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ABSTRACT

We develop a new method to measure neutron star parameters and derive constraints on the equation
of state of dense matter by fitting the frequencies of simultaneous Quasi Periodic Oscillation modes
observed in the X-ray flux of accreting neutron stars in low mass X-ray binaries. To this aim we
calculate the fundamental frequencies of geodesic motion around rotating neutron stars based on
an accurate general-relativistic approximation for their external spacetime. Once the fundamental
frequencies are related to the observed frequencies through a QPO model, they can be fit to the
data to obtain estimates of the three parameters describing the spacetime, namely the neutron star
mass, angular momentum and quadrupole moment. From these parameters we derive information
on the neutron star structure and equation of state. We present a proof of principle of our method
applied to pairs of kHz QPO frequencies observed from three systems (4U1608-52, 4U0614+09 and
4U1728-34). We identify the kHz QPOs with the azimuthal and the periastron precession frequencies
of matter orbiting the neutron star, and via our Bayesian inference technique we derive constraints
on the neutrons stars’ masses and radii. This method is applicable to other geodesic-frequency-based
QPO models.

Subject headings: gravitation - neutron stars - accretion, accretion disks - X-rays: binaries

1. INTRODUCTION

Neutron stars (NSs), the densest stable stellar objects
in the Universe, provide key information on the proper-
ties of cold, supra-nuclear density matter, strong grav-
itational fields and a variety of astrophysical processes
that take place in or around them. Observations of NSs
extend over the entire electromagnetic spectrum, from
radio frequencies to gamma rays. The recent detection of
gravitational waves (GWs) from two coalescing NSs has
opened another, entirely different, observational window.
Combinations of measurements of NS parameters such
as mass, radius, moment of inertia, angular frequency,
tidal deformability or quadrupole moments, which have
already been obtained (or are within reach of present
and future instrumentation), hold the potential to con-
strain the equation of state (EoS) of dense matter and
the structure of NSs to high precision and accuracy (see
e.g. Lattimer & Prakash 2007; Hinderer et al. 2018). To
this aim different methods exploiting different diagnos-
tics have been pursued: for instance X-ray based meth-
ods have been devised to infer the mass and radius of
NSs from the evolution of radius expansion Type I X-
ray bursts, broadened Fe Kαline profiles, fastest rota-
tion frequencies, periodic modulations resulting from NS
rotation (for a review see Watts et al. 2016; Lattimer
2019). NICER X-ray observations of a rotation-powered
NS have recently provided ∼ 8 − 12% precise mass and
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radius measurements, based on the latter method (Riley
et al. 2019a; Miller et al. 2019a). Constraints on the EoS
of NSs have recently been obtained also from the GW
signal of GW170817 (Abbott et al. 2018). Present limi-
tations in the determination of the EoS of NS arise from
data paucity and/or quality (insufficient sensitivity and
signal to noise ratio especially), modelling uncertainties
and control of systematics.

The fast quasi-periodic oscillations (QPOs) in the X-
ray flux of NS low mass X-ray binaries are among the
observables that can yield measurements of NS mass and
radius. These signals appear as narrow features in the
power spectra of the light curves of accreting NS and
black holes. While their interpretation is still debated,
QPOs are believed to be produced in the inner regions of
the accretion disc surrounding the compact object. They
often display different modes, some which are excited at
the same time, and undergo correlated frequency changes
(for a review see van der Klis 2006). Much of what is
currently known about QPOs derives from observations
with the Rossi X-Ray Timing Explorer (RXTE, Swank
et al. 1994). RXTE detected a large number of low fre-
quency QPOs (LF QPOs, observed below several tens of
Hz) and enabled the discovery of high frequency QPOs
(HF QPOs), often observed in pairs, with frequencies up
to over a kHz in NS systems (the upper and lower kHz
QPOs).

Following the realisation that kHz QPO frequencies are
close to dynamical frequencies around compact objects
(van der Klis et al. 1996; Strohmayer et al. 1996), the po-
tential of QPOs for diagnosing matter motion in strong
gravitational fields became apparent. This stimulated
the development of models involving the innermost re-
gions of accretion flows where general relativistic depar-
tures from Newtonian gravity are large (see e.g.Belloni
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& Stella 2014). In a generic model that has been widely
adopted since, the upper kHz QPO signal is directly as-
sociated to the azimuthal frequency of matter orbiting
in the inner disk region, as Syunyaev (1973) and others
had suggested decades earlier). More complex local mod-
els aiming at interpreting also other QPO modes, the low
frequency QPOs and the lower kHz QPO in particular,
were soon proposed, building on the idea that QPOs are
excited at a specific radius in the disk. Among these
are the Relativistic Precession Model (RPM Stella & Vi-
etri 1998, 1999) and the epicyclic resonance model (ERM
Abramowicz & Kluzniak 2001; Kluzniak & Abramow-
icz 2001, 2002; Fragile et al. 2016). The frequencies of
the signals predicted for different QPO modes consist of
combinations of the fundamental frequencies νφ, νθ and
νr of quasi-circular geodesics in the strong field regime.
Also QPO models involving global oscillations of the in-
ner disk, such as g- and p-modes (Nowak & Wagoner
1992, 1991; Nowak et al. 1997; Wagoner et al. 2001; Kato
2004; kato 2012; Kato 2012) and corrugation and warping
modes (Markovic & Lamb 1998; Armitage & Natarajan
1999; Kato 2001) predict frequencies related to the fre-
quencies of geodetic motion.

As geodesics are determined by the spacetime met-
ric, the above QPO models as well as models that ex-
tend them in different ways (see e.g. Torok et al. 2014;
Stuchĺık & Kološ 2016 and reference therein) hold the po-
tential to probe the spacetime itself and measure key pa-
rameters of the compact object. In applications to black
holes, the Kerr spacetime is generally used. The varying
frequencies of two (and in one case three) QPO modes
measured from a few black hole transients were success-
fully fit to the frequencies predicted by the RPM, and
black hole mass and spin inferred (Motta et al. 2014a,b).
Similarly the 3 : 2 frequency ratio in some black hole
QPOs were exploited in the ERM to infer black hole pa-
rameters (e.g. Török et al. 2005). The spacetime around
rotating NSs is more complex, as it is characterised by
mass, angular momentum, and higher order multipole
moments. Analytical approximations to the fundamental
frequencies of geodesic motion around NSs were used in
early applications of the RPM (e.g. Stella & Vietri 1998).
Other studies adopted instead the numerically calculated
spacetimes around rotating NS models, for selected EoSs
(Morsink & Stella 1999; Stella et al. 1999).

In this paper we introduce a general method to com-
pute geodesic motion in the strong-field spacetimes gen-
erated by NSs, which builds on the finding that higher
order multipole moments of NSs are related, to a good
approximation, by some“three-hair relations” (Pappas &
Apostolatos 2014; Stein et al. 2014; Yagi et al. 2014; Yagi
& Yunes 2017). In this framework, fundamental frequen-
cies of geodesic motion can be computed for any station-
ary and axisymmetric spacetime once the mass, angular
momentum and quadrupole moment are specified (for
some additional applications, see Maselli et al. 2015a,b).
These frequencies can then be used within QPO models
to fit the observed QPO frequencies, test the assump-
tions of any given model (such as, e.g., the association of
certain predicted frequencies with a given set of QPOs),
and ultimately measure NS parameters that can be trans-
lated into constraints to the EoS. An explicit form of the
space-time metric in terms of mass, angular momentum,

and higher order multipole moments has been derived
by Pappas (2017)5. Such a metric enables to reproduce
the orbital features of rotating NSs computed in fully rel-
ativistic numerical simulations up to the innermost sta-
ble circular orbit, with better than 1% accuracy (Pappas
2017). In this work we adopt the above metric, which
enables to extend previous work on NS QPOs using an-
alytic spacetimes (Pappas 2012; Pappas & Apostolatos
2013; Pappas 2015; Tsang & Pappas 2016; Pappas 2017).

Our aim is to measure/constrain the NS parameters by
modelling the QPOs in the X-ray light curve of accret-
ing NS binaries, making use of an accurate description of
the NS surrounding spacetime. In this paper we present
a first application of a new method to do so that dif-
fers from similar methods previously proposed in the use
of (i) an accurate metric to describe the spacetime of
rapidly rotating NS, (ii) a Bayesian inference technique,
which yields better constraints as the number of QPOs
considered increases as it can take into account the in-
formation of all the QPOs consiered at the same time.
We use QPOs measured with RXTE from NS LMXBs
with known rotation period (from oscillations observed
during type-I X-ray bursts, see, e.g., Watts 2012). We
considered the sample of van Doesburgh & van der Klis
(2017), and selected three sources with a large number
of QPO triplets (i.e. two kHz QPOs and a LF QPO ob-
served simultaneously), namely 4U1608-52, 4U0614+09,
and 4U1728-34.

Here we consider only the twin kHz QPOs; in a follow-
up paper (Maselli et al., in prep) we will report on the
results obtained by considering QPO triplets. We fol-
low the prescriptions of, e.g., the RPM, and we iden-
tify the upper and lower kHz QPOs with the azimuthal
frequency νφ, and the periastron precession frequency,
νper = νφ − νr (Stella & Vietri 1999)6. The two QPO
signals (three, when a third QPO is considered) are as-
sumed to be generated at the same orbital radius. Cor-
related QPO frequency variations are thus the result of
variations in the radius at which the QPOs are emitted
(see also Motta et al. 2014a).

In this paper we shall use geometric units G = c = 1.
The mass will be expressed either in kilometres, or in
solar masses M� = 1.4768 km.

2. THE METRIC FOR A ROTATING NEUTRON
STAR

The metric around a rotating NS is expressed as
a stationary and axisymmetric spacetime; it can be
parametrised in terms of the first five relativistic mul-
tipole moments (Geroch 1970a,b; Hansen 1974; Fodor
et al. 1989), i.e., the mass M , the angular momentum
J , the mass quadrupole M2, the spin octupole S3, and
the mass hexadecapole M4 (Pappas 2017). The line ele-
ment for such a spacetime can be written as (Papapetrou

5 We note that our metric is a different, more accurate approach
than the second order Hartle-Thorne spacetime which neglects mul-
tipole moments higher than the quadrupole, and is not valid for
larger rotation rates.

6 According to the RPM, a third frequency (historically known as
horizontal branch oscillations, see van der Klis 1995) is associated
with the nodal precession frequency, νnod = νφ−νθ (Stella & Vietri
1998; Stella et al 1999).
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1953),

ds2 = f−1
[
e2ζ
(
dρ2 + dz2

)
+ ρ2dϕ2

]
− f (dt− ωdϕ)

2
,

(1)
where (ρ, z) are the Weyl-Papapetrou coordinates and
the metric components f, ω, and ζ, shown in Ap-
pendix A, are functions of the multipole moments and
of the coordinates (ρ, z)7.

To adjust the spacetime to the stellar structure of the
central object, the right set of multipole moments must
be specified. Recent work (Pappas & Apostolatos 2014;
Yagi et al. 2014) has shown that for NSs the first few
relativistic multipole moments can be expressed as,

M2 = −αj2M3, S3 = −βj3M4, M4 = γj4M5, (2)

where M is the mass and j = J/M2 is the spin parame-
ter, with J being the angular momentum of the star. For
NSs the coefficients α, β, and γ can be much larger than
1, in contrast to Kerr black holes (see Doneva & Pappas
(2018) for a review). Furthermore it has been shown that
for realistic EoSs, based on microphysical calculations,
the higher order NS multipole moments (higher than M2)
can be expressed in terms of the quadrupole, angular mo-
mentum and mass (Pappas & Apostolatos (2014); Stein
et al. (2014); Yagi et al. (2014); we refer the reader to
Pappas (2017) for a detailed discussion). The spin oc-
tupole and the mass hexadecapole of a NS are related to
the quadrupole by the relations 8

y1 =−0.36 + 1.48x0.65, (3)

y2 =−4.75 + 0.28x1.51 + 5.52x0.22, (4)

where y1 = 3
√
−S̄3 = 3

√
β, y2 = 4

√
M̄4 = 4

√
γ, x =√

−M̄2 =
√
α, and M̄n = Mn

jnMn+1 , S̄n = Sn
jnMn+1 are

the (dimensionless) reduced moments. For NSs α varies
in the range between 1.5 and 10 for masses between 1M�
and up to the maximum mass (which is different for each
EoS), where smaller values correspond to larger masses.

Therefore, the description of the spacetime and of the
various geodesic frequencies will only depend on three
parameters: the mass M (that we express in units of
kilometers in G = c = 1 units), the dimensionless spin
parameter j, and the dimensionless reduced quadrupole
α ≡ −M̄2. This is especially relevant for our analysis, as
it reduces the number of parameters to be constrained.

By relating QPO frequencies to geodesic frequencies
through the adoption of a given model (the RPM in our
present case), the mass M , reduced spin j and reduced
quadrupole moment α can be measured as independent
parameters determining the characteristics of the space-
time. These three parameters, if measured precisely, pro-
vide constraints on the NS EoS. This top-down approach
involves no a priori assumption on the EoS and contrasts
with other studies in which geodesic frequencies are com-
pared to QPO frequencies based on the spacetime calcu-

7 This metric is an approximate vacuum solution of Einstein’s
field equations, that is accurate up to M4 in the moments and up

to sixth order in M/
√
ρ2 + z2.

8 Eqs. (3), (4) are accurate up to 5% for all state-of-the-art
hadronic NS EoSs (Yagi et al. 2014; Pappas 2017). In the case of
quark stars, similar relations hold with slightly different values of
the coefficients.

lated for individual EoS and specific values of M and j
(see e.g. Morsink & Stella 1999; Torok et al. 2016)

The spacetime considered in this work is equivalent
to that introduced in (Pappas 2017) and valid for all
rotation rates (see Appendix A for technical details).
Our metric is different and more accurate than slowly-
rotating approaches, as the second order Hartle-Thorne
spacetime (see Urbancova et al. (2019) for recent and de-
tailed analyses using this approach). It extends previous
work on NS QPOs based on analytic spacetimes (Pappas
2012; Pappas & Apostolatos 2013; Pappas 2015; Tsang
& Pappas 2016; Pappas 2017). The accuracy of the
epicyclic frequencies used in this paper has been tested
against fully numerical solutions showing an agreement
better than 99% down to the innermost stable circular
orbit (Pappas 2017), which outperforms the approaches
described above.

3. NUMERICAL ANALYSIS

In order to test our method with the QPO frequencies
from the sources in our sample we adopted a Bayesian

approach. For a given set of n observations ~O we wish
to determine the posterior probability distribution of the

system’s parameters ~θ = (ri=1,...n,M, j, α), i.e.

P(~θ| ~O) ∝ P0(~θ)L( ~O|~θ) , (5)

where P0(~θ) represents the prior information on the pa-

rameters. L( ~O|~θ) is the likelihood function, which we as-

sume proportional to a chi-square variable, L ∝ e−
1
2χ

2

,
given by:

χ2 =

Nobs∑
i=1

(
∆2
φ

σ2
νφ

+
∆2

per

σ2
νper

)
, (6)

where Nobs ≥ Nmin, ∆k ≡ νobsk − νk(~θ), and νj can
be either the azimuthal or the periastron precession fre-
quency.

Since we use here only pairs of kHz QPO frequen-
cies (”doublets”), each source provides 2Nobs frequencies,
which are used to determine 3 + Nobs unknown param-
eters, i.e. the NS parameters (M, j, α) and the circum-
ferential radii ri where each is produced. Thus, we need
at least Nmin = 3 doublets to characterise each source.
As the errors of the QPO observed frequencies are in

general asymmetric (see Table 3), i.e. νj = νobsj ± σ(±)
νj ,

with σ
(+)
νj 6= σ

(−)
νj , for the sake of simplicity we com-

pute the chi-square functions of Eq. (6) by using their

σνj = [σ
(+)
νj + σ

(−)
νj ]/2. This has a negligible effect on in-

ferred values of the source parameters. Moreover, given
the accuracy of our metric, the relative difference be-
tween the actual frequencies and those computed using
(1) is subdominant with respect to the observational er-
rors, and therefore it will be neglected in our analysis
(Pappas 2017).

We sample the posterior distribution (5) using a
Markov Chain Monte Carlo (MCMC) approach, based
on the Metropolis-Hastings algorithm (Gilks et al. 1996).
The random jump within the parameter space is chosen
according to a multivariate Gaussian distribution, whose
covariance matrix is continuously updated through a
Gaussian adaptation scheme (Müller & Sbalzarini 2010),
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which increases the mixing of the chains and boosts the
convergence to the target distribution. For each set of
data, we run four independent chains of 2 × 106 sam-
ples, generally discarding the first 10% of the simulation
as a burn in. The convergence of the processes is then
assessed by a standard Rubin test.

We consider flat prior distributions for all the pa-
rameters within the following ranges: M ∈ [0.7, 3]M�,
j ∈ [0, 0.7], α ∈ [1.5, 15], ri ∈ [RNS, 15M ]. Note that the
prior on χ allows only co-rotating orbital motion. We
also set the prior on ri such that it is always larger than
the stellar equatorial circumferential radius RNS. The
latter can be expressed with very good accuracy (a few
percent) as a function of M, j, and α:

RNS/M =

3∑
i=0

[Biji +AijiαN1/2 + CijiαN2/2] , (7)

were the numerical coefficients (Bi,Ai, Ci,N1,N2) are
listed in Table 1.

` = 0 ` = 1 ` = 2
A` 0.00927584 -0.0252801 0.0497335
B` -0.358824 3.15892 -5.30171
C` 2.94923 -3.20369 6.02522

TABLE 1
Numerical coefficients of the empirical relation (7),
which provides the NS circumferential radius as a

function of the dimensionless spin parameter and of the
stellar quadrupole. The best fit values for the

exponents N1,2 are given by N1 = 4.12566 and N2 = 0.996284
(Pappas 2015).

Once the P(~θ| ~O) is sampled by the MCMC, we de-
rive the probability distribution of the source parameters,
by marginalising the joint posterior distribution over the
emission radii:

P(M,χ, α) =

∫
P(~θ| ~O)dr1 . . . drn . (8)

In the following sections we apply this analysis to the
kHz QPO of 4U1608-52, 4U0614+09, 4U1728-34, and
compute P(M,χ, α) using various combinations of the
doublets for each source, (see list in Table 3). The
latter step is a crucial to our analysis as it provides a
self-consistency test for the applicability of the RPM in
conjunction with the geodesic frequencies calculated in
our method. If the assumptions of the method are cor-
rect, different sets of doublets for a given source must
necessarily provide probability distributions for masses,
spins and quadrupole moments which are consistent with
each other to within the uncertainties. On the contrary,
an inconsistency of the different probability distributions
would signal problems with the adopted geodesic and/or
QPO model.

4. RESULTS

Since we analysed kHz QPOs doublets, i.e. the QPOs
that in the RPM correspond to the periastron and
the azimuthal frequencies, the MCMC requires for each
source at least three sets of QPO frequencies, each con-
taining the QPO doublet relevant for the model, i.e.
(νφ, νper)i=1,2,3, to be solved in terms of (M,α, j) and

three emission radii (r1, r2, r3). Therefore, for each
source, we randomly selected sub-sets of three doublets
from the available data. Figure 1 shows the posterior
probabilities obtained for different sets of doublets, while
the associated numerical values are reported in Table 2.
As a representative case, we describe in detail the results
we obtained for 4U1608-52.

The posterior distributions obtained by using differ-
ent datasets are in good agreement with each other, and
the different parameter distributions are all remarkably
consistent (even though in some cases shifts between the
peaks of the different marginal distributions are appar-
ent). However the quadrupole moment of the star re-
mains essentially unconstrained, its probability distribu-
tions being almost flat between α ' 1.5 and α ' 4. This
is to be expected for two reasons: firstly, the quadrupole
moment gives a sub-leading contribution to the space-
time metric relative to mass and spin; and secondly, the
effect of the quadrupole moment is largest on the νnod
frequency - which we do not consider in this work - while
νφ and νper are only weakly affected by its variation.
However, it should be noted that adopting the approach
described here with a larger set of QPO doublets would
allow the quadrupole moment to be better constrained.
The box plot shown in Fig. 2 supports the use of our
approach together with the RPM model: it is clearly
seen that the median of the distributions are all consis-
tent with each other, and the interquartile ranges overlap
with good accuracy.

Motivated by the above results, we performed the same
Bayesian analysis by progressively increasing the num-
ber of doublets. We found that in all cases the posterior
distributions are consistent and yield acceptable param-
eters. We show the results of these steps in the triangle
plot in Fig. 3. The diagonal and off-diagonal panels show
the marginalised and the 2D joint distributions of M ,
j, and α, respectively. The mass is the parameter that
we determine with the highest precision: at 90% confi-
dence level9 we find M ∈ [1.92, 2.32]M�, with a median
of M = 2.07M�.

Our analysis also provides a poorly constrained spin
parameter with median j = 0.1 within the 90% interval
j ∈ [0, 0.26]. The 2D distributions of Fig. 3 show some
degree of positive correlation between of j and M . The
inclusion of all datasets does not modify significantly the
constraints on α, for which we still obtain a flat posterior
distribution within α ∈ [1.50, 3.30] at 90% (see the bot-
tom row of Fig. 3). In fact the values of the quadrupole
sampled by the Monte-Carlo simulation are essentially
degenerate with respect to M and j. As noted above,
this result is somewhat expected as the azimuthal and
periastron precession frequencies depend weakly on α.

The MCMC also leads to constraints on the orbital
radius associated with each doublet in the analysis. We
find values ri/M . 7 in all cases. Figure 4 shows the
the 90% confidence intervals for the 7 values. As noted
in applications of simple geodesic models (e.g. Miller
et al. 1998) upper limits on the QPO radius derived
the from the highest observed QPO frequencies provide

9 Following (Abbott et al. 2019) for parameters bounded by
the prior, as the quadrupole, we quote the 90% one-sided upper
limit, while for all the other parameters we quote the 90% highest-
posterior density interval.
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[1-2-3]
[1-3-4]
[4-5-6]
[5-6-7]

1.8 2.0 2.2 2.4 2.6 2.8

M [M⊙]

0.0 0.1 0.2 0.3 0.4



1.5 2.0 2.5 3.0 3.5 4.0

α

Fig. 1.— Marginalised posterior probabilities of (M, j, α) for 4U1608-52 derived by using different groupings of three QPO doublets drawn
from the observed frequencies (νφ, νper) in Table. 3.

2.0 2.4 2.8

[123]

[134]

[456]

[567]

M [M⊙]

0.0 0.2 0.4 0.6



2.0 3.0 4.0

α

Fig. 2.— Box and whiskers plots for (M, j, α), corresponding to
the probability distributions shown in Fig. 1. White vertical lines
in each coloured box mark the median of the parameters. The
edges of the box identify the upper and lower quartiles, while the
ends of the whiskers yield the maximum and minimum inferred
values.

Fig. 3.— Triangle plot for the posterior of the parameters of
4U1608-52. Diagonal and off-diagonal panels refer to marginalised
and 2D joint posterior distributions, respectively. Dashed and solid
curves identify contours at 68% and 90% confidence intervals, while
colored dots represent the actual points sampled by the MCMC.

an upper bound on the stellar radius. Requiring that
the oscillations is generated within the accretion disc at
orbital distances larger than RNS yields the limit RNS .
6.4M at 90% confidence level from the highest frequency
Doublet of 4U1608-52 (see r6 in Fig. 4).

| |

| |

| |

| |

| |

| |

| |

5.5 6.0 6.5 7.0 7.5

r1

r2

r3

r4

r5

r6

r7

ri/M [90%]

4U1608-52

Fig. 4.— 90% credible interval for the posterior distribution of
the QPO radius for the doublets of 4U1608-52.

2.0 2.4 2.8

[123 ]

[245 ]

[all ]

M [M⊙]

0.0 0.2 0.4 0.6



2.0 3.0 4.0

α

1.6 2.0 2.4 2.8

[123 ]

[2345 ]

[345678 ]

[all ]

M [M⊙]

0.0 0.2 0.4 0.6



2.0 3.0 4.0

α

Fig. 5.— Same as in Fig. (2) but for 4U0614+09 (top) and
4U1728-34 (bottom).
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1-2-3
2-4-5
All

1.8 2.0 2.2 2.4 2.6 2.8 3.0

M[M⊙]

4U0614+09

1-2-3
2-3-4-5
3-4-5-6-7-8
All

1.8 2.0 2.2 2.4 2.6 2.8 3.0

M[M⊙]

4U1728-34

Fig. 6.— Posterior distributions for the mass of the binary sys-
tems 4U0614+09 and 4U1728-34. Dashed curves refer to different
grouping of kHz QPO doublets, whereas the solid black lines are
obtained by fitting all doublets for each source.

The analysis of the kHz QPOs of 4U0614+09 and
4U1728-34 yields similar results to that of the 4U1608-52
kHz QPOs. Figure 5 shows that also for these systems
there exists a general agreement of the inferences from
different subsets of doublets, with 4U1728-34 displaying
the largest spread in the posterior distributions of the
parameters when the full set of doublet is taken into ac-
count. 4U0614+09 and 4U1728-34 are also characterised
by a mass distribution which peaks around ∼ 2M�. The
posteriors of M are shown in Fig. 6; different groupings
of doublets appear to give consistent results for each sys-
tem. and converge to a similar distribution. These are
fairly large mass values compared to those typically de-
rived for, e.g., isolated pulsars (Özel et al. 2012), but
we note that other studies recovered similarly large NS
masses (e.g., Stella & Vietri (1999); Torok et al. (2014)).
The quadrupole moments inferred for these two systems
would suggest more compact objects (i.e, with larger val-
ues of M/R) with faster rotation rates with respect to
4U1608-52, although we stress that the inferred spin pa-
rameters are not very well constrained. The median of
all parameters for each sources, together with 90% un-
certainties, are reported in Table 2.

source M/M� j α

4U1608-52 2.07+0.25
−0.15 0.10+0.16

−0.10 2.56+0.74
−1.06

4U0614+09 2.10+0.45
−0.27 0.20+0.24

−0.20 2.22+1.04
−0.68

4U1728-34 2.11+0.47
−0.34 0.27+0.24

−0.27 2.00+1.18
−0.46

TABLE 2
Median and 90% values for the parameters of the sources

analysed.

The values of (M, j, α) provide an estimate for the NS
equatorial radius through (7). We used the values we
determined from the analysis of the full set of doublets
of 4U1608-52, 4U0614+09, and 4U1728-34 to build the
joint 2D distribution of P(M,RNS). The contour plot of
Fig. 7 shows the 90% region of the mass-radius posteri-
ors of the three sources. Fig. 7 shows also the expected
mass-radius relations for three hadronic EoS (APR (Ak-
mal et al. 1998), SLy4 (Douchin & Haensel 2001), and
UU (Wiringa et al. 1988)), are all consistent with current
constraints from X-ray observations (Ozel & Freire 2016;
Riley et al. 2019b; Miller et al. 2019b; Raaijmakers et al.
2019) as well as gravitational wave data (Abbott et al.
2018). They are also consistent with the most recent

results inferred by the NICER experiment from obser-
vations of a rotation-powered pulsar (Riley et al. 2019b;
Miller et al. 2019b; Raaijmakers et al. 2019).

Fig. 7.— 90% 2D credible interval and marginalised distributions
of the mass and radius for the 3 sources analysed. Colored curves
are from of a few EoS whose M -R relation is compatible with
current constraints from X-ray observations and the gravitational-
wave event GW170817. The left and right edges of each colored
band correspond to stellar configurations for which the spins are
assumed to be zero and equal to the median of the values inferred
by our MCMC analysis, respectively.

5. DISCUSSION AND CONCLUSIONS

Based on an analytic description of the spacetime
around a NS in terms of three independent parameters
(mass, spin, and quadrupole moment), we developed a
novel method to calculate accurately the frequencies of
geodesic motion in the closest vicinity of the star, without
resorting to a specific EoS, but instead adopting priors to
our treatment that only allow specific parameter ranges
for an unspecific EoS. Once these frequencies are related
to the QPO frequencies observed in low mass X-ray bi-
naries through a QPO model, they can be fit to the data
in order to obtain estimates of the NS mass, spin and
quadrupole moment, from which, in turn, an estimate of
the NS radius and mass can be derived. This provides
constraints to the EoS, and in principle can inform mod-
els of supranuclear density matter in a complementary
way to other X-ray based techniques.

We presented a proof of principle of the method in ap-
plication to the observed pairs of kHz QPO frequencies
(doublets) in three systems (4U1608-52, 4U0614+09 and
4U1728-34) by applying the QPO frequency identifica-
tion proposed, for instance in the relativistic precession
model (Stella & Vietri 1999). Through a Bayesian analy-
sis we obtained mass estimates around ∼ 2.05−2.16 M�,
close to (but not exceeding) the maximum of the ob-
served distribution of NS masses (Lattimer 2019).

Our results appear to favour stiff EoSs, i.e. large NS
masses and relatively large NS radii, as indicated by the
marginalised distributions (see Fig. 7). Our method
yields relatively low values of the spin parameter j, all
strictly smaller than 0.3. One may ask, how is it possible
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to produce any constrains on the parameter α, since the
geodesic frequencies used are such weak functions of that
parameter. This is due to the fact that the spin j and
α also determine both the equatorial radius of the star
and the ISCO. This means that the radius where the or-
bital motion occurs is limited by either the ISCO or the
surface of the star, which limits the possible range of fre-
quencies. These limitations in turn result in constraints
on the parameters j and α.

Once the values of α, j and M are known, we can derive
the probability distribution of the neutron star rotation
rate f . To this aim we use the semi-analytic fit derived in
Pappas (2015) (see eq. B1 and the discussion in Pappas
2015). Due to the poor constraints on the quadrupole
moment α, the resulting bounds on f are rather loose.
We find that f is constrained at 90% confidence interval
within ∼ [0, 582]Hz (f ∼ [0, 739]Hz at 95% confidence
level) and ∼ [20, 1000]Hz (f ∼ [18, 1100]Hz at 95% con-
fidence level) for 4U1608-52 and 4U0614+09. f is un-
constrained for 4U1728-34, for which we have a nearly
flat distribution between 0 and 1000 Hz. These values
are consistent (marginally, in the case of 4U1608-52)
with previous estimates of the NS spin frequencies for
the above binary systems, i.e. f ≈ 620Hz, f ≈ 415Hz
and f ≈ 363Hz, respectively (Watts 2012). We stress
that being this work a proof of concept, we decided to
adopt priors with only weak limitations in order to assess
the goodness of our approach. If additional information,
chiefly the NS rotation period, were included as a prior in
the analysis, significanlty tighter bounds would result. A
precise determination of the NS mass, moment of inertia
and quadrupole moment that can be obtained in this way
would provide an unprecedented three-parameter con-
straint on the EoS, for which suitable 3D mappings of
the EoS (as opposed to the familiar 2D mapping involv-
ing mass and radius, or mass and moment of inertia,
Lattimer & Prakash 2007) would be needed. Moreover,
such measurements could be used together with current
and future constraints form gravitational wave sources,
to infer multi-messenger bounds on the stellar structure
(Fasano et al. 2019).

The above mass and spin estimates are compatible
with those from the early applications of the RPM, as
the relevant geodesic frequencies depend only weakly on
the spin and quadrupole moment (see, e.g., Stella & Vi-
etri 1998, but also du Buisson et al. 2019). Instead, the
EoS-independent bounds on the radius and mass that
we derived represent original results of our new method.
We note that the ∼ 2 M� region in the NS mass-radius
diagram is virtually unconstrained at present by obser-
vations in the radio and X-ray bands, while the limits on
the tidal deformability from the GW170817 event, once
translated into mass-radius bounds, are compatible with
our results (Abbott et al. 2018). We remark that a pre-
cise measurement of the mass quadrupole moment can be
used to directly constrain the EoS, without an explicit
determination of the radius (see Pappas 2012; Pappas &
Apostolatos 2014). The limits on the quadrupole that
we obtained in this work are very loose due to the low
number of QPOs considered (up to 8 for a given source)
and no stringent conclusion can be drawn. Instead, sig-
nificantly tighter bounds are obtained by considering a
larger number of doublets (Motta et al. in prep).

The method we presented is amenable to further,
more extensive applications which exploit different QPO
datasets and/or alternative QPO models. In a forthcom-
ing study we will fit QPO triplets, each consisting of a
low-frequency QPO simultaneous to the two kHz QPOs,
where the former is associated with nodal precession fre-
quency, in addition to the azimuthal and periastron pre-
cession frequencies that were used in the present study.
This is expected to yield higher precision estimates of the
parameters governing the NS spacetime, since the nodal
precession frequency depend quite strongly on NS spin
and quadrupole moment. Our method is also applicable
to other models relating QPOs to geodesic frequencies.
This includes models in which QPO frequency identi-
fications are different than those of the RPM, such as
the epicyclic resonance models and global disk oscilla-
tion models in their various versions (e.g. Torok et al.
(2014); Stuchĺık & Kološ (2016) and refs therein). In
all cases a key requirement is that the set of indepen-
dent QPO frequencies predicted by a model and fit to
the datais sufficiently large that the three parameters
describing NS spacetime can be derived.

The reliability of results from our new method, like
that of inferences based on QPOs in general, depend cru-
cially on the correctness of the association of QPO signals
to geodesic frequencies. Extensive, high sensitivity and
large signal to noise QPO measurements to be obtained
with next generation, large area X-ray missions, such as
eXTP (De Rosa et al. 2019), Athena (Barcons et al. 2015)
and STROBE-X (Ray et al. 2019) will allow the detec-
tion and precise characterisation of a significantly higher
number of QPOs from many sources. In conjunction with
detailed applications of competing models and advanced
methods like our own, they may provide the key to re-
solving long-standing ambiguities in QPO interpretation
and placing stringent constraints on NS structure and
EoS.
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APPENDIX

A. METRIC COMPONENTS OF ROTATING NEUTRON STARS

In this appendix we present the explicit form of the metric functions introduced in Sec. 2 for the line element given
in Eq. (1), which describes the spacetime around a rotating NS. We refer the reader to Pappas (2017) for further
details. The components of the metric are functions of the coordinates (ρ, z), and of the multipole moments, and are
given by the following expressions:

f(ρ, z) = 1− 2M√
ρ2 + z2

+
2M2

ρ2 + z2
+

(
M2 −M3

)
ρ2 − 2

(
M3 +M2

)
z2

(ρ2 + z2)
5/2

+
2z2

(
−J2 +M4 + 2M2M

)
− 2MM2ρ

2

(ρ2 + z2)
3

+
A(ρ, z)

28 (ρ2 + z2)
9/2

+
B(ρ, z)

14 (ρ2 + z2)
5 , (A1)

ω(ρ, z) =− 2Jρ2

(ρ2 + z2)
3/2
− 2JMρ2

(ρ2 + z2)
2 +

F (ρ, z)

(ρ2 + z2)
7/2

+
H(ρ, z)

2 (ρ2 + z2)
4 +

G(ρ, z)

4 (ρ2 + z2)
11/2

, (A2)

ζ(ρ, z) =
ρ2
[
J2
(
ρ2 − 8z2

)
+M

(
M3 + 3M2

) (
ρ2 − 4z2

)]
4 (ρ2 + z2)

4 − M2ρ2

2 (ρ2 + z2)
2 , (A3)

where

A(ρ, z) = 8ρ2z2
(
24J2M + 17M2M2 + 21M4

)
+ ρ4

(
−10J2M + 7M5 + 32M2M

2 − 21M4

)
+8z4

(
20J2M − 7M5 − 22M2M

2 − 7M4

)
, (A4)

B(ρ, z) =ρ4
(
10J2M2 + 10M2M

3 + 21M4M + 7M2
2

)
+ 4z4

(
−40J2M2 − 14JS3 + 7M6 + 30M2M

3

+14M4M + 7M2
2

)
− 4ρ2z2

(
27J2M2 − 21JS3 + 7M6 + 48M2M

3 + 42M4M + 7M2
2

)
, (A5)

H(ρ, z) = 4ρ2z2
[
J
(
M2 − 2M3

)
− 3MS3

]
+ ρ4 (JM2 + 3MS3) , (A6)

G(ρ, z) =ρ2
{
−J3

(
ρ4 + 8z4 − 12ρ2z2

)
+ JM

[(
M3 + 2M2

)
ρ4 − 8

(
3M3 + 2M2

)
z4

+4
(
M3 + 10M2

)
ρ2z2

]
+M2S3

(
3ρ4 − 40z4 + 12ρ2z2

)}
, (A7)

F (ρ, z) =ρ4
(
S3 − JM2

)
− 4ρ2z2

(
JM2 + S3

)
. (A8)

The spacetime defined above can be given in an even more convenient form so as to have the right Schwarzschild
limit when the rotation goes to zero, i.e., j → 0. To this aim, we resum the expansions of f(ρ, z) and ζ(ρ, z), using

the variable r =
√
ρ2 + z2, such that when the rotation vanishes the metric coincides with the exact Schwarzschild

solution in its standard form. With this procedure, we obtain:

f(ρ, z) = 1− 4M

r− + r+ + 2M
+
α2j4M6

(
ρ2 − 2z2

)2
2r10

+
2βj4M6z2

(
2z2 − 3ρ2

)
r10

−
γj4M5

(
3ρ4 + 8z4 − 24ρ2z2

)
(r − 2M)

4r10
− j2M4

14r10
[
2M2

(
−5ρ4 + 80z4 + 54ρ2z2

)
−M

(
20z2 − ρ2

) (
5ρ2 + 4z2

)
r + 28z2r4

]
+
αj2M3

7r10
[
M3

(
−5ρ4 − 60z4 + 96ρ2z2

)
+ 2M2r

(
−4ρ4 + 22z4 − 17ρ2z2

)
+ 14M

(
ρ6 − 2z6 − 3ρ2z4

)
+ 7

(
2z2 − ρ2

)
r5
]

(A9)

and

ζ(ρ, z) =
1

2
log

(
r2 −M2 + r−r+

2r−r+

)
+
j2M4ρ2

[
(1− 3α)ρ2 + 4(3α− 2)z2

]
4r8

, (A10)

where r± =
√

(M ± z)2 + ρ2 and we have used the definitions (2) for the moments. When j → 0, from Eq. (A2) it
follows that ω → 0 and the functions f and ζ take their Schwarzschild form. This metric, as the previous one, is
accurate up to M4 in the moments and up to order O(M6/r6) with respect to the vacuum field equations.

It is worth remarking that while the spacetime is given in Weyl-Papapetrou coordinates, which differ from the usual
Schwarzschild-like or quasi-isotropic ones, the various geodesic frequencies are coordinate-independent quantities, while
the relevant radii on the equatorial plane can be expressed in terms of the circumferential radius which is also a
geometric and coordinate-independent quantity.

B. QPO FREQUENCIES

In this appendix we give the QPO frequencies and corresponding uncertainties for the three LMXB systems consid-
ered in this paper. Frequencies are all from RXTE/PCA observations and were taken from van Doesburgh & van der
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Klis (2017).

4U1608-52

Doublet # νφ σ
(+)
φ σ

(−)
φ νper σ

(+)
per σ

(−)
per

1 849.92 6.94 6.53 535.32 15.4 23.1
2 940.93 12.1 12.5 655.78 2.15 2.07
3 958.61 8.19 8.36 654.7 0.23 0.23
4 976.6 6.89 7.00. 674.76 1.26 1.24
5 1034.6 10.6 10.3 769.32 0.83 0.79
6 1041.1 7.04 7.32 774.82 0.83 0.81
7 1053.1 11.2 13.6 740.61 0.59 0.54

4U0614+09

# νφ σ
(+)
φ σ

(−)
φ νper σ

(+)
per σ

(−)
per

1 957.11 8.97 9.24 636.61 1.98 2.1
2 959.41 7.06 7.73 649.9 1.61 1.8
3 1076.4 11.2 14.4 749.84 1.77 1.68
4 1103.8 10.7 11.1 761.02 1.21 1.29
5 1166.7 16.9 21.7 753.15 5.67 5.23

4U1728-34

# νφ σ
(+)
φ σ

(−)
φ νper σ

(+)
per σ

(−)
per

1 717.9 5.09 5.04 377. 18.6 15.
2 873.25 3.36 3.3 538.38 37.4 37.1
3 972.49 5.68 5.51 614.15 3.66 4.2
4 1089.2 3.85 3.97 752.42 0.67 0.66
5 1091.4 10.6 10.8 740.48 0.84 0.87
6 1107.3 9.99 9.72 778.22 2.85 2.64
7 1118.8 7.29 7.53 801.78 10.8 11.
8 1149.9 1.58 1.16 816.36 1.08 1.21

TABLE 3
QPO frequencies (with experimental errors σ(±)) observed for the three sources analysed in this paper, 4U1608-52,

4U0614+09, and 4U1728-34. According the RPM, (νφ, νper) correspond to the kHz QPO doublets.

REFERENCES

Abbott, B. P., et al. 2018, Phys. Rev. Lett., 121, 161101
—. 2019, Phys. Rev., X9, 011001
Abramowicz, M. A., & Kluzniak, W. 2001, Astron. Astrophys.,

374, L19
Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998,

Phys. Rev., C58, 1804
Armitage, P. J., & Natarajan, P. 1999, Astrophys. J., 525, 909
Barcons, X., Nandra, K., Barret, D., et al. 2015, J. Phys. Conf.

Ser., 610, 012008
Belloni, T. M., & Stella, L. 2014, Space Sci. Rev., 183, 43
De Rosa, A., et al. 2019, Sci. China Phys. Mech. Astron., 62,

29504
Doneva, D. D., & Pappas, G. 2018, Universal Relations and

Alternative Gravity Theories, ed. L. Rezzolla, P. Pizzochero,
D. I. Jones, N. Rea, & I. Vidaña (Cham: Springer International
Publishing), 737–806

Douchin, F., & Haensel, P. 2001, Astron. Astrophys., 380, 151
du Buisson, L., Motta, S., & Fender, R. 2019, MNRAS, 486, 4485
Fasano, M., Abdelsalhin, T., Maselli, A., & Ferrari, V. 2019,

Phys. Rev. Lett., 123, 141101
Fodor, G., Hoenselaers, C., & Perjés, Z. 1989, J.Math.Phys., 30,

2252
Fragile, P. C., Straub, O., & Blaes, O. 2016, MNRAS, 461, 1356
Geroch, R. P. 1970a, J.Math.Phys., 11, 1955
—. 1970b, J.Math.Phys., 11, 2580
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. 1996, Markov

Chain Monte Carlo in Practice (London, UK: Chapman & Hall)
Hansen, R. O. 1974, J. Math. Phys., 15, 46
Hinderer, T., Rezzolla, L., & Baiotti, L. 2018, Astrophys. Space

Sci. Libr., 457, 575
Kato, S. 2001, Publications of the Astronomical Society of Japan,

53, L37
Kato, S. 2004, Publ. Astron. Soc. Jap., 56, 905
—. 2012, Publ. Astron. Soc. Jap., 64, 139
kato, S. 2012, Publ. Astron. Soc. Jap., 64, 129
Kluzniak, W., & Abramowicz, M. A. 2001,

arXiv:astro-ph/0105057
—. 2002, arXiv:astro-ph/0203314

Lattimer, J. M. 2019, Universe, 5, 159
Lattimer, J. M., & Prakash, M. 2007, Phys. Rept., 442, 109
Markovic, D., & Lamb, F. K. 1998, arXiv:astro-ph/9801075
Maselli, A., Gualtieri, L., Pani, P., Stella, L., & Ferrari, V. 2015a,

Astrophys.J., 801, 115
Maselli, A., Pani, P., Gualtieri, L., & Ferrari, V. 2015b, Phys.

Rev., D92, 083014
Miller, M. C., et al. 2019a, Astrophys. J. Lett., 887, L24
Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019b, The

Astrophysical Journal, 887, L24
Morsink, S. M., & Stella, L. 1999, ApJ, 513, 827
Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T., &
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2005, A&A, 436, 1
Torok, G., Bakala, P., Sramkova, E., et al. 2014, arXiv:1408.4220,

[Astrophys. J.760,138(2012)]
Tsang, D., & Pappas, G. 2016, Astrophys. J., 818, L11
Urbancova, G., Urbanec, M., Torok, G., et al. 2019,

arXiv:1905.00730

van der Klis, M. 1995, IAU Colloq. 151: Flares and Flashes, 454,
321

—. 2006, Rapid X-ray Variability, Vol. 39, 39–112
van der Klis, M., Swank, J. H., Zhang, W., et al. 1996, ApJ, 469,

L1
van Doesburgh, M., & van der Klis, M. 2017, MNRAS, 465, 3581
Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodriguez, M. 2001,

Astrophys. J., 559, L25
Watts, A. L. 2012, ARA&A, 50, 609
Watts, A. L., et al. 2016, Rev. Mod. Phys., 88, 021001
Wiringa, R. B., Fiks, V., & Fabrocini, A. 1988, Phys. Rev. C, 38,

1010
Yagi, K., Kyutoku, K., Pappas, G., Yunes, N., & Apostolatos,

T. A. 2014, Phys. Rev., D89, 124013
Yagi, K., & Yunes, N. 2017, Phys. Rept., 681, 1


