how well CNN and
SVM methods did relative to human inspection. These methods
find differences in the classes of images that are not obvious
to a human and can classify things as lenses with high con-
fidence where a human would have doubt. This ability comes
with some danger of over fitting to the training set however. The
distinguishing characteristics might only be a property of simu-
lated data and not of real data. In principle, SVM methods might
potentially mitigate this somewhat because with them one can
choose which features to use based on knowledge of the proper-
ties of irregular galaxies or ring galaxies for example. This has
yet to be shown however. Methods based on fitting with a lens
modelling code (Marshall et al. 2009; Sonnenfeld et al. 2018)
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might also help to mitigate this problem. The confidence one
will have in the machine learning methods is really limited by
the confidence one has in the realism of the simulations. It might
be useful in the future to have a challenge without a training
set. This might more clearly reveal the presence of over-fitting.
It would also be useful to include more real images or images
more closely based on real images.

When initiating this project we had a concern that current
methods would be too slow or require too much human inter-
vention to handle large data sets. Happily this seems not to be
a problem with most of the automatic methods. The CNN and
SVM codes take some time to train, but once trained they are
very fast in classifying objects. Billions of objects can be easily
handled.

Another lesson is that colour information is very important.
Even with lower noise levels, higher resolution, a simpler PSF
and no masking, the lenses in the space-based set were harder to
find than the lenses in the ground-based set (see Figs. 5 and 6).
Having multiple bands clearly makes a significant difference.
Euclid will have several infrared bands with lower resolution
than the visible images that were not included in the challenge.
Even rather low resolution information from another instrument
or telescope when combined with higher resolution data in one
band might significantly improve the detection rates. Combining
ground based data, such as LSST, with space based data, such
as Euclid, would likely boost the detection rates by factors19 of
several.
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