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ABSTRACT

Aims. Understanding the link between the galaxy properties and the dark matter halos they reside in and their coevolution is a powerful
tool for constraining the processes related to galaxy formation. In particular, the stellar-to-halo mass relation (SHMR) and its evolution
throughout the history of the Universe provides insights on galaxy formation models and allows us to assign galaxy masses to halos
in N-body dark matter simulations. To address these questions, we determine the SHMR throughout the entire cosmic history from
z ∼ 4 to the present.
Methods. We used a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter
halo mass functions up to z ∼ 4 from the ΛCDM DUSTGRAIN-pathfinder simulation, which is complete for Mh > 1012.5 M� , and
extended this to lower masses with a theoretical parameterization. We propose an empirical model to describe the evolution of the
SHMR as a function of redshift (either in the presence or absence of a scatter in stellar mass at fixed halo mass), and compare the
results with several literature works and semianalytic models of galaxy formation. We also tested the reliability of our results by
comparing them to observed galaxy stellar mass functions and to clustering measurements.
Results. We derive the SHMR from z = 0 to z = 4, and model its empirical evolution with redshift. We find that M∗/Mh is always
lower than ∼ 0.05 and depends both on redshift and halo mass, with a bell shape that peaks at Mh ∼ 1012 M�. Assuming a constant
cosmic baryon fraction, we calculate the star-formation efficiency of galaxies and find that it is generally low; its peak increases with
cosmic time from ∼ 30% at z ∼ 4 to ∼ 35% at z ∼ 0. Moreover, the star formation efficiency increases for increasing redshifts at
masses higher than the peak of the SHMR, while the trend is reversed for masses lower than the peak. This indicates that massive
galaxies (i.e., galaxies hosted at halo masses higher than the SHMR peak) formed with a higher efficiency at higher redshifts (i.e.,
downsizing effect) and vice versa for low-mass halos. We find a large scatter in results from semianalytic models, with a difference
of up to a factor ∼ 8 compared to our results, and an opposite evolutionary trend at high halo masses. By comparing our results with
those in the literature, we find that while at z ∼ 0 all results agree well (within a factor of ∼ 3), at z > 0 many differences emerge. This
suggests that observational and theoretical work still needs to be done. Our results agree well (within ∼ 10%) with observed stellar
mass functions (out to z = 4) and observed clustering of massive galaxies (M∗ > 1011 M� from z ∼ 0.5 to z ∼ 1.1) in the two-halo
regime.

Key words. galaxies: evolution – galaxies: mass function – galaxies: formation – galaxies: high redshift – cosmology: observations

1. Introduction

In the current Λ cold dark matter (ΛCDM) concordance cosmol-
ogy, the matter density of the Universe is dominated by CDM,
whose gravitational evolution gives rise to a population of viri-
alized dark matter halos spanning a wide range of masses. Nu-
merical simulations of structure formation in a CDM universe
predict that these dark matter halos contain a population of sub-
halos. In this picture, galaxies form at the centers of halos and
subhalos, and their formation is mainly driven by the cooling
and condensation of gas in the center of the potential wells of
the extended virialized dark matter halos (White & Rees 1978).
Therefore, galaxy properties such as luminosity or stellar mass
are expected to be tightly coupled to the depth of the halo poten-
tial and thus to the halo mass. Understanding the relation of the
galaxy stellar mass content to the mass of its dark matter halo is

? giacomo.girelli2@unibo.it

a powerful tool for constraining the processes related to galaxy
formation.

There are many different approaches to link the properties of
galaxies to those of their halos (see Wechsler & Tinker 2018 for a
review). A first method derives the halo properties from the prop-
erties of its galaxy population using galaxy kinematics (Erickson
et al. 1987; More et al. 2009a,b, 2011; Li et al. 2012), gravita-
tional lensing (Mandelbaum et al. 2005; Velander et al. 2014),
or X-ray studies (Lin et al. 2003, 2004; Kravtsov et al. 2018),
for instance. A second approach is to model the physics that
shapes galaxy formation in either large numerical simulations
that include both gas and dark matter (Springel & Hernquist
2003, or the Illustris simulation Sijacki et al. 2015; Nelson et al.
2015 or the Eagle simulation McAlpine et al. 2016) or semi-
analytic models (SAMs) of galaxy formation (e.g., Kauffmann
et al. 1993; Gonzalez-Perez et al. 2014; Henriques et al. 2015;
Croton et al. 2016). However, many of the physical processes in-
volved in galaxy formation (such as star formation and feedback)
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are still not well understood, and in many cases, simulations are
not able to reproduce the observed quantities with high accuracy
(see Naab & Ostriker 2017; Somerville & Davé 2015 for two
reviews) over large volumes. Building realistic and large mocks
is fundamental for optimizing the scientific exploitation of on-
going and future large surveys, such as Euclid (Laureijs et al.
2011), by means of understanding and minimizing the system-
atic uncertainties and selection effects.

With the advent of large galaxy surveys in the past decades,
other methods have been developed. These link galaxies to ha-
los using a statistical approach. One example is the halo occu-
pation distribution (HOD) formalism, which specifies the proba-
bility distribution for a halo of mass M to harbor N galaxies with
certain intrinsic properties, such as luminosity, color, or type
(e.g., Zheng et al. 2007; Yang et al. 2012; Carretero et al. 2015).
More complex formulations of this type of modeling, such as
the conditional luminosity function (CLF) formalism (e.g., van
den Bosch et al. 2003; Yan et al. 2005; Yang et al. 2012), have
extended the HOD approach. Because reliable galaxy cluster-
ing measurements are not available at high redshift, the HOD
and CLF approaches have typically been used only at low red-
shift. In order to avoid this problem, galaxies and dark matter
halos can be linked assuming that a galaxy property (i.e., the
stellar mass, or the galaxy luminosity) monotonically relates to a
halo property (i.e., the halo mass, the circular velocity of halos),
and therefore the relation between dark matter halos or subha-
los and galaxy properties can be found by performing a one-to-
one association from their distributions. This approach is called
(sub)halo abundance matching, hereafter SHAM, or simply AM
(e.g., Guo et al. 2010; Behroozi et al. 2010, 2013; Reddick et al.
2013; Moster et al. 2013; Rodríguez-Puebla et al. 2017). The
only observational input of this method is the stellar mass func-
tion (SMF) or luminosity function. This approach also predicts
the clustering statistics remarkably well (see Moster et al. 2010,
2013 as examples), down to scales that depend on the resolu-
tion of the adopted simulation (an additional modeling of sub-
halos is required on scales smaller than the resolution). The evo-
lution of the SHAM technique is the empirical modeling (EM,
e.g., Behroozi et al. 2019; Moster et al. 2018; Grylls et al. 2019;
Schreiber et al. 2017), in which dark matter halos from an N-
body simulation (with merger trees) are linked to several ob-
served galaxy properties (such as stellar mass, star-formation
rate, and quenched galaxy fractions).

These methods have the advantage that they do not rely
on assumptions about the many details of physical processes
that drive galaxy formation. Moreover, by construction, physical
properties are in agreement with observations, and the param-
eterization of the model is flexible (given that the parametriza-
tion only depend on the input observations and can easily be
changed) but this type of modeling is less predictive than other
types, such as hydrodynamic simulations or SAMs (Wechsler &
Tinker 2018). However, these models can constrain the relation-
ship between galaxy and halo properties (and thus, indirectly, the
underlying physics), and mock catalogs can be constructed that
reproduce an observational quantity in detail (such as the SMF).

We here adopt the SHAM approach to link the SMF to halo
and subhalo mass functions. In particular, we use a dedicated
SMF derived on the Cosmological Evolution Survey (COSMOS)
field (Scoville et al. 2007), whose size and depth allow us to ap-
ply this method over a wide homogeneous and continuous red-
shift coverage up to z ∼ 4. We describe the cosmological simu-
lation we use in Sect. 2 and the observations in Sect. 3. In Sect. 4
we present our method, parameterize the stellar-to-halo mass re-
lation (SHMR), and model its empirical evolution with redshift.

The results are presented in Sect. 5, with an analysis of the evo-
lution of the SHMR peak and its implications for the physics of
galaxy formation and evolution. In order to test the validity of
our method, in Sect. 6 we apply the relation to the dark mat-
ter simulation; we then compute the SMFs, and compare them
with different observed estimates. Finally, in Sect. 7 we analyze
clustering as a function of stellar mass.

Throughout this paper we adopt a standard ΛCDM cos-
mology with cosmological parameters set to be consistent with
the Planck 2015 constraints (Planck Collaboration et al. 2016):
Ωm = 0.31345, ΩΛ = 0.68655, Ωb = 0.0481, H0 =
67.31 km s−1 Mpc−1, and n = 0.9658. More importantly, we
highlight that all the masses reported in this paper (both halo and
stellar masses, unless differently specified) are expressed in units
of h67 = H0 /(67 km s−1 Mpc−1). More precisely, halo masses are
in units of Mh h−1

67 , and stellar masses are in units of M∗ h−2
67 .

2. Simulation and halo catalogs

In this section we present the simulation we adopt in this work.
We describe its parameters, the halo catalogs, and the adopted
halo masses.

2.1. N-body simulation

The populations of dark matter halos we used were drawn
from a cosmological N-body collisionless simulation run with
the code MG-GADGET (Springel et al. 2001, 2005; Puch-
wein et al. 2013) within the DUSTGRAIN-pathfinder simula-
tion set presented in Giocoli et al. (2018). Standard cosmo-
logical parameters were set to be consistent with the Planck
2015 cosmic microwave background (CMB) based cosmolog-
ical constraints (Planck Collaboration et al. 2016) mentioned
above. The simulation was performed in a periodic cosmolog-
ical box of 750 Mpc h−1 per side, and contained 7683 particles
with a particle mass of mCDM = 8.1 × 1010 M� h−1, with h =
H0 /(100 km s−1 Mpc−1). We chose the ΛCDM DUSTGRAIN-
pathfinder as a reference simulation although its mass resolution
is quite low because we will extend the approach described in
this paper to modified gravity and/or massive neutrino cosmolo-
gies, which are present in the DUSTGRAIN-pathfinder suite.

2.2. Halo catalogs

The collapsed CDM structures were identified in each comov-
ing snapshot by means of a friends-of-friends algorithm (FoF,
Davis et al. 1985) run on the CDM particles with linking length
λ = 0.16 × d, where d is the mean interparticle separation, re-
taining only structures with more than 32 particles, which cor-
respond approximately to ∼ 1012.4 M� h−1. In addition to these
FoF catalogs, the Subfind algorithm (Springel et al. 2001) was
run to identify gravitationally bound structures and to associate
standard quantities, such as the radius R200, inside of which the
mean density ρ is 200 times the critical density of the universe
ρcrit (White 2001), and the mass M200 contained within R200, of
the main diffuse substructure of each FoF group.

We used both the comoving boxes and the light cones of the
simulation in the analyses. The comoving boxes have a size of
750 Mpc h−1 on a side and range from z = 0 to z = 99 for a total
of 33 stored snapshots. More in detail, the boxes we considered
are located at redshifts z = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.25, 2.5, 3.0, 3.5, and 4.0.
The light cones were built using the MapSim routine (Giocoli
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Fig. 1. Histograms of halo masses for three comoving boxes located at
z = 0 (top panel), z = 1 (central panel), and z = 3 (bottom panel). In
all panels, we show the distribution of observed mass (violet) and in-
fall mass (brown) of subhalos that have entered R200 of their main halo
(i.e., are located at R < R200,main halo). We also show the distribution of
observed (red) and infall (blue) masses of all subhalos and the mass
distribution of main (or central) halos with subhalos (light blue), the
distribution of main halos without subhalos (orange), the total distribu-
tion of all main halos (green), and the distribution of all halos (black;
i.e., both main and subhalos) considering the infall mass for subhalos.

et al. 2014) as described in Giocoli et al. (2018), with the parti-
cles stored in the snapshots from z = 0 to z = 4. The particles
from different snapshots were distributed according to their co-
moving distances with respect to the observer, from which the
redshift was derived, and according to whether they lay within
a defined aperture of the field of view. We created 256 differ-
ent light-cone realizations, each with an area of 72.18 deg2, by
randomizing the various comoving cosmological boxes.

We selected only halos with masses M200 ≥ Mmin,halo =
1012.5 M� for the comoving boxes and the light cones because
the mass resolution of the simulation is finite. In this way, we
ensured that our catalogs are complete, as we show in Fig. 1,
which presents the halo mass distribution.

We also identified subhalos: main (or central) halos contain
a population of subhalos, which are the remnants of accreted
halos. Because of the resolution of our simulation, subhalos are
one order of magnitude less abundant than main halos, as we also
show in Fig. 1. We further note that central halos with subhalos
are on average more massive than central halos without subhalos
at z < 1, whose contribution is almost negligible at masses above
Mh ∼ 1014 M�. We investigate the characteristics and relative
importance of subhalos in the next section.

2.3. Subhalos and infall mass

Subhalos are gravitationally bound structures that are smaller
than the main halo they belong to, orbiting within the gravita-
tional potential of their main halo. Moreover, when they enter
R200,main halo, they start to lose mass through various dynamical
effects, including dynamical friction, tidal stripping, and close
encounters with other subhalos, and they may eventually be
completely disrupted (e.g., Choi et al. 2007). Stars are centrally
concentrated and more tightly bound than the dark matter, and
the stellar mass of a galaxy that is accreted by a larger system
is therefore expected to change only slightly, even though most
of the dark matter has been stripped off. Therefore, the subhalo
mass at the time of observation is not the best tracer for the po-
tential well that shaped the galaxy properties. A better tracer is
the subhalo mass at the time it was accreted to the host halo
(hereafter, the “infall mass”). This was first proposed by Conroy
et al. (2006) and was used in several works (e.g., Moster et al.
2010; Behroozi et al. 2010; Moster et al. 2013; Reddick et al.
2013). We followed Gao et al. (2004) to parameterize the re-
tained mass fraction of each subhalo as a function of its distance
from the host halo center r in units of the radius R200 of its host
halo,

Mobs

Minf
= 0.65

(
r

R200

)2/3

, (1)

where Minf is the infall mass, Mobs is the mass of the subhalo at
the moment of observation (i.e., after losing mass through inter-
actions). We also evaluated the infall redshift by calculating the
accretion time tm by inverting the relation presented in Giocoli
et al. (2008),

Minf(t) = Mobs exp
[
t − tm
τ(z)

]
, (2)

where τ(z) describes the redshift dependence of the mass-loss
rate. van den Bosch et al. (2005) proposed the following equation
for τ(z):

τ(z) = τ0

[
∆V (z)

∆0

]−1/2 [
H(z)
H0

]−1

, (3)
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with H(z) the Hubble constant at redshift z, τ0 = 2.0 Gyr, and
∆V = ρ/ρcrit (Bryan & Norman 1998).

We followed this approach because the merger trees of the
simulation were not stored, and therefore the infall mass cannot
be calculated directly from the snapshots. However, as shown in
Gao et al. (2004), Eq. 1 has been calibrated for subhalos with
masses higher than 6 × 1010h−1M� in a ΛCDM cosmology, and
therefore it is suitable for the regime of subhalo masses in our
simulation.

In the remainder of this paper, we use the infall mass of the
subhalos because as we described above, it is a better tracer of
the gravitational potential well at the moment of galaxy forma-
tion. It is therefore expected to provide a better link to the stellar
mass than the observed mass. In Fig. 1 we show the histograms
representing the mass distribution of subhalos that have lost mass
(i.e., those located at r < R200 at the time of observation) for
three comoving boxes, and for the mass at the time of observa-
tion and the infall mass. For subhalos at r < R200 the median
mass loss at all redshifts is δlog(Mh) = 0.25 dex, with a maxi-
mum mass loss of δlog(Mh)max = 1.26 dex (this only occurs in
a few cases). Fig. 1 shows, however, that because of the mass
resolution of the simulation we adopted, the total contribution of
subhalos to the density of the total population of halos is almost
negligible.

It might be argued that galaxies can also lose or acquire
stellar mass through gravitational interaction between different
galaxies in different halos (or subhalos), or through simple star
formation activity, since the time of the infall. The median time
elapsed between the infall of the subhalo into the main halo and
the observation time is δ(t) = 0.6 Gyr. The stellar mass loss
through gravitational interactions can be modeled through simu-
lations of galaxy formation and evolution. As an example, Kimm
et al. (2011) adopted a semianalytic approach and tried to model
the mass loss of satellite galaxies at the moment they enter into
their main halos: the authors found that the majority of baryonic
mass loss is in the form of hot and cold gas that is present in
the disk or halo of the galaxy. The stellar mass loss is not triv-
ial to model, and quantitative values were not provided. On the
other hand, galaxies continue to form stars with a rate that de-
pends on their star formation history, gas reservoirs, initial mass
function (IMF), and several other parameters. Using the Illus-
tris hydrodynamic simulation, Niemiec et al. (2019) found that
subhalos can lose a large portion of their dark matter at accre-
tion, but continue to form stars, which increases the stellar mass
up to ∼ 6% after 1 Gyr from the accretion event. Considering
the median timescale of 0.6 Gyr, the uncertainties in treating the
processes of stellar mass loss and gain, and the numerous vari-
ables at play, we decided to take the stellar mass changes after
the infall into the main halos not into account. In the following,
unless specified otherwise, the halo mass Mh represents

Mh =

{
M200, for main halos
Minf , for subhalos

. (4)

2.4. Halo mass function

The mass function is defined as the number density of objects
(i.e., halos and galaxies) per unit comoving volume in bins of
(halo or stellar) mass and redshift. In order to extend the SHMR
not only at any redshift, but also in the widest possible mass
range (because the simulation we used is limited to halos with
log(Mh/M�) ≥ 12.5), we compared the halo mass functions
(HMFs) of the simulation to theoretical parameterizations. In
Fig. 2 we show a comparison of the cumulative halo mass func-

tions (CMF) of the ΛCDM DUSTGRAIN-pathfinder simulation
with those reported by Despali et al. (2016), who measured the
HMF using a suite of six N-body cosmological simulations with
different volumes and resolutions (see Despali et al. 2016 for de-
tails). We computed the Despali et al. (2016) cumulative HMFs
for halos whose mass is defined as 200 ρcrit in order to match
the halo mass definition of the simulation we used. In particular,
we show the CMF computed from light cones without taking the
infall mass for the subhalos into account, and the one using the
infall mass. Using the light cones, we were able to precisely se-
lect the redshift intervals in which we calculated the CMF. The
comoving boxes, instead, are located at fixed redshifts. To cal-
culate the HMF, we therefore considered all the boxes located
in the same redshift bin. We also evaluated the halo CMF for
boxes with or without the infall mass for the subhalos. We esti-
mate the relative difference of the CMF of the simulation with
respect to the Despali et al. (2016) mass function in the bottom
panels of Fig. 2, showing that the differences between the HMFs
of the simulation (on comoving boxes and light cones) and the
theoretical HMFs are minimal: the maximum difference is only
a few percent of the value of the Despali et al. (2016). Fig. 2
also clearly shows that even if the median difference between the
infall mass and observed mass is 0.25 dex, the halo mass func-
tion does not change signficantly, regardless of the infall mass
for subhalos. When we consider the mass of subhalos at the in-
fall or the mass at observation, the differences in mass functions
are lower than 1%. This is reasonable because only a few sub-
halos have already entered R200, and have therefore lost mass.
This is because the simulation is limited to very massive halos
(log(Mh/M�) ≥ 12.5). Their total influence on the HMF at high
halo masses and on the derived SHMR is therefore very limited
because the fraction of subhalos with respect to main halos is
small (∼ 10% at log(Mh/M�) = 12.5 and z = 0, consistent with
the results by Rodríguez-Puebla et al. 2017 and Despali & Veg-
etti 2017). This is also visible in the histograms of Fig. 1, which
clearly show that the effect of subhalos is negligible compared
to the total halo distribution, regardless of the infall mass.

In order to derive the SHMR relation on a wider mass range
than allowed by the HMFs of ΛCDM DUSTGRAIN-pathfinder
simulations, we adopted the Despali et al. (2016) HMF: in this
way, we were able to compute the SHMR from the lowest ob-
served stellar masses (M∗ ∼ 108 M�, Mh ∼ 1010.5 M�) to the
highest (M∗ ∼ 1012 M�, Mh ∼ 1015 M�) from z = 0 to z = 4.
Finally, we stress that in order to build a realistic mock catalog
of galaxies, however, the derived SHMR relation needs to be ap-
plied to the infall mass of subhalos to derive the corresponding
stellar mass.

3. Stellar mass functions

The SMF is a powerful tool for statistically describing the distri-
bution of stellar mass in galaxies, the galaxy mass assembly over
cosmic time, and the evolution of the galaxy population with red-
shift. The SMF of galaxies has been extensively studied over the
past years out to z ∼ 4 − 5 (e.g., Fontana et al. 2006; Pozzetti
et al. 2007; Stark et al. 2009; Pozzetti et al. 2010; Ilbert et al.
2013; Muzzin et al. 2013; Grazian et al. 2015; Song et al. 2016;
Davidzon et al. 2017). Traditionally, the SMF is modeled with a
Schechter function (Schechter 1976), but for certain galaxy pop-
ulations, a double Schechter function provides a better fit to ob-
servations (e.g., Baldry et al. 2008; Pozzetti et al. 2010). For all
the SMFs we used in this work that we describe in the following
sections, we rescaled the data points to our cosmology (i.e., to
Planck15 values) and to a Chabrier IMF.
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Fig. 2. Cumulative halo mass functions in nine different redshift bins. The cyan line represents the Despali et al. (2016) halo mass function
calculated at the center of the redshift bin. The colored points represent the halo mass function of the ΛCDM DUSTGRAIN-pathfinder simulation:
red triangles are the halo CMF evaluated on the ligth cones without taking the infall mass for the subhalos into account, green circles make use of
the infall mass, gray hexagons represent the halo CMF using comoving boxes without using the infall mass for the subhalos, and blue squares are
derived from simulation boxes taking the infall mass into account. The bottom panels represent the relative difference of the CMF of the simulation
with respect to the Despali et al. (2016) mass function.
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3.1. Data at z ∼ 0

We used the SMF at z ∼ 0 derived by Baldry et al. (2008) for
galaxies in the New York University Value-Added Galaxy Cata-
log (NYU-VAGC) sample of galaxies (Blanton et al. 2005) de-
rived from the Sloan Digital Sky Survey (SDSS). The data were
obtained from the SDSS catalog and cover cosmological red-
shifts from 0.0033 to 0.05, where the redshifts were corrected
for peculiar velocities using a local Hubble-flow model (Willick
et al. 1997). The NYU-VAGC low-z galaxy sample was used to
recompute the SMF down to low masses. The Data Release 4
(DR4) version of the NYU-VAGC low-z sample includes data
for 49 968 galaxies. Baldry et al. (2008) determined the stellar
masses by fitting Petrosian ugriz magnitudes of each galaxy to
the observed frame using the NYU-VAGC magnitudes and PE-
GASE SPS models (Fioc & Rocca-Volmerange 1997) and a vari-
ety of different extinction laws (from a Small Magellanic Cloud
screen law to a λ−0.7 power law). The authors also showed that
their results obtained with PEGASE models or BC03 models
(Bruzual & Charlot 2003) are consistent with each other. When
no stellar mass was available for a galaxy, the stellar mass was
determined using a color–M/L relation calibrated to the partic-
ular set of stellar masses. Moreover, these data were matched
to stellar masses estimated by Kauffmann et al. (2003), Gallazzi
et al. (2005), and Panter et al. (2007). Finally, Baldry et al. (2008)
averaged between the different stellar mass estimates by apply-
ing a weight depending on the normalized number density as a
function of redshift for all four mass estimates, and by recomput-
ing the SMF of the sample. They obtained an accurate SMF for
z ∼ 0 galaxies. In this work, we use the best-fit Schechter func-
tion of the SMF evaluated on Baldry et al. (2008) datapoints.

Bernardi et al. (2013) discouraged the use of Petrosian mag-
nitudes to derive masses and luminosities in SDSS, advocating
possible problems in the resulting mass-to-light ratios; this could
affect the massive end of the SMFs, which might be underesti-
mated. We note that the expected effect only concerns the bright-
est objects at very low redshift. The flux loss on datasets at higher
redshifts, described in the next section, has not yet been estab-
lished.

3.2. Data at z > 0

For z > 0 data, we adopted the Ilbert et al. (2013) SMFs,
which were estimated in the COSMOS field using one of the
largest dataset. COSMOS (Scoville et al. 2007) is one of the
best available fields to derive the SMF because the area is quite
large (∼ 2 deg2) and many deep (IAB ∼ 26.5) multiwavelength
data are available in more than 35 bands. Ilbert et al. (2013)
selected the sample using near-infrared data from the UltraV-
ISTA DR1 data release (McCracken et al. 2012). The sample
was built by restricting the analysis to objects with Ks < 24 and
to sources in regions with good image quality, totalling an area
of 1.52 deg2. The photometric redshifts and stellar masses were
derived with high precision by fitting the spectral energy dis-
tribution (SED) with LePhare code (Arnouts et al. 2002; Ilbert
et al. 2006) and Bruzual and Charlot stellar population synthesis
models (Bruzual & Charlot 2003). To compute photometric red-
shifts, a variety of extinction laws were considered (Prévot et al.
1984; Calzetti et al. 2000) and a modified version of the Calzetti
law that includes a bump at 2175Å, while in the computation of
stellar masses they only considered the Calzetti et al. (2000) ex-
tinction law. Galaxies with masses as low as M ∼ 1010M� are
detected up to z = 4. More generally, a minimum mass Mlimit

Fig. 3. The CMFs used in the (sub-) halo abundance matching in dif-
ferent redshift bins. On the left, solid and dashed lines with shaded area
represent the SMF with 1σ uncertainty (best fit to 1/Vmax points; with
the exception of the redshift bin 0.0 < z < 0.2, the best fits have been
corrected for the Eddington bias) cumulated as described in Sect. 4.1.
Solid lines represent the SMF up to the last 1/Vmax point, and dashed
lines show this at higher masses. On the right, the solid lines are the
Despali et al. (2016) CMFs we used to evaluate the SHMR.

was defined as the 90% completeness limit and was used as the
lower boundary in the evaluation of the SMF.

Ilbert et al. (2013) estimated the SMF in eight redshift bins
from z = 0.2 to z = 4.0 using different methods to determine
the possible biases. Here we used the best-fit Schechter function
on the binned 1/Vmax (Schmidt 1968) points and relative uncer-
tainties, computed by adding the errors due to galaxy cosmic
variance in quadrature to the template-fitting procedure and the
Poissonian errors.

To derive an SHMR that is as general as possible and does
not depend on the quality of the observed dataset that is used
to derive the SMF, we used the intrinsic SMF, derived by Ilbert
et al. (2013), which accounts for the uncertainties in the stel-
lar mass estimate. Because the galaxy density exponentially de-
creases toward massive galaxies, errors in the stellar mass scatter
more galaxies toward the massive end than in the opposite direc-
tion (Eddington 1913). This biases the estimate of the high-mass
end (Kitzbichler & White 2007; Caputi et al. 2011). The detailed
procedure for correcting for this bias is described in Ilbert et al.
(2013), and permits determining the intrinsic SMF: the stellar
mass uncertainties are well characterized by the product of a
Lorentzian distribution L(x) = τ

2π
1

(τ/2)2+x2 with τ = 0.04(1 + z)
and a Gaussian distribution G with σ = 0.5. The observed SMF
is the convolution of the intrinsic SMF, parameterized with a
double Schechter function φ, and the stellar mass uncertainties:
φconvolved = φ (L×G). By estimating φconvolved that fits the 1/Vmax
datapoints, it is therefore possible to determine the intrinsic φ.

For z ∼ 0 data, we simply used the best-fit Schechter function
from the Baldry et al. (2008) data without the deconvolution to
determine the intrinsic φ: this effect would act in the opposite
direction of the flux underestimation suggested by Bernardi et al.
(2013). Because we lack a precise estimate of the two effects, we
preferred to use face value data. Moreover, the possible effect
on the SHMR is smoothed out when the model is derived, as
explained in Sect. 5.

To summarize, we adopted the intrinsic SMFs at z > 0 as the
best fit to evaluate the SHMR. The intrinisc SMFs were statis-
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tically corrected for errors due to stellar mass and photo-z un-
certainties, and take Poissonian and cosmic variance errors into
account. We emphasize here that COSMOS is still one of the
best datasets that can be used to derive the SMFs because of the
high-precision photometric redshifts and stellar masses, and be-
cause it allows working with a large and homogeneous statistical
sample over a wide range of redshifts.

4. The stellar-to-halo mass relation

In this section we derive the relationship that connects the stellar
mass of a galaxy to the mass of its dark matter halo. We also
detail the procedure to calculate the empirical model and its red-
shift evolution.

4.1. Subhalo abundance matching technique

In order to link the stellar mass of a galaxy M∗ to the mass of
its dark matter halo Mh, we derived the SHMR using the sub-
halo abundance matching technique. This method relies on the
assumption that the halo mass monotonically relates to a galaxy
property, that is, to the stellar mass. We assumed that every main
(sub-) halo contains exactly one central (satellite) galaxy and
that each halo is populated with a galaxy. In other words, we
assumed a deterministic one-to-one relation between halo and
stellar mass. To uniquely associate one halo to one galaxy, we
built the cumulative version of the halo mass function n(Mh) and
of the galaxy SMF Φ(M∗). The latter was built by simply sum-
ming the number counts of objects with stellar masses greater
than the considered one, Mi:

n(> Mi) =

∫ ∞

Mi

Φ(M′)dM′ . (5)

In Fig. 3 we display the stellar and halo CMFs, adopting for
the latter the parameterization proposed by Despali et al. (2016).
As discussed in the previous section, the Despali et al. (2016)
halo CMF represents a good approximation of the (sub-) halo
mass function from our simulation, even when the correction for
the infall mass is taken into account. For this reason, we adopted
it to evaluate the SHMR on the largest possible mass range. Fi-
nally, from the direct comparison of the cumulative stellar and
halo mass functions, we derived the ratio between M∗ and Mh
at each fixed number density. We repeated this operation in each
redshift bin from z = 0 to z = 4.

When available, we adopted the intrinsic SMFs, which were
deconvolved for all the errors associated with the stellar mass
calculation, as described in Sects. 3.1 and 3.2. In this way, we
evaluated the intrinsic SHMR. However, when realistic mock
catalogs are built, an error in stellar mass at fixed halo mass
needs to be applied to reproduce the observational effects in the
estimate of the stellar mass from observed photometry. In other
words, to perform a comparison with the observed and not the in-
trinsic SMFs, a scatter needs to be applied. We added this error
as an observational scatter (σobs) from a log-normal distribution
and explore its effects on the SHMR and the derived SMFs in
Sect. ??.

However, we expect that in nature, two halos of the same
mass may harbor galaxies with different stellar masses and vice
versa because they can have different merger histories, spin pa-
rameters, and concentrations. This can be taken into account by
introducing an additional relative scatter (σR) in the intrinsic
SHMR relation. In the literature, several approaches have been

followed: in general, the scatter is drawn from a log-normal dis-
tribution with a variance that depends on the assumptions of the
different analyses. Some works assume a scatter with constant
variance at all masses and redshifts (e.g., σR = 0.15 dex for
Moster et al. 2010, 2013). Other works, such as Behroozi et al.
(2010, 2013); Legrand et al. (2019), instead keep the variance as
an additional free parameter and fit its value, keeping it constant
with halo mass but not with redshift. As an example, Legrand
et al. (2019) found values that range from 0.14 at z ∼ 0.35 to 0.46
at z ∼ 5. Using X-ray observations on clusters, Erfanianfar et al.
(2019) found a mean scatter of 0.21 and 0.25 dex for the stel-
lar mass of the brightest cluster galaxies in a given halo mass at
low (0.1 < z < 0.3) and high (0.3 < z < 0.65) redshifts, respec-
tively. In addition, recent results from hydrodynamic simulations
(e.g., Eagle, see Schaye et al. 2015) have shown that this scat-
ter depends on halo masses (Matthee et al. 2017), ranging from
0.25 dex at Mh = 1011 M� to 0.12 at Mh = 1013 M�. Matthee
et al. (2017) also found a weak trend for halo masses above
Mh = 1012 M�. Recent works, such as Moster et al. (2018), self-
consistently introduced scatter in the SHMR by taking the full
formation history of halos into account. They found a scatter that
depends both on halo masses and redshifts.

Therefore we also evaluated the SHMR in the presence of
this relative scatter in stellar mass at fixed halo mass. In partic-
ular, we followed the approach detailed in Moster et al. (2010).
We first evaluated the model SMF that is to be convolved with
this scatter to reproduce the observed intrinsic SMF. We then de-
rived the SHMR through its direct comparison with the HMFs.
We fixed the standard deviation (σR) of a log-normal distribution
to 0.2 dex at all halo masses and redshifts (as done in Moster
et al. 2010, 2013). Similar values have been presented in sev-
eral observational works (e.g., Erfanianfar et al. 2019), in various
empirical modeling or abundance matching works (e.g., Moster
et al. 2018; Legrand et al. 2019), and hydrodynamic simulations
(e.g., Matthee et al. 2017). In the remainder of this work we
present results that were calculated either with or without the
relative scatter. However, given the current uncertainties of the
value of this scatter and its unknown dependence on redshift and
mass, we prefer to present results as reference for the case cal-
culated without the scatter. We show, however, that qualitative
results are preserved when we include this relative scatter, while
the differences quantitatively depend on the exact value of the
scatter that is introduced.

4.2. Parameterizing the SHMR

In order to parameterize the SHMR that we derived in each red-
shift bin, we adopted the simple double power-law function pro-
posed by Moster et al. (2010),

M∗
Mh

(z) = 2 A(z)

 ( Mh

MA(z)

)−β(z)

+

(
Mh

MA(z)

)γ(z)−1

, (6)

where A is the normalization of the SHMR at the characteristic
halo mass MA, while β and γ describe the slopes of the relation
at low- and high-mass ends, respectively.

4.3. Evolution with redshift of SHMR parameters

In this section we define a redshift dependence of the SHMR
parameterization in order to construct an empirical model that
describes its evolution with cosmic time. Studying the evolu-
tion of the SHMR helps place constraints on the processes re-
lated to galaxy formation and evolution. Furthermore, with this
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information, we can populate the N-body simulation light cones
with galaxies at different redshifts using the appropriate redshift-
dependent SHMR. Following Moster et al. (2010), to determine
the SHMR at any redshift, we adopted a redshift dependence for
the parameters of Eq. 6.

log MA(z) = (log MA)z=0 + z · µ = B + z · µ , (7)

A(z) =

(
M∗
Mh

)
z=0
· (1 + z)ν = C · (1 + z)ν , (8)

γ(z) = γ0 · (1 + z)η = D · (1 + z)η , (9)

β(z) = F · z + E , (10)

5. Results

5.1. Relation of the stellar to halo mass

Figures 4 and 6 show the relation between stellar and halo
masses at different redshifts, respectively, and the correspond-
ing ratio (SHMR) for our samples in the redshift range 0 <
z < 4. Figure 4 shows our results in the 3D space log(M∗) −
log(Mh)− redshift plane, color-coded for log(M∗/Mh). We show
the measurement of the direct comparison of the stellar with halo
CMFs for our reference case, that is, without the relative scatter.
For each of the nine redshift bins, we performed a fit using Eq. 6
and the software package emcee, which is a purely python imple-
mentation of the Monte Carlo Markov chain (MCMC) method
(Foreman-Mackey et al. 2013). This algorithm allows sampling
the posterior distribution for the four free parameters (i.e., MA,
A, γ, and β). We used 200 walkers (each performing 1000 steps)
with a different starting point each randomly selected from a
Gaussian distribution around the original starting prior (chosen
from the results presented in Moster et al. 2010). The first half
of the steps were discarded as a burn-in phase. The convergence
of the fits was assessed through the Gelman-Rubin diagnostic
(Gelman & Rubin 1992). This test compares the variance within
one chain of the MCMC with the variance between chains. The
two variances are combined in a weighted sum to obtain an es-
timate of the variance of a parameter. The square root of the ra-
tio of this estimated variance within the chain variance is called
the potential scale reduction R̂, and for a well-converged chain
it should approach 1. Values higher than 1.1 indicate that the
chains have not yet fully converged (Gelman & Rubin 1992). In
the case of the fit in the nine redshift bins, we always find a value
of R̂ ≤ 1.06 (ranging from 1.01 to 1.06). The best-fit parameters
are listed in Table 1. Values and errors reported in this table were
evaluated using a one-to-one relation without any scatter.

In Fig. 5 we show a comparison of the SHMR derived with
and without the relative scatter (σR). The points show that scat-
ter mainly affects the massive end of the SHMR (because it
mostly affects the massive-end slope of the SMF) but also more
weakly affects the low-mass end. At high halo masses (i.e.,
log(Mh/M�) & 13), the SHMR without scatter predicts higher
stellar masses at fixed halo mass. At low halo masses (i.e.,
log(Mh/M�) . 12), the tendency is reversed. This is due to the
convolution we applied to the model SMF when we compared
it to the observed SMF to evaluate the SHMR because the in-
tegrated number density needs to be conserved. As in the case
without scatter, we performed a fit using Eq.6.

In Fig. 5 we show the 1σ confidence regions. The introduc-
tion of a relative scatter mainly affects parameter γ, which con-
trols the massive end slope but also influences all other parame-
ters because they are all correlated. We also list the best-fit values
including relative scatter in Table.2. We note that the effect of
the scatter is always on the order of a few percent on the SHMR,
even if its effect is systematic and depends on the exact value of
the scatter introduced.

Figure 6 shows our results for our reference case, that is,
without relative scatter, in a log(M∗/Mh) − log(Mh) plane in the
different redshift bins used by Ilbert et al. (2013) to compute
the SMF. In this case, we show the points that were computed
using the halo CMF of light cones, which take the subhalo infall
masses into account, and the best fit of the relation evaluated
using the Despali et al. (2016) CMF that was fit with Eq. 6, along
with the corresponding 1σ uncertainties. The best-fit values and
the uncertainties were computed using the 50th, 16th, and 84th
percentiles of the posterior distributions of the free parameters
of the fit. They are listed in Table 1. This figure shows that the
small differences between the halo CMFs of Despali et al. (2016)
and those from the light cones or boxes (both using the infall
masses for subhalos) translate into negligible differences in the
SHMR. We are therefore confident that in our mass regime (i.e.,
for log(Mh/M∗) ≥ 12.5), the same relation holds both for the
simulation and for the theoretical halo mass function.

Fig. 4. The SHMR without scatter derived in the log(M∗) − log(Mh)
redshift plane, color-coded with log(M∗/Mh). Points represent the ob-
served relation derived from the CMFs. Open points show the halo mass
range of the simulation (i.e., log(Mh/M�) ≥ 12.5), and open and solid
points indicate the halo mass range we used to derive the SHMR with
the Despali et al. (2016) HMF. The colored layer is a linear interpola-
tion between observed data points and is color-coded for the value of
log(M∗/Mh). The lower limit in mass is given by the observed SMFs.

Starting from low halo masses, the SHMR in the various red-
shift bins monotonically increases (with slope β) as a function of
halo mass and reaches a peak at MA, after which the relation de-
creases monotonically (with slope γ) at higher halo masses. The
redshift evolution of the SHMR shows that above the characteris-
tic halo mass MA, the SHMR increases with increasing redshift,
while this trend is reversed at lower masses. This can be inter-
preted as an evolution of the SFE, that is, the fraction of baryons
locked in stars, which is defined as f∗ = (M∗/Mh) f −1

b , where fb is
the cosmological baryon fraction (i.e., 0.153 for our Planck cos-
mology). When we assume a constant value of fb with redshift,
then the value of (M∗/Mh) corresponds to the SFE. Fig. 6 there-
fore implies that the SFE is always lower than 35% and increases
for increasing redshifts at masses higher than the peak of the
SHMR. This trend is reversed for masses below this limit. This
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Fig. 5. Comparison of the SHMR evaluated with or without the relative
scatter in two different redshift bins. We show the points that represent
the direct comparison of the CMFs and the 1σ confidence region of the
best-fit using Eq.6 with shaded regions.

means that massive galaxies (i.e., for halo masses higher than the
SHMR peak) formed with a higher efficiency at higher redshifts
(i.e., the downsizing effect; the term was coined by Cowie et al.
1996 to describe this behavior). In contrast, low-mass galaxies
(i.e., for halo masses lower than the SHMR peak) formed with
higher efficiency at lower redshifts.

It has been argued by several authors (Giodini et al. 2009;
Andreon 2010; Gonzalez et al. 2013; Eckert et al. 2016) that
the baryon fraction is not constant with (halo) mass. The studies
have focused mostly on local (z ∼ 0) galaxy groups and clus-
ters (i.e., for total masses of log(M500/M�) & 13), where the
total content of matter inside R500 can be measured through X-
ray studies. The general trend reported in these studies is that
the baryon fraction increases with increasing mass and approxi-
mately reaches the universal baryon fraction at the highest mea-
sured masses (log(M500/M�) ∼ 15). As an example, Gonzalez
et al. (2013) found a decrease in baryon fraction by a factor
∼ 1.5 from log(M500/M�) ∼ 15 to ∼ 14. When we qualitatively
assume that the baryon fraction decreases with decreasing halo
mass throughout the entire range of halo masses we considered
(from log(Mh/M�) ∼ 10.5 to 15), the SFE trend may be modi-
fied. In particular, if this scenario is in place, the SFE will still
increase at masses higher than the peak of the SHMR, while be-
low the peak, the decreasing trend we find may be less steep.

These studies are difficult to conduct, therefore the ob-
served baryon fraction estimates are not available as a func-
tion of both redshift and halo mass. In order to explore whether
the baryon fraction evolves with redshift, we can rely on hy-
drodynamic simulations, such as Davé (2009) and Davé et al.
(2010). These authors ran set of simulations with a modified ver-
sion (Oppenheimer & Davé 2008) of the N-body+hydrodynamic
code GADGET-2 (Springel et al. 2005). Several physical pro-
cesses were considered, such as star formation, radiative cool-
ing, metal-line cooling, supernovae, kinetic outflows, and stellar
winds. Davé and collaborators found an approximately constant
baryon fraction with halo mass at high redshifts (i.e., z ∼ 3). At
low redshift (z ∼ 0), they found the same trend in mass as was
reported in the studies mentioned above, that is, the baryon frac-

tion increases with increasing halo masses and approximately
reaches the universal baryon fraction at the highest halo masses
(log(Mh/M�) ∼ 15). The main result the authors find is that
the baryon fraction decreases with increasing cosmic time at
fixed halo masses (as an example, at log(Mh/M�) = 12, they
find that the baryon fraction decreases by a factor ∼ 1.4 from
z = 3 to z = 0). This is particularly true at low halo masses (i.e.,
log(Mh/M�) . 12). If the baryon fraction were to also depends
on redshift, this would lead to a modification of the values of
SFE we find and would enhance the evolution from high to low
redshifts at masses below the SHMR peak.

To summarize, when we consider a constant baryon fraction
with cosmic time and halo mass, we find that with increasing
redshift, the SFE increases at masses higher than the peak of the
SHMR. This trend is reversed for masses below this limit. When
we instead consider an evolution of the baryon fraction with halo
mass, cosmic time, or a combination of both, as predicted by
some hydrodynamic simulations, the trends we find (with cos-
mic time and halo masses) are not affected, even though the pre-
cise values of the SFE might change. We also note that the same
trends are preserved when we consider the model with relative
scatter.

5.2. Empirical best-fit model

In Fig. 7 we show the evolution of the parameters of the fit at
different redshifts for the cases with and without relative scatter.
In both cases, we note that below the characteristic halo mass
MA, the SHMR slope (β) is approximately constant with redshift.
Conversely, for masses higher than MA, the slope (γ) shows lit-
tle evolution. As also explained in Sect. 5.1, the main difference
between the results with or without the relative scatter is in the
value of γ. In particular, we find a systematic shift toward higher
γ values for the case that includes scatter. This is a signature of
the convolution we applied to introduce the relative scatter to
the SMF. The mass where the SHMR peaks (MA = Mh,peak) in-
creases with redshift, while its normalization A = (M∗/Mh)peak
decreases with redshift. After determining the nine best-fit pa-
rameter values in the different redshift intervals (listed in Table 1
and 2 for the two cases), we performed a fit on the evolution of
the parameters MA, A, γ, and β using Eqs. 7, 8, 9, and 10. We
show in Fig. 7 the best-fit evolution of the parameters, along with
its 1σ uncertainties for the cases with and without scatter.

Figure 8 shows our derived best-fit models for our reference
case without the relative scatter, which links the halo mass to the
ratio between stellar mass and halo mass model as a function of
halo mass at various redshifts. In Tables 3 and 4 we report the
best fit and the 68% confidence interval for the eight parame-
ters of the fit for the case with and without scatter, respectively.
Fig. 7 shows that the models predict an evolution of the parame-
ters with redshift that smoothes out all features characteristic of
the COSMOS field, such as the well-known overdensity located
at z ∼ 0.7 (e.g., McCracken et al. 2015). This overdensity shifts
the high-mass end of the SMF to higher stellar masses and there-
fore shifts the parameter MA of the best fit to higher values (and
consequently, γ and β to lower values). We note that for the last
redshift bin (i.e., 3.0 ≤ z < 4.0), the values of the normalization
(A) and the slope at high masses (γ) show large error bars (com-
pared to the other redshift bins) and are not well represented by
the best-fit models. However, as we describe below, both models
are still able to reproduce (with large error bars) the observed
SMF trends.
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Fig. 6. The SHMR for our reference case without scatter derived in the log(M∗/Mh) − log(Mh) plane. Points with error bars represent the observed
relation obtained from the CMFs of the light cones (i.e., they represent the halo mass range of the ΛCDM DUSTGRAIN-pathfinder simulation),
and the lines and corresponding shaded area represent the relation derived using the Despali et al. (2016) mass function and the 1σ error bar. The
solid line identifies the observed mass range of galaxies, and the dashed line represents the extrapolation using the best-fit Schechter function. The
right-hand side y-axis is labeled with the SFE expressed in percentage (defined as M∗/Mh f −1

b )

Table 1. Best-fit parameters of the SHMR for the reference case in Eq. 6 and their 68% confidence interval.

∆z A MA β γ
0.00 ≤ z < 0.20 0.0465+0.0015

−0.0015 11.77+0.03
−0.03 1.00+0.05

−0.05 0.702+0.006
−0.006

0.20 ≤ z < 0.50 0.0431+0.0025
−0.0025 11.86+0.08

−0.07 0.97+0.11
−0.09 0.644+0.020

−0.019
0.50 ≤ z < 0.80 0.0353+0.0015

−0.0014 12.05+0.07
−0.07 0.88+0.11

−0.10 0.599+0.021
−0.019

0.80 ≤ z < 1.10 0.0429+0.0018
−0.0017 12.03+0.06

−0.05 0.99+0.15
−0.13 0.638+0.014

−0.014
1.10 ≤ z < 1.50 0.0328+0.0013

−0.0013 12.10+0.06
−0.06 0.89+0.15

−0.13 0.638+0.018
−0.016

1.50 ≤ z < 2.00 0.0287+0.0008
−0.0007 12.20+0.06

−0.05 0.93+0.16
−0.14 0.604+0.018

−0.017
2.00 ≤ z < 2.50 0.0297+0.0006

−0.0006 12.21+0.03
−0.03 1.36+0.14

−0.13 0.571+0.013
−0.012

2.50 ≤ z < 3.00 0.0294+0.0010
−0.0009 12.31+0.07

−0.06 1.18+0.22
−0.19 0.551+0.028

−0.025
3.00 ≤ z < 4.00 0.0335+0.0021

−0.0020 12.55+0.12
−0.10 1.05+0.22

−0.18 0.605+0.063
−0.052

5.3. Comparison with other works

In Fig. 9 we show a comparison of our best-fit SHMR (with and
without scatter) with several literature results at z ∼ 0, and a
comparison at z ∼ 1 and z ∼ 3 is shown in Fig. 10. For the
reference case without scatter, our results are shown along with
the corresponding 1 and 2σ errors of the fit in the redshift bin
indicated in the plots (i.e., 0.0 < z < 0.2 for z ∼ 0, 0.8 < z < 1.1
for z ∼ 1 and 2.5 < z < 3.0 for z ∼ 3).

Performing a comparison with other works is not always
straightforward because other papers have often made different
assumptions on the cosmological model, on the definition of halo
mass, or on the measurement of stellar mass1. The assumptions

1 Most of the other literature data were kindly provided by Peter
Behroozi and are also shown in several other papers (e.g., Behroozi et al.
2010, 2013, 2019). Corrections for differences in the underlying cos-

used to derive stellar masses have not been adjusted instead be-
cause such adjustments can be complex and difficult to apply
using simple conversions. We only converted the IMF of all stel-
lar masses into that of the Chabrier (2003) and Bruzual & Char-
lot (2003) stellar population synthesis model. Additionally, we
converted all quoted halo masses into M200 masses as defined
in Sect. 2.2 by assuming a Navarro et al. (1997) profile (NFW)
and by calculating the correction between our halo mass defini-
tion and the mass definitions used in other works. For the sake
of clarity, we do not show errors of other literature works in the
figures, but they can be found in Behroozi et al. (2010).

In general, we find a large spread among all literature works
that increases with increasing redshift. Most of the cited works

mology have been applied by Behroozi et al. (2010) using the process
detailed in their Appendix A. We also made use of the semiautomated
tool WebPlotDigitalizer to extract datapoints from literature plots.
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Table 2. Best-fit parameters of the SHMR with relative scatter (σR = 0.2 dex) in Eq. 6 and their 68% confidence interval.

∆z A MA β γ
0.00 ≤ z < 0.20 0.0494+0.0018

−0.0019 11.81+0.03
−0.03 0.94+0.04

−0.04 0.726+0.006
−0.006

0.20 ≤ z < 0.50 0.0429+0.0026
−0.0026 11.87+0.06

−0.06 0.99+0.08
−0.07 0.669+0.016

−0.015
0.50 ≤ z < 0.80 0.0348+0.0016

−0.0015 12.07+0.06
−0.06 0.86+0.09

−0.08 0.622+0.017
−0.015

0.80 ≤ z < 1.10 0.0429+0.0019
−0.0018 12.03+0.04

−0.04 1.04+0.11
−0.09 0.657+0.011

−0.011
1.10 ≤ z < 1.50 0.0325+0.0013

−0.0013 12.11+0.05
−0.05 0.87+0.13

−0.11 0.659+0.014
−0.013

1.50 ≤ z < 2.00 0.0285+0.0008
−0.0007 12.21+0.04

−0.04 0.94+0.12
−0.10 0.624+0.014

−0.013
2.00 ≤ z < 2.50 0.0297+0.0006

−0.0006 12.23+0.03
−0.02 1.31+0.12

−0.10 0.604+0.010
−0.009

2.50 ≤ z < 3.00 0.0294+0.0009
−0.0009 12.33+0.06

−0.05 1.13+0.19
−0.16 0.583+0.023

−0.020
3.00 ≤ z < 4.00 0.0330+0.0018

−0.0018 12.55+0.10
−0.09 1.05+0.21

−0.17 0.626+0.045
−0.038

Table 3. Best-fit parameters of the SHMR evolution for the reference case in Eqs. 7, 8, 9, and 10, and their 68% confidence interval.

B µ C ν D η F E
Best fit 11.79 0.20 0.046 -0.38 0.709 -0.18 0.043 0.96

1σ+ 0.03 0.02 0.001 0.03 0.007 0.02 0.039 0.04
1σ− 0.03 0.02 0.001 0.03 0.007 0.02 0.041 0.05

Table 4. Best-fit parameters of the SHMR evolution with relative scatter(σR = 0.2 dex) in Eqs. 7, 8, 9, and 10, and their 68% confidence interval.

B µ C ν D η F E
Best fit 11.83 0.18 0.047 -0.40 0.728 -0.16 0.052 0.92

1σ+ 0.03 0.02 0.001 0.03 0.007 0.01 0.034 0.04
1σ− 0.03 0.02 0.001 0.03 0.007 0.01 0.036 0.04
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Fig. 7. Evolution of the parameters MA, A, γ, and β (shown with points)
for the case with and without relative scatter in blue and red, respec-
tively. We also show the empirical best-fit model and the 1σ uncertain-
ties (shown with lines and shaded areas, respectively) in blue and red
for the case with and without scatter, respectively. Red points have been
shifted by ∆z = +0.05 to facilitate visual comparison.

show some differences with respect to our results at all red-
shifts. At z = 0 our results agree with literature within the dis-
persion at intermediate halo masses, while differences can be-
come larger than 0.3 dex (a factor ∼ 2) at low and high Mh
(log(Mh/M�) < 11.5 and log(Mh/M�) > 14). The works with
the smaller differences compared to our results are Yang et al.
(2009) and Yang et al. (2012), and the Carretero et al. (2015)
model has the largest differences. At higher redshifts the dis-
persion between different works increases and our results are in
general higher than other literature works, with differences al-

most always, but with some exceptions, higher than 0.3 dex in
most of the halo mass range. At z = 3 most of the works do not
agree with each other, even up to ∼ 1 dex. In Appendix A we
provide some details on the several works with which we com-
pared our results.

It is evident that there are still discrepancies between dif-
ferent works in literature, and this is particularly true at higher
redshifts. Part of these differences are due to the different meth-
ods that were used. The remaining differences can be ascribed
to the SMFs (or luminosity functions) that were adopted to de-
rive the relation, or to different halo finders. As shown in Knebe
et al. (2011), different halo finder algorithms may obtain halo
masses that are different by up to 10% at z ∼ 0, and this dif-
ference increases with increasing redshift. We adopted the esti-
mates derived from COSMOS for the SMF, which is the largest
field observed so far with a continuous and homogeneous cov-
erage in redshift from z = 0.2 to z = 4. This field also has one
of the best statistical and photometric accuracies in photomet-
ric redshifts, stellar masses, and SMFs determination for such a
wide redshift range. In addition, we note that our result includ-
ing relative scatter in stellar mass at fixed halo mass lies at all
redshifts in the 2σ confidence region of the case without scatter.

5.4. Comparison with semianalytic models

In Fig. 11 we compare our best-fit result at z ∼ 0 to the re-
sults of eight SAMs of galaxy formation and evolution. These
SAMs were run on the same underlying CDM simulation (cos-
mological box of comoving width 125 h−1 Mpc) and the same
merger trees within the Cosmic CARNage project (Knebe et al.
2018; Asquith et al. 2018). The SAMs are SAG by Cora et al.
(2018, 2019), SAGE by Croton et al. (2016), DLB07 by De Lucia
& Blaizot (2007), GALFORM-GP14 by Gonzalez-Perez et al.
(2014), LGALAXIES by Henriques et al. (2013, 2015, 2017),
GALICS 2.0 by Knebe et al. (2015), YSAM by Lee & Yi (2013),

Article number, page 11 of 24



A&A proofs: manuscript no. SHMR

10 11 12 13 14 15
log(Mh/M )

3.0

2.5

2.0

1.5

lo
g(

M
*/M

h)

z=0
z=1
z=2
z=3
z=4

10 11 12 13 14 15
log(Mh/M )

7

8

9

10

11

12

lo
g(

M
*/M

)

z=0
z=1
z=2
z=3
z=4

Fig. 8. Best-fit model plotted in a log(M∗/Mh) − log(Mh) plane (top
panel) and in a log(M∗) − log(Mh) plane (top panel) for the reference
case without scatter at different redshifts. Solid lines indicate the stellar
mass range in the observed SMF, and the dashed lines represent the
extrapolation of the model.

and MORGANA by Monaco et al. (2007). The galaxy formation
models used in the project are described in Knebe et al. (2015,
2018), where all of them are summarized in a concise and unified
manner, along with their main features and differences. However,
it is worth mentioning that all models have been calibrated with
SMFs at z = 0 (Baldry et al. 2008; Li & White 2009; Baldry
et al. 2012), SMFs at z = 2 (Domínguez Sánchez et al. 2011;
Muzzin et al. 2013; Ilbert et al. 2013; Tomczak et al. 2014), star
formation rate function at z = 0.15 by Gruppioni et al. (2015),
cold gas mass fraction at z = 0 evaluated by Boselli et al. (2014),
and the relation of black hole to bulge mass (McConnell & Ma
2013; Kormendy & Ho 2013). In order to further align the vari-
ous galaxy formation models, they have all assumed a Chabrier
IMF, a metallicity yield of 0.02, and a recycled fraction of 0.43.
Moreover, a Planck cosmology was used, and the halo mass was
defined as M200, as in this work. Results from the Cosmic CAR-
Nage simulations therefore do not require any rescaling of the
properties in order to allow a comparison with our results. All
the considered semianalytic galaxy formation models populate
the dark matter halos with galaxies whose properties depend on
the details of the formation history of the halo in which they
are placed. Subsequent galaxy evolution then shapes the galaxy
SMF and therefore the SHMR. Fig. 11 shows that the scatter at
z ∼ 0 is already large between the SHMR of different SAMs,
and this is particularly evident in the position of the peak of
the relation. We investigate this in more detail in the following
section. From the comparison, we find that none of the eight

models reproduces the observed SHMR we propose at z = 0
at any masses. The large differences between our result and the
SAMs (which at maximum is up to a factor of ∼ 8 in (M∗/Mh) at
log(Mh/M�) = 15.0 when our result is compared to GALFORM-
GP14) reflect the intrinsic difficulty of treating the physical pro-
cesses related to galaxy formation and evolution.

5.5. Evolution of the SHMR

In Fig. 12 we show the evolution of the SHMR as a function of
redshift at two fixed halo masses for both cases (with and without
scatter): one located at masses below the peak (log(Mh/M�) =
11.0), and the other above it (log(Mh/M�) = 13.0). Figs. 7
and 8 have clearly shown that the redshift evolution has com-
pletely opposite trends at these two masses, similarly to other
AM, HOD, EM, and CL literature results. We have described
before that results with or without scatter are very similar. At
log(Mh/M�) = 11.0, our SHMR shows a strong evolution (more
than one order of magnitude) of its value (even if large errors are
associated to the parameter β), with a decreasing trend with in-
creasing redshift. Assuming a simple hierarchical structure for-
mation scenario, we would expect that M∗/Mh remains constant
with redshift. However, baryons do not share the bottom-up evo-
lution of dark matter halos, as proven by several results (e.g.,
Cowie et al. 1996; Fontanot et al. 2009; Thomas et al. 2010).
The most massive galaxies (mainly early-type galaxies hosted in
galaxy groups and clusters) are dominated by old stellar popu-
lations, and appear to have formed their stellar mass relatively
quickly at the beginning of their life, while faint field galaxies
(usually late-type galaxies) appear to have continued to actively
form stars over the last billion years, and their stellar population
is dominated by young stars. This is the so-called downsizing
scenario.

For SAMs, the value of the SHMR appears not to evolve as
much as we find. Moreover, different SAMs disagree whether the
SHMR value decreases, as in our work (e.g. SAG, DLB07, and
LGALAXIES), or remains approximately constant (e.g., YSAM
and GALFORM-GP14). This indicates that the downsizing ef-
fect is not well reproduced by the evolution of M∗/Mh in all an-
alyzed SAMs. This might be due to the well-known overcooling
problem (e.g., Benson et al. 2003): galaxies are modeled to form
as gas cools inside of dark matter halos (White & Rees 1978).
However, the mass function of dark matter halos rises steeply
at low masses (Reed et al. 2007). Because cooling is very effi-
cient in these low-mass halos, the galaxy mass and/or luminosity
function are expected to show a similar slope at the low-mass or
low-luminosity end. The observed slopes are instead much shal-
lower (as a consequence of the downsizing effect), and therefore
some form of feedback is postulated to mitigate this discrepancy,
typically from supernovae and AGN. However, these feedback
mechanisms are still not fully understood and their modeling is
accordingly uncertain. We also note that the model MORGANA
is the only SAM that shows an increasing trend with increas-
ing redshift. This may be due to the resolution of the simula-
tion and/or an excessive overcooling that probably is due to the
treatment of the feedback mechanisms. In a future work we will
perform further comparisons with more recent SAMs that have
improved feedback effects at low stellar mass to better repro-
duce SMF (Hirschmann et al. 2016; De Lucia et al. 2017; Zoldan
et al. 2019), and hydrodynamic simulations (Nelson et al. 2015),
which are not included in Cosmic CARNage.

At log(Mh/M�) = 13.0, we find an increasing value of the
SHMR with increasing redshift, in accordance with other similar
AM, HOD, EM, and CL literature results, and its evolution be-
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Fig. 9. Best-fit SHMR compared to previous results at z ∼ 0. Dark and light shaded areas represent the 1 and 2σ errors, respectively, for our
reference case without scatter at redshift 0 < z < 0.2. For the case with scatter, we show our results with a dashed black line without errors (which
are comparable to errors of the case without scatter). The comparison includes results from abundance matching (AM; Behroozi et al. 2010, 2013;
Moster et al. 2010; Rodríguez-Puebla et al. 2017, empirical modeling (EM; Moster et al. (2010, 2018); Behroozi et al. (2019)), halo occupation
distributions (HOD; Carretero et al. (2015); Yang et al. (2012); Zheng et al. (2007)) and clusters selected from SDSS spectroscopic data (CL;Yang
et al. 2009). In the bottom panel we show the logarithmic difference between our results and the other literature works. The shaded area represents
our errors.

comes even stronger at higher halo masses (shown in Fig. 8). All
SAMs instead show an opposite decreasing trend (with the ex-
ception of SAG and LGALAXIES, which show an approximately
flat trend). We show their evolution only up to z = 2.5 because
SAMs lack data at higher redshifts at this halo mass as a conse-
quence of the relatively small volume of the simulation, which
does not contain such rare massive halos at z > 2.5. These differ-
ent trends may be an indication that some physical processes are
not yet accurately modeled in SAMs, such as feedback mech-
anisms that may affect the build-up of stellar mass in galaxies.
However, the box size of the underlying cosmological simulation
for dark matter (125 Mpc h−1 on a side) is too small to carry out
a definitive comparison between SAMs and other results such as
ours.

5.6. Evolution of the SHMR peak

In Fig. 13 we show the redshift evolution of the peak halo mass
Mh,peak and of the corresponding (M∗/Mh)peak value. In this case,
we only show results for our reference case without relative scat-

ter because the differences of the peaks in the two cases are neg-
ligible (as also shown in Fig. 7). We estimate them from the best
fit of the observed SHMR shown in Fig. 6, whose uncertainties
are mainly due to errors in the SMFs (i.e., photometric redshift
errors, stellar mass errors, cosmic variance, and Poissonian er-
rors). The uncertainties on the SHMR are evaluated from the
16th and 84th percentiles of the posterior distribution of the fit-
ting procedure (see Fig. 6). Moreover, we also show the same
quantities derived from our model, that is, log(M∗/Mh)peak(z) =
log(A(z)) and log(Mh/M�)peak(z) = log(MA(z)). The evolution
of log(Mh/M�)peak is also well represented by the model, while
the model is more different from log(M∗/Mh)peak in the highest
redshift bin (i.e., 3.0 ≤ z < 4.0) and at intermediate and low
redshift (i.e. 0.8 ≤ z < 1.1). We showed in Fig. 7 and explained
in Sect. 5.2 that the model tends to smooth out all peculiar fea-
tures of the COSMOS field resulting in a smooth evolution of
the parameters. We also show several results from the literature
(described in Sect. 5.3 and Appendix A) and SAMs (presented in
Sect. 5.4). We do not show the errors of other works for clarity.
The errors are comparable to the errors we show for our results.
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Fig. 10. Best-fit SHMR compared to previous results at z ∼ 1(left) and z ∼ 3 (right). Symbols are the same as in Fig. 9.

Fig. 11. Best-fit of the SHMR compared to semianalytic models at z ∼ 0
from the COSMIC CARNage project (Knebe et al. 2018). Dark and
light shaded areas represents the 1 and 2σ errors, respectively, of the
case without scatter. The black dashed line represents our result with
scatter.

Fig. 13 shows that we observe an approximately flat trend
of the evolution of the (M∗/Mh)peak value, with only a slight de-
crease by a factor of ∼ 1.4 from z = 0 to z = 4, although the
uncertainties at high redshift are quite large. At 0.8 < z < 1.1,
however, our data show an anomalous increase that is due to
the SMFs we adopted. Fig. 3 also showed that the CMFs show
a shift toward higher stellar masses with respect to the general
evolution of the other redshift bins. This may be due to an over-
density of massive galaxies in the COSMOS field or to errors

in the SED-fitting procedure at these redshifts. In a future paper
we will perform a parallel analysis using different SMFs (e.g.,
Davidzon et al. 2017) and cosmological simulations (e.g., other
simulations from the DUSTGRAIN-pathfinder set) in order to as-
sess the reliability of the results we present.

We find in general that even though the general trend of the
evolution of the SHMR peak is different in the literature, most
of the works find that the value of (M∗/Mh)peak decreases with
increasing redshift (e.g., Moster et al. 2010, 2013; Yang et al.
2012) and only few works find that it remains approximately
constant (e.g., Behroozi et al. 2013; Moster et al. 2018). More-
over, there is still a large scatter between literature results (up to a
factor of ∼ 2 in M∗/Mh), which leaves this an open question. We
observe a general trend with the (M∗/Mh)peak value decreasing
with increasing redshift in differnt SAMs for all but GALFORM-
GP14, which presents a minimum a z ∼ 0.9 and remains flat
thereafter.

As we discussed above, the value of (M∗/Mh)peak can also be
interpreted as the peak of SFE. The value of (M∗/Mh)peak indi-
cates that galaxies with these characteristic masses are in general
the most efficient at turning baryons (gas) into stars during their
lifetime. We find that the peak of the SFE ranges from ∼ 0.35
to ∼ 0.3 ± 0.04 (going from z = 0 to z = 4), which means that
∼ 30 − 35% of all available gas has been turned (and remain
locked) into stars; the peak efficiency lies at z ∼ 0. We recall
here that a high fraction of gas that is processed in stars returns
to the ISM at the end of stellar evolution (up to 30 − 50% de-
pending on the age, star formation history, and IMF, e.g., up to
48% for a Chabrier IMF, Bruzual & Charlot 2003). When we
also account for the return fraction R in calculating the SFE (in-
cluding all the gas involved in the star formation), the values we
find would therefore be (1 − R)−1 times higher (up to ∼ 1.9 for a
Chabrier IMF).

These low efficiencies suggest that most of the baryons are
in the form of interstellar and intergalactic diffuse gas. A recent
study by Posti et al. (2019) found that the SFE for spiral galaxies
is a monotonically increasing function of M∗ and that massive
spirals (i.e., M∗ & 1011M�) have f∗ ∼ 0.3− 1. This indicates that
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Fig. 12. Evolution of the SHMR at fixed halo masses of log(Mh/M�) = 11.0 (left) and log(Mh/M�) = 13.0 (right). Our results derived from the
model described in Sect. 5.2 are shown with a blue line, and the corresponding shaded area represents 1σ uncertainties for our reference case.
Cyan dashed lines show our results with relative scatter (errors are not shown, but are comparable to the errors of the reference case). Solid lines
indicate the observed mass range in the SMF, and the dotted line represents the range of masses extrapolated by the model. Dashed colored lines
represent the eight SAMs of the Cosmic CARNage project. The evolution in the left panel is shown from z = 0 to z = 4, and the right panel only
shows the evolution up to z = 2.5 because data at higher redshifts for these halo masses are lacking in the Cosmic CARNage simulations. Red
shaded regions show the range covered by all the AM, HOD, EM, and CL results, as presented in Figs. 9 and 10 and described in Sect. 5.3 and
Appendix A (without the results of this work). We note that not all the works in literature extend their results down to log(Mh/M�) = 11 or up to
log(Mh/M�) = 13, and we therefore show only those whose results reach these masses.
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Fig. 13. Left: Evolution of the peak of the SHMR( for our reference case) compared with previous literature works and results of SAMs of galaxy
formation and evolution. Dark blue points and error bars represent the fit of our measured SHMR. The model we propose is shown in green, along
with 1 and 2σ errors estimated on the posterior distribution of the free parameters of the fit. Right: Comparison of the evolution of the halo mass
at the peak of the SHMR( for our reference case). Symbols are the same as in the other panel.

these systems have turned all their available gas into stars. How-
ever, this result has been derived only on local massive spirals.
Several works have suggested that the shape of the SHMR de-
pends on the galaxy type (e.g., Mandelbaum et al. 2006; Conroy
et al. 2007; Rodríguez-Puebla et al. 2015), with red and passive
early-type galaxies residing in most massive halos with respect
to blue late-type galaxies. However, it is not straightforward to
precisely determine from a simulation which halos host late- or
early-type galaxies because the halo masses of these two classes
of objects overlap at approximately the peak of the SHMR. We
postpone this analysis to a future work.

The evolution of Mh,peak contains useful information as well.
The value of Mh,peak approximately coincides with the knee of

the SMF, with an offset depending on the slopes of the HMF and
SMF. Star formation is therefore most effective and least influ-
enced by either stellar or AGN feedback for these halo masses
(Moster et al. 2010; Yang et al. 2012). We here find an increas-
ing value of Mh,peak with increasing redshift. The value of Mh,peak
corresponds to the most efficient star formation. We can there-
fore infer that the trend we find may be a signature of the down-
sizing effect. In other words, we find that the halo mass for which
star formation is most efficient monotonically decreases with
cosmic time. Massive galaxies were therefore formed at earlier
times than less massive objects, even if (M∗/Mh)peak slightly in-
creases with cosmic time. We showed in Fig. 13 (right panel)
that some literature works (e.g., Yang et al. 2012; Moster et al.
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2010, 2013; Behroozi et al. 2010, 2013) have reported the same
trend with redshift, while others (e.g., Carretero et al. 2015) and
SAMs do not show the same trend. In general, SAMs show lower
values; some of them (SAGE, GALFORM, YSAM, and DLB07)
show a decreasing trend with increasing redshift, with the excep-
tion, at least marginally, of SAG and LGALAXIES, which yield a
rising Mh,peak value up to redshift z ∼ 3. However, the scatter be-
tween different studies is large in this case as well (up to a factor
of ∼ 3 in Mh, and it increases with redshift). This implies that
much work remains to be done in order to precisely determine
the SHMR at all redshifts and understand the physical processes
that give rise to it.

6. Testing the SHMR

In this section, we investigate the accuracy of the SHMR we
propose. To this aim, we assigned stellar masses to halos in co-
moving boxes and in light cones (using M200 for main halos and
Minfall for subhalos) of the ΛCDM DUSTGRAIN-pathfinder sim-
ulation and compared the results with observed SMFs.

We used two methods to assign the stellar mass to simulated
dark matter halos. The first consists of linearly interpolating be-
tween the best-fit results in individual redshift bins (see Table 5.1
and Fig. 8) between Mh, M∗ and redshift (we also used this to
plot the colored layer in Fig. 4). In this way, we do not rely on
any parameterization of the evolution for the parameters of the
fit, but instead use the results of the direct comparison between
the stellar and halo cumulative mass functions. This method is
expected to (almost) perfectly reproduce, by construction, the
Ilbert et al. (2013) and Baldry et al. (2008) SMFs. The sec-
ond method consists of using the model proposed in Sect. 5.2.
This method has the advantage that it employs a simple func-
tional form to assign the stellar mass to dark matter halos (and
therefore is computationally very cheap). However, the param-
eters depend on redshift, as described by Eqs. 7, 8, 9, and 10.
For this reason, the model may not perfectly reproduce the ob-
served SMFs we used to calibrate the SHMR at every redshift
because these SMFs are evaluated on the SDSS and COSMOS
fields, which have their specific features. We assigned stellar
masses to halos in light cones and comoving boxes of the sim-
ulation using both methods. The described procedure was per-
formed using results with and without relative scatter. To gener-
ate the mock galaxy catalog in the latter case, we first assigned
the stellar mass according to the corresponding SHMR (i.e., us-
ing the results detailed in Tables 2 and 4), and then we scattered
the assigned stellar masses using a log-normal distribution with
standard deviation σR = 0.2 dex. After the stellar mass was as-
signed to simulated dark matter halos, we calculated the SMFs
only for stellar masses M∗ ≥ 1011 M� because of the mass res-
olution of the simulation, which is complete down to halo mass
Mh ≥ Mmin,halo = 1012.5 M�. The two cases we explored, with
and without relative scatter, agree well (see, e.g., Fig. 15 and 16,
respectively). In both cases, it is evident that the models repro-
duce observations with good accuracy, with only small differ-
ences among them. In Fig. 14 we show the results for our ref-
erence case without scatter in nine different redshift bins along
with the SMFs on which the SHMR is calibrated (i.e. Baldry
et al. 2008 and Ilbert et al. 2013) and also other literature results
by Pozzetti et al. (2010), Davidzon et al. (2013), Tomczak et al.
(2014), and Davidzon et al. (2017). The Tomczak et al. (2014)
SMFs were estimated from the ZFOURGE survey (Straatman
et al. 2016), which includes three pointings in CDFS (Giacconi
et al. 2002), COSMOS, and UDS (Lawrence et al. 2007) fields.
The total area used to evaluate SMFs by Tomczak et al. (2014)

is ∼ 316 arcmin2 from z = 0.2 to z = 3.0. Davidzon et al.
2017 SMFs were evaluated in the COSMOS field following Il-
bert et al. (2013), but with a different data release (Laigle et al.
2016). Moreover, Davidzon et al. (2017) restricted their analy-
sis to a smaller area than Ilbert et al. (2013) (i.e., the ultra-deep
stripes covered by ULTRA-Vista with an area of 0.62 deg2) but
with deeper observations (Ks = 24.7 compared to Ks = 24 of Il-
bert et al. (2013)), which in turn can increase the cosmic variance
in Davidzon et al. (2017). This and the different SED-fitting pro-
cedure lead to the differences between the two works that are vis-
ible in Fig. 14 (especially in the redshift bin 0.8 ≤ z < 1.1). The
Pozzetti et al. (2010) SMFs were derived on the COSMOS field
as well, but with the zCOSMOS spectroscopic survey data (Lilly
et al. 2007), which cover ∼ 1.4 deg2 up to z ∼ 1. In this case, red-
shifts were estimated from spectroscopy, and stellar masses were
derived by SED-fitting of the multiband photometry. Finally, the
Davidzon et al. (2013) SMFs were evaluated using the spectro-
scopic VIMOS Public Extragalactic Redshift Survey (VIPERS)
(Guzzo & The Vipers Team 2013; Scodeggio et al. 2018) cov-
ering ∼ 10 deg2 from z ∼ 0.5 to z ∼ 1.1. When available (i.e.,
Ilbert et al. 2013; Davidzon et al. 2017) we used the best-fit in-
trinsic Schechter function, and in the other cases (i.e., Pozzetti
et al. 2010; Davidzon et al. 2013; Tomczak et al. 2014) we show
the 1/Vmax estimates.

The bottom panels of Fig. 14 show the relative differences
between the results on the ΛCDM DUSTGRAIN-pathfinder sim-
ulation and the SMFs with which the SHMR was calibrated (i.e.,
Baldry et al. 2008 and Ilbert et al. 2013). The results for the in-
terpolation and the model agree well with the observations with
which we calibrated the relation, using either comoving boxes
or light cones. In all cases (with the exception of the redshift bin
0.5 < z < 0.8 using the model), the differences with the respect
to the observed SMFs using the model (interpolation) are smaller
than ∼ 10% (∼ 5%) of the value of the observed SMFs. The ex-
ception of redshift bin 0.5 < z < 0.8, where the model differs by
∼ 15−20% (at maximum) with respect to observations, is due to
the cited overdensity in the COSMOS field. When we compared
this with other observations (i.e., Davidzon et al. 2013, 2017),
the differences in redshift bin 0.5 < z < 0.8 are much less evi-
dent. In general, our results agree with the observed SMFs at all
redshifts.

We point out that our results depend on the SMFs we used
to calibrate the relation, and if the calibrating SMFs change, the
SHMR changes accordingly. In a future work we will perform
the same analysis using different SMFs and extend it to even
higher redshifts. Nonetheless, SDSS and COSMOS are currently
the best fields with a homogeneous redshift coverage from z = 0
to z = 4 because of their statistical and photometric accuracy in
the photometric redshifts, stellar masses, and SMF determina-
tion.

Up until now, we have derived the intrinsic SHMR because
we adopted the intrinsic SMF, that is, deconvolved for the Ed-
dington bias. Adding an additional scatter to mimic observa-
tional errors is instead essential to build realistic mock catalogs
that take the errors (σobs) in the mass determination from pho-
tometry into account and can be directly compared with the ob-
served SMF. For each halo and each case (i.e., with and without
relative scatter), we now assigned a stellar mass following our
intrinsic SHMRs, and convolved these masses with a log-normal
distribution with standard deviation σobs. We explored the ef-
fects of using two different values for the standard deviation. We
assumed the first value to be independent of the halo mass but
dependent on redshift. Following COSMOS results (Ilbert et al.
2013; Davidzon et al. 2017), we assumed σobs = 0.04(1 + z) dex,
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Fig. 14. Differential SMFs in different redshift bins. Points represent the SMFs of the ΛCDM DUSTGRAIN-pathfinder simulation using the linear
interpolation and our reference model without scatter in comoving boxes and in light cones. Solid lines (and associated shaded regions) are the
SMFs we used to calibrate our relation (Ilbert et al. 2013; Baldry et al. 2008). With dashed lines (and shaded regions) we show other literature
results by Pozzetti et al. (2010); Tomczak et al. (2014); Davidzon et al. (2013, 2017). As a general rule, the stellar mass at which the plotted best-fit
Schechter functions turn from a continuos or dashed to a dotted line identifies the mass of the most massive observed galaxy. Moreover, when the
redshift bin from other literature results is different from what is indicated at the top of each panel, the exact redshift binning is indicated in the
inserted labels. Otherwise, if the redshift bins coincide, we report the references of the SMFs only once in the labels. The bottom panels show the
relative difference between the results on the ΛCDM DUSTGRAIN-pathfinder simulation and the SMFs with which we calibrated the relation.
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Fig. 15. Differential SMFs in the redshift range 2.0 < z < 2.5 using our
reference model without relative scatter. Black dotted, black dashed,
and blue dashed lines represent the SMF of the ΛCDM DUSTGRAIN-
pathfinder simulation (calculated using the reference model on the
comoving boxes), without observational scatter, a fixed scatter (with
σobs = 0.25 dex), and a scatter that varies with redshift (with σobs =
0.04(1+ z) dex), respectively. With open red circles we show the 1/Vmax
points by Ilbert et al. (2013) and with a dotted red line (and correspond-
ing shaded area) their intrinsic best-fit Schechter function. With green,
cyan, and magenta open points we show results from Tomczak et al.
(2014), Santini et al. (2012), and Mortlock et al. (2011), respectively.

that is, the scatter for a COSMOS-like dataset with which we
calibrated our method. The second value was assumed to be con-
stant with halo mass and redshift, σobs = 0.25 dex, following the
results by Mortlock et al. (2011) at 1 < z < 3 on the GOODS
survey.

We then calculated the φconvolved using the two different scat-
ters and compared this to literature results. In Figs. 15 and 16
we show as examples the convolved SMFs we derived using
the models (with and without relative scatter) from the ΛCDM
DUSTGRAIN-pathfinder simulation boxes in one redshift bin, but
the same effects also apply to the other redshift bins. We also
show the observed 1/Vmax SMF on the COSMOS field from Il-
bert et al. (2013) and its corresponding intrinsic SMF. In addi-
tion, we show other observed SMFs by Mortlock et al. (2011),
Santini et al. (2012), and Tomczak et al. (2014). The first was de-
rived in the Great Observatories Origins Deep Survey (GOODS)
with the Near Infrared Camera and Multi-Object Spectrometer
(NICMOS) (Conselice et al. 2011) on board the Hubble Space
Telescope (H160 = 26.8 over ∼ 43.7 arcmin2). The second, San-
tini et al. (2012), is a study in the GOODS-S field on a relatively
small but deep field (Ks = 25.5, over ∼ 33 arcmin2).

The effect of observational errors on the stellar masses with a
COSMOS-like scatter (i.e., σobs = 0.04(1+z)) is quite small and
does not affect the derived SMF strongly for either case, whose
values are both in agreement with the Ilbert et al. (2013) results
on the COSMOS field. In other surveys, the photometric errors,
which affect photometric redshift and mass determination, might
be larger and should be taken into account when a realistic mock
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Fig. 16. Differential SMFs in the redshift range 2.0 < z < 2.5 using
the model with relative scatter. Lines and symbols are the same as in
Fig. 15.

catalog is built. For example, we compared our SMF forecasts,
obtained with a fixed scatter value, with other literature results,
such as Mortlock et al. (2011) and Santini et al. (2012). In the
case of a fixed scatter, σobs = 0.25, our convolved SMF also re-
produces the excess fairly well with respect to the intrinsic SMF
that is observed at high masses in the SMFs as a result of the
Eddington bias.

7. Clustering

After populating halos with galaxies and verifying that the
SMF was correctly reproduced, we measured the galaxy angle-
averaged two-point correlation function (2PCF), ξ(r), to evaluate
whether the SHMR we propose is able to reproduce the observed
clustering of galaxies as well. We performed this calculation on
two mock catalogs that were constructed from the boxes of the
ΛCDM DUSTGRAIN-pathfinder simulation. In the first we used
our reference model without scatter, and in the second we con-
sidered the model with relative scatter. Because we wished to
compare our results with observations, an observational scatter
was also added (to both mocks) with a log-normal distribution
with standard deviation σobs = 0.04(1 + z) dex. All the mea-
surements were made with the CosmoBolognaLib (Marulli et al.
2016), a set of free software C++/Python numerical libraries for
cosmological calculations. The 2PCF was measured on the co-
moving boxes for galaxies with log(M∗/M�) ≥ 11, using the
Landy & Szalay (1993) estimator, which has been shown to pro-
vide a nearly unbiased estimate of the 2PCF, while minimizing
its variance (see, e.g., Keihänen et al. 2019),

ξ̂(r) =
NRR

NGG

GG(r)
RR(r)

− 2
NRR

NGR

GR(r)
RR(r)

+ 1 , (11)

where GG(r), RR(r), and GR(r) are the binned numbers of
galaxy-galaxy, random-random, and galaxy-random pairs with
distance r±∆r, while NGG = NC(NG−1)/2, NRR = NR(NR−1)/2,
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and NGR = NGNR are the total numbers of galaxy–galaxy,
random–random, and galaxy–random pairs, respectively. The
random samples were constructed to be five times larger than
the galaxy samples.
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Fig. 17. 2PCF of galaxies with M∗ ≥ 1010.11 M�. Open red circles and
green squares represent the 2PCF of mock galaxies with stellar masses
evaluated using the model (with and without scatter) at z = 0.6 (top)
and z = 0.8 (bottom). Filled blue points show the 2PCF of the VIPERS
galaxies in the redshift bins 0.5 < z < 0.7 (top) and 0.7 < z < 0.9
(bottom).

We computed the 2PCF from a minimum scale of smin =
0.22 Mpc (= 0.15 h−1 Mpc) to a maximum scale of smax =
104 Mpc (= 70 h−1 Mpc) over 30 bins that were equally sep-
arated in logarithmic scale. The 2PCF uncertainties were esti-
mated with the bootstrap method by dividing the datasets into 27

subsamples, which were then resampled in 100 datasets with re-
placements, measuring the 2PCF in each of them (Norberg et al.
2009). We translated the real-space galaxy 2PCF (ξ(s)) into the
redshift-space galaxy 2PCF (ξ(r)) as follows (Kaiser 1987):

ξ(s) =

(
1 +

2β
3

+
β2

5

)
ξ(r) , (12)

where β ≡ f (z)/b(z) ' Ω0.545
M (z)/b(z) is the linear growth rate

(see, e.g., Marulli et al. 2017). The linear bias, b(z), was esti-
mated from the square root of the ratio between the real-space
2PCFs of galaxies and dark matter at the largest probed scales
(i.e., s > 15 Mpc = 10 h−1 Mpc). To compute the latter, we
used a Fourier transform on the nonlinear matter power spec-
trum computed with CAMB, including HALOFIT (Lewis et al.
2000; Smith et al. 2003).

The Kaiser model in Eq. (12) does not provide an accurate
description of the redshift-space 2PCF at small scales, that is, in
the so-called one-halo regime. However, as we described above,
we are complete in subhalos only down to Mh = 1012.5M�, thus
our clustering measurements are only reliable at large scales (& 3
Mpc), where the Kaiser model is reliable. To determine whether
the lack of the one-halo term in the 2PCF of our mock galaxy
catalogs was caused by the adopted SHAM prescriptions, we re-
peated the analysis by measuring the 2PCF of the full-halo cat-
alogs, without mass selection. We found no sign of the one-halo
term in this case either. It can therefore be ascribed to the reso-
lution of the simulation.

An alternative way to compare the spatial properties of our
mock galaxy catalogs to real data is through the projected clus-
tering. However, we preferred not to calculate the projected
2PCF in this analysis and retained the angle-averaged 2PCF in
redshift space to avoid additional uncertainties that might be
caused by the numerical methods for constructing redshift-space
mock samples from the available discrete set of simulation snap-
shots. Moreover, the 2PCF would have to be integrated along the
line of sight from the smallest scales, where our predicted 2PCF
is not reliable because we are incomplete in low-mass subhaloes.

Figure 17 shows our results at z = 0.6 and 0.8 for scales
s ≥ 3 Mpc compared to the observed galaxy 2PCF from the final
release of the VIPERS survey (Guzzo & The Vipers Team 2013;
Scodeggio et al. 2018) in the redshift bins 0.5 < z < 0.7 and
0.7 < z < 0.9. The analysis was restricted to galaxies with M∗ ≥
1011 M� to be complete in the mock catalogs. Fig. 17 shows that
the normalization of the 2PCF is slightly lower when the scatter
is included in the model. This is expected because in this case,
galaxies are hosted on average by lower mass halos because of
the shape of the MF. These lower mass halos are characterized
by a lower bias.

The 2PCF of the VIPERS galaxies is measured similarly to
what has been reported by Marulli et al. (2013). The random
sample we used to estimate the 2PCF of the VIPERS galax-
ies was constructed as in Marulli et al. (2013), with 30 times
more objects than galaxies. The weighting scheme we adopted
has been described by Pezzotta et al. (2017) and de la Torre et al.
(2017). The errors on the VIPERS 2PCF were estimated with the
bootstrap method in the same way as for the mock catalogs.

Overall, the 2PCFs of our mock galaxies appear to agree well
with the VIPERS galaxies at all redshifts for scales s & 3 Mpc,
that is, in the two-halo regime, where the 2PCF is dominated by
pairs of galaxies that are hosted in two different dark matter ha-
los. To assess the statistical level of the comparison, the analysis
needs to properly consider the full covariance matrices of the
measurements. This is beyond the scope of this work.
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At smaller scales our results disagree with VIPERS mea-
surements. As described above, this is due to the resolution
of the considered simulation. The number of subhalos with
log(Mh/M�) < 12.5 that are expected to host massive galax-
ies is not resolved with a sufficient number of dark matter par-
ticles. This biases the number of pair galaxies that are hosted in
the same halo that contribute to the one-halo clustering term at
small scales.

8. Summary and conclusions

The main results and conclusions of the present study can be
summarized as follows :

1. We presented a new SHMR based on a (sub-) halo abun-
dance matching technique assuming a deterministic rela-
tion between halo and stellar mass. We adopted the Despali
et al. (2016) halo mass function, after showing that it
is fully consistent (at all redshifts and halo masses) with
our reference dark matter simulation (ΛCDM DUSTGRAIN-
pathfinder simulation, Giocoli et al. 2018) using subhalos
with infall mass or observed mass, and using comoving
boxes or light cones. We combined the HMF with Baldry
et al. (2008) and Ilbert et al. (2013) intrinsic SMFs to cal-
culate the SHMR from M∗ ∼ 108 M� (i.e., Mh ∼ 1010.5 M�)
to M∗ ∼ 1012 M� (i.e. Mh ∼ 1015 M�), homogenously from
z = 0 to z = 4, in nine different redshift bins. We also pre-
sented results when a relative scatter in stellar mass at fixed
halo mass was introduced in the relation to account for differ-
ent halo accretion histories, spin parameters, and concentra-
tions. This was made by adding a scatter drawn from a log-
normal distribution with a standard deviation σR = 0.2 dex
to the model SMF when we compared it to the intrinsic SMF.
We showed that this scatter mostly affects the high-mass end
of the SHMR. In addition, we find that results with and with-
out relative scatter are consistent between each other.

2. We proposed a simple model that parameterizes the evo-
lution in redshift of the SHMR with and without relative
scatter, following the formalism presented in Moster et al.
(2010). The model tends to smooth all peculiar features that
characterize the SMFs we used to calibrate the SHMR. The
model therefore predicts a smooth evolution with redshift.

3. When a constant baryon fraction is assumed, the SHMR can
be interpreted as the SFE. We find that it monotonically in-
creases as a function of halo mass (with a slope β ∼ 1 almost
constant with redshift) with a peak at Mh ∼ 1012M�, and
a change in slope (γ ∼ 0.7 − 0.6) that decreases monoton-
ically at higher halo masses. Moreover, we note that above
the characteristic halo mass peak, MA = Mh,peak, the SHMR
increases with increasing redshift. At masses below the char-
acteristic halo mass, this trend is reversed. This means that
massive galaxies (i.e., halo masses higher than the SHMR
peak) form with a higher efficiency at higher redshifts. In
contrast, low-mass galaxies (corresponding to halo masses
lower than the SHMR peak) formed with higher efficiency at
lower redshifts. These trends, which are also preserved when
the baryon fraction depends on halo mass or redshift, are a
manifestation of the downsizing effect.

4. We compared our results with several methods to link dark
matter halos to galaxies (e.g., HOD, CLF, and EM) that are
available in the literature. While at z ∼ 0 all works agree
fairly well (within a factor of ∼ 3), especially in the slopes
of the SHMR, at z > 0, the results of different studies show
large differences not only in the normalization, but also in

the slopes of the relation. These differences can be ascribed
to the different SMFs that were used to calibrate the models
and also to different halo-finder algorithms that were used to
derive the halo masses.

5. Our results were also compared to several SAMs. In this
case, the differences are quite large (up to a factor of ∼ 8)
in the normalization and in the slopes, which reflects the dif-
ficulty of treating the physical processes related to galaxy
formation and evolution. In particular, we find that for in-
creasing redshift, SAMs predict a less pronounced decreas-
ing evolution of the SHMR at low halo masses and a decreas-
ing trend at high halo masses as well. This is at odds with our
observed increasing values.

6. We studied the redshift evolution of the peak halo mass
(Mh,peak) and the corresponding (M∗/Mh)peak value. We find
that Mh,peak increases with redshift, while (M∗/Mh)peak re-
mains approximately constant. We interpret the increasing
value of Mh,peak with redshift as a signature of the downsiz-
ing effect, where Mh,peak is the halo mass corresponding to
the most efficient star formation. Interpreting (M∗/Mh)peak as
the peak of SFE, we find that it increases from ∼ 0.3 at z ∼ 4
to ∼ 0.35 at z ∼ 0. These values could increase by a factor
up to ∼ 2 if we were to also consider the fraction of gas that
is returned to ISM during stellar evolution.

7. We investigated the accuracy of the SHMRs we propose by
assigning stellar masses to halos in the ΛCDM DUSTGRAIN-
pathfinder simulation (complete for Mh > 1012.5M�) and
compared the results with literature SMFs. Our results us-
ing the interpolation between the best-fit results in individ-
ual redshift bins agree excellently well with observations;
the differences are always smaller than ∼ 5% when boxes or
light cones are used at all redshifts. With the model, differ-
ences are always smaller than ∼ 10% at all redshifts. In the
redshift bin 0.5 < z < 0.8 the model differs by ∼ 15−20% (at
maximum) with respect to observations because of an over-
density in the COSMOS field. When we compare our results
with different observations, with different datasets, and on
different fields, the differences are much less evident.

8. We also studied the clustering as a function of stellar mass.
We evaluated the 2PCF in the redshift space and compared
the results with observed results from the VIPERS survey.
We find a good agreement from z ∼ 0.5 to z ∼ 1.1 for massive
galaxies (M∗ > 1011M�) for the two-halo regime (i.e., for
scales s & 3 Mpc).

To conclude, from our analysis we found that the process of
star formation (i.e., the process of turning gas into stars) is re-
markably inefficient (with peak efficiencies < 35% at all masses
and redshifts). We showed that current SAMs do not reproduce
our results well, which indicates that several physical mecha-
nisms of galaxy formation and evolution are still not well under-
stood. On the observational side more work is also needed in or-
der to understand the scatter between different literature results,
especially at z > 0.

Studies of the galaxy-halo connection are essential to inter-
pret galaxy surveys and to provide key insights into the prob-
lems of galaxy formation and evolution. The model we propose,
applied to N-body dark matter simulations, is able to reproduce
fairly good observed SMFs and clustering measurements of mas-
sive galaxies down to the resolution limit of the simulation. The
good overall agreement indicates a realistic assignment of galaxy
masses into halos. This can be used to create realistic galaxy
mocks for future surveys or missions and to populate the N-body
dark matter simulations with galaxies.
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The next generation of surveys, such as Euclid, are likely
to shed light on the galaxy–halo connection over mass, red-
shift, and environment. This will provide major improvements
in our understanding of galaxy formation, cosmological param-
eters, and the nature of dark energy and neutrino mass. At the
same time, the precision of models for the galaxy–halo connec-
tion need to be improved in order to keep up with the pace of the
data.
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Appendix A: Details on the literature

In this appendix we describe the literature works with which
we compare our results in Figs. 9 and 10. The works that use
a very similar method to ours are Moster et al. (2010, 2013) and
Behroozi et al. (2010, 2013), even though all cited works show
some differences in the results with respect to ours at all red-
shifts. As may be expected, it is much harder to directly measure
the SHMR at z > 0. This results in relatively fewer published
results to which we may our results compare.

Appendix A.1: Moster et al. (2010, 2013)

Moster et al. (2010) and Moster et al. (2013) used the same
functional form as we adopted for the SHMR. Both Moster
et al. (2010) and Moster et al. (2013) used a SHAM tech-
nique to match simulated halos from the Millennium Simulation
(Springel et al. 2005) to observed SMFs. However, they used dif-
ferent SMFs based on the results of Panter et al. (2007) at z = 0,
and Fontana et al. (2006) at z > 0 in Moster et al. (2010), and
Li & White (2009) at z ∼ 0 and Pérez-González et al. (2008) at
z > 0 in Moster et al. (2013). This choice is reflected in differ-
ences in the stellar mass at fixed halo mass.

At z ∼ 0 our results agree well with Moster et al. (2013)
at high masses (i.e., log(Mh/M�) & 13.0) and low masses (i.e.,
log(Mh/M�) . 11), while small differences are present at inter-
mediate halo masses (e.g., a difference of a factor of ∼ 1.2 in
(M∗/Mh) is found at log(Mh/M�) = 12.3). At increasing redshift
the agreement worsens. At z ∼ 1 and z ∼ 3 our results dif-
fer not only in the SHMR normalization, but also in the slopes
at high and low masses (at log(Mh/M�) = 12.3 a difference of
a factor of ∼ 1.5 and ∼ 1.4 in (M∗/Mh) is seen at z ∼ 1 and
z ∼ 3, respectively). The Moster et al. (2010) results differ from
ours at any redshift in the values of the stellar mass at fixed halo
masses (with a difference of a factor of ∼ 1.2 in (M∗/Mh) at
log(Mh/M�) = 11.8 at z = 0, which increases to a factor of
∼ 1.7 at log(Mh/M�) = 12.5 at z ∼ 3), but also in the low- and
high-mass slopes of the SHMR.

Appendix A.2: Guo et al. (2010)

Guo et al. (2010) used an approach similar to that of Moster et al.
(2010), based on stellar masses from Li & White (2009), but they
did not account for scatter in stellar mass at fixed halo mass.
Consequently, their results do not match Moster et al. (2010). As
for Moster et al. (2013), at z ∼ 0, our results agree well at high
masses (i.e., log(M∗/Mh) & 13.0) but show differences at lower
halo masses (e.g., a difference of a factor of ∼ 1.2 in (M∗/Mh) is
found at log(Mh/M�) = 11.8).

Appendix A.3: Zheng et al. (2007)

Zheng et al. (2007) used the galaxy clustering for luminosity-
selected samples in the SDSS (at z ∼ 0) and in the DEEP2
Galaxy Redshift Survey (Coil et al. 2006 at z ∼ 1) to constrain
the halo occupation distribution (HOD). This gives a direct con-
straint on the r-band luminosity of central galaxies as a function
of halo mass. Stellar masses for this sample were then deter-
mined using the g− r color and the r-band luminosity, assuming
a WMAP1 cosmology. This method allows for scatter in the lu-
minosity at fixed halo mass to be constrained as a parameter in
the model. Results from Zheng et al. (2007) are in fairly good
agreement with our results at z ∼ 0, while the difference is larger
(up to 0.5 dex) at z ∼ 1.

Appendix A.4: Behroozi et al. (2010, 2013)

Behroozi et al. (2010, 2013) used an approach similar to what we
used here, but with a much more complicated functional form to
parameterize the SHMR (also accounting for a variable scatter in
the relation for a total of 14 free parameters in the fit, compared
to the 4 we used). Moreover, at z ∼ 0 Behroozi et al. (2010) used
Li & White (2009) SMFs, and Behroozi et al. (2013) used Mous-
takas et al. (2013). At higher redshifts, Behroozi et al. (2010)
and Behroozi et al. (2013) used several SMFs (see their papers
for details). For both works, at z ∼ 0 the slope of the SHMR
is similar to ours, but the normalization in (M∗/Mh) is different
up to a factor of ∼ 1.4 and ∼ 1.6 at log(Mh/M�) = 11.8 for
Behroozi et al. (2010) and Behroozi et al. (2013), respectively.
At z ∼ 1 and z ∼ 3 there is not agreement on the slopes of the
SHMR between Behroozi’s results and ours. At z ∼ 1, differ-
ences on the normalization increase to a factor of ∼ 2 and ∼ 1.4
at log(Mh/M�) = 11.8, while for z ∼ 3 we find differences of a
factor of ∼ 1.2 and ∼ 1.4 at log(Mh/M�) = 12.5 for Behroozi
et al. (2010) and Behroozi et al. (2013), respectively.

Appendix A.5: Reddick et al. (2013)

Reddick et al. (2013) used additional input from the correlation
function and conditional SMF as measured by SDSS. This re-
sult is fairly different from our result in the normalization of the
SHMR. In particular, a difference of a factor of ∼ 1.8 in (M∗/Mh)
is found at log(Mh/M�) = 11.8.

Appendix A.6: Yang et al. (2012)

Yang et al. (2012) adopted an approach similar to the abun-
dance matching, but with some differences. In particular, their
approach assumes the subhalo abundance as a function of the
mass at accretion and the accretion time, following the Yang
et al. (2011) model. At z ∼ 0 they used SMFs of SDSS DR7
(Abazajian et al. 2009), while for z > 0 they used SMFs from
Pérez-González et al. (2008) and Drory et al. (2005). At z ∼ 0,
their results are fully consistent with ours down to halo masses
of log(Mh/M�) ∼ 12. At lower masses, Yang et al. (2012) pre-
dict higher stellar masses with respect to our result. At z > 0,
the agreement becomes worse and the differences increase to a
factor of ∼ 2.7 at log(Mh/M�) = 12.5 in (M∗/Mh) at z ∼ 3.

Appendix A.7: Rodríguez-Puebla et al. (2017)

Rodríguez-Puebla et al. (2017) estimated the SHMR as a func-
tion of redshift using a SHAM technique and several observed
SMFs, based on different observational campaigns and tech-
niques (see Rodríguez-Puebla et al. 2017 for details). Their re-
sults are not consistent with the results we obtain, with differ-
ences in the normalization of the SHMR and also in the slope of
the relation at low and high masses. A difference of a factor of
∼ 1.4 in (M∗/Mh) is found at log(Mh/M�) = 11.8 between their
results and ours.

Appendix A.8: Carretero et al. (2015)

Carretero et al. (2015) combined a HOD model to a SHAM tech-
nique to link galaxy luminosities to dark matter halos. In particu-
lar, they used dark matter simulations from MICE (Fosalba et al.
2008) along with luminosity functions from the SDSS survey
(Blanton et al. 2003). Even if the slope of the SHMR at high
halo masses (i.e., log(Mh/M�) & 12.5) is similar to the slope in
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our work, we find a large discrepancy in the normalization of
the SHMR, with a difference in (M∗/Mh) of a factor of ∼ 2 at
log(M∗/Mh) = 11.8.

Appendix A.9: Behroozi et al. (2019)

Behroozi et al. (2019) presented a method for determining indi-
vidual galaxy star formation rates from their host halos potential
well depths, assembly histories, and redshifts. For each halo, the
galaxy stellar mass is derived from the star formation histories
along the halo assembly and merger history. The model is cali-
brated through several observations of the SMF and the cosmic
star formation rate. However, their results disagree with ours at
all redshifts, with differences in the slopes (at high and low halo
masses) and in the normalization of the SHMR. At a halo mass
of log(Mh/M�) = 11.8 (12.0, 12.4), a difference of a factor ∼ 1.6
(∼ 1.5, ∼ 1.6) in (M∗/Mh) is found at z ∼ 0 (z ∼ 1, z ∼ 3).

Appendix A.10: Moster et al. (2018)

Moster et al. (2018) also presented an empirical model of galaxy
formation. They assigned a star formation rate to each dark mat-
ter halo based on its growth rate and computed the stellar masses
by integrating it. Several observations of the cosmic star forma-
tion rate densities were used to calibrate the model (see Moster
et al. (2018) for more details). At z ∼ 0, the Moster et al. (2018)
results are inconsistent with our findings in the slopes of the
SHMR and in the normalization (e.g., a difference of a factor of
∼ 1.5 in (M∗/Mh) can be seen at log(Mh/M�) = 11.8). Moving to
z ∼ 1, we instead find good agreement in the slopes of the SHMR
and also in the normalization at masses log(Mh/M�) . 12.0.
At higher halo masses, the normalization differs (by a factor of
∼ 1.2 in (M∗/Mh) at log(Mh/M�) = 12.3). At z ∼ 3, our re-
sults disagree with those of Moster et al. (2018). Not only the
slopes and normalization differ, but the halo mass at the peak of
the SHMR is also remarkably different (see Sect. 5.6 for a more
detailed analysis of the SHMR peaks).

Appendix A.11: Yang et al. (2009)

At the high-mass end, Yang et al. (2009) have directly identi-
fied clusters and groups corresponding to dark matter halos, and
measured the stellar masses of their central galaxies. They used a
group catalog matched to halos to determine halo masses. Their
results agree well with ours for halos at all masses.

Appendix A.12: Wang & Jing (2010)

Wang & Jing (2010) applied the empirical method built for red-
shift z = 0 in their previous work (Wang et al. 2006) to a higher
redshift to link galaxy stellar mass directly with its hosting dark
matter halo mass at redshift of about 0.8. The SHMR is found
by fitting the SMF and the correlation functions at different stel-
lar mass intervals from VIMOS-VLT Deep Survey (VVDS) ob-
servation. Positions of galaxies are predicted by following the
merging histories of halos and the trajectories of subhalos in the
Millennium Simulation (Springel et al. 2005).

Appendix A.13: Legrand et al. (2019)

Legrand et al. (2019) used a parametric abundance matching
technique to link observed SMFs on the COSMOS field (David-
zon et al. 2017) to halo mass functions. In particular, they used

the method developed in Behroozi et al. (2010, 2013). Their re-
sults agree with ours at low redshift (z ∼ 0) and high halo masses
(log(Mh/M�) & 12.5), but show differences up to ∼ 0.5 dex at
other halo masses and redshifts.

Article number, page 24 of 24


