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Abstract

We present ALMA and ATCA observations of the luminous blue variable RMC 127. The radio maps show for the
first time the core of the nebula and evidence that the nebula is strongly asymmetric with a Z-pattern shape. Hints
of this morphology are also visible in the archival Hubble Space Telescope Ha image, which overall resembles the
radio emission. The emission mechanism in the outer nebula is optically thin free—free in the radio. At high
frequencies, a component of point-source emission appears at the position of the star, up to the ALMA frequencies.
The rising flux density distribution (S, ~ ©%78%005) of this object suggests thermal emission from the ionized
stellar wind and indicates a departure from spherical symmetry with n, (r) oc r—2. We examine different scenarios
to explain this excess of thermal emission from the wind and show that this can arise from a bipolar outflow,
supporting the suggestion by other authors that the stellar wind of RMC 127 is aspherical. We fit the data with two
collimated ionized wind models, and we find that the mass-loss rate can be a factor of two or more smaller than in
the spherical case. We also fit the photometry obtained by IR space telescopes and deduce that the mid- to far-IR
emission must arise from extended, cool (~80 K) dust within the outer ionized nebula. Finally, we discuss two
possible scenarios for the nebular morphology: the canonical single-star expanding shell geometry and a precessing
jet model assuming the presence of a companion star.

Key words: stars: individual (RMC 127) — stars: massive — stars: mass-loss — stars: rotation — stars: winds, outflows —

submillimeter: stars

1. Introduction

It is widely accepted that the final destiny of a massive star is
ruled by the mass loss it suffered during its post-Main
Sequence (MS) evolution, and by how much mass remains at
its death. For instance, the earliest O-type stars have to rapidly
lose their hydrogen envelope (a few to a few tens of solar
masses) in order to turn into Wolf-Rayet (WR) stars. The
transition between the MS and the WR phase must be short, of
the order of 10°~10° years. Enhanced mass loss is needed to
reduce the envelope mass through line-driven stellar winds or
short-duration eruptions (e.g., Humphreys & Davidson 1994;
Smith & Owocki 2006). The stars with the highest known
mass-loss rates (M > 1075 M, yr~!) are the Luminous Blue
Variable (LBV) stars, so-called due to their location on the
H-R diagram and because they show spectroscopic and
photometric variability during a period of enhanced mass loss
caused by instabilities, as reviewed in Humphreys & Davidson
(1994). These instabilities have yet to be conclusively
explained, but several physical mechanisms have been
proposed: vicinity to the (modified) Eddington limit due to
an excess of radiation pressure, hydrodynamic (subphoto-
spheric) instabilities, rapid rotation, and/or close-binary
systems.

Smith & Tombleson (2015) noticed that the known Galactic
and Magellanic LBVs tend to be isolated from massive star
clusters. Hence, they challenged the traditional single-star view
of LBVs, proposing that the LBV phenomenon (strong
instabilities and enhanced mass loss) is instead due to
interacting binaries, with a “mass donor” (e.g., WR star) and
a “mass gainer” (LBV). The mass transfer would “rejuvenate”
the LBV star, whose evolution, as a consequence, would
bifurcate from that of the other stars in the cluster where it
formed. More recently, Humphreys et al. (2016) tested the
same analysis for the LBVs in M31 and M33, and they also
removed “seven stars with no clear relation to LBVs” from the
sample of Smith & Tombleson (2015). Humphreys et al. (2016)
then found that the LBVs distribute similarly to their O-type
sisters or to the Red Supergiant (RSG) ones, depending on their
initial mass and evolutionary state. Therefore, they revived the
scenario for the evolution of a single massive star that
approaches the Eddington limit.

The picture is still unclear and, due to the rarity of these
objects, together with the rapid evolution of massive stars, we
are still unable to put together all the pieces of the puzzle. On
one hand, it has been accepted that some LBVs and Ofpe
(Bohannan & Walborn 1989) supergiants are physically
related, with the latter considered the quiescent state of a
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massive (O-type) LBV (e.g., Stahl 1986). On the other hand,
there is no evidence of their relationship with other massive
stars, despite some suggestions: for instance, supergiant Ble]
stars (Zickgraf et al. 1985 and subsequent studies) and Of?p
stars (the question mark indicates doubt that these stars are
normal Of super-giants, Walborn 1972, 1977). The B[e]
supergiants are fast rotators and possess a dense and slow disk
in their equatorial plane and a faster outflow along the polar
axis. The Of?p stars have been found to be oblique magnetic
rotators (Walborn et al. 2015 and references therein). Interest-
ingly, the Galactic LBV AG Carinae (AG Car) has been found
to be a fast rotator and its projected rotational velocity has been
seen to change during LBV variability (Groh et al. 2006), but
magnetic fields have not been detected in any known LBVs.

The distinct morphologies observed in the nebulae around
some candidate and confirmed LBVs, formed as a consequence
of the intense mass loss, suggest different shaping mechanisms
(Nota et al. 1995). The morphologies of some nebulae are
consistent with symmetric mass loss (e.g., Gal 79.29+0.46,
LHA 120-S 61, Higgs et al. 1994; Weis 2003; Umana et al.
2011; Agliozzo et al. 2012, 2014, 2017a). However, the
majority of the observed nebulae have a bipolar morphology
(e.g., Weis 2011), indicating aspherical mass loss (e.g.,
Gal 026.47+0.02, Umana et al. 2012) or an external shaping
mechanism (e.g., IRAS 18576+4-0341, HR Car, Umana et al.
2005; Buemi et al. 2010, 2017). Usually, bipolar or equatorial
mass losses have been proposed. Departure from spherical
symmetry has been directly observed in the winds of AG Car,
HR Car, and RMC 127 (e.g., Schulte-Ladbeck et al. 1993;
Leitherer et al. 1994; Clampin et al. 1995), but whether
aspherical mass loss is an intrinsic property of LBVs has not
been established (e.g., Davies et al. 2005). To explain LBVs
with bipolar or ring nebulae, enhancement of mass loss in the
equatorial plane of the star has often been invoked, the cause
possibly being the fast rotation of the star or the presence
of a companion star, or a magnetic field (e.g., Gvaramadze
et al. 2015 and references therein).

RMC 127 (HD 269858) is a well-known LBV located in the
Large Magellanic Cloud. In the last decades it has been
observed in both quiescent and active states, during which the
stellar spectrum changed from Ofpe to A spectral types,
through intermediate types B1-2, B7, and B9. At the beginning
of the 2000s, it began its decline toward the quiescent state
(Walborn 1977, 1982; Stahl et al. 1983; Wolf et al. 1988;
Walborn et al. 2008). The first high-resolution image (Clampin
et al. 1993) revealed the presence of a “diamond-shaped
nebula” associated with the star. By means of spectropolari-
metric studies in the optical, Schulte-Ladbeck et al. (1993)
found a high degree of polarization at the position of the star,
similar to B[e] stars. They proposed two geometries for the
stellar wind and the aligned outer optical nebula around
RMC 127: a highly inclined bipolar nebula or a disk or ring of
material seen edge-on. This polarization was later confirmed by
Davies et al. (2005). Smith et al. (1998) studied the kinematics
of the nebula and they interpreted the data as two expanding
shells (with the inner one <0.6 pc from the star). Later, Weis
(2003) obtained high-resolution images in Ha with the Wide
Field Planetary Camera 2 (WFPC2) on board the Hubble Space
Telescope (HST). The authors described the nebula as
comprising two eastern and western Rims and two northern
and southern Caps. With a kinematic analysis of spectroscopic
observations, they also reported that the northern and southern
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regions are blue- and redshifted, respectively, with respect to
the center of motion. Finally, RMC 127 is a fast rotator, with a
projected rotational velocity of ~105kms~! (Agliozzo
et al. 2017b).

In this paper, we present a new data set, acquired with
ALMA and ATCA. We discuss the detection of a compact
object associated with the central star from the centimeter (with
ATCA) to the submillimeter (with ALMA). To understand the
nature of this object, we complement the radio and sub-
millimeter data with the IR photometry from space telescopes
extracted from public catalogs. Together with the central
object, we also analyze the outer nebula that we detected with
ATCA at 17 GHz. In this analysis, we also include the maps at
5.5 and 9 GHz that were presented in Agliozzo et al. (2012,
hereafter Paper I).

The paper is organized as follows: we present our data set in
Section 2. In Section 3, we analyze the radio and submillimeter
emission, including the IR photometry from space telescopes.
In Section 4, we discuss the central object emission and fit it
with two Reynolds (1986) models for collimated ionized
winds. In Section 5, we comment on different scenarios for the
geometry of the outer nebula. Finally, we summarize our
results in Section 6.

2. Observations and Data Reduction
2.1. ALMA Observation and Data Reduction

RMC 127 (05"36™433688 —69°29'47”52 ICRS) was
observed as part of an ALMA Cycle-2 project studying three
Magellanic LBVs (Project ID: 2013.1.00450.S), including LBV
RMC 143 (C. Agliozzo et al. 2017, in preparation) and candidate
LBV LHA 120-S 61, hereafter S61 (Agliozzo et al. 2017a,
hereafter Paper II). The observations consisted of a single
execution of 80 minutes total duration on 2014 December 26
with 40 12m antennas, with projected baselines from 10 to
245m. The integration time per target was 16 minutes. A
standard Band 7 continuum spectral setup was used, providing
four 2 GHz width spectral windows of 128 channels of XX and
YY polarization correlations centered at approximately 336.5
(LSB), 338.5 (LSB), 348.5 (USB), and 350.5 (USB) GHz.
Antenna focus was calibrated online in an immediately
preceding execution, and antenna pointing was calibrated on
each calibrator source during the execution (all using Band 7).
Scans at the science target tuning on bright quasar calibrators
QS0 J0538-4405 and Pictor A (PKS J0519-4546; an ALMA
secondary flux calibrator “grid” source) were used for interfero-
metric bandpass and absolute flux-scale calibration. Astronom-
ical calibration of complex gain variation was made using quasar
QSO0 J0635-7516 interleaved with observations of the science
targets approximately every six minutes.

As already mentioned in Paper II, atmospheric conditions
were marginal for the combination of frequency and necessa-
rily high airmass (transit elevation 43° for RMC 127), requiring
extra calibration steps in order to minimize image degradation
due to phase smearing, to provide correct flux calibration, and
to maximize sensitivity by allowing inclusion of shadowed
antennas. Details are presented in the Appendix, as they are
expected to be of use for improving the calibration for similar
ALMA observations in marginal weather conditions at high
airmass and/or with significant airmass difference between
targets and gain calibrator (QSO J0635-7516), especially at
bands 7 and above. This was performed in collaboration with
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Figure 1. From top-left to top-right panels: ATCA 5.5 and 9 GHz, and HST archival F656N Ha image. From bottom-left to bottom-right panels: ATCA 17 and 23
GHz, and ALMA 343.5 GHz. All images have the same field size. In each map, the synthesized beam is indicated with a white ellipse. At the lowest frequencies, the
emission from ionized gas in the nebula is detected and is co-spatial with the optical emission seen in Ha. At the higher radio and submillimeter frequencies, the
central object is mostly the dominant component. In the optical image, the black contour hints at the bright Z-pattern shape visible, in particular, at 9 GHz. The white

arrow and label (a) indicate the size of one diagonal arm (about 2.8 arcsec).

Table 1
Summary of Observations and Image Properties
Date Array v LAS Synthesized Beam P.A. Peak Noise
(GHz) (arcsec) FWHM (arcsec) (deg) (mJy beam™ ") (mJy beam™ ")

2011 Apr 18/20 ATCA 55 22.0 1.53 x 1.29 8.3 0.41 0.02
2011 Apr 18/20 ATCA 9 12.3 1.52 x 1.17 34 0.40 0.03
2012 Jan 21/23 ATCA 17 6.5 0.82 x 0.69 —8.0 0.17 0.02
2012 Jan 21/23 ATCA 23 4.1 0.62 x 0.51 -8.0 0.16 0.03
2014 Dec 26 ALMA-LSB* 337.5 9 1.26 x 0.97 78.3 1.130 0.095
2014 Dec 26 ALMAP 343.5 9 1.23 x 0.95 78.4 1.140 0.072
2014 Dec 26 ALMA-USB® 349.5 9 1.21 x 0.93 78.6 1.18 0.11
Notes.

# Lower sideband map.
® Total bandwidth.
¢ Upper sideband map.

staff at the Joint ALMA Observatory (JAO) who are working
on these aspects of calibration.

In this work, we used intensity images produced from
naturally weighted visibilities in order to maximize sensitivity
and image quality (minimize the impact of phase errors on the
longer baselines). We imaged all spectral windows together
(343.5 GHz average; approximately 7.5 GHz usable band-
width), obtaining an rms noise of 0.072 mJy beam~' in the
image. The proposed sensitivity of 40 pJy beam~! could not be
achieved as no further executions were possible during the
appropriate array configuration in Cycles 2 and 3. Therefore,
the nebula was not detected. The central object was instead
detected at 150.

We separately imaged the pairs of spectral windows in the
two receiver sidebands (337.5 and 349.5 GHz centers;

approximately 3.75 GHz bandwidth each), yielding an rms
noise of ~0.10 mJy beam™! in the images. The two sideband
images were used as an internal measure of the spectral index
and as a cross-check on the data quality. Figure 1 illustrates the
full bandwidth (7.5 GHz) map at 343.5 GHz. The synthesized
beam is approximately 1723 x 0795, Table 1 lists the details of
the observations and of the resulting images, including date of
observations, interferometer, central frequency, largest angular
scale (LAS), synthesized beam size (FWHM), and its position
angle (P.A.), peak flux density on nebula, and noise in the
residual maps. Flux-calibration uncertainty is estimated to be
5% (1o), although the peak flux may have a small additional
systematic error to lower value due to residual phase smearing
at a similar level. These uncertainties will be strongly
correlated among the three images (average, LSB, and USB)
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due to the small fractional frequency differences (3.5%
between sideband centers) and minimal differences in
atmospheric transmission, so the measurement of spectral
index from only the ALMA data should be entirely noise
limited. Calibration and imaging of the ALMA data were
performed using the Common Astronomy Software Applica-
tions (CASA) package, version 4.5 (McMullin et al. 2007).

2.2. ATCA Data

The 17 and 23 GHz ATCA data of RMC 127 were obtained as
part of observations of three magellanic LBV nebulae (Project ID:
C1973), including RMC 143 and S61. The observations were
performed by using the array in the extended configuration (6 km)
and the Compact Array Broadband Backend (CABB) receiver
“15-mm Band” (16-25 GHz) during 2012 (see Table 1). We used
observations of QSO J1924—2914, ICRF J193925.0—634245,
and ICRF J052930.0—724528 to determine the bandpass, flux
density, and complex gain solutions, respectively. We also
determined the polarization leakages and applied the solutions to
the data in order to calibrate the cross-hands visibilities. Once
corrected, the visibilities were inverted by Fourier transform. We
imaged the I, V, Q, and U Stokes parameters with a natural
weighting for uv-data for the best sensitivity. In the intensity map,
we detected the nebula and the central object (see Figure 1). We
did not detect any polarization, as expected due to the low
dynamic range. At 23 GHz, there are positional errors in
declination, which are ~0.4 arcsec, almost half a synthesized
beam. A source of error can be the fact that the phase calibrator
was systematically at lower elevations than the science target.
Given the poor weather and the proximity to the 22 GHz water
line, systematic errors in the estimation of the atmospheric path
length may contribute to this astrometric error. More information
on these observations and data reduction can be found in the paper
dedicated to S61 (Paper II).

We also reanalyze the 5.5 and 9 GHz data from the ATCA
observations performed in 2011 by using the CABB “4cm-
Band” (4-10.8 GHz) receiver. These data were presented in
Paper 1. Here we reprocessed the data at 5.5 GHz by using a
Briggs weighting scheme, with parameter robust = 0, in order
to match the angular resolution at 9 GHz. The ATCA maps are
shown in Figure 1 together with the ALMA one.

2.3. VISIR Observations

We also observed RMC 127 at the Very Large Telescope
(VLT) with the instrument VISIR, as part of a project including
RMC 143 and S61 (Project ID: 095.D-0433). An observing
block in the narrow bandwidth filter PAH2_2 (centered at
11.88 pm) was successfully executed on 2015 November 1.
The source was observed at an airmass of 1.6 and the seeing in
the V-band was not better than 1 arcsec. The observing mode
was set for regular imaging, with a pixel scale of 0.045 arcsec.
Four perpendicular nodding positions were used. RMC 127
was not detected, in part because the data were acquired for
only 20% of the desired total exposure time. According to the
VISIR Exposure Time Calculator, for a point source of 40 mly,
the signal-to-noise ratio (S/N) would be <30 in each sub-
image. Therefore, the source could not be detected. We do not
show the VISIR image because it is just noise, without
detectable sources (the field of view is only 38 x 38 arcsecz).
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2.4. Hubble Space Telescope Archival Data

We retrieved from the STScl data archive the Ha HST
images of RMC 127 (Project ID: 6540), published by Weis
(2003). The images were obtained with the Wide Field and
Planetary Camera 2 (WFPC2) instrument using the Ha-equiva-
lent filter F656N and reduced by the standard HST pipeline.
We reprocessed the data as described in Papers I and II. We
obtained a final image that matches with Weis (2003). We
show it in the top line of Figure 1.

3. Analysis and Results
3.1. The ATCA and ALMA Maps

In Figure 1, we show the interferometric radio and
submillimeter maps of RMC 127, and we compare them with
the archival HST Ha image, on the top right. The resolution of
the radio maps corresponds to the synthesized beam and is
shown with white ellipses.

The radio maps reveal for the first time the inner part of the
nebula. From low to high frequencies, different components
dominate in the distribution of the emission. At low
frequencies, the nebula (very likely ionized by the central hot
star) is the main source of radio emission, while at higher
frequencies the central object dominates the emission. When
the nebula is detected, the bipolar morphology is always
evident. Previously, Weis (2003) recognized in the HST F656N
Hoa image an elongation culminating in the northern and
southern caps. In the radio maps, in particular at 9 GHz, we
notice an additional component at P.A. ~ 70°, a bar or a
“diagonal arm.” This forms with the two eastern and western
rims (“vertical arms”) a Z-pattern shape in the E-W direction.
This is also visible in the HST F656N Ha image (see the black
contour in the top-right panel), despite the spikes and artifacts
(due to the bright central star) that affect the appearance of the
nebular morphology. The radio maps present indeed a new
insight into the core of the nebula.

At 5.5 and 9 GHz, the size of the nebula is approximately
7 x 6 arcsec?, or about 1.6 x 1.4 pc?, assuming a distance of
48.5 kpc for the LMC. The measured size is consistent with the
estimate determined from the optical image (Weis 2003). Since
at 5.5 and 9 GHz the LAS is at least twice the size of the source
(Table 1), we do not expect any significant loss of flux at these
frequencies due to the sampling of the uv plane.

At 17 GHz, the source has the same extension, and roughly,
the same morphology as at lower frequencies. However, the
LAS is comparable to the source size; for this reason, even if
the integrated flux density is preserved, artifacts can appear in
the image. We spatially integrated the flux density at 17 GHz.
The new measurement together with the 5.5 and 9 GHz values
(reported in Paper I) are listed in Table 2. They are all
consistent with thermal free—free emission (see Section 3.3). In
Table 2, we also list the peak flux density at the central object
position.

At 23 GHz, the LAS is smaller than the source, and in fact,
it is possible to detect only the compact central object and
the edges of the nebula, while the extended flux is lost. At the
ALMA frequency, the LAS is comparable to or larger than the
size of the nebula as seen at lower frequency. However, we
only detect the compact central source. The nebula around it is
barely discernible. This is probably caused by the low
brightness of the source at the ALMA frequency compared
with the rms of the map. Assuming that the nebula emits
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Table 2
Central Object Peak Flux Density F, and Nebula Flux
Density S, at Different Frequencies

v Synthesized Beam P.A. F, S,
(GHz) (arcsec) (deg) (mly beam ™) (mJy)
5.5 1.53 x 1.29 8.3 <0.255 3.1 +£0.2%
9 1.52 x 1.17 34 0.08 + 0.05° 33 +04%
17 0.82 x 0.69 -8.0 0.10 £ 0.02 30=£02
23 0.62 x 0.51 -8.0 0.16 + 0.03
337.5 1.26 x 0.97 78.3 1.130 £ 0.095

349.5 1.21 x 0.93 78.6 1.18 £ 0.11

Notes.

 From Paper 1.
® Nebula flux subtracted.

Table 3
Assumed and Derived Parameters for Model 1 (Isothermal, Constant Velocity,
Fully Ionized Conical Outflow) and for Model 2 (Isothermal, Constant
Velocity, Well-collimated Outflow with Recombinations)

Model 1 Model 2
qv 0
qr 0
Yo 0.5
g« 0 —0.2
e 1344013 1035043
0 —2.680%4 —2.0503%
@ —a02 ~348733)
a, —0.52 + 0.05 —0.60 + 0.06
F 1.02 £ 0.10 1.18 £ 0.12

through thermal optically thin free—free (Paper I), it is possible
to estimate the total flux of the nebula at 343.5 GHz by
extrapolating the measured flux density at low frequency with
the typical power law (S, ~ v~%1). The resulting flux density at
343.5 GHz is ~2 mly. If we consider the number of ALMA
beams in the nebula, this flux density corresponds to an average
brightness of 0.14 mJy beam~!, which is only 20; therefore, it
was not detected. Note that with the completion of observations
of the ALMA project (ID: 2013.1.00450S) it would have been
possible to also detect the free—free emission in the nebula.

At 9 GHz, the center of the nebula becomes as bright as the
two rims. This is likely due to another emission component,
which is partially resolved from the nebula at 17 GHz and also
detected at 5o in the map at 23 GHz, where it appears as a
compact source (Figure 2). This object has an apparent
elongation in nearly E-W direction at the 30 level. The P.A.
of this object is ~110°, similar to the P.A. of the polarized
emission detected by Schulte-Ladbeck et al. (1993). At the
ALMA frequency, the central object is the dominant emission
component.

For the 23 GHz map, which is the highest-resolution map that
we obtained, we used the task imfit of CASA to fit a 2D
Gaussian to the central object in the image plane. The box region
for the fit was selected around the ~30 contour level. The fit
results in a Gaussian with FWHM = 0.71 & 0.11 arcsec along
the major axis. The source is marginally resolved. The
deconvolution from the synthesized beam gives a size of 0.43
arcsec in R.A., equivalent to ~3 x 10'7 cm, or about 0.1 pc, at
the distance of 48.5 kpc. However, at the 3¢ level, the contours of
this object could still be confused with the noise in the map.
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Figure 2. Zoom-in of the ATCA 23 GHz map, centered on the central object.
The white ellipse in the corner represents the synthesized beam. The 23 GHz
contour levels corresponding to the 30 and 5o emission are plotted in black.
The object appears slightly elongated, with a P.A. ~ 110°, similar to the P.A.
of the polarized emission detected by Schulte-Ladbeck et al. (1993). However,
we cannot exclude noise contamination at the 3o level.

Hence, the size provided above must be considered an upper
limit.

3.2. Spectral Index of the Central Object

In Table 1, we report the peak flux density over the nebula.
While at lower frequencies (<23 GHz) the peak brightness is in
the right arm (western rim) of the nebula, at 23 GHz and
between 337.5 and 349.5 GHz, the peak of the emission is at
the position of the star. At these ALMA frequencies, the peak
flux density is almost three times higher than at 9 GHz (in the
nebula), despite the ALMA synthesized beam being smaller.

The central object is not visible at 5.5 GHz. The reason can
be confusion with the nebula emission, due to poor resolution
at this frequency, combined with weaker emission. The latter
possibility suggests a rising flux density distribution (e.g.,
S, ~ v?), which is typical of stellar winds and self-absorbed
emission. Note that the new map at 5.5 GHz has a synthesized
beam almost identical to that at 9 GHz. We extract the peak
flux density at 9 GHz (0.36 & 0.03 mJy) at the position of the
central object. Due to the low resolution, this is contaminated
by the emission from the “diagonal arm.” We then cut a slice
along this arm, and fitted a Gaussian to the brightness profile in
the slice along P.A. = 70°. The distribution peak corresponds
to a brightness of 0.28 mJy and o = 0.05 mJy. We subtract this
value from the peak flux density at the position of the central
object and derive a brightness of 0.08 + 0.05 mJy at 9 GHz. At
higher frequencies, we will refer to the peak flux densities in
Table 2 extracted at the position of the central object. Their
associated errors are the noise o as estimated in the residual
maps (flux-calibration errors are negligible).

We derive a weighted fit of the power law (S, ~ v%)
between the centimeter and submillimeter flux densities of the
central object (Figure 3). This gives us a spectral index « of
0.78 £ 0.05, which is higher than the canonical value for
ionized winds with spherical symmetry and n,(r) o< r—2
(Panagia & Felli 1975; Wright & Barlow 1975). Several
mechanisms to explain the central object emission will be
discussed in Section 4. A potential caveat with the flux density
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Figure 3. Black points: peak flux densities at 5.5 (upper limit), 9, 17, and
23 GHz from the ATCA observations and at 337.5 and 349.5 GHz from the
ALMA observations, extracted at the position of the star. Solid line: weighted
fit from 9 to 349.5 GHz. The positive slope suggests thermal emission from the
ionized stellar wind. The spectral index ay indicates departure from spherical
symmetry with n, (r) o< r~2. Purple points: spatially integrated flux densities of
the nebula at 5.5, 9, and 17 GHz. Dashed line: fit from 5.5 to 17 GHz,
characterized by an «, typical of optically thin free—free emission in the ionized
nebula.

distribution may be the presence of systematic errors in each
individual measurement (Table 2 and Figure 3) due to the
differing beam sizes and the nebular contributions to the
extracted central object brightness in the maps. However, given
the large frequency coverage (9-349.5 GHz), we are confident
of the derived spectral index.

3.3. Spectral Index of the Outer Nebula

In Paper I, we derived an average spectral index o ~ 0.1
from the spatially integrated flux densities at 5.5 and 9 GHz.
With the new measurement at 17 GHz and the values from
Paper 1 (see Table 2), the average spectral index is
—0.03 £ 0.08 (Figure 3), typical of optically thin free—free
emission, with the flux density slightly decreasing at high
frequencies and a theoretical power law ocv 01,

The images at radio wavelengths have angular resolution and
sensitivity that allow us to study any deviation from the typical
thermal free—free emission inside the nebula by means of
spectral index maps. The existence of nonthermal emission
processes could indicate the presence of acceleration of
particles up to the relativistic regime, due to shocks between
the wind and the circumstellar environment, or due to the
wind-wind interaction like in symbiotic systems, or other
processes.

In colliding wind binary (CWB) models for WR+-O systems,
the turnover frequency is usually lower than 5.5 GHz (e.g.,
Dougherty 2010 and references therein). Therefore, in the
observed range of frequencies, a hypothetical nonthermal
component should be in the optically thin regime, with a
negative spectral index. The maximum flux density is expected
to be around 5.5 GHz or at lower frequencies. Negative spectral
indices should be evident in the spectral index map obtained by
comparing the 5.5 and 9 GHz images. We prefer not to use the
map at 17 GHz to derive spectral index maps, since, as reported
in Section 3.1, artifacts can be present.

A spectral index map has been derived from the data at 5.5
and 9 GHz. For both bands, the LAS is much greater that the
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source and no flux is lost. The 9 GHz map has been convolved
with a two-dimensional Gaussian to match the beam at
5.5 GHz. After regridding the two maps in order to have the
same pixel size, we computed the spectral index map and its
associated error map (left and right panels of Figure 4,
respectively) in each common pixel >3¢. In the error map, the
error in each pixel is dominated by thermal noise (flux-
calibration errors are negligible). We also overlay the contours
of the 9 GHz emission on top of the spectral index map. The
mean spectral index over the nebula, ~0.0, is still consistent
with optically thin free—free emission from a nebular gas
ionized by the central star. We exclude in our analysis the
pixels at the borders, where the errors are high (up to 0.5).
Around the central star, « ~ 0.6-0.7, which is consistent with
an ionized wind. Along the diagonal arm, that is, at P.A. = 70°,
« varies between —0.2 and 0.2 which is consistent with typical
bremsstrahlung emission. Near the northern and southern caps
we find similar values of «, even if the associated error is much
larger there. There is no evidence of a nonthermal component,
at least at the resolution and sensitivity achieved by these
observations.

3.4. The Spectral Energy Distribution (SED)
from the Near-IR to the Radio

We queried the IR catalogs with the VizieR tool (Ochsenbein
et al. 2000), and we extracted the flux densities of RMC 127 from
2MASS (Cutri et al. 2003), Spitzer/IRAC (Meixner et al. 2006),
AKARI (Ishihara et al. 2010a, 2010b), WISE (Cutri et al. 2012),
IRAS (Beichman et al. 1988), Spitzer/MIPS (Whitney et al. 2008;
van Aarle et al. 2011), and Herschel (Meixner et al. 2013). In
Figure 5, we plot the SED of RMC 127 from the near-IR to radio
wavelengths. In addition to the two power laws associated with
the ionized nebula and with the stellar wind in the radio and
submillimeter, it is also possible to recognize a component of
cool dust commensurate with a graybody. We also note that the
photometry from about 1 to 8 um traces neither a hot dust
component close to the star nor cool dust in the outer nebula. The
near-IR emission also shows an excess above the stellar
photosphere (here we plot a range of reasonable effective
temperatures for RMC 127 during its decline toward the
quiescent state; e.g., Stahl et al. 1983; Walborn et al. 2008).
Instead, the extrapolation of the stellar wind fit determined in the
radio—millimeter range seems to account for the emission in the
near-IR.

We fit the SED from the mid- to the far-IR with a single-
temperature graybody with power-law opacity index (. The
slope in the Rayleigh—Jeans regime suggests high values for the
parameter (3, implying a grain size distribution dominated by
small grains, similar to interstellar dust. The parameter (3 is
mostly constrained by the Herschel PACS photometry. We
found a range of characteristic temperatures between 71 and
90 K by varying (3 between 1.5, 2, and 2.5 (extreme case). The
graybodies that fit the data, taking into account their
uncertainty, are represented in gray. The graybody that best
fits the data is plotted with a black solid line in Figure 5, with
B = 2.0. At longer wavelengths, the black solid line is summed
with the nebula free—free model, while at shorter wavelengths
the total emission is not computed because of uncertainty in the
wind spectral index and in the stellar effective temperature
(green + blue bands). Furthermore, the mid-IR range around
10 um is known to be complicated by solid-state features that
we cannot constrain.
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Figure 4. Left: spectral index map between 9 and 5.5 GHz. Contours show the isophotes of the 9 GHz image at the resolution of the 5.5 GHz data. The central
component has a spectral index consistent with a thermal wind o ~ 0.6-0.7. The emission of the two arms in the west and east directions have spectral index
consistent with optically thin free—free emission a &~ 0. Right: spectral index error map. The error associated with the spectral index map does not exceed 0.3 in most

of the nebula. There is no evidence of nonthermal components.

The resulting characteristic temperature suggests that the
mid- to far-IR emission arises from optically thin cool dust in
the outer nebula (consistent with Bonanos et al. 2009). In the
plot, the point indicated by the “ALMA total” label represents
the 30 upper limit to detect the total emission over the nebula
(the upper limit is derived from the rms noise in the maps
integrated over the area corresponding to the ionized nebula).
The point-source detected with ALMA (black point) is clearly
associated with the ionized gas in the stellar wind (Section 3.2).

4. The Central Object: Discussion

The positive slope (o = 0.78 £0.05) of the radio flux
density distribution (Section 3.2) indicates a thermal origin, so
the emission must be associated with free—free encounters in
the ionized stellar wind. This value deviates from the canonical
case of a spherical wind with n, (r) oc r~? (o = 0.6; Panagia &
Felli 1975; Wright & Barlow 1975). The spherical wind model
requires an electron density distribution with a power law
steeper than —2 to reproduce such a spectral index.

None of the clumpy stellar wind models can reproduce the
observed radio SED. In fact, optically thin clumps (micro-
clumping case) do not alter the flux density distribution of the
stellar wind at radio wavelengths (Nugis et al. 1998). Ignace
(2016) recently showed that porous stellar winds (optically
thick, macroclumping) have a spectral index of v%¢ if the
porosity is in the form of shell fragments (for any value of the
volume filling factor). If the clumps are spherical, and for
extreme values of the filling factor, the flux density distribution
can be shallower than ©%° and therefore produce an opposite
effect to the RMC 127 case.

Daley-Yates et al. (2016) investigated the contribution due to
the stellar wind acceleration region in the submillimeter, but
they considered stars with relatively low mass-loss rates and
with physical properties different from LBVs. The acceleration
of the wind in RMC 127 very likely occurs much deeper in the
wind, as indicated by the 2MASS points (see Figure 5).

We recall that Schulte-Ladbeck et al. (1993) and Davies
et al. (2005) found strong evidence of asphericity in the
RMC 127 stellar wind, by means of optical spectropolarimetry.

Clampin et al. (1995) and Weis (2003) also suggested a
deviation from spherical symmetry by morphological con-
siderations of the outer nebula. This is also confirmed in the
radio by our new interferometric maps. These results make
unsuitable all the models based on spherical symmetry. As an
alternative, we employ the Reynolds (1986) model of a
collimated ionized stellar wind to explain the central object
emission of RMC 127 in the radio and submillimeter. Ionized
collimated stellar winds (jets) can have —0.1 < a <2
(Reynolds 1986).

4.1. Collimated Stellar Wind Models

The Reynolds model can account for different configurations of
the jet, described as power-law dependencies of the physical
parameters along the jet (coordinate r along the jet axis), such as
jet width (w o %), velocity (v o< r%), degree of ionization
(x ox r%), temperature (' o< rr), and electron density n. o< r%

with g, = —¢q, — 2¢. Assuming for the Gaunt factor g oc v,
the absorption coefficient is k, oc ré, where g, = ¢ + 2¢q, +
2q, — 1.35¢;.

Knowing the spectral index « of the wind, it is possible to
determine how the jet width varies with distance (parameter ¢)
and therefore whether the jet is well-collimated or conical. The
relationship between « and ¢ is

2.1
a=24+22( + ¢+ qp. (1)
4

In the case (Model 1) of an isothermal (g, = 0), fully
ionized (g, = 0), and constant velocity outflow (g, = 0), with
o = 0.78 £ 0.05 derived from the observations, ¢ ~ 1.34, and
then, being >1, the jet opens toward the outside. Another
interesting case (Model 2) to consider is that of an isothermal,
constant velocity, exactly conical (¢ = 1) outflow with
increasing recombinations (¢, = —0.2) as the plasma propa-
gates outwards.

The mass-loss rate can be written in a general form that
takes into account all these parameters (for details, see
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Figure 5. SED of RMC 127 from near-IR to radio, including the photometry extracted from the IR catalogs of space telescopes and our ALMA and ATCA
measurements. The arrow is the 30 upper limit to detect the whole nebula (dust + ionized gas) with ALMA. The gray band represents the fit graybody functions
obtained with a range of values for the parameter 3 (between 1.5 and 2.5). The blue band represents several stellar photospheres derived assuming a stellar luminosity
of 10%! L, and an effective temperature range of 23,000-32,000 K. The purple line is the fit of the radio nebula and the green line the fit of the central object, from the
centimeter to the submillimeter. The green band was derived by taking into account the uncertainty of the radio spectral index. The wind free—free fit was extrapolated
up to the near-IR wavelengths and summed with the photosphere emission. The black continuous line is the total emission from the mid-IR to the radio.

Reynolds 1986):
y _ 3/4 3/2 —3/4 —0.075
M =527 x 107 v fkm s Slm/JyJ D[k{m] Vicia" T
X Ui £ 03/ sin(e)) 14 S My,
0
2

e See Table 3 for a
qT(a72)(a+O.l)'

summary of the assumed and derived jet parameters.

In the equation, we use the flux density S at frequency
v = 349.5 GHz and 48.5 kpc as the distance D of the object.
We assumed 6420 £ 300 K for the gas temperature 7 (Smith
et al. 1998), whose influence on the mass-loss rate is very
weak. For the terminal velocity of the wind, we adopt
Vo = 148 & 14 km s~! (Agliozzo et al. 2017b). The angle
© = 90° — i formed between the jet axis and the line of sight
is a free parameter, which only weakly affects the result due to
the —1/4 power dependence. Here we assume ¢ = 75° (thus
i = 15°). Finally, we set to unity the ionized fraction xq at the
base of the outflow and the mean atomic weight of the gas
u =1 (assuming a gas of mostly hydrogen). Note that we do
not know the jet-opening angle Jy. An upper limit can be set
equal to 0.5rad, a condition usually met in ionized jets
(Mundt 1985; Reynolds 1986).

Another free parameter in Reynolds’ treatment is the
maximum frequency vy, in the SED, which we do not know.
In fact, looking at Figure 5, the extrapolation of the wind SED
from the radio and submillimeter wavelengths seems to
approach the emission of the star in the near-IR. However, it
is important to note that the dependence of the mass loss on

Umax s weak, since it goes as M oc v%13 in our case. A factor

where F = F(q, o) =

of 100 in v4,x corresponds to a factor of less than 2 in M. 1tis
further important to note that the Reynolds equations are based
on the approximation of the Gaunt factor that is valid in the
radio regime, and that at v > 10'> Hz it deviates more than
30% from the correct value. In addition, the cutoff of the free—
free emission at high frequency, given by the factor e /KT,
should be taken into account when extrapolating the Reynolds
equations to the near-IR. The cutoff frequency corresponds to
10 Hz at T ~ 6500 K, ie., a wavelength of a few microns.
Furthermore, near the photosphere the wind is accelerated and
it should be taken into account in the model. A reasonable
value for vy, seems to be 10" Hz. For the two model
scenarios, we then have

15
. D Vo 9o \O75
Mr=Gp 71(—0) I
48.5 kpc 148 km s~ \ 0.5

0.135
) sin() 9% x 1076 [M, yr71],

( Vinax

X [ ———
10* GHz
with the only difference being the normalizations C; = 9.43;8
and C, = 8.5773.

The mass-loss rate can be a factor of two or more smaller
than in the spherical case (2.1 & 0.4 x 1075 Mg yr!), as
deduced from the equation of Panagia & Felli (1975). As
described in Reynolds (1986), the effect of collimated winds is
to reproduce the radio flux density very efficiently, despite
lower mass-loss rates than in the standard spherical case. This
means that for unresolved radio stellar objects, their mass-loss
rates can be overestimated if the wind is not spherical.

Astrophysical objects that exhibit jets are usually associated
with fast rotation and/or dense disks (e.g., Soker & Livio 1994;
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Figure 6. Simulated 3D conical helix (projected), as seen from eight different lines of sight (LOS). The viewing angles between the LOS and the three axes (xyz)
change continuously in panels (1) through (8). Each half helix completed exactly one turn (27). The helix “tube” diameter and height from origin along the system axis
are 0.15 and 0.7, respectively, in relative units. The helix radius at any given height is r (#) = h. The simulation was created using the new public code RHOCUBE

(Nikutta & Agliozzo 2016; Agliozzo et al. 2017a).

Livio 2000). We do not have evidence of a dense disk in our
data (although Schulte-Ladbeck et al. 1993 and Davies
et al. 2005 suggested the presence of a disk at a few stellar
radii), but we also do know that RMC 127 is a fast rotator (with
a projected rotational velocity of ~105kms™!; Agliozzo
et al. 2017b). A collimated outflow was discovered from the
evolved B[e] star MWC 137 (Mehner et al. 2016).

5. The Outer Nebula: Discussion

The nebula associated with RMC 127 consists of dust and
ionized gas, typical of LBVNe. In the radio, the nebula emits
mainly by free—free transitions (Section 3.3). The dust is very
likely dominated by small grains, spread out over the ionized
region, with an average temperature of 7 =80 + 10K
(Section 3.4). Using the flux densities extracted from the fits
in Section 3.4 at the ALMA frequency 343.5GHz (see
Figure 5), we derived a dust mass range of M; = 2.2 x 1073
to 2.2 x 1072 M, considering that M, = S, D>/ (B, (T)k,)
and assuming kK343 Gu, = 1.7 cm? g~!, as in Paper II for S61.
The range of dust masses in RMC 127°s nebula is consistent
with typical values in LBVs, but suggests a lack of dust when
compared to the RMC 127 Galactic twin, AG Car (e.g.,
Vamvatira-Nakou et al. 2015), although AG Car’s distance has
been recently questioned (Smith & Stassun 2017). A reduced
dust mass of RMC 127 compared to AG Car could be due to
the lower LMC metallicity.

The asymmetric expanding shell—According to the canoni-
cal view, RMC 127’s nebula is an expanding shell formed
through past mass-loss events. The shell is not perfectly
spherical and has an elongation in the N-S direction
(Weis 2003). The northern and southern caps are also visible
in the radio maps, especially at 5.5, 9, and 17 GHz (Figure 1).

The cause of this asymmetry could have been a dense disk in
the rotational plane of the star (Schulte-Ladbeck et al. 1993,
nearly E-W direction). This disk channeled the wind along
the polar axis and expanded more slowly than the ejecta at the
higher stellar latitudes, causing a density anisotropy in the

nebula. The radio emission co-spatial with the optical eastern
and western rims would be brighter because here the optical
depth along the line of sight is larger. According to this
scenario, closer to the star there would be a similar system
(consisting of a dense disk and a bipolar outflow) aligned with
the outer nebula.

This scenario is akin to B[e] supergiants, which are fast
rotators and have a dense disk in their equatorial plane and a
fast outflow along the polar axis.

The precessing jet model—It is widely accepted that two-
thirds of massive stars are in binary or multiple systems. The
interest in the effect of binarity on the evolution of massive
stars has been increasing in recent years (e.g., De Marco &
Izzard 2017 and references therein). Recently, a companion star
of the Galactic LBV HR Car was directly detected (Boffin
et al. 2016). On the basis of this discovery, Buemi et al. (2017)
suggested a precessing jet model that can explain in part the
complex HR Car nebular morphology. HR Car’s nebula is in
fact characterized by an infrared inner shell and, in the
perpendicular direction, a bipolar outflow of ionized gas, that
resembles a helix. These features would be created under the
influence of the binary or multiple system. Similarly to HR Car,
RMC 127 has a collimated stellar wind. RMC 127 is also a fast
rotator. RMC 127°s nebula could also have been formed
through the bipolar outflow of a precessing star. To investigate
this, we used our new public code RHOCUBE (Nikutta &
Agliozzo 2016; Agliozzo et al. 2017a) to simulate a 3D double
conical helix nebula. Figure 6 illustrates this simulated nebula
as seen along eight different lines of sight. The three viewing
angles with respect to the observer change continuously
between panels (1) and (8) of the ﬁgure.14 We find a
remarkable similarity of panel (2) in the figure with the
17GHz morphology of RMC 127. The simulation was
performed by assuming that the axial precession of the star
has completed one period and that this corresponds to the

' An animated version can be found at https://vimeo.com/151528747.
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kinematical age of the nebula. In this scenario, the polar axis is
nearly in the E-W direction and is consistent with the first
hypothesis by Schulte-Ladbeck et al. (1993) that the polarized
emission could arise from a highly inclined bipolar outflow.
The simulation in the figure does not have any quantitative
relevance and is only shown to provide to the reader a
schematic idea of the proposed scenario. Integral field unit
spectroscopy in the future will allow this geometry to be tested.
In the following, we proceed with a toy model to explore the
possible implications and to eventually demonstrate that the
hypothesis of the conical helix nebula is plausible.

The binary toy model—In the hypothesis that the jet
precession toy model is valid, from kinematical considerations
we can derive the precession period, but this requires an
assumption on the velocity field in the outer nebula. Weis
(2003) found an average projected velocity of 25 km s~! along
the two rims and of about 15 km s~! along the two caps. For
simplicity, we analyze the case of a jet expanding at constant
velocity (set equal to the terminal velocity of the wind,
148 + 14 kms~!; Agliozzo et al. 2017b). We consider then the
size of the diagonal arm, 2.8 £ 0.4 arcsec (labeled “a” in
Figure 1), and derive a period of 4300 4 700 years.

The axial precession motion would imply that the star must
experience a tidal force, a torque of a companion star. Two other
well-known LBVs in a binary and a multiple system are also
bright in the X-rays. These are 77 Car and HD 5980 (Corcoran
et al. 1995; Nazé et al. 2002). The class of LBVs is not overall
intrinsically bright in the X-rays and the known X-ray emitters (in
total four objects plus two candidates in the Galaxy, and one in
the Small Magellanic Cloud) must be generally associated with
an external factor, such as binarity (Nazé et al. 2012). Following
the analysis of Nazé et al. (2012), a massive companion O-type
star, which is a moderate X-ray emitter (Ly ~ 103'-1033 erg s71;
Nazé et al. 2012), could be invisible at X-ray wavelengths
because of the strong absorption of the dense LBV wind, in the
case of close orbits. However, wind—wind collisions should
produce X-rays. Conversely, if the orbit is large, the intrinsic
X-ray emission associated with the O star would be visible, while
the wind—wind interaction should not produce X-rays. A late-B
companion of 3-6 M., would not produce X-ray-bright colliding
wind emission, because its wind is negligible and would be
invisible at X-ray wavelengths (Kashi 2010). We searched the
X-ray archives of XMM-Newton, Chandra, and Swift. One 28 ks
XMM-Newton observation included RMC 127; however, no
X-ray photons are detected from its position. Assuming the
distance of the LMC and the lo sensitivity in the archive, the
upper limit of the X-ray luminosity in the 0.2-2.0keV energy
range is Ly < 3 x 103 erg s~! and in the 2.0-12.0 keV range is
Ly <1 x 10¥ erg s~!. The X-ray observations did not reach
the necessary sensitivity to detect sources as bright as the
Magellanic system HD 5980 (LBV+WR+0O), which has
X-ray luminosities of Ly = 1.7 x 103 ergs~!' in the range
0.3-10keV and Ly = 9 x 103 erg s~! in the range 0.2-2.4 keV
(Nazé et al. 2002).

We analyze the case of an intermediate B-type companion
for RMC 127, with mass M, = 12 M, equivalent to a mass
ratio g of 0.2, typical in observations of massive binary systems
in our Galaxy (Kobulnicky et al. 2014). For the companion to
exert a torque, RMC 127 must be not perfectly spherical and its
equatorial plane must lie at an angle with the plane of the
orbit. The angular velocity of the precession axis is
Q, = 7/1Q,sin(), where 6 is the angle formed by the
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rotational axis with the precession axis, / the moment of
inertia, and €2, the angular velocity of the stellar axis. The
magnitude of the torque is then 7 = R AF sin(f), where R, is
the stellar radius, AF is the gravitational force across the star’s
width and is AF = 2GM M, Ar/a®, with M, and M, the
masses of the two stars in the binary system, and G the
gravitational constant. Therefore, the linear separation between
the two stars a is

3
19,9, )

1
y— [4 GMleRf cos(H)) /3.

To estimate the angular velocity €2, of RMC 127, we take
the projected rotational velocity of 105kms~! (Agliozzo
et al. 2017b) and the projection angle i = 15° (consistent
with our model in Section 4). If we assume as stellar radius
Ry = 50 Ry and mass M; = 60 Mg (Stahl et al. 1983), we
obtain €, ~ 1.2 x 10> rads~!, which corresponds to a
period of ~6 terrestrial days. For the moment of inertia we
approximate a solid sphere, given the small dependence of a on
I. From the precession period 7,, ~ 4300 years, we derive
Q, ~ 4.6 x 10""'rad s~!. Finally, based on the similarity
between the simulation in Figure 6 and the map at 17 GHz, we
assume 0 = 45°.

In this examined case (companion of 12 M), the inner
separation a between the two stars would be then ~18 au and
the inner Lagrangian point L1 would be ~12 au (~51 Ry),
implying that the system is detached. However, when the
primary star is at its maximum phase, the expanded pseudo-
photosphere (stellar radius of 150 R; Stahl et al. 1983) would
fill the Roche lobe, implying mass transfer. The orbital period
for this particular orbit would be about 9 years. Boffin et al.
(2016) derived for HR Car’s binary system a linear separation
of 18 au, an orbital period of 12 years, and a mass ratio of 0.36.
The presented exercise shows that the hypothesis of binarity for
RMC 127 and axial precession is reasonable.

Noticeably, Lau et al. (2016) found an apparent precessing
helical outflow associated with the Wolf Rayet star WR 102c and
attributed it to a previous phase of its evolution (namely, LBV).
They also concluded that the helix is evidence of a binary
interaction. They derived a precession period of 14,000 years.

The precessing jet model depends on the assumption of the
binary nature of RMC 127, which has not yet been demon-
strated. Given this, the single-star expanding shell scenario
appears the simplest description for the nebula. A long-term,
multiwavelength observation campaign will be needed to
conclusively distinguish these two scenarios and understand
the nature of this complex object.

6. Summary

The ALMA and ATCA observations of RMC 127’s central
object and outer nebula provide new insights into the nebula core
of the classical LBV RMC 127. In the radio, at the lowest
frequencies, the main component of the emission is the ionized
gas in the outer nebula, which resembles overall the Ho
emission. The radio data permitted us to also analyze the inner
part of the nebula, which in the optical is obscured by the bright
central star. In addition to the previously known features in the
nebula (northern and southern caps, eastern and western rims),
we detected another emission component that gives the nebula a
strongly asymmetric aspect, a Z-pattern shape. We noticed a
similar morphology in the HST Ha image.
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The emission mechanism for the outer nebula in the radio is
overall optically thin free—free with a global spectral index a of
—0.03 £ 0.08. At higher frequencies, a point-source component
appears at the position of the star, bright up to the ALMA
observing frequency of 349.5 GHz. This emission is due to
thermal free—free emission in the ionized stellar wind. The stellar
wind also seems to account for the excess at the near-IR
wavelengths above the photosphere. The flux density distribution
of the ionized wind (with spectral index o« = 0.78 4 0.05)
indicates a deviation from a spherical wind, supporting previous
studies, and likely suggests the presence of a bipolar outflow /jet.
We fitted the data with two Reynolds (1986) models to determine
the mass-loss rate in the jet, which can be at least a factor of two
smaller than the case of spherical wind.

The fit of the mid- to far-IR flux densities derived from space
telescope observations suggests that this emission arises from
optically thin cool (~80 K) dust spread out over the ionized
region. The derived mass of the dust (0.2-2.2 x 1072 M) is
consistent with other Magellanic and Galactic LBVs.

We discussed two possible geometries to explain the outer
nebula, including the canonical single-star expanding shell
model and a jet precession model assuming the presence of a
companion star.

The asymmetry of the mass-loss geometry of RMC 127 may
be strongly influenced by the presence of a companion star
and/or fast rotation.
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Appendix A
Additional Notes on the ALMA Observation
and Data Reduction

A standard Band 7 continuum spectral setup was used with
the 64 input Baseline Correlator, giving four 2 GHz width
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spectral windows (one per analogue baseband) of 128 channels
(“TDM” mode, XX+YY polarization correlations) centered at
approximately 336.5 (LSB), 338.5 (LSB), 348.5 (USB), and
350.5 (USB) GHz, with integration duration of 2.016 seconds.
Companion channel-averaged correlator data with integration
duration 1.008 s and Water Vapor Radiometer (WVR) data
with integration duration 1.152 s were also recorded. Time on
source was approximately 16 minutes per target. Atmospheric
conditions were marginal for the combination of frequency and
necessarily high airmass (transit elevation 43° for RMC 127),
requiring the extra calibration steps described below.

Of the 40 antennas, two had to be completely flagged
(DAS53, DV06), and another flagged completely in three of the
four basebands (DA49 BB_2, 3, 4) due to intermittent
coherence loss (a digitizer calibration problem affecting Walsh
sequence phase switching). For one antenna (DV11), manual
intervention was required in order to produce system temper-
ature measurements (intermittent spurious values in the
calibration device load temperature data). System temperatures
were regenerated offline using the Cycle-3 TelCal software.
Flags set by the online control software (XML flags) and by the
correlator software (binary data flags) were applied as normal.
In total 36 antennas were fully used in the reduction, with two
more partially used due to issues in a subset of BBs/pols
(DA49 BB_2, 3, 4; DA45 pol Y).

Online, antenna focus was calibrated in an immediately
preceding execution, and antenna pointing was calibrated on
each calibrator source during the execution (all using Band 7).
Scans at the science target tuning on bright quasar calibrators
QS0 J0538-4405 and Pictor A (PKS J0519-4546; an ALMA
secondary flux calibrator “grid” source) were used for
interferometric bandpass and absolute flux-scale calibration.
Astronomical calibration of complex gain variation was made
using scans on quasar calibrator QSO J0635-7516 interleaved
with scans on the science targets approximately every six
minutes. The gain calibrator was a suboptimal choice, as being
six degrees farther south than the targets it was at significantly
higher airmass, with many antennas suffering some degree of
shadowing. Data reduction proceeded as normal for ALMA
data reduced in CASA, with the addition of the following
modifications to deal with the combination of large airmass
separation between science targets and gain calibrator,
shadowing of antennas due to the compact configuration and
low observing elevation, and generally marginal phase
stability. We also evaluated the effect of calibrator source
structure on the calibration.

A.1. Continuum WVR Subtraction

Before running the wvrgcal program (Nikolic et al. 2012),
which computes phase corrections from the WVR data, we
preprocessed the raw WVR data to subtract a continuum
contribution using a prototype algorithm implementation devel-
oped at JAO (W. Dent 2016, private communication). This was
developed to subtract the thermal continuum contribution
produced by water droplets from the WVR channel tempera-
tures, as wvrgcal assumes only water vapor emission. In this
case, it was primarily used to remove the thermal continuum due
to shadowing (partially obstructed beam) from the WVR data,
with the same reasoning. Reviewing the corrections applied to
each antenna, compared with their predicted shadowing fraction
for each scan, showed that this was successful, although in
the future the correction may improve by using measured
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Figure 7. ALMA Band 7 image (343.5 GHz, natural weighting, not primary beam corrected) of gain calibrator QSO J0635-7516, showing source structure in the jet to

the west. The image is noise limited with rms noise of 0.15 mJy beam~!

size is 171.

sky-coupling efficiencies of each antenna+WVR combination
(a topic of active investigation within the ALMA project).

A.2. Removal of WVR Phase Offsets Between Fields

Due to the large airmass separation between the science
targets and the gain calibrator, combined with limitations in the
calibration of the WVR data (a fixed sky coupling efficiency
and channel frequencies are currently assumed) and limitations
in the atmosphere model used to derive the phase corrections
from the WVR data, we found phase offsets between fields in
the phase correction table produced by wvrgcal, which
differed between antennas and did not correspond to real phase
offsets (confirmed by looking at self-calibration phase solutions
for phase over all time on RMC 127—discrepant antennas
corresponded to those with noted field offsets in the wvrgcal
results). This effect is under investigation as part of ALMA’s
continuing improvements to phase correction and antenna
position determination. Without action, the image smearing due
to these offsets made the WVR phase correction no significant
improvement over not applying the correction. A simple
solution of subtracting the field-averaged phase correction from
the calibration table produced by wvrgcal was applied. This
dramatically improved the image quality, resulting in over a
10% increase of the peak flux of RMC 127.

A.3. Ty Extrapolation between Fields

The ALMA observation frequently measured the system
temperature, Ty, at the location of the gain calibrator
QS0 J0635-7516. The standard ALMA data reduction applies
this Ty directly to the science fields, on the assumption that the
difference is negligible due to the proximity of the calibrator.
This is a known limitation in ALMA’s amplitude calibration
strategy—CASA provides simple interpolation of Ty in time
(between scans) and frequency (within each Ty, spectral
window), but not yet in airmass. For the data set considered
here, the Ty error for the science targets by simply using that of
the lower elevation gain calibrator was around 8%—10%, with
the error being largest for antennas that were more shadowed
(larger blocking fraction) toward the gain calibrator. A simple
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Ty extrapolation scheme was developed to correct this, using a
simple model and the autocorrelation amplitude during each of
the scans. This works for this data set, as we used the TDM
correlator mode, which produces linear autocorrelations (a
quantization correction is applied in the correlator software,
which cannot be applied in the higher resolution FDM mode).
The channel-average autocorrelation data was used for this.
The Ty, at the start and end of each scan was interpolated from
the 7;y, measurements on the gain calibrator using the following
equation, taking an input Ty | and the autocorrelation values
Vi, V, at the relevant times.

)

A nominal atmosphere and blocking temperature T, = 270 K
was used, although the effect of varying this by plausible
amounts was negligible for this case of Tgy, ~ 200 K.

7;ys,l E
’I;ys,l + Etm Vl

X

“

T.;ys,Q = T;nm(
1 —x

A.4. Source Structure in Gain Calibrator QSO J0635-7516

We imaged the three calibrator sources in the execution as a
cross-check of calibration and data quality. QSO J0538-4405
and Pictor A were point sources at the expected position. The
gain calibrator, QSO J0635-7516, however showed significant
source structure as shown in Figure 7. This is a known
megaparsec-scale jet discovered by Chandra (Schwartz
et al. 2000) and previously imaged at centimeter and optical/
near-IR wavelengths (e.g., Mehta et al. 2009; Godfrey et al.
2012). Since analyzing our ALMA observation, maps from
combination of calibrator scans in many ALMA observations
have been presented by Meyer et al. (2017). To evaluate the
effect of this structure on the phase calibration of the science
targets, we used a clean component model of the source to
both self-calibrate it and to correct the phases of the other
fields. The maximum in the residual self-calibration phases of
QS0J0635-7516 was around 3°, and there was no significant
effect on the image of RMC 127, so we concluded that the
source structure of QSO J0635-7516 was irrelevant and it was a
suitable calibrator choice in this regard (and it would be even
less significant with a smaller largest recoverable scale).
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