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ABSTRACT

Context. More than half a million of the 1.69 billion sources in Gaia Data Release 2 (DR2) are published with photometric time series
that exhibit light variations during the 22 months of observation.
Aims. An all-sky classification of common high-amplitude pulsators (Cepheids, long-period variables, δScuti/SX Phoenicis, and
RR Lyrae stars) is provided for stars with brightness variations greater than 0.1 mag in G band.
Methods. A semi-supervised classification approach was employed, firstly training multi-stage random forest classifiers with sources
of known types in the literature, followed by a preliminary classification of the Gaia data and a second training phase that included a
selection of the first classification results to improve the representation of some classes, before the improved classifiers were applied
to the Gaia data. Dedicated validation classifiers were used to reduce the level of contamination in the published results. A relevant
fraction of objects were not yet sufficiently sampled for reliable Fourier series decomposition, consequently classifiers were based on
features derived from statistics of photometric time series in the G, GBP, and GRP bands, as well as from some astrometric parameters.
Results. The published classification results include 195 780 RR Lyrae stars, 150 757 long-period variables, 8550 Cepheids, and 8882
δScuti/SX Phoenicis stars. All of these results represent candidates whose completeness and contamination are described as a func-
tion of variability type and classification reliability. Results are expressed in terms of class labels and classification scores, which are
available in the vari_classifier_result table of the Gaia archive.

Key words. catalogs – methods: data analysis – stars: variables: general – stars: variables: Cepheids – stars: variables: delta Scuti –
stars: variables: RR Lyrae

1. Introduction

The light curves of variable stars exhibit features that can reveal
valuable information on the physical causes of brightness varia-
tions. They help us improve our understanding of stellar proper-
ties, some of which can be used to develop and refine methods

that turn variable stars into astrophysical tools applicable to
Galactic or even extra-galactic scales (Aerts & Sterken 2006).

The brightness variations of pulsating stars are caused
by periodic expansion and contraction, which may alternate
throughout the whole star (causing a uniform swelling, shrink-
ing, and temperature changes across the entire stellar surface)
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or in the case of non-radial oscillations occur simultaneously
but in different regions of the star (typically associated with
lower brightness variations). The amplitude, periodicity, regu-
larity, lifetime, and other features of stellar pulsations depend
on stellar evolution stages, which can be mapped on the
Hertzsprung–Russell diagram and are found to correspond to
different observed types of variability (e.g. Gaia Collaboration
2019), which are commonly identified by the light-curve shapes,
pulsation period(s), amplitude(s), and intrinsic colours, among
other factors.

Pulsating variables became particularly important for the
information that can be inferred on stellar interiors with astero-
seismology (e.g. Aerts et al. 2010; Christensen-Dalsgaard
2004) and the relationships between the pulsation periods
and stellar luminosities (e.g. Sandage & Tammann 2006;
Gaia Collaboration 2017; Clementini et al. 2019), which can be
used to determine the distance, and the three-dimensional distri-
butions of these stars can thus outline the structures they belong
to within our Galaxy and beyond (e.g. Hernitschek et al. 2017;
Drake et al. 2013a).

Examples of pulsating variables in recent surveys include
the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS; Sesar et al. 2017; Hernitschek et al. 2016),
Catalina (Torrealba et al. 2015; Drake et al. 2014, 2013a,b), the
Optical Gravitational Lensing Experiment (OGLE; Soszyński
et al. 2017, 2016a, 2015a,b, 2014), Kepler (Bradley et al. 2015;
Debosscher et al. 2011), the Asteroid Terrestrial-impact Last
Alert System (ATLAS; Heinze et al. 2018), Gaia DR1 (Eyer
et al. 2017; Clementini et al. 2016), the Lincoln Near-Earth
Asteroid Research (LINEAR; Palaversa et al. 2013), the North-
ern Sky Variability Survey (NSVS; ROTSE Collaboration 2006;
Woźniak et al. 2004), the All Sky Automated Survey (ASAS;
Pojmanski 2002), and ASAS for Supernovae (ASAS-SN;
Jayasinghe et al. 2018, 2019). Surveys that cover large regions
of the sky tend to collect remarkable volumes of data, which
help improve our understanding of known objects, increase the
knowledge of rare objects, enable discoveries, and raise new
questions, while providing all the data in a consistent context.
Gaia pursues all this across the whole sky with the benefits of a
rich set of instruments (Gaia Collaboration 2016) that repeatedly
provide the astrometry, photometry, and spectroscopy of the
observed objects. This increases the measurement accuracy and
follows variations in time.

The second Data Release (DR2) of Gaia (Gaia Collaboration
2018) includes an earlier-than-planned publication of variable
sources and related photometric time series in the G, GBP, and
GRP bands. In particular, 550 737 variable stars are published
(as summarised in Holl et al. 2018), among which 363 969
objects are identified by the all-sky classification pipeline (see
Sect. 7.3 of Eyer et al. 2018) as candidate RR Lyrae stars,
Cepheids, δScuti/SX Phoenicis stars, and long-period variables,
which constitute the first published classification results from the
Gaia variability pipeline, covering the whole sky and without a
priori selections of sources based on their sampling (unless only
a single measurement was available). Other variable stars pub-
lished in Gaia DR2 originated from special variability detection
algorithms (Lanzafame et al. 2018; Roelens et al. 2018) and
from another classification of sources dedicated to well-sampled
sources (see Sect. 7.2.3.6 in Eyer et al. 2018). The list of
Gaia DR2 articles related to the data processing and analysis or
validation of the published variable objects is presented in Holl
et al. (2018).

The Gaia variability processing and analysis includes sev-
eral modules dedicated to different tasks, as described in

Eyer et al. (2017), such as the computation of statistical param-
eters, the detection of variability, the characterisation of light
curves, the classification of variable objects, and specific object
studies (SOS) that confirm the identifications from previous
stages (and in some cases reclassify) and refine the description
of variability of specific types. The large number of sources
and the sparse sampling of Gaia time series do not allow for
“perfect” classifications of all sources. Classification results of
types that are verified by SOS are published for transparency
of the pipeline processing, but also to make it possible to
publish results of sources that SOS could not confirm or that
were improperly rejected for various reasons (e.g. because of
spurious information, insufficient observations or photometric
precision, inaccurate astrometric parameters, or other factors).
Consequently, classification results are generally more com-
plete but also more contaminated and associated with a less
accurate light-curve characterisation than the one derived from
SOS.

For Gaia DR2, two independent classifications of variable
objects were performed: one with at least 20 field-of-view (FoV)
transits in the G band (described in Sect. 7.2.3.6 in Eyer et al.
2018), which included period search and Fourier modelling in
the computation of classification attributes, and one that required
at least 2 FoV transits in the G band, which covered the whole
sky more homogeneously but was limited to statistical parame-
ters to characterise source features. The latter was published in
the Gaia DR2 archive and is described in detail in this article; a
general overview and some of its technical details are presented
also in Sect. 7.3 of Eyer et al. (2018). The (unpublished) classi-
fication that made use of modelling attributes added a total of
37 016 variable stars that were confirmed by different SOS pack-
ages. Thus, for Gaia DR2, the published SOS results were not
strictly a subset of the published classifier results (see Fig. 3 in
Holl et al. 2018, for an illustration per variability type).

The quality of the classification results was limited by
time constraints and by the dependence on data produced by
Gaia pipelines that were executed in parallel to ours, which
in some cases forced us to use preliminary (not published)
Gaia data products and reduced the options available for
variability processing. Without restricting the publication of
classifications to objects associated with well-sampled and
fully understood time series (according to current knowledge),
the effect of selection biases is reduced and the community is
granted early access to additional time series, adding discovery
potential and facilitating progress in currently debated topics
(e.g. Belokurov et al. 2017; Jacyszyn-Dobrzeniecka & the OGLE
Team 2018). In addition to the classification scores and other
indications given in this article, subsets of sources with enhanced
reliability and sufficient sampling are selected by subsequent
pipeline modules (SOS) for some of the variability types, whose
detailed analyses and validations are presented in separate
articles (Mowlavi et al. 2018, for long-period variables, and
Clementini et al. 2019 and Molnár et al. 2018, for Cepheids and
RR Lyrae stars).

This article emphasises the method employed for the classi-
fication of stars covering the whole sky and presents its results
with indications relevant to their usage. Following the internal
agreement of the Gaia data processing and analysis consortium,
no scientific exploitation of these results is made herein. The
Gaia data set is summarised in Sect. 2, the method employed to
identify four main classes of pulsating variables is described in
Sect. 3, results and comparisons with the literature are outlined
in Sect. 4, and conclusions are drawn in Sect. 5. Appendix A
recalls the classes of the objects employed in the training set,
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and Appendix B provides a few sample queries applicable to
classification-related searches in the Gaia archive1.

2. Data

The data of Gaia DR2 are accessible from the ESA
Gaia archive, from four partner data centres2, and from a num-
ber of affiliated data centres around the world. Due to time
constraints and to multiple Gaia modules preparing for DR2 in
parallel, only some of the published data products were available
at the time of variability processing. The processing of vari-
able sources employed photometric data of FoV transits (Evans
et al. 2018; Riello et al. 2018) in the G, GBP, and GRP bands,
with a small fraction of per-CCD G-band photometry (Roelens
et al. 2018), and a preliminary version of the astrometric solution
(the final version is described in Lindegren et al. 2018), while it
could not make use of (preliminary nor published) spectroscopic
data (Sartoretti et al. 2018), radial velocities (Katz et al. 2019),
and astrophysical parameters (Andrae et al. 2018). Moreover,
the initial stages of the all-sky classification activities (the cross
match of Gaia data with catalogues of variable objects from
the literature, described in Sect. 3.1.1, and the determination of
parameters for quasar attributes, mentioned in Sect. 3.1.3) relied
on preliminary per-FoV photometry in the G, GBP, and GRP
bands in order to gain time for subsequent (more critical) classi-
fication phases. Despite these short-comings, we believe that the
advantages of an early publication of time series outweighs the
benefits of a fully consistent data product, as the published clas-
sifications are not critically affected and the community can start
working on these time series (together with the other DR2 data
products) without waiting for the next data release. Eventually,
these inconsistencies and their effects on results are expected to
be reduced (or vanish) in the future.

The time series were reconstructed from FoV transit data
with times referred to the solar system barycentre (Barycentric
Coordinate Time), which means that they do not encode the
motion of Gaia around the Sun (nor the time dilation from the
gravitational potential of the latter). All sources with at least
two FoV transits in the G band were processed, and suspicious
time-series measurements were filtered out as outlined in Holl
et al. (2018) and detailed in Sect. 7.2.3.2 of Eyer et al. (2018).
The final Gaia validation stage, subsequent to the variability
pipeline processing, removed duplicated sources and objects
affected by imprecise astrometric solutions (Arenou et al. 2018),
which increased the minimum number of G-band FoV transits
of the published Gaia variables to five. The global properties of
the published variable sources, an overview of their statistical
parameters, magnitude and sky distributions per variability type,
and the sky coverage as a function of the number of FoV transits
per source are shown in Holl et al. (2018).

Section 3 describes the methods and their implementation for
the classification of the Gaia variable objects across the whole
sky, while Sect. 4 describes these classification results as they
appear in the Gaia archive (i.e. after the validation cuts that
followed the variability processing).

3. Methods

In the current era of big data, it is not possible to inspect
every single light curve (at least not within the human resources
and time allocated for the Gaia data releases). Machine-learning
1 http://gea.esac.esa.int/archive
2 https://www.cosmos.esa.int/web/gaia/data-access

gives the possibility of automating decisions and thus processing
a large number of sources based on patterns that are auto-
matically recognised from much smaller controlled samples of
training objects.

The initial goal for an advance classification across the whole
sky with the Gaia DR2 data (thus including poorly sampled
sources) was represented by RR Lyrae stars because they are
important as standard candles and stellar population tracers (e.g.
Clementini 2014, and references therein), and because they are
easily identified through their large light variation amplitudes
and short periods (typically shorter than a day), as other works
classifying RR Lyrae stars with a low number of observations
have shown (e.g. Ivezić et al. 2000; Sesar et al. 2007). The
classifier developed for RR Lyrae stars included several vari-
ability types by design (to reduce the contamination of the
targeted class). After an assessment of its results, it was decided
that it was worth to extend the publication of the classifica-
tion results to additional types of pulsating stars (Cepheids,
δScuti/SX Phoenicis stars, and long-period variables) so that the
community could further benefit from the publication of their
time series as well. As this decision was reached after the con-
struction of the classifier model, the training sources of these
additional variability types were not as representative in the
sky and in the magnitude distributions as the RR Lyrae training
sample, and thus the associated classification results were more
likely to be affected by training biases.

As described in Eyer et al. (2017), the classification of vari-
able stars in the Gaia pipeline was based on attributes that
characterised the objects (to train and then classify), such as the
statistics of photometric time series, the associated modelling
parameters, the astrometric properties, and other features if avail-
able. The classification results published in Gaia DR2 were
obtained by means of supervised classification, which depended
crucially on the selection of training-set objects (whose ratio-
nale is explained in Sect. 3.1), on the combination of attributes
that best described the distinctive features of the related classes,
although without period information (Sect. 3.1.3), and on the
organisation of the classifier (Sect. 3.2). The implementation
details of these procedures applied to various classifiers are pre-
sented in Sect. 3.2.2, followed by an outline of the automated
validation of the first classification results (Sect. 3.3) and the
definition of the classification score (Sect. 3.4). A summary of
the steps described in this section is shown in Fig. 1, which
presents the general flow of various procedures, while the details
and exceptions are explained in the text. The classification qual-
ity estimators often mentioned in this work include the per-class
completeness (i.e. true positive or recall) rates and contamination
(i.e. 1− precision or 1− purity).

3.1. Training set

In supervised classification, the importance of training-set
objects of known classes is paramount because results will be as
good, poor, or biased as the training set. The data to train a classi-
fier should be as similar as possible to the unlabelled data that are
to be classified. In order to embed the Gaia properties (time sam-
pling, photometric bands, and some of the data imperfections)
in the training set, the latter was built using Gaia sources of
independently known classes that resulted from the cross match
of known objects in the literature with Gaia sources. The cross
match with a large number of surveys, catalogues, sources, and
variability types from the literature was necessary to gather suf-
ficient objects from which training sources could be selected,
and included a multitude of classes, covered all relevant sky
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(for each classifier)

erence of time-series me-

Fig. 1. General flow of the procedures employed to achieve the classifi-
cation results. Labels (A)–(E) refer to the items described in Sect. 3.1.2.
Exceptions (as in the case of the long-period variables, which were
not filtered by a validation classifier) are described in the text. The
box colours group the procedures by topic: training source/class selec-
tion (yellow), classification attributes (green), and classifiers and result
selection (red).

regions per class (to probe location-dependent effects), and have
magnitudes, colours, brightness variation amplitudes, periods (if
periodic), number of FoV transits, and other parameters that
are distributed according to the full range admitted for each
class, convolved with the detectability of Gaia. It is usually not
possible to achieve this level of detail for every parameter and
class, but it remains important to pursue it within the available
resources in order to limit the effect of training-set biases.

The representation of classes as a function of the number of
FoV transits or sampling could be improved for those classes that
suffered from insufficient sky coverage (which also reduced the
diversity of time-series sampling), for example, by adding new
training sources derived from downsampling better sampled time
series. This approach was not employed in this work in order
to preserve the attribute distributions and relations within the
data, and also to prevent new biases and artefacts from the intro-
duction of artificial sources. However, future classifications of
Gaia variables might include such training extensions, depend-
ing on the outcome of analyses evaluating the benefits and costs
of similar procedures for each class (e.g. Long et al. 2012).

3.1.1. Cross match

The classifier method that was employed to cross match variable
objects with Gaia DR1 sources (Rimoldini et al. 2017) required
significant preparatory work for each data set from the litera-
ture. Considering the large number of catalogues of variable
sources targeted for cross match in the variability processing of
Gaia DR2, a simplified method was developed to keep using
multiple dimensions in order to reduce the number of incorrect

and missed matches, but without the aid of machine-learning. A
single multi-dimensional distance was built from different met-
rics, depending on their availability: angular separation (for all
cases), colour (represented by the difference of time-series medi-
ans in the GBP and GRP bands for the Gaia data), magnitude
(computed as the median time-series magnitude in the G band
for the Gaia data), and amplitude estimators such as the range
or standard deviation of G-band time-series magnitudes. These
photometric parameters were computed after a simple filtering
of Gaia FoV transits to reduce the possible influence of outliers:
magnitudes above or below 15 times the median absolute devia-
tion (MAD) from the median were removed (for all bands) and
the top and bottom 10% of magnitudes in the G-band time series
were filtered out for the amplitude estimation.

In order to compute a multi-dimensional distance, the met-
rics derived from Gaia photometric time series were compared
with those from data sets of other surveys (with different bands)
by means of empirical relations, limited to linear models and
established iteratively: in the first iteration, matches were derived
simply from the nearest neighbours (only astrometry) within
one arcsecond, making the first cross-survey empirical relations
available for use and refinement in subsequent iterations (that
were not limited to astrometric comparisons, nor to the same
cross match radius). For the second and subsequent iterations,
all neighbours within a preset radius (typically a few arcsec-
onds, depending on the survey) were considered as potential
matches. A single match for each source was selected according
to the smallest multi-dimensional distance3, after the removal of
likely duplicate Gaia sources (Arenou et al. 2018). If the same
match was associated with multiple sources (as may happen in
crowded fields), it was assigned to the source with the smallest
cross-match distance, and new potential matches (if available)
were (re-)considered for the other sources (and the same pro-
cedure was applied recursively in case of multiple sources for
each match). The distributions of the differences of all pairs of
metrics of the final iteration were visually inspected for the pos-
sibility of applying further constraints and excluding suspicious
outliers. The time series of matched Gaia sources were plotted
for verification, adjustments of the thresholds of the metrics, and
their possible reassessment.

This method enabled us to cross match efficiently about 70
different data sets from the literature (for a total of about two
million sources of known classes). The subset of catalogues con-
sidered sufficiently reliable for training purposes included over
750 thousand objects from the data sets listed in Table 7.1 of
Eyer et al. (2018), together with literature references and the
cross-match metrics employed. Although this large number of
cross-matched sources included 29 classes, the constant stars,
eclipsing binaries, and RR Lyrae variables accounted for 92%
(about 54, 19, and 19%, respectively) of all sources; the largest
contributions came from the Sloan Digital Sky Survey stan-
dard star catalogue for Stripe 82 (Ivezić et al. 2007), from the
OGLE-IV eclipsing binaries and RR Lyrae stars identified in the
Galactic bulge (Soszyński et al. 2016b, 2014) and in the Mag-
ellanic Clouds (Pawlak et al. 2016; Soszyński et al. 2016a), and
from the Pan-STARRS1 classification of RR Lyrae stars (Sesar
et al. 2017). These catalogues accounted for about 84% of all
cross-matched objects. In the special case of OGLE-IV GSEP
constant objects (Soszyński et al. 2012), no specific catalogue for

3 The cross-match distance was defined as the sum in quadrature of the
differences of metric values of two surveys; each component was nor-
malised by the MAD of the distribution of the differences of the related
metric that was derived from the matches of the previous iteration.
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constant stars is available. About 10 thousand constant star can-
didates were derived from sources with the smallest variations
in both V and I bands as a function of magnitude, after objects
were removed because they were considered less reliable (with
V−I bluer than −1 mag or redder than 3 mag, with fewer than
20 or 200 observations in the V and I band, respectively, with
measurements flagged as “bad”, with standard deviation greater
than 0.1 mag in either band, and fainter than 22 or 21 mag in the
V and I band, respectively) or they were identified as galaxies by
OGLE.

3.1.2. Classes and sources

The selections of classes and of training sources that represent
them are pivotal to the purpose of the training set. In supervised
classification, it is important to train with a variety of classes
to reduce the chance of contamination from sources that belong
to classes that are missing in the training set. In addition to the
classes targeted for publication, those that are commonly con-
fused with them as well as others that are well separated are
expected to be part of a training set. Objects of untrained classes
will be classified as one of the trained classes, possibly associ-
ated with low classification scores and/or significant anomaly or
outlier indicators (such as the proximity4 in random forest or the
Mahalanobis distance, Mahalanobis 1936, in Gaussian mixture
classifiers), which can help in the rejection of false positives.
As a consequence of the literature data sets that were selected
to classify variable stars for Gaia DR2, different combinations
of 29 classes (see Sect. 3.2.1) were included in the training set
with at least 10 representatives per class for a minimum class
definition (although poorly sampled classes remained poorly
defined and likely biased). These classes comprised constant
and variable objects, whose labels and definitions were listed
in Sect. 7.3.3.1 of Eyer et al. (2018); they are replicated herein
for convenience in Appendix A. They include 11 subclasses that
belonged to four families of pulsating stars (Cepheids, long-
period variables, RR Lyrae, and δScuti/SX Phoenicis stars),
which were published in the classification results of variables
in the ESA Gaia archive1.

The large number of cross-matched sources allowed us to be
very selective and better control the distribution of objects in the
sky, in magnitude, and in the number of G-band FoV transits for
several classes and consequently reduce the effect of training-
set biases on classifications. The final training set included about
33 thousand Gaia sources. Their selection involved the following
semi-automated procedures interleaved with visual inspections
to assess the quality of each stage and the subsequent steps.

(A) Literature data. After uniforming the class labels of
different cross-matched data sets, the latter were first selected
and then prioritised according to evaluations of their classifi-
cation reliability, in order to resolve contradictions of different
literature classes associated with the same Gaia source (as found
in 0.2% of all matches, which included types that described dif-
ferent manifestations of the same phenomenon, such as flaring
and rotating spotted stars). The reliability of literature clas-
sifications was based on survey features, on the location of
sources in the sky, on the appearance of their light curves in
the Gaia photometry (limited to samples of sources with con-
tradictory classes in the literature), and on qualitative rankings
from the experience of a subset of co-authors in using these data
sets for some classes. This assessment did not correct for every

4 https://www.stat.berkeley.edu/~breiman/
RandomForests/cc_home.htm

classification disagreement in the literature, but it was deemed
to reduce the effect of the remaining incorrect class assignments
well below the effect of other sources of classification confusion.

(B) Source verification. Simple statistics (such as the
median colour and magnitude, the range of magnitude varia-
tions, the skewness, and the Abbe value computed on mag-
nitudes sorted in time and in phase with the literature period
when available) were computed from the Gaia time series, and
sources that did not satisfy constraints typical of their own class
were rejected. These constraints were typically applied to two-
dimensional projections of the statistics mentioned above for
each trained class, but they remained rather permissive (i) to
allow for a wide range of possible distance, extinction, and red-
dening (with consequent effects on magnitudes and colours),
(ii) to consider the limited sampling of a good fraction of
Gaia sources (with few FoV transits), and (iii) to include the
occasional effect of spurious measurements that remained after
the initial time-series cleaning (so that the classifier could expect
such artefacts as well). In the case of eclipsing binaries, the
reduced and sparse sampling might miss the signal, therefore a
positive skewness was required in addition to a minimum G-band
range of 0.1 mag.

(C) Sampling. Cross-matched sources incorporate the
footprints of the original data sets, which can cause artificial
(survey-specific) peaks in the distribution of several parame-
ters. In order to alleviate predictable training biases, subsets
of cross-matched sources were selected for more representative
distributions in the sky, in magnitude, and in the number of
FoV transits (contemporaneously), pursued separately for each
class, and conditioned on the availability of at least about 10 000
sources per class (which was possible for classes denoted by the
following labels, sorted by increasing occurrence: CEP, ELL,
ROT, RRC, RRAB, ECL, and CONSTANT).

(D) Classifier priors. The classification method described
in Sect. 3.2 was based on a set of random forest classifiers
(Breiman 2001) that were generally sensitive to the number of
sources for each class relative to each other. For better control
of the relative importances of classes, the sources of each class
were further selected up to preset quotas for each class. This
selection took into account the literature origins of sources and
applied different caps to the random draw of sources from spe-
cific cross-matched data sets in order to favour the representation
of a variety of information in the training set and reduce the influ-
ence of large surveys whose properties or targeted locations only
partially matched those of the Gaia data.

(E) Semi-supervised sources. Despite the large num-
ber of cross-matched sources, their number density (per class)
decreased quickly in multi-dimensional volumes, leaving under-
represented intervals in several cases. For the classes labelled
CONSTANT, MIRA, RRAB, RRC, and SR, gaps in the mag-
nitude and/or sky distributions could be filled with sources
classified as such classes from a first execution of the classifi-
cation module. The latter made no use of the attributes whose
distributions were meant to be corrected (such as the G magni-
tude or sky location), nor of the attributes that were obviously
correlated with them (such as the GBP and GRP magnitudes,
inter-band correlations, and all astrometric attributes) in order
to reduce classifier biases, although other attributes might have
suffered from biases as well (some of which may be related to
residual correlations with the targeted attributes as well). The
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remaining attributes were selected according to the techniques
described in Sect. 3.1.3.

In this semi-supervised approach, classified sources within
magnitude intervals and sky regions that lacked representation
were added to the training set if their classification confidence
and the associated class completeness rate were estimated suf-
ficiently high (to limit the chance of introducing contaminants).
Such a dependence on the classification reliability might bias
the sampling of sources. To mitigate this (less severe) effect and
make the contribution of new training information possible, the
classification confidence of new sources was also constrained
by an upper limit. The same values of uncalibrated classifica-
tion “probabilities” had different meaning for different classes,
therefore these thresholds were assessed as a function of class.
The new candidate training sources were verified by the same
per-class statistics that were applied to the other training sources
(item B), sampled to smooth distributions (item C, when applica-
ble), or to fit the classifier priors (item D), and finally amounted
to 11% of the training set globally (in particular, 14, 50, 13,
9, and 71% of CONSTANT, MIRA, RRAB, RRC, and SR
classes, respectively). Reliable Gaia classifications are expected
to increase their footprint (in terms of number of classes and con-
tribution to each of them) in the training sets of variable objects
in future Gaia data releases.

Figure 2 illustrates an example of the distributions of stars
in the sky and in the G-band magnitude as they appeared in
the cross match and in the training set in the particular case of the
fundamental-mode RR Lyrae (RRAB) stars. The reduction of the
number of sources and the smoothing of density peaks in both
sky and magnitude distributions, based on the multi-dimensional
source sampling described in item (C), are clearly visible in
Fig. 2. Moreover, the addition of semi-supervised sources, fol-
lowing the procedure detailed in item (E), is shown to fill a region
of the sky that previously lacked known representatives.

The final composition of the training-set classes included
super- and sub-classes according to the hierarchical classifier
organisation presented in Fig. 3, and their representation was
provided together with the assessments of classifier models in
Figs. 4–6 (because the number of sources for each class and the
competing classes are meaningful in the context of each classifier
and the classes targeted for publication).

3.1.3. Attributes

Classification attributes describe the source features that help
us distinguish the classes to which the sources belong. The
extraction of such attributes may involve simple or complicated
methods, statistics, models, and data types of different nature
(e.g. photometric, astrometric, spectroscopic, global, or epoch
specific). The translation of all this information into numerical
values in a homogeneous way and in a common context makes
it possible to compare sources, identify attributes with typical
values for specific classes and other attributes (or combinations
thereof) with values that differ the most for sources of different
classes. Class models are defined by algorithms that are based
on the classification attributes of training sources and are subse-
quently used to classify unlabelled objects using the same set of
attribute definitions.

The effectiveness of attributes is determined by the relevance
of the features to describe, convolved with data properties (such
as sampling, accuracy, and rate of spurious measurements),
which may also depend on source characteristics such as sky
location, brightness, and others, making it difficult to guess a
priori the most efficient attribute definitions. In the attempt to
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Fig. 2. Distributions of cross-match (orange) vs. training-set (blue)
sources of RRAB type in the sky (panel a), in Galactic coordinates
(degrees), and in the G-band magnitude (panel b). The source sam-
pling helped reduce the number of sources for training and smoothed
both magnitude and sky distributions (with intended over-densities
in the regions of the Galactic bulge and Magellanic Clouds), while
semi-supervised sources filled the under-represented region in the cross
match centred around the Galactic longitude of 300◦.

capture all possible features of each class and at the same time
include different expressions for the same features, the number of
attributes can grow quickly. Attributes are necessary elements of
classification models, but too many of them can have an adverse
effect. Although data sample sizes have increased enormously
in recent years, the volume of the attribute space grows rapidly
as the dimensionality increases, and the number density of
sources represented in such volumes (and their statistical signif-
icance) decreases just as rapidly (this effect is also known as the
curse of dimensionality, see Bellman 1961; Hastie et al. 2009).
Too many attributes can also lead to overfitting the training-
set features, so that the model loses generality when applied
to unlabelled data. Even though the susceptibility to overfitting
depends on the classification technique too (and random forest
proved to be one of the most robust methods in this context),
a smaller number of attributes can improve the model in terms
of learning accuracy, general applicability, and interpretability,
in addition to lower computational requirements (i.e. time and
storage resources).

Common techniques to reduce dimensionality include the
combination of multiple attributes and/or the selection of a
subset of highly discriminant attributes that optimally split
different classes. We focussed on the latter and tested different
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Fig. 3. Multi-stage classification tree of five random forest classifiers.
Each classifier is identified by a number within the shaded region of
the same colour that encompasses the (sub)types of objects to classify.
The square boxes denote superclasses that are further split in subsequent
stages. The names of the final classification types (which include sub-
types and class combinations) appear in round-corner boxes, and only
those with a white background are published in Gaia DR2.

methods to efficiently optimise the training sets of five classifiers
(described in Sect. 3.2) that initially contained 150 attributes
for a total of 33 thousand training sources. Some of these
techniques were implemented in the literature (Calle et al.
2011; Genuer et al. 2010; Diaz-Uriarte & Alvarez de Andres
2005), while others were coded according to the principles
of forward selection and backward elimination of attributes
(Guyon & Elisseeff 2003), that is, by progressively adding
the most useful attributes or removing the least useful ones
(where the usefulness of each tested attribute was evaluated
by the change in the classifier accuracy rate). The backward
elimination can capture more synergies among attributes than
the forward-selection technique (which evaluates only subsets
of possible attribute combinations), but the former can be very
demanding in terms of processing time, and computationally
less intensive solutions are often pursued. Attributes are then
ranked by their selection order, which rewards the truly useful
ones and penalises the inefficient, noisy, and redundant ones.
Every attribute selection method employed random forest as
classification technique, and the trained model assessment was
based on “out-of-bag” sources (unused training objects from the
random draw with replacement to build each tree).

Given the time requirements of the iterative attribute test-
ing on a relatively large volume of training data, the forward
selection of the most useful attributes was limited to the identifi-
cation of the top 12 attributes, while the backward elimination
evaluated the classifier accuracy after each removal of the
least important attributes and reassessed the importance of the
remaining attributes after each iteration. The attribute impor-
tance is available for all attributes of a given random forest clas-
sifier (computationally less intensive than assessing the effect
of each attribute by retraining classifiers without each of them)
and is evaluated by the mean decrease in accuracy after shuffling
the values of each attribute (one per time) among the out-of-bag
objects.

The highest ranked attributes from each method as a function
of classifier accuracy were compared, combined, and their indi-
vidual impact on random forest classifiers was tested manually
by forward selections of attributes (from the pre-identified subset
of the most useful ones) until the classifier accuracy (i.e. com-
pleteness) reached a maximum or did not increase significantly.
The tuning of random forest parameters (the numbers of trees
and of attributes tested at each node) was automatically included
in all of the optimisation procedures (because attribute changes
imply new classifiers).

The attributes were selected in both initial (supervised) and
final (semi-supervised) classification runs with the restrictions
mentioned in the first paragraph of item (E) in Sect. 3.1.2. For
the final classification, 40 attributes were selected from the union
of the attributes employed in the five random forest classifiers
detailed in Sect. 3.2. Except for a few astrometric parameters,
most of the attributes described features in the G, GBP, and GRP
photometric time series (and from their combinations) in terms
of statistical values. For a homogeneous treatment of all sources,
considering that about half of the sources (or more, depending
on the variability type) had fewer than 20 FoV transits in the
G band, time series were not modelled by Fourier series decom-
positions, thus attributes did not include the characteristics that
are typically employed to identify periodic variable objects, such
as periods and comparisons of amplitudes and phases of different
harmonics. All of the attributes related to the photometry were
computed on cleaned photometric time series (Holl et al. 2018).
The definitions of each attribute and of the subsets of attributes
for each classifier are presented in Sect. 7.3.3.3 of Eyer et al.
(2018).

As mentioned in Sect. 2, the calculation of astromet-
ric attributes (PARALLAX, PROPER_MOTION, PROPER_
MOTION_ERROR_TO_VALUE_RATIO) could only make use
of a preliminary (not published) astrometric solution. The
quasar-specific attributes (LOG_QSO_VAR, LOG_NONQSO_
VAR, NONQSO_PROB) were computed from a parameterised
quasar variance model (Butler & Bloom 2011) with parameter
values that were determined from a preliminary per-FoV G-band
photometry.

3.2. Classifier

The machine-learning algorithm employed for this classi-
fication was random forest (Breiman 2001), which aver-
ages the results of multiple decision trees with random-
ness in the selection of the data for each tree and in the
selection of attributes at each node, typically leading to
high accuracy (low bias and variance), robustness to noisy
and correlated attributes, reduced susceptibility to overfitting,
and other advantages (e.g. see Chap. 15 of Hastie et al.
2009).
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The ESA Gaia archive1 includes two tables that describe the
global characteristics of a classifier:

– gaiadr2.vari_classifier_definition: this includes
the classifier name and a brief description of the classifier
(when multiple classification results are published for the
same sources in the future);

– gaiadr2.vari_classifier_class_definition: this
includes labels and brief descriptions of the variability
classes of the classified objects.

3.2.1. Multi-stage classification

As a consequence of the numerous classes in the training set
(Sect. 3.1.2), a single classifier is not an optimal choice in gen-
eral because the multiple features necessary to recognise all of
the details of all classes and subclasses at the same time unavoid-
ably dilute the training data in attribute space and propagate the
reduced statistical significance to the classification results. More-
over, failures in main classifications or subtle subclassifications
are equally penalised, so that sources that belong to challenging
subtypes can easily be assigned to completely different parent
classes. On the other hand, a hierarchical organisation of classi-
fiers dedicated to solve simpler problems in sequence can return
more trustworthy results because (i) fewer attributes are needed
to split a smaller number of (super)classes, further protecting
from overfitting, (ii) each (super)class representation is statisti-
cally more significant, and (iii) each classifier model is easier to
understand, which is an important advantage in the interpreta-
tion of results. However, the cumulated accuracy of a sequence
of unavoidably imperfect classifiers decreases after each stage,
so that multi-stage classifiers should only split class groups with
very little confusion among them, and the high accuracy of clas-
sifiers is especially important at the nodes preceding the targeted
classes in order to limit false positives and negatives as much as
possible, which irreversibly propagate in the wrong branches of
the tree.

Dedicated classifiers were configured at the nodes of a multi-
stage decision tree and controlled the levels at which (subsets
of) classes could be compared and then separated. Classes were
grouped because of similar physical origins or common obser-
vational challenges. For example, low-amplitude variables are
likely associated with noisy attributes and it is worth separating
their classification from the one of other objects because a clas-
sifier trained with sources of similar quality is better suited to
recognise their features (Long et al. 2012). Moreover, it is often
easier to identify the common characteristics of a superclass
(e.g. RR Lyrae) than its exact subclass (such as a double-mode
RR Lyrae subtype, which typically requires more measure-
ments than are available for most sources in Gaia DR2). The
multi-stage top-down approach enables distinguishing groups of
classes that share similar global features and to progressively
split them by employing more detailed information, until the
targeted (sub)class levels are reached. The classification prob-
abilities of sources belonging to specific (groups of) classes are
distributed from the top to the bottom levels according to the
probabilities of such (groups of) classes to be assigned by the
classifiers in each node (classifier probabilities express the frac-
tions of the previous node probabilities to be passed to the next
stage for the same groups of classes; see also Sect. 4.5.3 in Eyer
et al. 2017).

In the multi-stage classification employed here, classification
results followed the paths of the nodes with the highest prob-
abilities along the same branches (i.e., lower-level nodes did
not override the classifications of higher-level nodes): results

were associated with the highest classifier probabilities at the
end nodes of each branch, although they did not necessar-
ily correspond to the highest probabilities of the nodes at the
end of all branches. This decision followed from the following
considerations:
1. Classifier probabilities do not express real (calibrated) prob-

abilities (see Sect. 3.4) and the meaning of their values
depends strongly on each class because of the specific
sources in the training set, the relative number of trained
sources per class, the setup of the multi-stage tree of
classifiers, and the different number of nodes in differ-
ent branches (lower optimal probabilities are expected from
longer sequences of classifiers), among other factors (includ-
ing the classification algorithm). Thus, the products of such
probabilities (after each node) should not be interpreted as
real probabilities either.

2. Classifiers that are higher in the hierarchy are deemed more
trustworthy than those at lower levels because the required
information for detailed classification might not be avail-
able for some sources (e.g. if poorly sampled), because key
attributes for identifying specific classes might not be used
for every node preceding these classes, and because high
accuracy is typically required for higher-level classifiers.

This multi-stage classification guaranteed that insufficient repre-
sentation or information for subtype identification did not jeop-
ardise the parent-class membership, although the final (sub)type
identification could be mistaken.

3.2.2. Implementation

The multi-stage tree with the respective classifiers after the semi-
supervised phase described in item (E) of Sect. 3.1.2 are depicted
in Fig. 3, where numbered shaded regions (from 1 to 5) and their
contents denote classifiers and the classes they are meant to clas-
sify, respectively. These five classifiers were assessed through
confusion matrices (which verify the classifications of training
objects, accounting for the known and classified sources in rows
and columns of a matrix, respectively), which were estimated
from the out-of-bag sources in random forest. The random forest
method was applied to the classifiers employing the implemen-
tation of Weka (Frank et al. 2016). The configuration parameters
and the subsets of classification attributes employed for each
classifier were listed in Sect. 7.3.3.4 of Eyer et al. (2018), while
the most useful features for each classifier are mentioned in the
following items (for the definitions of attributes, see Sect. 7.3.3.3
of Eyer et al. 2018).

– Classifier 1. The variable objects of interest were separated
from constant and typically low-amplitude (percent level)
variables. Because the calibration and the uncertainties of
epoch photometry (Evans et al. 2018; Riello et al. 2018)
were not yet optimal (Busso et al. 2018) and the presence of
spurious measurements rendered variability detection with
standard metrics and theoretical expectations impractical
(see Sect. 7.2.3.4 in Eyer et al. 2018), a data-driven approach
with a classifier provided a viable alternative to infer source
variability levels. As the perceived constancy of objects
depended on the precision of measurements, sources close
to the variability detection limit could be classified as either
constant or variable. In order to further distinguish this
group of sources (and reduce the contamination of other
classes), a low-amplitude class was introduced in addition to
those for constant and other variable objects. The confusion
matrix of this classifier is shown in Fig. 4a. Constant objects
were recovered with very high completeness (99%) and with
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Cassiopeiae)
are listed among low-amplitude variables because no high-
amplitude sample was available in the training set. Low-

Fig. 4. Confusion matrices of classifiers 1 (panel a) and 2 (panel b),
as denoted in Fig. 3. The classifications of training objects (in rows)
are compared with classifier results (in columns), which are estimated
from the out-of-bag sources in random forest. Given the amount of
true positives (TP), false positives (FP), and false negatives (FN), the
completeness [TP/(TP+FN)] and contamination [FP/(TP+FP)] rates,
expressed as rounded per-cent values, appear in the diagonal (in black)
and the bottom row (in red), respectively, while the numbers of training
objects per class are listed in blue on the left-hand side of each matrix.
Rounded rates imply that not all rows sum to 100%. Rates below 0.5%
are not shown to facilitate the reading of the most relevant parts. Darker
shaded squares are used to highlight higher occurrence rates.

contamination rates of 8 and 1% from the low-amplitude
and other variables, respectively. The lower weight of
low-amplitude variables, implicitly assigned by the smaller
number of representatives with respect to the other two
classes, was designed to reduce contamination in the class
of the other variables without seriously competing against
the class containing the targeted variables. The loss of
3% of the other variables to low-amplitude objects was
expected because a small fraction of low-amplitude objects
was not removed from the other variables (where 3% of
the objects had a G range of less than 0.03 mag, 97% of
which were δScuti/SX Phoenicis stars, in addition to a
handful of RS Canum Venaticorum-type stars, because
the sub-classifications of these stars based on amplitude
was often not available in the literature). The most useful
attributes of this classifier were REDUCED_CHI2_G,
DENOISED_UNBIASED_UNWEIGHTED_VARIANCE,
NORMALIZED_CHI_SQUARE_EXCESS, DURATION,
RANGE_G, MAD_G, STETSON_G, G_VS_TIME_
MEDIAN_ABS_SLOPE, the colours from the three Gaia
bands, and the median magnitudes.

– Classifier 2. Although the classifications of time series that
belonged to classes with typically low magnitude ranges in
the G band (dominated by percent level variations, over 80%
of which were below 0.1 mag) were not published, the con-
fusion matrix of the classifier is still shown in Fig. 4b to
highlight the composition of low-amplitude classes, which
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Fig. 5. Same as Fig. 4, but for classifier 3 (as denoted in Fig. 3).

included a set of δScuti stars (merged with γDoradus stars
and δScuti-γDoradus hybrids) that exhibited low-amplitude
variations. Some classes (such as γCassiopeiae) are listed
among low-amplitude variables because no high-amplitude
sample was available in the training set. Low-amplitude
γCassiopeiae stars were merged with pulsating and other
multi-periodic types because eruptions and apparent irreg-
ularities due to multi-periodicity (in addition to similar
colours and amplitudes) can cause their time series to
look rather similar, with the sampling of Gaia DR2. The
most useful attributes included MEAN_G, PARALLAX,
BP_MINUS_RP_COLOUR, and MEAN_BP.

– Classifier 3. The key identifications of the published
high-amplitude pulsating variables were returned by this
classifier. Focusing on the classes relevant to Gaia DR2,
the confusion matrix in Fig. 5 shows that the RR Lyrae stars
and long-period variables (Miras and semiregulars) were
identified with an accuracy of at least 90%, while the less
well represented δScuti/SX Phoenicis and Cepheid classes
reached a completeness of 81 and 68%, respectively. The
overall contamination rates of these four groups of classes
were limited to 3–13%. The main sources of contamina-
tion of RR Lyrae classifications (for which the RR Lyrae
class was also the most common misclassification) were
represented by Cepheids, δScuti/SX Phoenicis stars, and
eclipsing binaries, as expected from a classifier that did
not use Fourier parameters as attributes. The blue large-
amplitude pulsators (BLAP, Pietrukowicz et al. 2017) were
not sufficiently representative in the training set, and the
confusion matrix confirmed that they had no chance of
detection, hence it was decided to merge the BLAP clas-
sifications with those of δScuti/SX Phoenicis stars, where
potential BLAP candidates (if any) were most likely to be
found. Some of the attributes that were particularly useful
in identifying the published classes in those trained for this
classifier were as follows: G_VS_TIME_MAX_SLOPE and
NORMALIZED_CHI_SQUARE_EXCESS for Cepheids;
RANGE_G and DENOISED_UNBIASED_UNWEIGH
TED_VARIANCE for δScuti/SX Phoenicis stars; BP_
MINUS_RP_COLOUR, MEDIAN_RANGE_HALFDAY_
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Fig. 6. Same as Fig. 4, but for classifiers 4 (panel a) and 5 (panel b), as
denoted in Fig. 3.

TO_ALL, and G_MINUS_RP_COLOUR for Miras/Semi-
regulars; SKEWNESS_G and MEDIAN_ABS_SLOPE_
ONEDAY for RR Lyrae stars.

– Classifier 4. A sub-classification of RR Lyrae stars into
fundamental mode (RRAB), first-overtone (RRC), and (ano-
malous) double-mode types (A/RRD) was attempted, and
the confusion matrix in Fig. 6a clearly shows that (anoma-
lous) double-mode RR Lyrae types were almost always
confused with the much more numerous fundamental mode
and first-overtone ones, of which the former was identified
with high completeness and limited contamination rates (97
and 6%, respectively). The most useful attributes were
DENOISED_UNBIASED_UNWEIGHTED_KURTOSIS_
MOMENT, TRIMMED_RANGE_G, and G_VS_TIME_
MAX_SLOPE.

– Classifier 5. A sub-classification of Cepheids was also
attempted, and the confusion matrix shown in Fig. 6b
indicates decreasing levels of completeness, accompanied
by increasing contamination rates, for classical, type-II,
and anomalous Cepheids (in this order). The best per-
formance was achieved by the classical Cepheids with
94 and 7% completeness and contamination, respectively.
The classification attributes that proved to be the most
useful included MEDIAN_RP, LOG_NONQSO_VAR, and
BP_MINUS_RP_COLOUR.

Classifier validations from the confusion matrices presented
in Figs. 4–6 included all classification probabilities and were
limited to training objects, these assessments therefore depended
on the choice of sources, classes, and their relative represen-
tation, and they were naturally biased (by definition) against
untrained sources of the same classes that looked different for
some reason (e.g. in case the effects of interstellar extinction
were not fully accounted for in the training set). These valida-
tions gave valuable indications for building classifier models, but
classification results should be assessed independently of these
preliminary estimates.

This multi-stage classifier was applied to sources with at least
two FoV transits in the G band and with the trimmed range (from
the 5th to the 95th percentile) of epoch photometry in the G band
greater than 0.1 mag. The results were assessed as a function of
classification probability, and excessive numbers of weak candi-
dates were excluded by setting minimum probability thresholds,
if needed. In particular, class labels related to candidates that
were not affected by probability thresholds were ACEP, ARRD,
and RRD, while minimum classification probabilities of 0.3, 0.4,
0.4, 0.58, 0.6, and 0.6 were applied to candidates of classes
labelled as MIRA_SR, CEP, T2CEP, DSCT_SXPHE (after

summing the probabilities of BLAP candidates), RRAB, and
RRC, respectively. This subset of classification results was then
filtered by validation classifiers (unpublished), as described in
Sect. 3.3.

3.3. Validation

The first selection of classification results, described in
Sect. 3.2.2, still included significant contamination (just by look-
ing at the number of candidates for each class). In order to
alleviate the presence of contaminants in an automated way,
new dedicated (validation) classifiers were built to help sepa-
rate false positives from true positives. This binary classification
was pursued with random forest classifiers, one for each of
the three groups of classes labelled as CEP_ACEP_T2CEP,
DSCT_SXPHE, and RRAB_RRC_RRD_ARRD. The training
sets employed a similar number of true positives and false pos-
itives, which were sampled from the classified Gaia sources in
common with the 750 thousand cross-matched objects of known
types in the literature (defined in Sect. 3.1.1). Except for the
DSCT_SXPHE candidates (which were classified after train-
ing with all of the δScuti/SX Phoenicis stars cross matched
with the literature), the validation classifiers were trained with
cross-matched objects that were not used by the preceding clas-
sification stage (Sect. 3.2). Similar to the other classifiers, the
validation training sources were sampled for a representative
distribution in the sky, and their attributes were selected as
described in Sect. 3.1.3, with the consequent optimisation of ran-
dom forest parameters. Validation classifiers were applied to the
preliminary selection of classification results (Sect. 3.2.2) and
further classified the candidates of the three superclasses men-
tioned above as true positive or false positive (with a validation
classification probability threshold of 0.5). Only the true-positive
identifications were published in the variability classification
table of Gaia DR2 and are described in Sect. 4.

The completeness rates of true positives were 94, 98,
and 91%, with corresponding contamination rates of 3, 3,
and 9%, for the CEP_ACEP_T2CEP, DSCT_SXPHE, and
the RRAB_RRC_RRD_ARRD superclasses, respectively. Thus,
contamination was reduced, at the cost of 2–9% of further reduc-
tion in completeness, with the greatest loss of true positives for
the RR Lyrae candidates.

In the special case of MIRA_SR candidates, the training
sources of long-period variables were not considered sufficiently
representative to further validate the preliminary results. The
published classifications therefore reflect the selection of the
most likely candidates performed by the dedicated SOS module
(Mowlavi et al. 2018).

Known misclassified objects from the literature were not
removed from the classification results in order to preserve the
consistency of the results and prevent the appearance of cross-
match footprints, or statistical studies would face additional
challenges to distinguish real from artificial features. Moreover,
not all of the classifications available in the literature are nec-
essarily correct, and in some cases, the Gaia data provide the
additional information that can lead to an improved judgement.

3.4. Classification score

The classification scores and the corresponding class
labels assigned to the classified variable sources are stored
in the vari_classifier_result table of the ESA
Gaia archive1 under the field names best_class_score
and best_class_name, respectively. The classifier score is
a numerical quantity between 0 and 1 that expresses a linear
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transformation of the classification probabilities as follows:
best_class_score = (Pclass − Pmin, class)/(1 − Pmin, class),

where Pclass denotes the classification probability (in the
range from 0 to 1) of the best class from the multi-stage
classifier (Sect. 3.2) and Pmin,class refers to the minimum proba-
bility thresholds as a function of class, listed in the last paragraph
of Sect. 3.2.2.

The motivation for this transformation followed from the
attempt of assigning similar scores to classifications with sim-
ilar reliability, considering that the probabilities of the weakest
candidates depended on class. This simplistic approach should
not be interpreted as returning true (calibrated) probabilities
(e.g. Richards et al. 2012), which were not pursued for this data
release. The classifier “probabilities” do not represent the real
probabilities of classifications to be true positives because of
their dependence on the classifier method and the training set
(such as the number of classes, the number of sources for each
class, the extent of representation of the selected sources, and the
setup of the multi-stage tree, as mentioned in Sect. 3.2.1).

4. Results

The classifications of pulsating variable stars of Cepheid,
Mira/semiregular, δScuti/SX Phoenicis, and RR Lyrae types,
with light-variation ranges greater than 0.1 mag in the G band
(increased to 0.2 mag for long-period variables), are published in
the table vari_classifier_result of the ESA Gaia archive1,
which includes the source identifier, the classifier name (in case
of multiple independent classifiers in the future), the class label,
and the associated classification score.

An overview of the classification results that satisfy the
astrometric and photometric requirements for an observa-
tional Hertzsprung–Russell diagram (see Appendix B of Gaia
Collaboration 2019) is presented in Fig. 7. The effect of extinc-
tion is visible for several classes (in particular, long-period
variables, classical Cepheids, and fundamental mode and first-
overtone RR Lyrae stars). In addition, faint outliers, with respect
to the loci of other candidates of the same class, identify con-
taminants for most of the classes (assuming accurate parallax
values), which are discussed in more detail for each variability
type in this section.

Samples of light curves for each class are shown in the sum-
mary article of variables in Gaia DR2 (Holl et al. 2018) and
in the related SOS articles (Clementini et al. 2019; Mowlavi
et al. 2018); they are therefore not reproduced here. The goal
of this section is to present the global properties of the classified
candidates for each class group (colour-magnitude diagrams, dis-
tributions in the sky versus magnitude, and classification score),
outline specific features of the candidates unconfirmed or reclas-
sified by SOS, and finally compare the classifications of a subset
of sources with those that are known in the literature.

The comparison of Gaia classifications with the literature
can be useful in the assessment of some aspects related to com-
pleteness and contamination. However, results in the literature
are not exempt from misclassifications, and they depend rele-
vantly on the observational properties (e.g. photometric bands,
sky location, magnitude limits, signal-to-noise ratio, astrometric
resolution, availability of spectroscopic and astrometric infor-
mation, and number of epochs and their sampling), on the
classification processing (e.g. reliability level, targeted complete-
ness, and purity levels), and on the variability types (some of
which may elude detection or proper classification depending
on observation times or stellar evolution) and their occurrence
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Fig. 7. Colour-absolute magnitude diagram (as absolute median G-band
magnitude vs. median GBP−median GRP) of a selection of classification
candidates: fundamental mode (RRAB, blue dots), first-overtone (RRC,
orange “×” marks), and double-mode (RRD, cyan “+” marks) RR Lyrae
types, classical (CEP, green rhombi) and type-II (T2CEP, red squares)
Cepheids, δScuti/SX Phoenicis types (DSCT_SXPHE, black triangles),
and Mira/semiregular types (MIRA_SR, magenta circles). Faint outliers
typically denote contaminating objects, which in the case of long-
period variables, are represented mostly by young stellar objects. All
of these sources satisfy the conditions listed in Appendix B of Gaia
Collaboration (2019), among which a relative parallax precision better
than 20%, with no correction for interstellar or circumstellar extinction
or reddening. The background points in grey act as a reference of objects
within a radius of 1 kpc from the Sun.

relative to each other (i.e. in the literature versus in reality).
Comparisons with cross-matched sources of known types from
the literature are therefore influenced by the different survey fea-
tures and criteria. On the other hand, no survey provides a perfect
reference in all circumstances, and the diversity of a multitude of
literature catalogues can help overcome some of the limitations
of single surveys.

We here compare the Gaia classifications with a subset of
494 thousand sources that have a G-band range greater than
0.1 mag of the 750 thousand cross-matched objects defined in
Sect. 3.1.1, in addition to new Gaia source cross matches with
the active galactic nuclei identified in the mid-infrared using
the final catalogue release of the Wide-field Infrared Survey
Explorer (AllWISEAGN; Secrest et al. 2015) and the quasars
listed in the third release of the Large Quasar Astrometric
Catalog (LQAC; Souchay et al. 2015). Despite the variety of
classes considered, 94% of the known objects were represented
by constant, eclipsing binary, and RR Lyrae stars. From this
set of cross-matched sources, we expect biases in the apparent
rates of completeness and contamination (especially for the
latter as it relies on the inclusion of all contaminating classes,
on the adoption of realistic relative class proportions, and on a
negligible contribution from unexpected sources), in addition
to the optimistic selection bias from using classifications from
the literatures (part of which might be easier to identify).
Nevertheless, we present completeness and contamination rates
for each class (or subclass, when applicable) and as a function
of minimum classification score in order to show trends (such
as the most or least pure subclass) and give insights into likely
sources of contamination.

As mentioned in Sect. 3.2.2, four (super)classes constitute
the primary results of relevance. Subclassifications are provided,

A97, page 11 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834616&pdf_id=0


A&A 625, A97 (2019)

¡1 0 1 2 3 4

Median BP ¡ Median RP (mag)

11

12

13

14

15

16

17

18

19

20

21

M
ed

ia
n

G
(m

ag
)

RRAB

(a)

¡1 0 1 2 3 4

Median BP ¡ Median RP (mag)

11

12

13

14

15

16

17

18

19

20

21

M
ed

ia
n

G
(m

ag
)

RRAB
RRC

(b)

¡1 0 1 2 3 4

Median BP ¡ Median RP (mag)

11

12

13

14

15

16

17

18

19

20

21

M
ed

ia
n

G
(m

ag
)

RRAB
RRC
RRD
ARRD

(c)

Fig. 8. Colour-magnitude diagram (as median G-band magnitude vs.
median GBP- median GRP) of the RR Lyrae classifications. The three
panels show the fundamental mode (labelled RRAB, grey dots), first-
overtone (labelled RRC, orange dots), and (anomalous) double-mode
(labelled ARRD/RRD, black circles/red crosses) RR Lyrae subtypes,
cumulatively, in panels a–c, respectively. See text for the explanation
of the main features.

but their use should be limited to the identification of stars that
belong to the most common subtypes (for reduced contamination
levels) or simply to the membership of their parent classes.

Fig. 9. Distribution of the RR Lyrae classifications (all subtypes) in
the sky (Galactic coordinates in degrees) colour-coded by the median
G-band magnitude as indicated in the legend on the right-hand side
(values beyond the legend range share the colour of the closest value
in the legend).

4.1. RR Lyrae stars

The RR Lyrae classifications include 195 780 candidates, fur-
ther subclassified into 162 469 fundamental mode (RRAB),
32 370 first-overtone (RRC), 834 double-mode (RRD), and
107 anomalous double-mode (ARRD) subtypes. Their distribu-
tion in a colour-magnitude diagram is shown in Fig. 8 in terms
of median G magnitude versus GBP − GRP colour. The unred-
dened colour of RRAB candidates is centred between GBP −GRP
of 0.6 and 0.7 mag, as inferred from the sources in the Galac-
tic halo that form the vertical structure observed in Fig. 8a.
The slightly reddened clump around G ≈ 18–18.4 mag and
GBP −GRP ≈ 0.8 mag is associated with about 3 thousand candi-
dates in the Sagittarius dwarf spheroidal galaxy, which is visible
just below the Galactic bulge in Fig. 9. The faintest unreddened
clump at about G ≈ 18.8–20 mag is primarily due to almost
20 thousand RRAB candidates in the Magellanic Clouds and
to classifications that belong to the Sagittarius stream above the
Galactic bulge. Some of the fainter objects are still related to the
Magellanic Clouds and others to dwarf spheroidal galaxies
(Clementini et al. 2019). The diagonal branch in Fig. 8a is due
to candidates that are reddened and extinguished mostly by the
Galactic dust in the disc and bulge regions, with redder and
fainter candidates located closer to the Galactic equator. Objects
between the vertical and diagonal features, including the hor-
izontal overdensity at the faint end with GBP − GRP >1 mag,
are dominated by 20–25% of likely misclassified objects in the
Galactic disc or bulge.

The RRC candidates show similar structures to those of
RRAB candidates in Fig. 8b, with an offset of almost 0.2 mag
bluer on average than RRAB candidates, a reduced contamina-
tion at the faint end, and about 5 and 0.5 thousand candidates
in the regions of the Magellanic Clouds and Sagittarius dwarf
spheroidal galaxy, respectively. About 20% of the RRD candi-
dates shown in Fig. 8c are in the Magellanic Clouds, and the
others are distributed mostly in the halo. More than half (about
60%) of the ARRD candidates are in the Magellanic Clouds
because the training set included only OGLE-IV samples from
this region; other ARRD candidates are scattered across the sky.

The processing of the RR Lyrae star prototype was partic-
ularly unfortunate in Gaia DR2: the published values of its
mean photometry and parallax were inaccurate (Arenou et al.
2018; Gaia Collaboration 2018) and it was missed also from the
all-sky classification of variables because the sampling of the
signal made the time-series statistics (without time-series mod-
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Fig. 10. Panel a: distribution of the ratios of the interquartile range
(IQR) in the GBP versus GRP bands vs. the median G-band magni-
tude for the RR Lyrae candidates in the SOS (green dots; Clementini
et al. 2019) vs. those present only in the classification results (red dots).
Panel b: distribution of the number of G-band FoV transits for each
source for the RR Lyrae candidates in the SOS (green bars) vs. those
present only in the classification results (red bars).

elling) similar to eclipsing binary variations. Only 10 of the 26
valid measurements in the G band were in the faint half of the
magnitude range, leading to a positive skewness of the magni-
tude distribution (typical of eclipsing binaries), and the random
forest probability of this object to belong to the eclipsing binary
class became slightly higher than the one of an RRAB type (0.5
versus 0.4, respectively). The SOS module for RR Lyrae stars
received this object correctly classified by the independent clas-
sification run limited to sources with at least 20 FoV transits in
the G band (which could take advantage of the periodicity infor-
mation), but eventually it discarded this candidate because a key
Fourier parameter was not sufficiently accurate (Clementini et al.
2019).

The RR Lyrae candidates with at least 12 FoV transits in the
G band were considered for validation by the dedicated SOS
module with Fourier modelling, as described in Clementini
et al. (2019), although this lower limit was not always sufficient
to guarantee the confirmation of the related classifications. In
total, 88 120 RR Lyrae classifications were not confirmed in
SOS. Because stellar pulsations are expected to exhibit larger
variations in the GBP than in the GRP band, the distribution of
the ratios of the interquartile range (IQR) in the GBP versus

8 10 12 14 16 18 20

Median G (mag)

20

50

100

200

N
u
m

b
er

of
G

b
an

d
F
oV

T
ra

n
si
ts

RRLyrae in Speci¯c Object Studies

RRLyrae Classi¯c: in SOS Cepheids

Fig. 11. RR Lyrae classifications (red squares) that were reclassified as
Cepheids in the SOS (green dots; Clementini et al. 2019) as a function
of median G-band magnitude and number of G-band FoV transits per
source.

GRP band is shown as a function of median G-band magnitude
in Fig. 10a for the RR Lyrae candidates in SOS versus those
present only in the classification results. Although the IQR is
increasingly influenced by the photometric noise towards fainter
magnitudes, 78 194 of the RR Lyrae classifications (89% of the
candidates not confirmed in SOS) have IQR(GBP)/IQR(GRP)>1.
The distributions of the number of G-band FoV transits for each
source for the SOS-confirmed versus unconfirmed RR Lyrae
candidates are presented in Fig. 10b and are found to exhibit
two distinct peaks, highlighting the importance of the number
of observations in the SOS modelling of these objects and
thus their confirmation process. A total of 618 RR Lyrae clas-
sifications are reclassified as Cepheids in SOS, as shown in
Fig. 11 as a function of median G-band magnitude and number
of G-band FoV transits for each source: 593 and 436 (96 and
71%) are labelled as RRAB and have classification scores
lower than 0.5, respectively. Of the RR Lyrae stars that are
misclassified as Cepheids, those that form a clump with median
G of approximately 16.5–18.5 mag and with a similar number
of observations amount to slightly more than half of the sample
and are located in the region of the Magellanic Clouds. The
other misclassified candidates are scattered across most of the
sky, with a higher occurrence in the region of the Galactic bulge.

The distribution in the sky of the classification scores of
RR Lyrae types is presented in Fig. 12, without particularly
noticeable variations as a function of sky region. A compar-
ison of the apparent completeness and contamination rates of
RR Lyrae candidates of any score, employing sources that were
cross matched with the literature, is shown in Figs. 13 (in counts)
and 14 (in percentage), after excluding all training-set objects.
Most of the confusion seems to be among the RR Lyrae subtypes,
and RRAB and RRD represent the most and the least complete,
respectively. Contamination rates are clearly underestimated, but
they should not be over-interpreted because of the reasons men-
tioned in the beginning of Sect. 4. Non-RR Lyrae contaminating
classes include, in order of relevance, Cepheids (CEP), eclipsing
binaries (ECL), and quasars (QSO).

One source of unexpected contamination (not included in
Figs. 13 and 14) includes galaxies, especially as the G-band line
spread function fitting of extended objects might return different
flux levels as the Gaia spacecraft scan angle rotates (S. Cheng
& S. Koposov, NYC Gaia Sprint 20185). The source identifiers
5 http://gaia.lol/2018NYC.html
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Fig. 12. Distribution of the RR Lyrae classifications (all subtypes) in the
sky (Galactic coordinates in degrees) colour-coded by the classification
score (see Sect. 3.4) as indicated in the legend on the right-hand side.
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Fig. 13. Comparison between the number RR Lyrae classifications of
any score per subtype (in rows) and the classes found for these objects
in the literature (in columns), among the 494 thousand cross-matched
sources with G-band range greater than 0.1 mag. Contamination rates
(rounded per-cent values) with objects that do not belong to the
RR Lyrae superclass are listed in the last column in red. Darker shaded
squares indicate higher occurrences.

of 982 likely galaxies in the 140 784 RR Lyrae classifications
confirmed by the dedicated SOS module are listed in Clementini
et al. (2019).

Samples with higher completeness and lower contamination
can often be selected by applying thresholds to classification
scores and other quantities, such as brightness, variation ampli-
tude, number of observations, and sky region. The dependence
of the apparent completeness and contamination rates (derived
from cross-matched sources) on minimum classification scores
for the RR Lyrae subtypes is shown in Fig. 15, generally confirm-
ing the expected trend that higher score thresholds increase the
completeness to contamination ratio more efficiently than lower
score limits. In addition to the SOS module results described in
Clementini et al. (2019) as part of the Gaia variability pipeline,
an independent validation of the RR Lyrae classifications was
performed with stars observed in selected K2 fields of the Kepler
space telescope (Molnár et al. 2018).

4.2. Cepheids

The Cepheid classifications include 8550 candidates, fur-
ther subclassified into 6493 classical (or δ) Cepheids (CEP),
1743 type-II Cepheids (T2CEP), and 314 anomalous Cepheids
(ACEP). Their distribution in a colour-magnitude diagram
is shown in Fig. 16 in terms of median G magnitude versus
GBP − GRP colour for each subtype. Most of the classical
Cepheids fainter than G ≈ 13 mag (about 90% of all CEP clas-
sifications) are located in the region of the Magellanic Clouds,
while the remaining (almost 10%) brighter candidates are found
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Fig. 14. Same as Fig. 13, but in terms of (rounded) per-cent values with
respect to the total number of objects for each class in the literature.
Columns do not sum to 100% because only rows relevant to RR Lyrae
classifications are shown (and completeness is limited).
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Fig. 15. Completeness vs. contamination rates of RR Lyrae classifi-
cations (all subtypes) as a function of minimum classification score
(defined in Sect. 3.4 and colour-coded as indicated in the legend on the
right-hand side).
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Fig. 16. Colour-magnitude diagram (as median G-band magnitude vs.
median GBP− median GRP) of the Cepheid classifications, including
the classical (labelled CEP, green dots), type-II (labelled T2CEP, red
circles), and anomalous (labelled ACEP, black triangles) Cepheids.

primarily in correspondence of the Galactic disc, as shown
also from the sky distribution in Fig. 17. The small number of
classical Cepheids classified in the range of G ≈ 11–13 mag
is due to a training-set bias because about half of the classical
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Cepheid sample was derived from HIPPARCOS classifications
and the other half from the region of the Magellanic Clouds.
Thus, the CEP classifications represent the magnitude ranges of
the Magellanic Clouds and of the HIPPARCOS survey (with mag-
nitude limit at G ≈ 11 mag). Except for a handful of candidates,
type-II Cepheid classifications are fainter than G ≈ 10 mag,
and almost one-third of them is associated with the Magellanic
Clouds (typically bluer than GBP − GRP ≈ 1.5 mag), while the
rest is scattered in the Galactic halo, with slight overdensities
below the Galactic bulge and in parts of the disc. The anomalous
Cepheid classifications are fainter than G ≈ 12 mag, and slightly
more than half of them are found in the Magellanic Clouds
(similar to the training-set composition and thus likely biased by
it), while the other candidates are scattered across the whole sky.

The distribution in the sky of the median G-band magnitudes
of the classified Cepheids, shown in Fig. 18, confirms the find-
ings from Figs. 16 and 17 that except for the Magellanic Clouds,
the Galactic disc includes mostly bright classical Cepheid classi-
fications and that fainter candidates (near the disc or in the halo)
are classified as type-II or anomalous Cepheids. The distribution
of the classification scores of the Cepheid candidates in the sky
is presented in Fig. 19 and suggests less certain identifications
in the region of the Sagittarius dwarf spheroidal galaxy and in
a some patches of the Galactic disc that are correlated with the
overdensities of type-II Cepheid classifications.

Similar to the RR Lyrae classifications (Sect. 4.1), the
Cepheid candidates with at least 12 FoV transits in the G band
were considered for validation by the dedicated SOS module
(Clementini et al. 2019) and a total of 1863 Cepheid classifica-
tions were not confirmed in SOS. The distribution of the IQR
in the GBP versus GRP band is shown as a function of median
G-band magnitude in Fig. 20 for the Cepheid candidates in SOS
versus those present only in the classification results, and 1654
of the latter (89% of the candidates not confirmed in SOS) have
IQR(GBP)/IQR(GRP)> 1. A total of 77 Cepheid classifications

Fig. 18. Same as Fig. 9, but for Cepheid classifications (all subtypes).

Fig. 19. Same as Fig. 12, but for Cepheid classifications (all subtypes).

are reclassified as RR Lyrae stars in SOS, as shown in Fig. 21 as
a function of median G-band magnitude and number of G-band
FoV transits per source: 40 and 72 of them (52 and 94%) are
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Fig. 21. Same as Fig. 11, but for the Cepheid classifications (red
squares) that were reclassified as RR Lyrae stars in the SOS (green dots;
Clementini et al. 2019).

labelled as ACEP and have classification scores lower than 0.5
(typically at the faint end), respectively. In the special case of the
δCephei prototype, the latter is correctly identified as a classi-
cal Cepheid in the classification results, but it is absent from the
SOS results because the source colours, the recovered period,
and the related Fourier parameters were affected negatively by
the limited sampling of this object.

A comparison of the apparent completeness and contami-
nation rates of Cepheid candidates of any classification score,
employing sources that were cross matched with the litera-
ture, is shown in Figs. 22 (in counts) and 23 (in percentage),
after excluding all training-set objects (and all of the T2CEP
cross-matched sources, as all of them were used in the training
set). The completeness of the classical Cepheids, much better
represented in the training set, is superior to the anomalous
Cepheid classifications, as expected. Contamination rates are
clearly underestimated, but they should not be over-interpreted
because of the reasons mentioned in the beginning of Sect. 4. A
small set of quasars (QSO) seems to be the primary source of
contamination, especially for T2CEP classifications.

The dependence of the apparent completeness and contam-
ination rates (derived from cross-matched sources) on mini-
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Fig. 22. Same as Fig. 13, but for Cepheid classifications.
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Fig. 23. Same as Fig. 14, but for Cepheid classifications.
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Fig. 24. Same as Fig. 15, but for Cepheid classifications.

mum classification scores for the Cepheid subtypes is shown
in Fig. 24. It generally confirms the expected trend that higher
score thresholds increase the completeness-to-contamination
ratio more efficiently than lower score limits.

In addition to the SOS module results described in
Clementini et al. (2019) as part of the Gaia variability pipeline,
an independent validation of a small sample of Cepheid classifi-
cations was performed with stars observed in selected K2 fields
of the Kepler space telescope (Molnár et al. 2018). The set of
Gaia DR2 Cepheids in the SOS results has recently been reclas-
sified (Ripepi et al. 2019), providing a sample with negligible
contamination and more accurate Cepheid subclassifications.

4.3. δScuti and SX Phoenicis stars

The δScuti and SX Phoenicis classifications include 8882
candidates and are merged together (labelled as DSCT_SXPHE)
because their Gaia light curves can appear very similar
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vs. median GBP− median GRP) of the δScuti/SX Phoenicis (labelled
DSCT_SXPHE, in cyan) and Mira/semiregular (labelled MIRA_SR, in
red) classifications.

Fig. 26. Same as Fig. 9, but for δScuti/SX Phoenicis classifications.

(without metallicity information). Their distribution in a colour-
magnitude diagram is shown in Fig. 25 in terms of median G
magnitude versus GBP − GRP colour. In general, most of the
δScuti/SX Phoenicis candidates are identified in the Magellanic
Clouds, in the Galactic halo (as expected in particular for the
metal-poor SX Phoenicis candidates), and in the Sagittarius
dwarf spheroidal galaxy (see Fig. 26). The vast majority of
candidates is not affected by Galactic extinction, likely because
reddened δScuti/SX Phoenicis samples are insufficiently repre-
sented in the training set. Approximately half of the candidates
are in the clump between median G of 19.5 and 20.7 mag (about
the Gaia magnitude limit): half of these are located in the
Magellanic Clouds, while the others are partly in the Sagittarius
dwarf spheroidal galaxy and partly scattered in the Galactic
halo. Brighter candidates are distributed mostly in the Galactic
halo, with a larger number density in the region below the
Galactic bulge, as shown in Fig. 26.

The distribution in the sky of the classification scores of the
δScuti and SX Phoenicis candidates is presented in Fig. 27, and
a comparison with Fig. 26 indicates a definite reduction of score
levels in the identifications of candidates fainter than a median
G of about 19.5 mag, especially in the Magellanic Clouds and
around the Galactic bulge. For sources with median G between
17 and 19.5 mag, the correlation between brighter candidates and
higher classification scores is much weaker than at the faint end,

Fig. 27. Same as Fig. 12, but for δScuti/SX Phoenicis classifications.

and it becomes negligible for δScuti/SX Phoenicis candidates
brighter than median G ≈ 17 mag.

The δScuti/SX Phoenicis classifications are not verified by a
dedicated SOS module. Although a number of candidates could
be confirmed by their period and a comparison of the Fourier
amplitudes and phases of the first two harmonics, a large number
of insufficiently sampled candidates would remain unconfirmed
(but not necessarily rejected). We therefore opted for a simple
check of the light variations of the δScuti/SX Phoenicis can-
didates in different bands, and let the community study these
candidates in further detail (possibly with additional data). As
illustrated for Cepheids and RR Lyrae stars (in Sects. 4.2 and
4.1), δScuti/SX Phoenicis pulsators are also expected to exhibit
larger variations in the GBP than in the GRP band, although
these intrinsically fainter stars have lower amplitudes on aver-
age (for a given apparent brightness), and their IQR estimates
are therefore more strongly affected by noise. The distribution
of the ratios of the IQR in the GBP versus GRP band is shown
as a function of median G-band magnitude in Fig. 28. As the
IQR is more strongly influenced by the photometric noise espe-
cially towards fainter magnitudes, the following fractions of
δScuti/SX Phoenicis candidates with IQR(GBP)/IQR(GRP)> 1
inferred from this distribution represent likely lower limits6: 0.87
(=576/664), 0.94 (=1942/2077), 0.91 (=3795/4189), and 0.67
(=5981/8882), for source subsets with median G brighter than
15, 17, 19, and any magnitude, respectively. Higher classification
scores further support the same conclusion, as the overall frac-
tion of 0.67 increases to 0.75 (=4449/5944), 0.80 (=3251/4057),
0.86 (=2213/2578), and 0.90 (=1366/1513) in subsets of candi-
dates associated with scores greater than 0.2, 0.3, 0.4, and 0.5,
respectively.

As mentioned in Sect. 3.3, all of the cross-matched
δScuti/SX Phoenicis stars were included in the training set, so
that the comparison with the literature employed for Figs. 29–
31 is expected to be overly optimistic, but it is still included to
show the pitfalls even in the best-case scenario. The apparent
completeness and contamination rates of δScuti/SX Phoenicis
candidates of any classification score are shown in Figs. 29 (in
counts) and 30 (in percentage), suggesting that QSOs consti-
tute the main source of contamination. The BLAP classifications
were merged with the DSCT_SXPHE class (as explained in

6 If the number of measurements in GRP is sufficiently smaller than in
GBP, the former could artificially reduce the IQR(GRP) and boost the
IQR(GBP)/IQR(GRP) ratio. However, the distribution of the difference
of the number of measurements in GRP and GBP is rather symmet-
ric, relieving concerns of such biases for the fractions of sources with
IQR(GBP)/IQR(GRP)> 1.

A97, page 17 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834616&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834616&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834616&pdf_id=0


A&A 625, A97 (2019)

5 10 15 20

Median G (mag)

0:2

0:5

1

2

5

10

IQ
R

B
P

m
ag

=
IQ

R
R
P

m
ag

0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

C
la

ss
i¯

ca
ti
on

S
co

re
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GBP vs. GRP bands as a function of the median G-band magnitude for
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Fig. 29. Same as Fig. 13, but for δScuti/SX Phoenicis classifications. In
this case, the training-set objects were included in the computation of
the completeness and contamination rates.
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Fig. 30. Same as Fig. 14, but for δScuti/SX Phoenicis classifications. In
this case, the training-set objects were included in the computation of
the completeness and contamination rates.

Sect. 3.2.2), therefore the trained BLAP sources were included
among the δScuti/SX Phoenicis candidates.

The dependence of the apparent completeness and con-
tamination rates on minimum classification scores for the
δScuti/SX Phoenicis candidates is shown in Fig. 31. This gen-
erally confirms the expected trend that higher score thresholds
increase the completeness-to-contamination ratio more effi-
ciently than lower score limits.

4.4. Mira and semiregular variables

The Mira and semiregular classifications include 150 757 can-
didates of long-period variables (labelled MIRA_SR). Their
distribution in a colour-magnitude diagram is shown in Fig. 25
in terms of median G magnitude versus GBP − GRP colour. As
apparent in Fig. 32, most of the long-period candidates are asso-
ciated with the Galactic disc and bulge, which form the largest
clump visible in Fig. 25, and approximately 8% of the candi-
dates are in the region of the Magellanic Clouds, which give rise
to the secondary clump centred at median G ≈ 15–16 mag and
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Fig. 31. Same as Fig. 15, but for δScuti/SX Phoenicis classifications. In
this case, the training-set objects were included in the computation of
the completeness and contamination rates.

Fig. 32. Same as Fig. 9, but for Mira/semiregular classifications.

bluer than GBP − GRP ≈ 4 mag. The bright end includes can-
didates that are distributed more uniformly in the sky, while the
faint end is represented primarily by extinguished objects, mostly
close to the Galactic equator and some of them in the Magellanic
Clouds.

The distribution in the sky of the classification scores of
Mira and semiregular variables is presented in Fig. 33 and seems
rather uninformative because it is dominated by high score val-
ues throughout the sky (about 80% of the candidates have a score
greater than 0.8), except for stars close to the Galactic equator (in
particular in the region of the bulge), which are classified with
reduced confidence.

As mentioned in Sect. 3.3, the selection of reliable Mira and
semiregular classifications was particularly challenging because
the training set was not fully representative. Instead of filtering
contaminating objects out by means of a validation classifier, the
Mira and semiregular candidates were passed directly to the SOS
module dedicated to long-period variables, and the published
subset of these candidates followed from the selections described
in Mowlavi et al. (2018). We note that among the contaminants
of the Mira and semiregular candidates published in Gaia DR2
is a small set (smaller than 1%) of young stellar objects (see
details in Mowlavi et al. 2018) and 99 sources that are part of the
AllWISEAGN catalogue (Secrest et al. 2015).
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Fig. 33. Same as Fig. 12, but for Mira/semiregular classifications.

5. Conclusions

The first all-sky classifications of four main classes of
high-amplitude pulsating stars (RR Lyrae, Cepheid, δScuti/SX
Phoenicis, and Mira/semiregular) with intermediate Gaia data
include already large numbers of candidates that can be used
in many applications, especially those requiring a combination
of a certain degree of homogeneity on the large scales and suf-
ficient statistics of specific variability types. Training-set biases
are common in automated supervised classification methods, and
their severity was reduced by source sampling (through the large
number of sources that could be cross matched with the liter-
ature) and semi-supervised techniques. Some of the remaining
biases were described for the interpretation of the results of spe-
cific (sub)classes, when applicable. The classified subtypes of
RR Lyrae and Cepheids can be inaccurate, especially if much
less common than others of the same family, without making use
of periods, Fourier parameters, or enough observations, but are
provided in the attempt to increase the purity of the most com-
mon subtype. Parent classes are more reliable, and their use is
suggested whenever possible. Validation classifiers helped alle-
viate the presence of contaminants in the classification results
at the cost of some reduction in completeness, and selections of
even more reliable candidates were achieved by dedicated SOS
modules (Clementini et al. 2019; Mowlavi et al. 2018).

The next Gaia data release will include many more vari-
able stars and variability classes, with improved classification
accuracy through the increased number of measurements after
about three years of observations (making models possible for
the majority of sources) and the use of new data types (some of
which were already available in Gaia DR2, but not early enough
to be used in the variability pipeline), in addition to improve-
ments in the astrometric and photometric data. More details on
the classification results (such as classification attributes and
probability arrays) are also planned to be published in the future.
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Palaversa, L., Ivezić, Ž., Eyer, L., et al. 2013, AJ, 146, 101

A97, page 19 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834616&pdf_id=0
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.postgres-xl.org
https://www.oracle.com/java/
http://linker.aanda.org/10.1051/0004-6361/201834616/1
http://linker.aanda.org/10.1051/0004-6361/201834616/1
http://linker.aanda.org/10.1051/0004-6361/201834616/2
http://linker.aanda.org/10.1051/0004-6361/201834616/3
http://linker.aanda.org/10.1051/0004-6361/201834616/4
http://linker.aanda.org/10.1051/0004-6361/201834616/5
http://linker.aanda.org/10.1051/0004-6361/201834616/6
http://linker.aanda.org/10.1051/0004-6361/201834616/7
http://linker.aanda.org/10.1051/0004-6361/201834616/8
http://linker.aanda.org/10.1051/0004-6361/201834616/10
http://linker.aanda.org/10.1051/0004-6361/201834616/11
http://linker.aanda.org/10.1051/0004-6361/201834616/11
http://linker.aanda.org/10.1051/0004-6361/201834616/12
http://linker.aanda.org/10.1051/0004-6361/201834616/13
http://linker.aanda.org/10.1051/0004-6361/201834616/14
http://linker.aanda.org/10.1051/0004-6361/201834616/15
http://linker.aanda.org/10.1051/0004-6361/201834616/16
https://arxiv.org/abs/q-bio/0503025
http://linker.aanda.org/10.1051/0004-6361/201834616/18
http://linker.aanda.org/10.1051/0004-6361/201834616/19
http://linker.aanda.org/10.1051/0004-6361/201834616/20
http://linker.aanda.org/10.1051/0004-6361/201834616/21
https://arxiv.org/abs/1702.03295
http://linker.aanda.org/10.1051/0004-6361/201834616/24
http://linker.aanda.org/10.1051/0004-6361/201834616/24
http://linker.aanda.org/10.1051/0004-6361/201834616/24
http://linker.aanda.org/10.1051/0004-6361/201834616/25
http://linker.aanda.org/10.1051/0004-6361/201834616/26
http://linker.aanda.org/10.1051/0004-6361/201834616/27
http://linker.aanda.org/10.1051/0004-6361/201834616/28
http://linker.aanda.org/10.1051/0004-6361/201834616/29
http://linker.aanda.org/10.1051/0004-6361/201834616/29
http://linker.aanda.org/10.1051/0004-6361/201834616/30
http://linker.aanda.org/10.1051/0004-6361/201834616/31
http://linker.aanda.org/10.1051/0004-6361/201834616/31
http://linker.aanda.org/10.1051/0004-6361/201834616/32
http://linker.aanda.org/10.1051/0004-6361/201834616/33
http://linker.aanda.org/10.1051/0004-6361/201834616/34
http://linker.aanda.org/10.1051/0004-6361/201834616/35
http://linker.aanda.org/10.1051/0004-6361/201834616/36
http://linker.aanda.org/10.1051/0004-6361/201834616/37
http://linker.aanda.org/10.1051/0004-6361/201834616/38
http://linker.aanda.org/10.1051/0004-6361/201834616/38
http://linker.aanda.org/10.1051/0004-6361/201834616/39
http://linker.aanda.org/10.1051/0004-6361/201834616/40
http://linker.aanda.org/10.1051/0004-6361/201834616/41
http://linker.aanda.org/10.1051/0004-6361/201834616/42
http://linker.aanda.org/10.1051/0004-6361/201834616/43
http://linker.aanda.org/10.1051/0004-6361/201834616/44
http://linker.aanda.org/10.1051/0004-6361/201834616/45
http://linker.aanda.org/10.1051/0004-6361/201834616/46
http://linker.aanda.org/10.1051/0004-6361/201834616/47
http://linker.aanda.org/10.1051/0004-6361/201834616/48


A&A 625, A97 (2019)
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Appendix A: Training classes

The definitions of training-set class labels are listed below, high-
lighting the class labels published in Gaia DR2 with a bold
font.
1. ACEP: anomalous Cepheids.
2. ACV: α2 Canum Venaticorum-type stars.
3. ACYG: αCygni-type stars.
4. ARRD: anomalous double-mode RR Lyrae stars.
5. BCEP: βCephei-type stars.
6. BLAP: blue large amplitude pulsators.
7. CEP: classical (δ) Cepheids.
8. CONSTANT: objects whose variations (or absence thereof)

are consistent with those of constant sources.
9. CV: cataclysmic variables of unspecified type.

10. DSCT: δScuti-type stars.
11. ECL: eclipsing binary stars.
12. ELL: rotating ellipsoidal variable stars (in close binary

systems).
13. FLARES: magnetically active stars displaying flares.
14. GCAS: γCassiopeiae-type stars.
15. GDOR: γDoradus-type stars.
16. MIRA: long-period variable stars of the o (omicron) Ceti

type (Mira).
17. OSARG: OGLE small-amplitude red giant variable stars.
18. QSO: optically variable quasi-stellar extragalactic sources.
19. ROT: rotation modulation in solar-like stars due to magnetic

activity (spots).
20. RRAB: fundamental-mode RR Lyrae stars.
21. RRC: first-overtone RR Lyrae stars.
22. RRD: double-mode RR Lyrae stars.
23. RS: RS Canum Venaticorum-type stars.
24. SOLARLIKE: stars with solar-like variability induced by

magnetic activity (flares, spots, and rotational modulation).

25. SPB: slowly pulsating B-type stars.
26. SXARI: SX Arietis-type stars.
27. SXPHE: SX Phoenicis-type stars.
28. SR: long-period variable stars of the semiregular type.
29. T2CEP: type-II Cepheids.

Appendix B: Sample ADQL queries

Documentation, examples, and support to access the Gaia data
are available in the Gaia archive help web-page7. Sample queries
related to the classified variable stars, in some cases after SOS
processing, are presented in the appendices of Clementini et al.
(2019), Holl et al. (2018), and Mowlavi et al. (2018). We here
add a few additional examples for the extraction of classifica-
tion information combined with astrometry, photometry, or SOS
results available in other archive tables.

In order to identify the 618 RR Lyrae classifications that
were reclassified as Cepheids in SOS and retrieve information
related to the classifier results, the number of G-band FoV tran-
sits and their median magnitude, the GBP −GRP colour from the
medians of each band, the SOS reclassification labels, and the
Galactic latitude and longitude in degrees, the ADQL query is
as follows.

SELECT c.source_id, best_class_name, best_class_score,
num_selected_g_fov, median_mag_g_fov,
median_mag_bp-median_mag_rp AS med_bp_rp,
type_best_classification, l, b

FROM gaiadr2.vari_classifier_result AS c
INNER JOIN gaiadr2.vari_time_series_statistics AS stat

ON c.source_id = stat.source_id
INNER JOIN gaiadr2.vari_cepheid AS cep

ON c.source_id = cep.source_id
INNER JOIN gaiadr2.gaia_source AS s

ON c.source_id = s.source_id
WHERE best_class_name = ’RRAB’ OR

best_class_name = ’RRC’ OR best_class_name=’RRD’
OR best_class_name = ’ARRD’

To select δScuti/SX Phoenicis candidates with paral-
lax and epoch photometry that satisfy the conditions of
IQR(GBP)/IQR(GRP)>1.5, median G brighter than 17 mag, clas-
sification score greater than 0.5, and relative parallax precision
better than 20%, sorted by decreasing IQR ratio, the correspond-
ing ADQL query is as follows.

SELECT s.source_id, median_mag_g_fov, best_class_score,
iqr_mag_bp/iqr_mag_rp AS bp_rp_iqr_ratio,
parallax, parallax_error, epoch_photometry_url

FROM gaiadr2.vari_classifier_result AS c
INNER JOIN gaiadr2.vari_time_series_statistics AS stat

ON c.source_id = stat.source_id
INNER JOIN gaiadr2.gaia_source AS s

ON c.source_id = s.source_id
WHERE best_class_name = ’DSCT_SXPHE’ AND

iqr_mag_bp/iqr_mag_rp > 1.5 AND
median_mag_g_fov < 17 AND
best_class_score > 0.5 AND
parallax_over_error > 5

ORDER BY bp_rp_iqr_ratio DESC

7 http://gea.esac.esa.int/archive-help/index.html
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