
2020Publication Year

2021-01-18T09:18:01ZAcceptance in OA@INAF

Magnetic torques on T Tauri stars: accreting vs. non-accreting systemsTitle

PANTOLMOS, George; ZANNI, Claudio; BOUVIER, JeromeAuthors

10.1051/0004-6361/202038569DOI

http://hdl.handle.net/20.500.12386/29802Handle

ASTRONOMY & ASTROPHYSICSJournal

643Number



Astronomy & Astrophysics manuscript no. Pantolmos_Zanni_Bouvier_v2_arxiv c©ESO 2020
September 3, 2020

Magnetic torques on T Tauri stars: accreting vs. non-accreting
systems

G. Pantolmos1, C. Zanni2, and J. Bouvier1

1 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
e-mail: george.pantolmos@univ-grenoble-alpes.fr

2 INAF – Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy

September 3, 2020

ABSTRACT

Context. Classical T Tauri stars (CTTs) magnetically interact with their surrounding disks, a process that is thought to regulate their
rotational evolution.
Aims. We compute torques acting onto the stellar surface of CTTs arising from different accreting (accretion funnels) and ejecting
(stellar winds and magnetospheric ejections) flow components. Besides, we compare the magnetic braking due to stellar winds in two
different systems: isolated (i.e., weak-line T Tauri and main-sequence) and accreting (i.e., classical T Tauri) stars.
Methods. We use 2.5D magnetohydrodynamic, time-dependent, axisymmetric simulations, computed with the PLUTO code. For both
systems the stellar wind is thermally driven. In the star-disk-interaction (SDI) simulations the accretion disk is Keplerian, viscous, and
resistive, modeled with an alpha prescription. Two series of simulations are presented, one for each system (i.e., isolated and accreting
stars).
Results. In classical T Tauri systems the presence of magnetospheric ejections confines the stellar-wind expansion, resulting in a
hourglass-shaped geometry of the outflow and the formation of the accretion columns modifies the amount of open magnetic flux
exploited by the stellar wind. These effects have a strong impact on the stellar wind properties and we show that the stellar wind
braking is more efficient in the star-disk-interacting systems than in the isolated ones. We further derive torque scalings, over a wide
range of magnetic field strengths, for each flow component in a star-disk-interacting system (i.e., magnetospheric accretion/ejections,
stellar winds), which directly applies a torque on the stellar surface.
Conclusions. In all the performed SDI simulations the stellar wind extracts less than 2% of the mass accretion rate and the disk is
truncated up to 66% of the corotation radius. All simulations show a net spin-up torque. We conclude that in order to achieve a stellar-
spin equilibrium we need either more massive stellar winds or disks being truncated closer to the corotation radius, which increases
the torque efficiency of the magnetospheric ejections.

Key words. accretion, accretion disks – magnetohydrodynamics (MHD) – methods: numerical – stars: pre-main sequence – stars:
rotation – stars: winds, outflows

1. Introduction

Classical T Tauri stars (CTTs) are young stellar objects (few Myr
old), with M∗ . 2M�, surrounded by accretion disks (see e.g.,
review by Hartmann et al. 2016). These stars are magnetically
active exhibiting multipolar fields, typically ∼kG strong (e.g.,
Johns-Krull 2007; Donati et al. 2008, 2019, 2020; Gregory et al.
2008; Johnstone et al. 2014) and show signatures of mass accre-
tion, with Ṁacc varying from 10−8 to 10−10M� yr−1 (e.g., Gull-
bring et al. 1998; Hartmann et al. 1998; Herczeg & Hillenbrand
2008; Ingleby et al. 2014; Venuti et al. 2014; Alcalá et al. 2017).
The measured stellar magnetic fields are strong enough to disrupt
the disk and channel the accretion flow into funnels that impact
the stellar surface at near free-fall speed, forming hot accretion
spots.

Despite being in a phase of stellar contraction and accretion,
CTTs are observed to be slow rotators, with rotation periods of
. 8 days, which corresponds to about (or less than) 10% of their
break-up limit (Herbst et al. 2007; Bouvier et al. 2014). In ad-
dition, rotation-period distributions from young stellar clusters
indicate that CTTs rotate at a constant spin rate with time (Re-
bull et al. 2004; Irwin & Bouvier 2009; Gallet & Bouvier 2013;
Gallet et al. 2019; Amard et al. 2016). The latter features suggest

the presence of angular-momentum-loss mechanisms acting on
CTTs, which prevent their stellar surfaces to spin up due to both
accretion and contraction.

The general consensus is that the angular momentum evo-
lution of CTTs is controlled by the interaction of the stellar
magnetic field with the surrounding accretion disk and its en-
vironment. The star-disk magnetospheric interaction and the as-
sociated outflows have been extensively studied in the literature,
using either semi-analytic models (e.g., Ghosh & Lamb 1979;
Collier Cameron & Campbell 1993; Lovelace et al. 1995; Ar-
mitage & Clarke 1996; Agapitou & Papaloizou 2000; Ferreira
et al. 2006; Matt & Pudritz 2005b; Mohanty & Shu 2008; Sauty
et al. 2011, and references therein) or numerical simulations
(e.g., Hayashi et al. 1996; Goodson et al. 1997; Miller & Stone
1997; Küker et al. 2003; Zanni & Ferreira 2009, 2013; Čemeljić
et al. 2013; Kulkarni & Romanova 2013; Romanova et al. 2013;
Čemeljić 2019, and references therein). Within this scenario,
several mechanisms have been proposed to explain the rotation
periods of CTTs. One of the first star-disk interaction models ap-
plied to CTTs was based on the scenario originally proposed by
Ghosh & Lamb (1979) for X-Ray pulsars. In this model, the stel-
lar field maintains a connection with the disk outside the corota-

Article number, page 1 of 18

ar
X

iv
:2

00
9.

00
94

0v
1 

 [
as

tr
o-

ph
.S

R
] 

 2
 S

ep
 2

02
0



A&A proofs: manuscript no. Pantolmos_Zanni_Bouvier_v2_arxiv

tion radius, where a Keplerian disk rotates slower than the star.
As a consequence, the star can transfer angular momentum to
the disk along the field lines connecting the two objects, with the
disk rotation controlling the stellar rotation (i.e. the disk-locking
mechanism, see e.g., Armitage & Clarke 1996; Agapitou & Pa-
paloizou 2000; Matt & Pudritz 2005b; Zanni & Ferreira 2009).
However, this mechanism requires an extended stellar magne-
tosphere that connects to the disk over a broad region beyond
the corotation radius, which seems unlikely (see e.g., Matt &
Pudritz 2005b). Different types of outflows, removing the ex-
cess stellar angular momentum from the star-disk system instead
of transferring it back to the disk, have since been proposed
as an alternative solution. Disk winds could effectively remove
disk’s angular momentum so that the magnetospheric accretion
does not affect the stellar angular momentum evolution (e.g., X-
winds, Shu et al. 1994; Cai et al. 2008). Other authors proposed
the idea of accretion-powered stellar winds (e.g., Matt & Pu-
dritz 2005a, 2007) in which magnetospheric accretion acts as
an additional energy source to drive the stellar outflow, increas-
ing the mass loss rate and consequently the spin-down efficiency
of these winds. Different studies attempted to model the con-
current presence of stellar and disk winds (as a two-component
outflow) with the main purpose of investigating the large-scale
properties of protostellar jets (see e.g., Bogovalov & Tsinganos
2001; Fendt 2009; Matsakos et al. 2009). Another class of out-
flows exploits magnetospheric field lines that still connect the
star to the disk through a quasi-periodic and unsteady process
of inflation and reconnection of these magnetic surfaces. The
stellar magnetic surfaces exploited by these outflows can inter-
act with a disk magnetic field whose magnetic moment can be
aligned (e.g., ReX-winds, Ferreira et al. 2000) or anti-aligned
(e.g., conical winds or magnetospheric ejections; see Romanova
et al. 2009; Zanni & Ferreira 2013) with respect to the stellar
one. Since these ejections take advantage of magnetic field lines
still connecting the star with the disk, they can exchange mass,
energy and angular momentum with both of them. In particular
the spin-down efficiency of this class of outflows is strongly in-
creased when the disk is truncated close or beyond the disk coro-
tation radius, so that they can efficiently tap the stellar rotational
energy (propeller regime Romanova et al. 2005, 2009; Ustyu-
gova et al. 2006; Zanni & Ferreira 2013). On the other hand, the
different models of the propeller regime (e.g., Romanova et al.
2005, 2009; Ustyugova et al. 2006; Zanni & Ferreira 2013) tend
to predict a strong accretion variability that does not seem to
have any observational counterpart.

The aim of this study is to investigate the torques exerted
onto a CTTs by different flow components of a star-disk inter-
acting system. We will parametrize these external torques and
provide formulae, which have been proven useful for studies
that attempt to simulate the rotational evolution of late-type stars
(e.g., Gallet & Bouvier 2013, 2015; Gallet et al. 2019; Johnstone
et al. 2015; Matt et al. 2015; Amard et al. 2016, 2019; Sadeghi
Ardestani et al. 2017; See et al. 2017; Garraffo et al. 2018). Our
results will be based on magneto-hydrodynamic (MHD), time-
dependent, axisymmetric numerical simulations of an accretion
disk interacting with the magnetosphere of a rotating star. The
accretion disk is taken to be initially Keplerian, viscous, and re-
sistive, modelled with an alpha prescription (Shakura & Sunyaev
1973). Furthermore, we introduce a new equation of state with a
temperature-dependent polytropic index, which allows to simu-
late at the same time a quasi-isothermal stellar wind and an adia-
batic disk. Our simulations will model the different flow compo-
nents that directly apply a torque on the stellar surface: accretion
funnel flows that increase the stellar angular momentum; mag-

netized stellar winds that provide a spin-down torque; intermit-
tent magnetospheric ejections (hereafter MEs, Zanni & Ferreira
2013), consequence of the differential rotation between the star
and the inner disk, which can either spin up or spin down the stel-
lar surface. In particular we will focus on regimes where the disk
truncation radius does not exceed the corotation radius, provid-
ing a steady accretion flow. In addition, we present stellar wind
simulations from isolated stars (e.g., Washimi & Shibata 1993;
Keppens & Goedbloed 1999; Matt et al. 2012; Réville et al.
2015; Pantolmos & Matt 2017; Finley & Matt 2018), which are
used to compare the stellar-wind torque efficiency in the two dif-
ferent systems (diskless stars vs. star-disk-interacting systems).

In Sect. 2.1 we discuss the numerical method, the initial and
boundary conditions of the simulations. In Sect. 3.1, we present
the global phenomenology of our numerical solutions, focusing
on representative examples of the two systems (i.e., star-disk in-
teraction and isolated stellar winds) simulated here. In Sect. 3.2,
we present the the main results of this study. In particular, in
Sect. 3.2.2, we derive new stellar-wind torque scalings appropri-
ate for the classical T Tauri phase of stellar evolution, in Sect.
3.2.1 and Sect. 3.2.3, we present torque prescriptions due to ac-
cretion and magnetospheric ejections, respectively. In section 4
we compare our results with previous studies from the literature
and finally, in section 5 we summarize the conclusions of this
work. The details about the equation of state employed in this
numerical work are provided in Appendix A and in Appendix B
we derive the formulation of the stellar-wind torque discussed in
Sect. 3.2.2.

2. Numerical setup

2.1. MHD equations and numerical method

The models presented in this work are numerical solutions of the
magneto-hydrodynamic (MHD) system of equations, including
viscous and resistive effects. In Gaussian units these equations
are:

∂ρ

∂t
+ ∇ · (ρυ) = 0

∂ρυ

∂t
+ ∇ ·

[
ρυυ +

(
P +

B · B
8π

)
I −

BB
4π
− T

]
= ρg

∂E
∂t

+ ∇ ·

[(
E + P +

B · B
8π

)
υ −

(υ · B) B
4π

]
=

= ρg · υ + (∇ · T ) · υ −
B
4π
· (∇ × ηm J)

∂B
∂t

+ ∇ × (B × υ + ηm J) = 0 .

(1)

The system of Eqs. (1) consists of mass, momentum and en-
ergy conservation equations coupled to the induction equation
to follow the evolution of the magnetic field. We indicate with
ρ the mass density, P the plasma thermal pressure, B and υ the
magnetic field and velocity vectors respectively and I the iden-
tity tensor. The total energy E is the sum of internal, kinetic and
magnetic energy

E = ρu + ρ
υ · υ

2
+

B · B
8π

, (2)

where the definition of the specific internal energy u(T ) as a
function of temperature T is provided in Appendix A. For this
work we have specifically developed a caloric equation of state
of a calorically imperfect gas, i.e. whose specific heats and their
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ratio γ are temperature-dependent. In particular the plasma in
our models will behave almost isothermally at high tempera-
ture and adiabatically at low temperature, so that we will be
able to simulate at the same time quasi-isothermal hot stellar
winds and cold adiabatic accretion disks. We set the equation
of state so that γ = 1.05 for P/ρ > 0.1 GM∗/R∗ and γ = 5/3
for P/ρ < 0.01 GM∗/R∗, where G is Newton’s gravitational con-
stant, M? and R? are the stellar mass and radius. The stellar grav-
itational acceleration is given by g = −(GM∗/R2)R̂. The electric
current is defined by the Ampère’s law, J = ∇ × B/4π. We indi-
cate with ηm and νm = ηm/4π the magnetic resistivity and diffu-
sivity respectively. The viscous stress tensor T is

T = ηv

[
(∇υ) + (∇υ)T −

2
3

(∇ · υ)I
]
, (3)

where ηv and νv = ηv/ρ are the dynamic and the kinematic vis-
cosity respectively.

Notice that the viscous and magnetic diffusive terms in the
right hand side of the total energy equation in the system of Eqs.
(1) correspond to the work of the viscous forces and the diffu-
sion of the magnetic energy only. The dissipative viscous and
Ohmic heating terms are not included to avoid, in particular, a
runaway irreversible heating of the accretion disk, that would
happen since no cooling radiative effects have been taken into
account. In the absence of viscosity and resistivity, the system of
Eqs. (1) reduces to the ideal MHD equations, which is the sys-
tem that will be solved for the simulations of stellar winds from
isolated stars.

Besides the system of Eqs. (1), we also solve two passive
scalar equations:

∂ρs
∂t

+ ∇ · (ρsυ) = 0

∂ρTr
∂t

+ ∇ · (ρTr υ) = 0 ,
(4)

where s is the specific entropy, whose definition for our newly
implemented equation of state is provided in Appendix A, and Tr
is a passive tracer. The entropy is used to monitor the dissipation
and heating usually associated with the numerical integration of
the total energy equation in system of Eqs. (1), e.g. by providing
a maximum and minimum entropy value that can be attained
during the computation, and it is used to compute the internal
energy when the total energy equation provides an unphysical
value of the latter. The passive scalar Tr is used to track the disk
material and distinguish it from the coronal/stellar wind plasma.

We employ a second-order Godunov method provided by the
PLUTO code1 (Mignone et al. 2007) to numerically solve the
system of Eqs. (1)-(4). We use a mixture of linear and parabolic
interpolation to perform the spatial reconstruction of the prim-
itive variables. The approximate HLLD Riemann solver devel-
oped by Miyoshi et al. (2010) is employed to compute the in-
tercell fluxes, exploiting its ability to subtract the contribution
of a potential magnetic field (i.e. the initial unperturbed stellar
magnetosphere) to compute the Lorentz forces. A second order
Runge-Kutta scheme advances the MHD equations in time. The
hyperbolic divergence cleaning method (Dedner et al. 2002) is
used to control the ∇ · B = 0 condition for the magnetic field.
The viscous and resistive terms, computed using a second-order
finite difference approximation, have been integrated in time ex-
plicitly. We solved the MHD equations in a frame of reference
co-rotating with the star.

1 PLUTO is freely available at http://plutocode.ph.unito.it

All simulations have been carried out in 2.5 dimensions,
i.e. in a two-dimensional computational domain with three-
dimensional vector fields, assuming axisymmetry around the
stellar rotation axis. We solved the equations in a spherical sys-
tem of coordinates (R, θ). From this point on we will use the cap-
ital letter R for the spherical radius and the lower case r = R sin θ
to indicate the cylindrical one. Our computational domain cov-
ers a region R ∈ [1, 50.76]R∗, where R∗ is the stellar radius, and
θ ∈ [0, π]. We discretized the domain with 320 points in the
radial direction using a logarithmic grid spacing (i.e. ∆R ∝ R)
and with 256 points along θ with a uniform resolution, so that
R∆θ ≈ ∆R, i.e. the cells are approximately square.

2.2. Initial and boundary conditions

In this work we will present simulations of two different sys-
tems: magnetized stars launching thermally-driven winds either
(1) isolated or (2) interacting with an accretion disk. For the latter
one, the initial conditions are made up of three parts: the accre-
tion disk, the stellar corona, and the stellar magnetic field. For
the isolated-stellar-wind simulation the initial conditions are the
same, without the presence of a disk.

We set up a Keplerian accretion disk adopting an α
parametrization (Shakura & Sunyaev 1973) for the viscosity. Ne-
glecting the inertial terms, its thermal pressure Pd and density ρd
can be determined by the vertical hydrostatic equilibrium, while
the toroidal speed υφd can be derived from the radial equilibrium.
Assuming a polytropic condition (i.e., Pd ∝ ρ

γ
d with γ = 5/3),

we obtained

ρd = ρd0

{
2

5ε2

[
R∗
R
−

(
1 −

5ε2

2

)
R∗
r

]}3/2

Pd = ε2ρd0υ
2
K∗

(
ρd

ρd0

)5/3

υφd =

√(
1 −

5
2
ε2

)
GM∗

r
,

(5)

where ε = csd/υK |θ=π/2 is the disk aspect ratio given by the ratio
between the disk isothermal sound speed csd =

√
Pd/ρd and the

Keplerian speed υK =
√

GM∗/r evaluated at the disk midplane;
ρd0 and υK∗ are the disk density and Keplerian speed at the disk
midplane at R∗. The accretion speed is computed solving the sta-
tionary angular momentum equation using an α parametrization
for the kinematic viscosity νv:

νv =
2
3
αv

c2
sd

ΩK
, (6)

where ΩK =
√

GM∗/r3 is the Keplerian angular speed. Neglect-
ing the Tθφ component of the stress tensor Eq. (3) we obtained

υRd = −αv
c2

sd

υK
sin θ . (7)

This equation shows that the inertial term due to the accretion
flow in the radial momentum equation is of order O(α2

vε
4), while

the thermal pressure gradient is of orderO(ε2), so that it was pos-
sible to neglect it when deriving the disk equilibrium Eq. (5). We
neglected the Tθφ component of the viscous stress tensor in order
to avoid the backflow along the disk midplane, most likely un-
physical, usually associated with the three-dimensional models
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of α accretion disks (see e.g., Regev & Gitelman 2002). Consis-
tently, we set Tθφ = 0 also during the time-dependent calcula-
tions.

We assume that the disk possesses, beside an alpha viscosity,
also an anomalous magnetic diffusivity allowing the magnetic
flux not to be perfectly frozen into the accretion flow. The idea
behind these mechanisms is that some sort of instability, e.g.,
magneto-rotational or interchange, can trigger a large-scale tur-
bulent transport of angular momentum (viscosity) and magnetic
flux (resistivity). For both viscosity νv and magnetic diffusivity
νm we use a customary alpha parametrization:

νv =
2
3
αv

c2
sν

ΩK

νm = αm
c2

sν

ΩK
,

(8)

akin to Eq. (6), where the isothermal sound speed csν is now
space and time dependent. In the outer part of the disk, where the
disk structure remains approximately unchanged with respect to
the initial disk structure, we fix the sound speed at its initial value
provided by Eq. (5), while in the inner part of the disk down to
the truncation region, we use the local sound speed value. We
use a function F(r) that smoothly goes from zero for r < 0.5Rt,i
to one for r > 1.5Rt,i (where Rt,i is the position at which the
initial disk solution is truncated, see below) to match the two cs
values. We assume that, if the magnetic field is strong enough,
the instabilities that trigger the anomalous alpha transport are
suppressed. We therefore multiply the sound speed that defines
the transport coefficients by an exponential function that goes
to zero for µ = B2/8πP > 1. In practice, this term cancels the
transport coefficients outside the disk, while determining their
smooth transition to zero along the accretion funnels. Finally,
we multiply the sound speed by a tracer Tr that is set to zero
in the stellar atmosphere and to one inside the disk, in order to
suppress the viscosity and resistivity in the stellar wind and the
magnetic cavity. The full expression for cs in Eq. (8) is therefore:

c2
sν =

{
P
ρ

[1 − F(r)] +
Pd

ρd
F(r)

}
exp

−
[
max (µ, 1) − 1

2

]2
 Tr .

(9)

We initialized the stellar atmosphere surrounding the disk
computing the thermal pressure and density profiles of a one-
dimensional, spherically symmetric, isentropic (according to the
entropy s defined in Appendix A), transonic Parker-like wind
model. This solution is defined by its density ρ∗ and sound speed
cs∗ at the stellar surface. The poloidal speed is set to zero.

The stellar magnetosphere is modeled initially as a potential
dipolar field aligned with stellar the rotation axis. Its two com-
ponents are

BR = 2B∗
(R∗

R

)3

cos θ

Bθ = B∗
(R∗

R

)3

sin θ ,
(10)

where B∗ is the magnetic field intensity at the stellar equator.
The interface between the disk surface and the corona is

placed at the position where the disk and coronal thermal pres-
sures are equal. We compute the initial truncation radius Rt,i by
solving the following implicit equation in the variable R:

Ms =

∣∣∣∣∣∣B+
φBd,θ=π/2

2πPd,θ=π/2

∣∣∣∣∣∣ , (11)

where Bd,θ=π/2 = B∗(R∗/R)3 is the intensity of the initial mag-
netic field and Pd,θ=π/2 is the disk thermal pressure both taken at
the disk midplane; B+

φ is the toroidal magnetic field at the disk
surface while Ms roughly corresponds to the sonic Mach number
of the accretion flow induced by the large-scale magnetic field
torque (see e.g. Eq. (3) in Combet & Ferreira 2008). For B+

φ we
take an estimate of the toroidal field induced at the disk surface
by the star-disk differential rotation (see e.g. Collier Cameron &
Campbell 1993):

B+
φ =

Bd,θ=π/2

αmε

( R
Rco

)2/3

− 1

 , (12)

where Rco = (GM∗/Ω2
∗)

1/3 is the corotation radius, where the
disk Keplerian rotation equals the stellar angular speed Ω∗. We
take Ms = 1.5: this means that at its inner radius the disk starts
to accrete trans-sonically, which is a typical condition to form
the accretion funnels (see e.g. Bessolaz et al. 2008), the initial
disk structure Eq. (5) is deeply modified and the local viscous
torque is completely negligible (notice, for example, that the typ-
ical sonic Mach number induced by the viscous torque is of the
order Ms = αvε, see Eq. 7). Anyway we set an upper limit for
the initial truncation radius Rt,i < 0.8 Rco. Finally, the magnetic
surfaces initially threading the disk are set to rotate at the Keple-
rian angular speed calculated at the disk anchoring radius, while
the magnetic surfaces inside Rt,i are forced to corotate with the
star.

On the rotation axis we assume axisymmetric boundary con-
ditions. At the R = R∗ boundary we have to consider two types
of conditions, one for a subsonic inflow (the stellar wind) and an-
other for a supersonic outflow (the accretion columns). For the
subsonic inflow condition we fix in the ghost zones the density
and pressure profiles of the one-dimensional wind model used to
initialize the stellar atmosphere. For the supersonic outflow con-
ditions the density and pressure must be left free to adjust to the
values in the accretion funnel: in this region we use a power-law
extrapolation along the magnetic field lines for the density while
the pressure is set assuming a constant entropy value along the
magnetic surfaces. For intermediate situations (i.e. a subsonic
outflow or a hydrostatic corona), we use the sonic Mach number
calculated in the first row of cells of the domain to linearly inter-
polate between the two boundary conditions. Notice that, since
the sonic Mach number of the flow can change with time, this
boundary condition allows the stellar areas occupied by the ac-
cretion spots or the stellar winds to vary in time and adjust to
evolution of the system. Clearly, the simulations of stellar winds
from isolated stars employ the subsonic inflow conditions only,
i.e. a fixed pressure and density profile. The boundary conditions
for all the other quantities are the same in both cases. The radial
component of the magnetic field is kept fixed, so as to conserve
the total stellar flux. The θ component is left free to adjust using
a linear extrapolation. The polodial speed υp is set to be paral-
lel to the poloidal magnetic field, using the conservation of the
axisymmetric ideal MHD invariant k = ρυp/Bp along the field
lines to determine its value. This condition ensures a smooth in-
flow for the stellar wind injection while the supersonic infalling
accretion funnels are absorbed by the inner boundary without
generating a shock. We follow Zanni & Ferreira (2009, 2013) to
impose a boundary condition that ensures that the magnetic field
is frozen into the rotating stellar surface, that is to say that the
poloidal component of the electric field in the rotating frame of
reference must be equal to zero, i.e. (υφ − rΩ∗)Bp − υpBφ = 0.
In order to achieve that, we extract the radial derivative of the
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toroidal field Bφ from the angular momentum conservation equa-
tion in the system of Eqs. (1):

∂Bφ
∂R

=

[
ρυ

r
· ∇

(
rυφ

)
− JRBθ −

BφBR

4πR
+ ρ

∂υφ

∂t

]
4π
BR

. (13)

In order to use this derivative to linearly extrapolate the value
of the toroidal field in the boundary zones, we compute a finite-
difference approximation of the right-hand side of Eq. (13) cal-
culated in the first row of cells in the computational domain ad-
jacent to the inner boundary. We employ a first-order approx-
imation for the spatial derivatives while for the local toroidal
acceleration we use the expression

ρ
∂υφ

∂t
= ρ

rΩ∗ + υpBφ//Bp − υφ

∆t
, (14)

where ∆t is the Alfvén crossing time of a grid cell at the inner
domain. This condition ensures that the Lorentz force at the stel-
lar boundary tries to force the magnetic surfaces to rotate at a
rate Ω∗ on a timescale ∆t. Consistently, the boundary value of
the toroidal speed is set to

υφ = rΩ∗ + υp
Bφ
Bp

. (15)

At the outer radial boundary a power-law extrapolation for
density and pressure is used and all the other variables are lin-
early extrapolated. Particular attention is devoted to the bound-
ary condition for the toroidal field in the region where the stellar
wind exits the computational domain. We used an approach sim-
ilar to the one employed at the inner radial boundary, only using
a much longer timescale ∆t of the order of the Alfvén crossing
time of the entire computational domain. This condition avoids
artificial torques exerted on the star even when the matter crosses
the outer boundary at sub-Alfvénic speeds.

2.3. Units and normalization

Simulations have been performed and results will be presented
in dimensionless units. The stellar radius, R∗ is employed as
the unit of length. Given the stellar mass, M∗, the velocities
can be expressed in units of the Keplerian speed at the stel-
lar radius, υK∗ =

√
GM∗/R∗. The unit time is t0 = R∗/υK∗.

Using the density of the stellar wind at the stellar surface, ρ∗,
as the reference density, magnetic fields are given in units of

B0 =

√
4πρ∗υ2

K∗. Mass-accretion/outflow rates and torques are

expressed in units of Ṁ0 = ρ∗R2
∗υK∗, and τ0 = ρ∗R3

∗υ
2
K∗ respec-

tively. Using ρ∗ = 10−12 g cm−3, R∗ = 2R�, M∗ = 0.7M� as
reference values, we obtain

υK∗ = 258
(

M∗
0.7M�

)1/2 (
R∗

2R�

)−1/2

km s−1

t0 = 0.062
(

M∗
0.7M�

)−1/2 (
R∗

2R�

)3/2

days

B0 = 93.8
(

ρ∗
10−12 g cm−3

)1/2 (
M∗

0.7M�

)1/2 (
R∗

2R�

)−1/2

G

Ṁ0 = 8.32 × 10−9
(

ρ∗
10−12 g cm−3

) (
M∗

0.7M�

)1/2 (
R∗

2R�

)3/2

M� yr−1

τ0 = 1.89 × 1036
(

ρ∗
10−12 g cm−3

) (
M∗

0.7M�

) (
R∗

2R�

)2

dyn cm

(16)

2.4. Parameters of the study

Two sets of numerical simulations are presented in this work.
The first set includes five simulations of isolated stellar winds
(hereafter “ISW”), and the second one consists of five simula-
tions of star-disk-interacting systems (hereafter “SDI”).

Once the MHD equations and the initial conditions have
been normalized, the ISW simulations depend on three dimen-
sionless free parameters, the stellar rotation rate, given as the
fraction of the break-up speed f∗ = R∗Ω∗/υK∗, the magnetic field
intensity B∗/B0 and the wind sound speed at the stellar surface
cs∗/υK∗. The SDI simulations require four additional parameters
to define the disk structure, its density ρd0/ρ∗, the aspect ratio ε
and the transport coefficients αv and αm. In both sets we fix the
stellar rotation taking f∗ = 0.05, which corresponds to a stellar
rotation period of

P∗ = 7.83
(

M∗
0.7M�

)−1/2 (
R∗

2R�

)3/2

days, (17)

and a corotation radius Rco = 7.37 R∗. The stellar wind sound
speed at the stellar surface is assumed to be cs∗ = 0.35 υK∗,
which corresponds to a specific enthalpy h∗ = 1.38 υ2

K∗. To de-
fine the initial disk structure in the SDI simulations we take in
all cases ρd0 = 100 ρ∗, ε = 0.075 and αv = αm = 0.2. With this
choice of parameters the initial disk accretion rate, determined
by the viscous torque only, is

Ṁacc,i ≈ 0.12
(
αv
0.2

) (
ρd0/ρ∗

100

) (
ε

0.075

)3
Ṁ0 . (18)

In the two sets of simulations we varied the stellar magnetic
field strength only. The value of B∗/B0 for all the simulations
presented in this work is listed in the 2nd column of Table 1.

3. Results

3.1. MHD Simulations

3.1.1. Numerical Solutions of star-disk interaction

We ran all the SDI simulations for up to 30 stellar periods. After
a short strong transient (2-3 stellar periods) the simulations reach
a quasi-stationary state, where the integrated mass and angular
momentum fluxes slowly vary in time around a mean value. All
the SDI cases show a longer-term decrease of the accretion rate,
with this effect being more prominent for higher magnetic field
cases. This decrease leads the truncation radius getting closer to
Rco and consequently, simulations having B∗ > 3.25 B0 start to
display a strong variability most likely associated with a weak
propeller regime. We decided to exclude these later highly vari-
able phases from our analysis and focus on the steadily accreting
stages. However, for all the SDI cases we based our analysis on
timescales longer than 10 stellar periods.

An example of the SDI numerical solutions obtained in this
study is shown in Fig. 1. Different groups of field lines can be
distinguished: 1) polar magnetic field lines, anchored at the stel-
lar surface that remain open over the entire simulation; 2) open
field lines threading the disk beyond the corotation radius, with
Rco = 7.37 R∗; 3) closed field lines threading the disk in the
vicinity of the truncation radius Rt ' 4R∗, steadily connecting
the disk and the star, and maintaining approximately their ge-
ometry throughout the duration of the simulation; 4) closed field
lines connecting the star and the disk beyond Rt and within Rco,
periodically evolving through phases of inflation, reconnection,
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Table 1. Varied input parameters and global properties of the simulations.

Case B∗/B0 Υ Φopen/Φ∗ Υopen 〈rA〉/R∗ Ṁacc/Ṁ0 Υacc Rt/R∗ τsw/τacc τme/τacc
1a 0.8125 5030 0.296 441 7.98 ... ... ... ... ...
2a 1.625 25800 0.230 1360 12.0 ... ... ... ... ...
3a 3.25 130000 0.172 3860 17.6 ... ... ... ... ...
4a 6.5 635000 0.131 10900 25.6 ... ... ... ... ...
5a 13 2960000 0.0951 26700 33.9 ... ... ... ... ...
1b 1.625 45000 0.381 6550 23.4 0.489 3.82 1.82 -0.355 0.486
2b 3.25 139000 0.267 9890 28.1 0.628 11.9 2.64 -0.416 0.219
3b 6.5 667000 0.164 18000 37.0 0.861 34.7 4.04 -0.359 0.111
4b 9.75 2220000 0.114 28900 44.9 1.20 55.9 4.68 -0.221 -0.0237
5b 13 5420000 0.0873 41300 52.5 1.61 74.4 4.92 -0.173 -0.0853

Notes. (a) Isolated-stellar-wind (ISW) simulations. (b) Star-disk-interaction (SDI) simulations. In our simulations, a negative (positive) torque
indicates angular momentum flowing towards (away from) the star (see also §3.1.1). Consequently, τsw > 0, τacc < 0, and τme ≶ 0 (for the sign of
τme in each SDI case see also Fig. 10).

Fig. 1. Logarithmic normalized density (colormaps) showing the temporal evolution of a star-disk-intercation simulation. The snapshots were
taken after 5, 10, 20, and 30 stellar rotation periods, P∗. The far-left panel illustrates the inner domain of this simulation, with the vertical white
lines indicating the location of the truncation radius Rt (dashed black core) and corotation radius Rco (solid black core). Each plot includes magnetic
field lines (white lines) and velocity-field vectors. The cyan lines delimit the stellar-wind flux tube and the red lines mark the Alfvén surface.

and contraction; 5) stellar closed magnetic loops, located below
Rt, forming a dead zone (or magnetic cavity).

Each group of magnetic field lines is associated with a differ-
ent type of plasma flow observed in each SDI solution. A conical
magnetized stellar wind emerges along the open stellar field lines
exerting a braking torque on the star. A disk-wind flows along the
open field lines attached to the accretion disk, removing angu-
lar momentum from the disk and adding a torque to the viscous
one to determine the accretion rate beyond corotation. Around
Rt, matter is lifted from the disk to form accretion funnel flows.
Through this process the star and the disk directly exchange an-
gular mometum. Finally, intermittent ejections propagate within
the area neighboring the stellar- and disk-wind open magnetic
surfaces, known as magnetospheric ejections (hereafter MEs; see
e.g., Zanni & Ferreira 2013). Such outflows occur due to the dif-
ferential rotation between the star and the disk, which results in
the growth of toroidal field pressure. This process leads to the in-
flation of the field lines attached close to Rt that eventually will
reconnect, producing plasmoids that propagate ballistically out-
wards. Clearly, since they occur in a low plasma β = 8πP/B2

region, where νm = 0, these reconnection events are numerically
driven and therefore depend both on the grid resolution and the

numerical algorithm employed. On one hand we are rather con-
fident that numerical effects do not have a strong impact on the
launching mechanism of the MEs since, from the point of view
of the disk, MEs are launched as magneto-centrifugal flows for
which reconnection is not an acceleration driver. On the other
hand, magnetic reconnection can modify some large-scale prop-
erties of the MEs. For example, numerically-driven magnetic re-
connection can modify the stellar magnetic torque due to MEs,
since the star can exchange angular momentum only with parts
of the system to which it is magnetically connected and once
the plasmoids disconnect they can not contribute to the stellar
torque anymore. Numerical dissipation can also modify the po-
sition of the reconnection X-point and the periodicity of the re-
connection events, which should be proportional to the beating
frequency (i.e. the difference between the stellar and disk rota-
tion frequency at Rt). Clearly, MEs are the part of our solutions
which can be more sensible to numerical effects. While the MEs
dynamical picture is physically sound, as confirmed by the num-
ber of independent studies presenting an analogous phenomenol-
ogy (see e.g., Hayashi et al. 1996; Romanova et al. 2009), some
quantitative aspects such as the mass and angular momentum
stellar fluxes associated with them must be taken with caution.
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Fig. 2. Same as the right panel of Fig. 1 for a simulation of an isolated
stellar wind. The image was taken at 3 stellar periods.

The main objective of this work is to quantify and model the
contribution of all these type of flows to the stellar angular mo-
mentum. Therefore, we compute their global properties, in par-
ticular their mass flux Ṁ, and angular momentum flux τ, using,
respectively

Ṁ =

∫
S
ρυp · dS (19)

τ =

∫
S

r
(
ρυφυp −

BφBp

4π

)
· dS (20)

For the SDI simulations, these integrals are calculated at the
stellar surface, separating it into the areas corresponding to the
different flow components, using different subscripts for stellar
winds (sw), magnetospheric ejections (me) and accretion (acc).
We ensure that the sum of the mass and angular momentum
fluxes computed for each flow component corresponds to the to-
tal flux crossing the inner boundary of our domain. It should be
noted that the integrals computed inside the magnetic cavity do
not contribute to the mass and angular momentum fluxes, at least
in a time-averaged sense. We adopt a sign convention for inte-
grals Eqs. (19), (20) so that a positive (negative) value of Ṁ, τ
denotes mass/angular momentum flowing away from (towards)
the star. Finally, the unsigned magnetic flux is defined as:

Φ =

∫
S
|B · dS|. (21)

This quantity can be defined for the full stellar surface (Φ∗) or
for the open flux carried by the stellar wind only (Φopen).

3.1.2. Numerical solutions of isolated stellar winds

Each ISW simulation is stopped when it becomes quasi-
stationary. For this set of simulations, a steady state is achieved
after 2-3 stellar periods. In Fig. 2, we present an example of the
ISW solutions obtained in this work. Such simulations are less
dynamic, compared to the SDI solutions shown above, and only

two regions can be identified in the plot: a stellar wind and a dead
zone. Clearly, there is a main difference between the two stellar-
wind solutions from the two different systems (i.e., ISW vs. SDI)
studied here. As it can be seen in Fig. 2, asymptotically the flow
entirely opens the stellar magnetosphere, filling with plasma the
whole domain. On the other hand, the SDI stellar-wind solution,
illustrated in Fig. 1, is confined within a conical flux tube due to
the presence of MEs. As we will show later, this difference in the
expansion of the two stellar outflows has a significant effect on
their magnetic torque efficiency.

Analogously to SDI simulations, Eqs. (19) and (20) are used
to determine the mass and angular momentum fluxes of the stel-
lar wind, and Eq. (21) to compute both the open and total mag-
netic flux. Since the ISW simulations converge to a steady state,
these integrals are also averaged in time and space, using spher-
ical sections of the open flux tubes at different radii, in order to
reduce noise and errors.

We recall here that Eq. (20) can be rewritten as

τsw =

∫
S

Λρυp · dS, (22)

where Λ is the total specific angular momentum carried away by
the stellar wind,

Λ = r
(
υφ − Bφ

Bp

4πρυp

)
. (23)

For axisymmetric, ideal MHD, steady-state flows, Λ is invariant
along magnetic surfaces and, in the case of a trans-Alfvénic flow,
is equal to

Λ = Ω∗r2
A, (24)

where rA is the wind Alfvén radius, the radial distance at which
the stellar outflow reaches the local Alfvén velocity (e.g., Weber
& Davis 1967; Mestel 1968, 1999). Note that, rA represents the
distance from the rotation axis or, in other words, the cylindrical
Alfvén radius, rA = RAsin θA, where RA is now the spherical
Alfvén radius and θA the angular distance of the Alfvén point
from the rotation axis. The term rA/R∗ defines a dimensionless
lever-arm that determines the efficiency of the braking torque
acting on the star.

3.2. Torques scaling

3.2.1. Magnetospheric accretion torque

The truncation, or magnetospheric, radius Rt of a star-disk-
interacting system is commonly parametrized as (see e.g., Besso-
laz et al. 2008; Zanni & Ferreira 2009; Kulkarni & Romanova
2013),

Rt = KARA, (25)

where RA is the Alfvén radius of a spherical free-fall collapse
(e.g., Lamb et al. 1973; Elsner & Lamb 1977), given as

RA =

(
B4
∗R

12
∗

2GM∗Ṁ2
acc

)1/7

, (26)

and KA is a dimensionless constant that parametrizes the dif-
ferent geometry and dynamics of disk accretion compared to a
free-fall collapse. For example, Bessolaz et al. (2008); Zanni &
Ferreira (2009) showed that KA can be expressed as a function
of the β = 8πP/B2 parameter and the sonic Mach number of the
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Fig. 3. Normalized truncation radius, Rt/R∗, as a function of parameter
Υacc. Symbols are the same as in Fig. 5. The solid line shows the fitting
function (29), with Kt = 1.1452 and mt = 0.35.

accretion flow in the truncation region. Nevertheless, KA turns
out to be always of order unity (see e.g., Kulkarni & Romanova
2013; Zanni & Ferreira 2013).

In the present work, we extract the position of the truncation
radius from the simulations by taking the first closed magnetic
surface that envelopes the accretion funnels and look for its in-
tersection with the accretion disk. This is achieved by searching
for the radial position of the entropy minimum along this mag-
netic field line, since the bulk of the disk is characterized by the
minimum entropy in the whole domain. This criterion provides
the radius at which the accretion flow of the disk starts to be
deviated and uplifted to form the accretion columns (see Fig.
1). Another common approach (see e.g., Romanova et al. 2002;
Kulkarni & Romanova 2013) is to look at the position where the
magnetic energy equals the total (thermal plus kinetic) energy
of the disk. This definition provides the position at which the
midplane accretion flow of the disk is completely disrupted and
reasonably provides a slightly smaller estimate of the truncation
radius compared to our method.

As discussed in Sect. 3.1.1, in the five SDI simulation pre-
sented here, Rt/R∗ slowly increases with time, with variations of
∼ 10% between the lowest and highest value. The time-averaged
Rt/R∗, for all the cases of this work, is given in the 9th column
of Table 1.

Defining an Υ-like parameter for the accreting flow,

Υacc =
B2
∗R

2
∗

4πṀaccυesc
, (27)

equation (25) can now be rewritten as

Rt

R∗
= KA(4π)2/7Υ2/7

acc . (28)

The absolute values of the mass accretion rates and Υacc for all
the simulations of this study are listed in the 7th and 8th column
of Table 1. The dependence of Rt/R∗ on Υacc is shown in Fig. 3.
We fit the data with a power-law in the form of

Rt

R∗
= KtΥ

mt
acc , (29)

where Kt,mt are dimensionless fitting constants. This expression
reduces to Eq. (28) for mt = 2/7. The values of Kt and mt, for the
best fit (solid line) in the plot, are Kt = 1.1452 and mt = 0.35,
also given in Table 3. From Eq. (28), we get KA ≈ 0.56, which is
in agreement with previous numerical studies (Long et al. 2005;
Zanni & Ferreira 2009, 2013; Kulkarni & Romanova 2013). The
power index, mt, is found to be 20% higher than its theoretical
value, mth

t = 2/7 ≈ 0.286. This could be the consequence of the
magnetosphere being compressed by the accreting matter, which
leads to a slower decline of B∗ with R (see e.g., Fig. 8 in Zanni
& Ferreira 2009). In addition, mt differs by almost a factor of
two compared with the value of mt = 0.2 reported in Kulkarni &
Romanova (2013). However, their simulations focused on non-
axisymmteric dipolar fields and perhaps further investigation on
the dependence of Kt and mt on the inclination of a stellar mag-
netosphere is required.

For a Keplerian disk, the specific angular momentum at Rt
is l =

√
GM∗Rt. Then, the magnitude of the accretion spin-up

torque, as angular momentum is transferred to the star, can be
written as

τacc = −KaccṀacc(GM∗Rt)1/2, (30)

where Kacc is a dimensionless constant whose value is related to
the disk rotational profile in the truncation region. The negative
sign indicates that the angular momentum is carried towards the
stellar surface (see also §3.1.1). Different studies (Long et al.
2005; Kluźniak & Rappaport 2007; Zanni & Ferreira 2009,
2013) have shown that the disk is likely to become sub-Keplerian
below the corotation radius. There are two processes torquing
down the disk in this region. First, the small annulus of the disk
that is threaded by the stellar magnetosphere and corresponds
to the base of the accretion columns is subject to a magnetic-
braking torque by the stellar rotation trying to force the matter to
corotate with the star. Through this mechanism, the disk directly
transfers its angular momentum to the star so that, even if this
process can modify the Keplerian rotation profile, it should not
have a strong effect on the value of Kacc. Second, the region of
the disk which corresponds to the base of the MEs is subject to an
external torque since MEs can directly remove angular momen-
tum from the surface of the accretion disk. If this torque is strong
enough, it can yield a sub-Keplerian rotation, with the excess an-
gular momentum being ejected, instead of being transfered to the
star. Therefore this process usually determines a value of Kacc
less than unity.

At this point it should be noted that the torque provided by
these mechanisms can explain the increase of Ṁacc with B∗ ob-
served in our simulations. The magnetic torques are the domi-
nant drivers of mass accretion in the star-disk-interaction region,
as confirmed by the fact that the mass accretion rates measured
in our models (see Table 1) are sensibly larger than the accre-
tion rate determined by the viscous torque only, see Eq. (18).
As a consequence, a higher B∗ leads to a stronger overall mag-
netic torque acting on the disk, which in turn leads to a higher
accretion rate. On the other hand, it is not guaranteed that the
torques driving accretion in the truncation region are matched
by the accretion drivers in the outer disk (viscous and disk-wind
torques). Therefore, the long-term decrease of the accretion rate
and the corresponding increase of the truncation radius, observed
in many of our simulations, is likely due to this mismatch.

The absolute value of the accretion torque τacc versus the
quantity Ṁacc(GM∗Rt)1/2 is plotted in Fig. 4. In the figure, the
best fit (solid line) provides Kacc = 0.79 (see also Table 3).
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Fig. 4. Normalized accretion torque (absolute values), τacc, versus quan-
tity Ṁacc(GM∗Rt)1/2. Symbols are the same as in Fig. 5. The solid line
corresponds to the best fit of the data, using Eq. (30) with Kacc = 0.79.

Fig. 5. Normalized effective lever arm, 〈rA〉/R∗ as a function of the
wind magnetization, Υ for all the cases of this work. Each data point
in the plot represents a single simulation. The blue and black col-
ored points/fitting curves correspond to star-disk-interaction (SDI) and
isolated-stellar-wind simulations (ISW) respectively. Data points with
the same symbol, connected with a black dashed lines, correspond to
numerical solutions having the same surface magnetic field strength,
B∗.

By combining Eqs. (29) and (30), we obtain the accretion
torque formulation

τacc = −KaccK1/2
t (4π)−mt/2

√
0.5 υ(2−mt)/2

esc Rmt
∗ Ṁ(2−mt)/2

acc Bmt
∗ . (31)

3.2.2. Stellar-wind torque

Combining Eqs. (19), (22) and (24), the torque due to a mag-
netized stellar wind (see e.g., Schatzman 1962; Weber & Davis
1967; Mestel 1968, 1999) can be written as

τsw = ṀswΩ∗R2
∗

(
〈rA〉

R∗

)2

, (32)

Fig. 6. 〈rA〉/R∗ versus parameter Υopen for all the simulation of this
study. Colours, symbols, and line styles have the same meaning as in
Fig. 5.

Fig. 7. Fractional open flux Φopen/Φ∗ versus Υ. Colours, symbols, and
line styles have the same meaning as in Fig. 5.

Table 2. Best-fit coefficients to Eqs. (36) and (37).

ISW SDI
Ksw,s 1.163 ± 0.003 3.8156 ± 0.0001
ms 0.229 ± 0.007 0.169 ± 0.001

Ksw,o 0.9275 ± 0.0009 0.495 ± 0.001
mo 0.355 ± 0.005 0.439 ± 0.005

where the positive sign in Eq. (32) denotes angular momentum
carried away from the star (see also §3.1.1). In multidimensional
solutions the flow becomes super-Alfvénic along a surface (see
e.g., Fig. 2) and therefore, in Eq. (32), 〈rA〉 represents the wind
average lever arm (see, e.g., Washimi & Shibata 1993; Matt et al.
2012; Réville et al. 2015; Pantolmos & Matt 2017; Finley & Matt
2018). Actually Eq. (32), provides the definition of the effective
lever arm 〈rA〉, which is calculated using

〈rA〉

R∗
=

(
τsw

ṀswΩ∗R2
∗

)1/2

. (33)
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Fig. 8. (Left) Profiles of normalized Alfvén (dashed), slow-magnetosonic (dash-dotted), and stellar-wind-poloidal (solid) speeds as a function of
radius, for two cases presented in this work. The velocities are averaged over the θ coordinate and in time. (Right) Surface area of the stellar-wind
flux tube, in normalized units, versus R/R∗. S sw scales with radial distance as S sw ∝ Rn, where n ≈ 3 indicates super-radial expansion, n ≈ 2, and
n < 2 indicate radial and sub-radial expansion, respectively. In both panels the colors are the same as in Fig. 5.

The 6th column of Table 1 lists all the values of 〈rA〉/R∗ for this
study.

Following Matt & Pudritz (2008), we look for a scaling of
the lever arm 〈rA〉 with the wind magnetization, Υ, defined as

Υ =
Φ2
∗

4πR2
∗Ṁswυesc

, (34)

where Φ∗ is the total unsigned surface magnetic flux and υesc
is the escape speed from the surface of the star. The parameter
Υopen, which depends on the open unsigned magnetic flux Φopen
carried by the stellar wind, (see e.g., Réville et al. 2015), is de-
fined as

Υopen =
Φ2

open

4πR2
∗Ṁswυesc

. (35)

For all the simulations of this study, parameters Υ and Υopen are
tabulated in the 3rd and 5th column of Table 1, respectively.

As explained in greater detail in Appendix B, simple power-
laws are usually expected and employed to parametrize the rela-
tion between 〈rA〉/R∗ and Υ or Υopen. The dependence of 〈rA〉/R∗
on the wind magnetization, Υ, is shown in Fig. 5. The following
function is used to fit the points

〈rA〉

R∗
= Ksw,sΥ

ms , (36)

where Ksw,s, msw,s are dimensionless fitting constants. Two scal-
ing laws are shown in the plot, which correspond to the two dif-
ferent sets of simulation studied here (i.e., ISW and SDI simula-
tions). The values of Ksw,s, msw,s are given in Table 2 2. Figure 5
shows that for a given value of Υ, a stellar wind originating from
a star-disk-interacting system has a larger braking lever arm.

The dependence of 〈rA〉/R∗ on Υopen, for all the cases of the
study, is presented in Fig. 6. The data points are fitted with a
power-law function

〈rA〉

R∗
= Ksw,oΥmo

open, (37)

2 Matt & Pudritz (2008) defined the wind magnetization as Υ =
B2
∗R

2
∗/(Ṁswυesc). To compare our Ksw,s value with those reported in pre-

vious studies (Matt & Pudritz 2008; Matt et al. 2012; Réville et al. 2015;
Pantolmos & Matt 2017; Finley & Matt 2017, 2018), one should multi-
ply Ksw,s by (4π)ms .

where Ksw,o, msw,o are dimensionless fitting constants. The values
of Ksw,o, msw,o of the two fits are tablulated in Table 2 3. For
clarity, the fitting constants derived from the SDI simulations
are also listed in Table 3. As in Fig. 5, for a given Υopen value the
stellar wind in a star-disk-interacting system provides a larger
magnetic lever arm, even if in this case the offset between the
two curves is clearly smaller.

We try now to understand the reason behind the SDI and
ISW differences. We verified that the presence of an accretion
disk, the accretion columns and the MEs modify the properties
of an isolated stellar wind in two main ways.

On one hand we observed that, in the SDI simulations, the
amount of open flux that can be exploited by the stellar winds
can change substantially. In Fig. 7, we plot the fractional open
flux, given in the 4th column of Table 1, versus parameter Υ, for
all the numerical solutions. In the plot, we identify two trends.
First, for both sets of simulations, Φopen/Φ∗ decreases as a func-
tion of Υ and second, for a given value of Υ, SDI simulations
tend to produce a larger amount of fractional open flux. In the
case of ISWs the decrease of the fractional open flux with Υ can
be understood if we look at the Υ parameter as the ratio between
the magnetic field energy density and the kinetic energy density
of the flow (see e.g., ud-Doula & Owocki 2002; Ud-Doula et al.
2009). The larger the magnetic energy with respect to the stellar
wind push, the harder is to open up the closed field structure,
resulting in a smaller open flux fraction. While in ISW cases the
amount of open flux is determined by the stellar wind push only,
in SDI systems it also depends on the position of the accretion
spots, since the star-disk differential rotation has the tendency
to open up all the magnetic surfaces that are not mass-loaded
by the columns4. While this effect is likely responsible for the
larger open flux measured in SDI simulations, the interpretation
of the decrease of the open flux with the Υ parameter in SDI sys-
tems is less straightforward. In our SDI cases, the increase of the
Υ parameter corresponds also to an increase of the position of
Rt and, correspondingly, of the Υacc parameter (see Table 1). A

3 Réville et al. (2015) defined Υopen without a 4π at the denominator. In
order to compare the Ksw,o values with the Réville et al. (2015) results,
(see also Réville et al. 2016; Pantolmos & Matt 2017; Finley & Matt
2017, 2018), one should divide Ksw,o by a factor (4π)mo .
4 Some of these field lines open up intermittently, producing, in our
framework, the MEs phenomenon. These magnetic surfaces are not in-
cluded in our Φopen estimate.
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larger truncation radius tends to displace the accretion spots to
higher latitudes and therefore to reduce the amount of fractional
open flux. With our limited set of simulations it is not possible
to determine which effect, the stellar wind push (i.e. the Υ value)
or the position of the truncation radius and the accretion spots
(i.e. the Υacc value), is more important to determine the scaling
of the open magnetic flux. In particular, since in our simulations
we changed the dipolar field intensity B∗ only, the Υ and Υacc
parameters increase (decrease) at the same time, both contribut-
ing to the decrease (increase) of the fractional open flux. Clearly
a wider parameter space exploration, with Υ and Υacc varying
independently, is required to address this issue.

On the other hand, we already mentioned that the presence of
MEs confines the stellar wind inside an hourglass-shaped mag-
netic flux tube, instead of letting the wind expand freely as in
the ISW cases. To better quantify this effect we plot in the right
panel of Fig. 8 the area of the stellar wind flux tube S sw versus
the radial distance from the star for two SDI and ISW cases with
the same B∗/B0 value. Obviously, the radial dependence of S sw
reflects the magnetic field topology since, due to magnetic flux
conservation, S sw ∝ B−1

sw . In both cases the magnetic field close
to the star (R . 4R∗) tends to keep its dipolar potential topol-
ogy, providing S sw ∝ Rn, with n = 3. Note, however, that at
the stellar surface the area of the stellar wind is slightly larger
in the SDI case than in the ISW case, confirming that the SDI
case is characterized by a larger open magnetic flux. It should be
mentioned that the areal difference at the stellar surface between
the two stellar-wind regions corresponds to a θ-coordinate dif-
ference of a few degrees on each hemisphere. Nevertheless, as
shown in Fig. 7, such a small difference is capable to increase
the open flux by ∼ 20% For low values of the wind magnetiza-
tion (with Υ < 105), these angles can differ by up to 10◦ on each
hemisphere, which results in almost a factor of two increase of
Φopen/Φ∗ for SDI cases. On a large scale (R > 10R∗), the ISW
completely opens the magnetosphere, fills the entire domain and
propagates almost radially, with n = 2. The stellar wind of the
SDI cases remains confined within a smaller area that expands
sub-radially, with n < 2.

The flux tube actually acts as a nozzle and strongly modifies
the acceleration profile of the flow. Since we are dealing with
mainly thermally driven winds (rotation and Lorentz forces are
almost negligible), the faster expanding nozzle, the ISW one,
should determine a faster decline of the thermal pressure and
a faster acceleration of the wind. This is confirmed by the left
panel of Fig. 8, where the radial profiles of the wind velocity, the
slow-magnetosonic and Alfvén speeds of the two cases are plot-
ted. These quantities are averaged in time and space (along the θ
coordinate). Within a few stellar radii the three speed profiles are
quite similar in both cases and the two outflows reach the slow-
magnetosonic point around R ≈ 4R∗. Confirming our hypothe-
sis, on a larger scale the ISW case accelerates more rapidly and
becomes noticeably faster than the SDI case. Moreover, since
the magnetic field is compressed within a smaller area, the SDI
Alfvén speed becomes larger than the ISW one. As a conse-
quence, while the ISW becomes super-Alfvénic at a distance
R ≈ 40R∗, the stellar wind of the SDI case has not reached
the Alfvén point within our computational domain. Even in SDI
tests performed with a radial domain twice as large, the stellar
wind did not reach the Alfvén surface. Notice that a large dif-
ference of the radial distance from the star of the Alfvén surface
does not automatically reflects a comparable difference of aver-
age lever arm 〈rA〉. In Appendix B we propose a simple relation
between the cylindrical Alfvén radius 〈rA〉 and the average radial

distance of the Alfvén surface R̄A,

〈rA〉 = R̄A sin
(
θoA

2

)
, (38)

where θoA is the opening angle of the Alfvén surface. Since for
an ISW θoA ≈ π/2, the lever arm difference is strongly reduced
by the smaller opening angle of the SDI stellar winds.

Following the approach adopted in Pantolmos & Matt (2017,
see also Kawaler (1988); Tout & Pringle (1992); Matt & Pudritz
(2008); Réville et al. (2015)), we tried to quantify the impact of
these effects (the different amount of open flux and speed profile)
and derived a simple analytic expression for the ratio of the lever
arms 〈rA〉 in two SDI and ISW cases (see Appendix B for a full
derivation):

〈rsdi
A 〉

〈risw
A 〉

=

υisw
sw,A

υsdi
sw,A

(
Φopen/Φ∗

)2

sdi(
Φopen/Φ∗

)2

isw

Υsdi

Υisw


1/2

=

υisw
sw,A

υsdi
sw,A

Υsdi
open

Υisw
open

1/2

, (39)

where υsw,A is the average speed of the flow at the Alfvén surface
and quantifies the acceleration efficiency of the stellar wind. Ac-
cording to Eq. (39), the larger lever arm displayed by an SDI
stellar wind with the same magnetization Υ of an ISW (see Fig.
5), can be ascribed to the larger open flux and to the slower wind
speed of the SDI case. If we compare two SDI and ISW cases
with the same Υopen (see Fig. 6), the larger SDI lever arm should
be determined by the slower speed (i.e. υsw,A) only. Note that this
last point is hard to prove, since for the majority of our simula-
tions, we cannot extract υsw,A because the stellar outflows stay on
average sub-Alfvénic within our computational box. Therefore
we cannot verify that the offset in Fig. 6 is entirely due to dif-
ferences in υsw,A. More subtle geometrical effects could produce
an additional scatter of the data points. In addition, the differ-
ent mo exponent found in ISW and SDI systems could reflect the
different wind acceleration of the two sets of simulations. As dis-
cussed in Appendix B, the flatter speed profile observed in SDI
simulations (a smaller q value in Eq. (B.7)) should correspond to
a larger mo exponent compared to ISWs, qualitatively consistent
with our findings.

We evaluate the mass ejection and torque efficiencies of the
stellar winds by plotting in Fig. 9 the time evolution of Ṁsw/Ṁacc
and τsw/τacc. The 10th column of Table 1 lists the time-averaged
values of τsw/τacc. On average, the stellar outflow is able to ex-
tract between 0.2% (i.e., SDI case 5 with B∗ = 13 B0) and 1%
(i.e., SDI case 1 with B∗ = 1.625 B0) of the mass accretion rate.
In addition, the stellar wind braking torque ranges from about
20% (i.e., SDI case 5 with B∗ = 13 B0) to 40% (i.e., SDI case
2 with B∗ = 3.25 B0) of the accretion torque. These values are
consistent with the results of Zanni & Ferreira (2009, 2013).

We close this section by presenting the functional form of
the torque scaling for stellar winds. By combining Eqs. (36) and
(32) or Eqs. (37) and (32), we obtain

τsw = K2
sw,s(4π)−2msΩ∗υ

−2ms
esc R2−4ms

∗ Ṁ1−2ms
sw Φ4ms

∗ (40)

= K2
sw,o(4π)−2moΩ∗υ

−2mo
esc R2−4mo

∗ Ṁ1−2mo
sw Φ4mo

open , (41)

where Eq. (40) employs the total unsigned surface magnetic flux
Φ∗, while Eq. (41) uses the open magnetic flux Φopen. Using the
corresponding values of Ksw,s, Ksw,o and ms, mo given in Table 2,
equation Eqs. (40) and (41) provide an estimate of the magnetic
torque due to stellar winds over a wide range of surface magnetic
field strengths, both for accreting and non-accreting stars.
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Fig. 9. Absolute values of the mass ejection efficiency Ṁsw/Ṁacc and
torque efficiency τsw/τacc as a function of time expressed in units of
the stellar rotation period. The straight lines in the plot represent the
time-averaged values for the two cases exhibiting the lowest and highest
values of these two quantities.

Fig. 10. Normalized τme versus quantity in curly brackets in Eq. (42).
Symbols are the same as in Fig. 5. In the plot, a negative (positive) τme
spins up (down) the stellar rotation. Using Eq. (42), the best fit to the
points gives Kme = 0.13 and Krot = 0.46.

3.2.3. Magnetospheric-ejections torque

As pointed out in Zanni & Ferreira (2013), MEs can also directly
exchange angular momentum with the star. In that case, the di-
rection of the angular-momentum flow depends on the differen-
tial rotation between the star and the MEs. If the plasma located
at the cusp of the inflated field lines rotates faster than the stellar
rotation, the star is subject to a spin-up torque. Similarly, the star
experiences a spin-down torque if the matter rotates slower than
the star.

In order to parametrize the torque exerted by the MEs di-
rectly onto the star, we adopt the prescription introduced in Gal-
let et al. (2019),

τme = Kme

B2
∗R

6
∗

R3
t

( Rt

Rco

)3/2

− Krot


 , (42)

Fig. 11. τme/τacc versus time (given in P∗). Colors and linestyles have
the same meaning as in Fig. 9. In the plot, a negative (positive) ratio
indicates a spin-down (spin-up) torque due to magnetospheric ejections.

Table 3. Best-fit coefficients of scalings for SDI simulations.

Formulation Coefficient Best fit Eq.

Rt/R∗, τacc

Kt 1.1452 ± 0.0008
(29), (30), (31)mt 0.35 ± 0.01

Kacc 0.79 ± 0.01

〈rA〉/R∗, τsw

Ksw,s 3.8156 ± 0.0001 (36), (40)ms 0.169 ± 0.001
Ksw,o 0.495 ± 0.001 (37), (41)mo 0.439 ± 0.005

τme
Kme 0.13 ± 0.02 (42)Krot 0.46 ± 0.02

where Kme and Krot are dimensionless fitting coefficients. Equa-
tion (42) assumes that the launching region of the MEs is located
close to Rt, so that the torque depends on the local magnetic field
strength and the differential rotation between the truncation re-
gion and the star (for a more detailed discussion see Sect. 2.3.2
in Gallet et al. 2019). In particular, the Krot factor takes into ac-
count the difference between the MEs rotation and the disk sub-
Keplerian rotation around Rt.

The dependence of τme on the term inside the curly brackets
in the right-hand side of Eq. (42) is presented in Fig. 10. The
best fit (solid line) in the plot has Kme = 0.13 and Krot = 0.46
(see also Table 3). Krot is found to be less than unity, indicative
of the sub-Keplerian rotation rate of the disk around Rt, where
the plasma is mass loaded along MEs field lines. In addition,
Krot and Kme differ by 20% and almost a factor of 2, respec-
tively, compared to the values used in Gallet et al. (2019). These
differences could be a result of numerical diffusion effects that
appear in our SDI simulations. More specifically, at the bound-
ary between the stellar wind and MEs region there are a few
steadily open field lines anchored into the stellar surface along
which the plasma accretes close to the star and is ejected at a
larger distance, nevertheless exerting a spin-down torque onto
the star. This effect is likely due to numerical diffusion of the ac-
cretion flow into the MEs and stellar wind regions. Despite be-
ing steadily open and providing a spin-down torque, we choose
to classify these magnetic surfaces not as part of the stellar wind
but as belonging to the MEs region, since the conditions at the
stellar surface could in principle allow the MEs to accrete onto
the stellar surface, while we strictly require that the stellar wind
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extracts mass from the star. This choice most likely tends to
increase the spin-down efficiency of the MEs and, correspond-
ingly, to slightly underestimate the stellar wind torques. As al-
ready discussed in Sect. 3.1.1, this is a further indication of the
influence of the numerical subtleties on the quantitative proper-
ties of our solutions, and the MEs in particular.

Consistently with Eq. (42) the plot shows a change of sign of
τme, going from a negative (i.e., spin up) to a positive (i.e., spin
down) value. This transition occurs at Rt ≈ 0.6Rco. The latter
result agrees qualitatively with the findings of Zanni & Ferreira
(2013).

The time-averaged values τme as a fraction of τacc are tabu-
lated in the 11th column of Table 1 and the temporal evolution
of the MEs torque efficiency, τme/τacc, is shown Fig. 11. As seen
in Table 1, the efficiency of the MEs torque can vary between
a 50% spin-up efficiency for the lowest field case and a 10%
spin-down efficiency for the highest field case, changing sign in
between the two. For the lower field cases (B∗ < 5B0 or nomi-
nally B∗ < 500 G) MEs provide a significant contribution (be-
tween 20% and 50% of τacc) to the spin-up torque exerted onto
the star. This regime requires relatively weak dipolar magnetic
fields combined with a ratio Rt/Rco . 0.4. Notice that this con-
figuration is compatible with many observations of classical T
Tauri stars (see e.g., Johnstone et al. 2014). The average spin-
down torque for the high field cases is almost negligible, with a
maximum spin-down efficiency ≈ 10% in the highest field case
(B∗ = 13B0, nominally corresponding to B∗ = 1.2 kG). On the
other hand Fig. 11 shows that the spin-down efficiency of the
MEs in the higher field cases is increasing in time, correspond-
ing to a decrease of the accretion rate and the truncation radius
moving closer to corotation. This result points to the fact that in
order to maximize the spin-down efficiency of the MEs the disk
should be truncated close to the corotation radius, possibly enter-
ing a propeller regime, as suggested in Zanni & Ferreira (2013).

4. Discussion

In this section, we discuss the astrophysical implications of our
simulations and compare our findings with previous works from
the literature. In addition, we refer to possible limitations of our
models.

The angular momentum equation of a star rotating as a solid
body is given by

Ω̇∗

Ω∗
= −

τtot

J∗
−

Ṁacc

M∗
−

2Ṙ∗
R∗

. (43)

In the right hand side of Eq. (43), the first term corresponds
to the inverse of the characteristic spin-down/spin-up timescale
tsdi = −J∗/τtot of the total exernal torque τtot = τacc + τsw + τme,
where J∗ = k2M∗R2

∗Ω∗ is the stellar angular momentum, with
k2 = 0.2 (i.e., mean radius of gyration of a fully convective star).
The second term, Ṁacc/M∗ ∼ t−1

acc, is linked to the mass-accretion
timescale. This term considers the changes of the stellar moment
of inertia due to mass accretion and gives tacc & 10Myr, for a
typical Ṁacc . 10−7M� yr−1, so that it can be usually neglected.
Finally, the third term, −Ṙ∗/R∗ ∼ t−1

KH , refers to the change of
the stellar moment of inertia due to the gravitational stellar con-
traction and is therefore associated with the Kelvin-Helmholtz
timescale (see e.g. Bodenheimer 2011). From Collier Cameron
& Campbell (1993); Matt et al. (2010), tKH can be written as

tKH = 3.6
(

M∗
0.7M�

)2 (
R∗

2R�

)−3 (
Te f f

4000K

)−4

Myr , (44)

where Te f f is the photospheric temperature. Equation (43) shows
that, in order to achieve a steady stellar rotation (Ω̇∗ = 0), the to-
tal external torque should provide a net spin-down, a condition
that is not verified in any of our simulations, see Table 1, with
a characteristic timescale comparable to the Kelvin-Helmholtz
one. It should be noted that stellar contraction on its own is able
to decrease the rotation period of slow rotators with P∗ ≈ 8 days
at 1Myr down to 2 days during the disk lifetime, taking a median
value of 3 Myr, even if later studies propose a disk lifetime for
slow rotators of 9 Myr (see e.g. Williams & Cieza 2011; Gallet
et al. 2019). Besides, in all the SDI simulations discussed in this
work, the star is subject to an external SDI torque that spins up
the star providing a characteristic spin-up timescale varying be-
tween 0.4 and 1.5Myr (i.e. for SDI cases 5 and 1, respectively).
Obviously, the SDI stellar torques in our simulation can only
provide an additional spin-up torque to the stellar rotational evo-
lution, they further shorten the spin-up timescale due to contrac-
tion and clearly cannot explain the presence of slow rotators with
P∗ ≥ 8 days at about 10 Myr.

A possible solution to this problem could be provided by
more massive stellar winds, with a higher spin-down torque. We
recall that in our SDI models the spin-down torque of a stel-
lar wind ejecting less than 2% of the mass accretion rate corre-
sponds to 20 − 40% of the spin-up accretion torque. Despite not
being sufficient to provide an efficient enough spin-down torque,
the important result presented in this paper is that, in the range of
the parameter space explored, the stellar wind torque in accret-
ing systems is more efficient than in isolated stars. We found that
the presence of the accretion disk strongly influences the amount
of open flux and the shape of the wind flux tube, two main fac-
tors that determine the wind magnetic lever-arm. We found that,
for the same dipolar field intensity B∗, the stellar wind torque in
SDI systems is 1.3 to 2.3 times higher than in ISW systems. For
fixed stellar parameters, using the SDI fits from Table 3, Eqs.
(40) and (41) show that the stellar wind torque can be increased
by a larger wind mass-loss rate. We can actually use these scal-
ings to estimate the wind mass ejection efficiency required to
balance at least the accretion spin-up torque in the SDI cases
presented in this paper. Using Eq. (40) we find that an ejection
efficiency Ṁsw/Ṁacc . 0.05 is needed while Eq. (41) provides
an estimate Ṁsw/Ṁacc > 1. The large discrepancy between these
two estimates clearly depends on the the different dependence of
τsw on Ṁsw, with the torque increasing more rapidly with Ṁsw
in Eq. (40) than in Eq. (41). This difference is due to the fact
that using Eq. (41), i.e. the scaling with the wind open magnetic
flux, we suppose that when the wind-mass loss rate increases the
open flux does not change, which could correspond to a situa-
tion in which the fractional open flux is solely determined by the
position of the accretion spot and the truncation radius (i.e. the
Υacc value, see Eq. (29)). In Eq. (40), i.e. the scaling with the to-
tal unsigned flux, we implicitly assume that the raise of the wind
mass-loss rate increases the fractional open flux, further amplify-
ing the wind lever arm and the torque (see Eqs. (B.9) and (B.10)
in Appendix B). This result clearly points to the fact that, in or-
der to have a robust estimate of the wind mass-loss rate needed
to provide an efficient enough spin-down torque, it is necessary
to explore the parameter space more extensively to have a more
quantitative estimate of the dependency of the fractional open
flux on the parameters of the system.

Anyway, requiring a high wind mass-loss rate could present
some issues. We recall that, in this work, we considered
thermally-driven winds, that require the presence of a hot,
106 K corona. Observations show that T Tauri stars are X-
ray active (e.g., Güdel 2007, and references therein), which
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implies the presence of million-Kelvin coronae and coronal
winds during this pre-main-sequence phase of stellar evolution
(e.g., Schwadron & McComas 2008). However, Matt & Pu-
dritz (2007) showed that thermally-driven winds should have
Ṁsw . 10−11M� yr−1 for their energetics to be compatible
with the X-ray activity of CTTs, which does not seem to be
enough to provide an efficient spin-down torque. Therefore, it
has been proposed that stellar winds could be driven by other
MHD processes (e.g., dissipation of Alfvén waves, Decampli
1981; Scheurwater & Kuijpers 1988; Cranmer 2008, 2009), pos-
sibly amplified by the impact of the accretion streams onto the
stellar surface (Accretion Powered Stellar Winds, Matt & Pudritz
2005a), so as to produce more massive (with Ṁsw/Ṁacc ∼ 0.1)
and colder (104 K) winds. The latter idea was supported by ob-
servations (Edwards et al. 2006), which suggested the presence
of cool and massive stellar winds originating from T Tauri stars,
and also confirmed by radiative-transfer calculations (Kurosawa
et al. 2006). Cranmer (2008) tested the hypothesis of cold stel-
lar winds in CTTs driven by Alfvén waves but found an ejection
efficiency below 2% of the mass accretion rate. Despite the fact
that the driving and energetics of CTTs stellar winds still remain
an open question, our current findings suggest that the torque
provided by magnetized stellar outflows can not single-handedly
solve the angular momentum evolution problem of CTTs.

An additional spin-down torque could be provided by MEs.
However, in this work, MEs provided either a spin-up torque or
a weak spin-down torque. Zanni & Ferreira (2013) showed that
the spin-down torque by MEs becomes more efficient when the
truncation radius approaches the corotation radius. This is con-
firmed by our results, since we find an increase of the spin-down
efficiency as the truncation radius increases. However truncating
the disk close to corotation causes the transition to a (weak) pro-
peller regime, characterized by a strong (an order of magnitude
or more) and fast (of the order of one stellar period) variabil-
ity of the mass accretion rate, which is not observed (Costigan
et al. 2014; Venuti et al. 2014). The analysis presented in this
paper focused on CTTs being in a steady accretion regime and
therefore, we leave this investigation for future studies. It should
be noted that the scenario of a propeller regime as a solution
to explain the rotational evolution of CTTs is supported by both
MHD simulations (Romanova et al. 2005, 2009; Ustyugova et al.
2006; Zanni & Ferreira 2013) and angular-momentum-evolution
studies (Gallet et al. 2019).

It is also important to point out that, since in our models we
varied the magnetic field strength B∗ only, the simulations dis-
played a Ṁacc−B∗ correlation, with Ṁacc increasing with B∗, see
discussion in §3.2.1, that has no observable counterpart. Obvi-
ously, in our simulations the accretion rate can be changed in-
dependently of the B∗ value, by varying for example the disk
surface density and/or the α parameter(s).

Finally, our simulations do not consider complex field
topologies. Observations of T Tauri stars show their magnetic
fields to be multipolar (e.g., dipolar accompanied by strong oc-
tupolar components). Complex field geometries can influence
the stellar-wind braking torque in two different ways. First, by
affecting the location of the accretion hotspot (Mohanty & Shu
2008; Alencar et al. 2012), which can modify the area that
ejects the stellar outflow. This effect could have an impact on
the stellar-wind acceleration/speed and mass-loss rate, there-
fore changing the stellar wind torque. Second, by affecting the
amount of open flux available to the wind, which has an impact
on the length of the magnetic lever arm and consequently, on the
braking torque. In particular, stellar winds with single high-order
field topologies (e.g., quadrupoles, octupoles) exhibit decreased

torque efficiency (for fixed wind energetics) since the magnetic
field decays faster with distance (or the wind carries less open
flux), which results in smaller magnetic lever arms (e.g., Réville
et al. 2015; Garraffo et al. 2016). For mixed topolgies (e.g., su-
perpositions of dipoles and quadrupoles/octupoles), simulations
of isolated stellar winds demonstrate that the stellar-wind torque
is mainly determined by the lowest order field topology (Finley
& Matt 2017, 2018). However, supplementary analysis by See
et al. (2019) showed that higher order fields (in mixed geome-
tries) can have an effect on stellar-wind torques if the Alfvén
surface is reached at a distance from the stellar surface where
the higher-order-field strengths have not declined enough to be
considered negligible. Therefore, more realistic/complex field
topologies shall be considered in future SDI simulations to im-
prove the accuracy of the current stellar-wind torque prescip-
tions.

5. Conclusions

In this work, we presented 2.5D, MHD, time-dependent, axisym-
metric numerical simulations of magnetized rotating stars inter-
acting with their environment. We focused on two different types
of numerical solutions and split our simulations in two sets. The
first set included 5 numerical solutions of stellar winds com-
ing from isolated stars (ISW), representing weak-line T Tauri
and main-sequence stars. The second set included 5 star-disk-
interaction simulations (SDI), representing classical T Tauri sys-
tems. In both sets we assumed dipolar field geometries, slow stel-
lar rotation with a stellar spin rate corresponding to 5% of the
break-up speed and thermally-driven stellar winds. In the SDI
simulations the disk was taken to be viscous and resistive, using
a standard alpha prescription, with fixed values for the α param-
eters and initial disk surface density. In each set, the five simula-
tions are characterized by a different field strength. We provided
parametrizations for all the external torques (due to stellar winds,
magnetospheric ejections, and accretion funnel flows) exerted at
the surface of a star mangnetically interacting with its accretion
disk. We also compared the magnetic-braking efficiency of the
stellar winds in the two distinct systems considered here (i.e.,
diskless stars and star-disk interacting systems).

The following points summarize the conclusions of this
work.

1. In star-disk interacting systems we find power-law scalings
of the stellar-wind Alfvén radius with the wind total Υ or
open Υopen magnetization (e.g., Matt et al. 2012; Réville
et al. 2015; Pantolmos & Matt 2017; Finley & Matt 2018)
akin to those found in ISW systems (see Figs. 5, 6, and Eqs.
34, 35). Within the parameter space considered, our simu-
lations showed that for a given value of Υ or Υopen stellar
winds in SDI systems exhibit a larger magnetic lever arm
and an overall more efficient spin-down torque compared
to stellar winds from isolated stars. We found that the pres-
ence of the accretion funnels tends to increase the amount of
open magnetic flux carried by the wind, while the magneto-
spheric ejections confine the stellar wind in a narrower noz-
zle that modifies the flow acceleration/velocity profile pro-
ducing slower stellar-wind solutions. We verified that both
these factors contribute to increase the lever arm. In our sim-
ulation sample the stellar wind torque is from 1.3 to 2.3 times
stronger in SDI systems than it is in ISW systems with the
same B∗. For the relatively low wind mass-loss rates pro-
duced by our SDI simulations, corresponding to less than 2%
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of the mass accretion rate, the stellar wind is able to extract
between 20 - 40% of the accreting angular momentum.

2. In the SDI simulations, for the range of field strengths and
mass accretion rates considered in this work, the disk is trun-
cated up to 66% of the corotation radius. We obtain a sim-
ple power-law scaling of the truncation radius Rt with the
accretion-related magnetization parameter Υacc (see Eq. 28)
and we further verify that the spin-up torque due to accretion
is linearly proportional to the mass accretion rate times the
disk specific angular momentum at the truncation region (see
Eq.31).

3. Following Gallet et al. (2019), we modeled the magnetic
torque exterted by MEs on the star as a differential rotation
effect between the star and the MEs and we derived a torque
parametrization over a range of stellar field strengths (see Eq.
42). In our set of simulations, MEs provide either a spin-up
torque, up to ∼50% of the accretion one, or a weak spin-
down torque, up to ∼10% of the accretion one, depending on
the relative position of the truncation radius Rt with respect
to the corotation radius Rco. The transition from a spin-up to
a spin-down MEs torque occurs at Rt ≈ 0.6Rco.

4. In all the SDI cases analyzed, the star is subject to a net spin-
up torque. The latter result yields a spin-up timescale due
to the sum of all external torques of about 1 Myr, which is
even shorter than the spin-up timescale due to stellar con-
traction (see Sect. 4 for more details). Therefore, the stars
simulated in our study would have the tendency to spin-up
rather rapidly and, without the presence of a more efficient
spin-down mechanism, they could not explain the existence
of slow rotators (with P∗ & 8 days) after about 10 Myr.
We argued that a stellar wind with a mass-loss rate higher
than the one considered in our models could increase the
spin-down efficiency. However, a more extensive exploration
of the parameter space is necessary in order to provide ro-
bust estimates on the stellar-wind ejection efficiency needed
to counteract the spin-up torques. Finally, our simulations
showed that, as the truncation radius gets closer to corota-
tion, with the system moving towards a propeller regime,
the spin-down efficiency of the MEs increases, further con-
tributing to the solution of the rotational evolution problem
of CTTs. The latter agrees with the conclusions of other pre-
vious studies (Romanova et al. 2005, 2009; Ustyugova et al.
2006; Zanni & Ferreira 2013; Gallet et al. 2019).
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Appendix A: The equation of state

We assume the thermal equation of state of an ideal gas PV =
NkBT , where P is the pressure, V is the volume occupied by the
gas, N is the number of molecules, kB is the Boltzmann con-
stant and T is the temperature. In terms of the mass density
ρ = Nm/V , P = ρkBT/m where m is the mean molecular mass.
To simplify the notation, assuming a constant mean molecular
mass, we include kB and m in the definition of the “temperature”
so that P = ρT . With this notation the temperature T has the
c.g.s. dimensions of cm2 s−2, i.e. the square of a speed. We write
the first law of thermodynamics:

dU = TdS − PdV ,

where U is the internal energy and S is the entropy, as:

du = T
(
ds +

dρ
ρ

)
, (A.1)

where u = U/M and s = S/M, with the gas mass M = Nm = ρV ,
are the specific, i.e. per unit mass, internal energy and entropy
respectively. We also take the caloric equation of state for an
ideal gas:

du = CVdT dh = CpdT , (A.2)

where h = u + T is the specific enthalpy and CV and Cp are
the specific heat capacities at constant volume and pressure re-
spectively. With our definition of temperature, CV and Cp are
adimensional and the Mayer’s relation becomes Cp − CV = 1.
For a calorically perfect ideal gas Cp and CV are constant and
equal to Cp = γ/ (γ − 1) and CV = 1/ (γ − 1) where γ = Cp/CV
is their ratio. We model the gas as thermally but not calorically
perfect, i.e. its heat capacities can depend on temperature, and
we assume a piecewise constant/linear dependency:

Cp =


Cp0 for T ≤ T0(
Cp1 −Cp0

)
T−T0
T1−T0

+ Cp0 for T0 < T < T1 ,

Cp1 for T ≥ T1

(A.3)

where we take Cp0 = γ0/(γ0 − 1) and Cp1 = γ1/(γ1 − 1), with
γ0 and γ1 specifying the ratio of the heat capacities for T < T0
and T > T1 respectively. Integrating Eq. (A.2) we can write the
specific enthalpy as:

h =


Cp0T for T ≤ T0[
0.5

(
Cp1 −Cp0

)
X2 + Cp0X

]
(T1 − T0) + Cp0T0

for T0 < T < T1

Cp1T + 0.5
(
Cp0 −Cp1

)
(T1 + T0) for T ≥ T1

(A.4)

where X = (T − T0)/(T1 − T0). The specific internal energy is
defined as u = h − T . Using Eq. (A.1) and (A.2) we can derive
the sound speed cs

c2
s =

∂P
∂ρ

∣∣∣∣∣
s

= γ
P
ρ

,

where γ = Cp/(Cp − 1) = Cp/CV . From the first law of ther-
modynamics Eq. (A.1) we can also derive the expression for the
specific entropy s:

s = s0 + log

 f (T )
1

γ0−1

ρ

 , (A.5)

where s0 is an integration constant and f (T ) is:

f (T ) =



T for T ≤ T0

T
(

T
T0

) (Cp0−Cp1)T0

(Cp0−1)(T1−T0) exp
(

Cp1−Cp0

Cp0−1 X
)

for T0 < T < T1

T
(

T
T1

) Cp1−Cp0
Cp0−1

(
T1
T0

) (Cp0−Cp1)T0

(Cp0−1)(T1−T0) exp
(

Cp1−Cp0

Cp0−1

)
for T ≥ T1

Since the specific entropy in the absence of irreversible processes
(dissipative heating, cooling) obeys a scalar equation:

∂ρs
∂t

+ ∇ · (ρsu) = 0 ,

it is possible to redefine the specific entropy as an arbitrary func-
tion of Eq. (A.5). Since the log and exp functions, which would
be extensively used to derive entropy from temperature and tem-
perature from entropy respectively, are computationally expen-
sive, we use the simpler expression:

s =
f (T )
ργ0−1 . (A.6)

In our SDI simulations we assume T0 = 0.01 (GM?/R?), γ0 =
5/3, T1 = 0.1 (GM?/R?), γ1 = 1.05.

Appendix B: Analytic scaling of the stellar-wind
Alfvén radii

At the Alfvén surface of an MHD flow the wind speed, υsw,A,
equals the local Alfvén speed, υA

υ2
sw,A = υ2

A =
B2

A

4πρsw,A
, (B.1)

where ρsw,A and BA are the local plasma density, and magnetic
field strength, respectively. Approximating the stellar-wind open
magnetic flux to be Φopen ∼ BAS A, where S A is the area of the
Alfvén surface, Eq. (B.1) can be manipulated to yield

S A =
Φ2

open

4πṀswυsw,A
. (B.2)

Using Eqs. (34) and (35) to define the magnetizations Υ and
Υopen, Eq. (B.2) can be rewritten as

S A

R2
∗

=
υesc

υsw,A
Υopen =

υesc

υsw,A

(
Φopen

Φ∗

)2

Υ . (B.3)

We approximate S A as

S A = 4πR̄2
A(1 − cos θoA), (B.4)

where R̄A is the average spherical radius of the Alfvén surface
and θoA is the opening angle, measured from the rotation axis,
of the outflow flux tube at the Alfvén surface. As discussed in
this paper, for ISW cases this angle is about 90◦, since the flow
completely opens the stellar magnetic field (see e.g. Fig. 2). For
the SDI cases, θoA is smaller, typically less than 45◦ (see e.g.
Fig. 1), due to the funnel-shaped geometry of the outflow. If we
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approximate the average cylindrical radius of the Alfvén surface
r̄A as

r̄A = R̄A sin
(
θoA

2

)
, (B.5)

we obtain from Eq. (B.4),

S A = 4πR̄2
A (1 − cos θoA) = 8πR̄2

A sin2
θsdi

oA

2

 ∝ r̄2
A, (B.6)

where r̄A represents the average cylindrical radius of the Alfvén
surface, considering only its geometrical properties. If we as-
sume that r̄A = 〈rA〉, i.e. the effective Alfvén radius, this equa-
tion suggests that S A ∝ 〈rA〉

2 independently of the opening angle
of the wind, either fully open, as in an isolated star, or confined
in a smaller funnel, as in SDI systems. Following for example
Réville et al. (2015); Pantolmos & Matt (2017), we assume that
υsw,A/υesc scales as a power law with S A

υ2
sw,A ∝ υ

2
esc

(
S A

R2
∗

)q

, (B.7)

where we suppose that the speed of the plasma at the Alfvén sur-
face is proportional to the specific energy injected in the wind,
expressed as a function of the escape speed, times the expansion
rate of the flow. The exponent q is determined by the local ac-
celeration of the wind at S A. Combining Eqs. (B.3), (B.6) and
(B.7), we can recover the scaling Eq. (37)

〈rA〉

R∗
= Ksw,oΥmo

open , (B.8)

where the exponent mo = 1/(2 + q) should depend on the speed
profile of the wind at the Alfvén surface. If we further assume a
power-law scaling for Φopen/Φ∗ with parameter Υ,

Φopen

Φ∗
∝ Υn , (B.9)

we can also recover the scaling Eq. (36)

〈rA〉

R∗
= Ksw,oΥmo

open = Ksw,o

(Φopen

Φ∗

)2

Υ

mo

= Ksw,sΥ
ms , (B.10)

where ms = mo(2n + 1). Clearly, while Eq. (B.8) depends on the
shape of the wind flux tube and the speed profile at the Alfvén
surface, Eq. (B.10) depends also on the fractional open flux de-
pendence on Υ. Notice that, while the scaling Eq. (B.9) repre-
sents a reasonable assumption for isolated stellar winds, in SDI
systems the stellar open flux could also depend on other factors,
most notably the mass accretion rate and the Υacc accretion pa-
rameter.

In order to directly compare the Alfvén radii of stellar winds
in isolated and accreting stars, without taking into account the
exact speed profile Eq. (B.7) or the scaling of the fractional open
flux Eq. (B.9), we can combine Eqs. (B.3) and (B.6) to get

〈rsdi
A 〉

〈risw
A 〉

=

υisw
sw,A

υsdi
sw,A

(
Φopen/Φ∗

)2

sdi(
Φopen/Φ∗

)2

isw

Υsdi

Υisw


1/2

=

υisw
sw,A

υsdi
sw,A

Υsdi
open

Υisw
open

1/2

(B.11)

Article number, page 18 of 18


