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We study the energy-momentum tensor and helicity of gauge fields coupled through gϕFF̃=4 to a
pseudoscalar field ϕ driving inflation. Under the assumption of a constant time derivative of the
background inflaton, we compute analytically divergent and finite terms of the energy density and helicity
of gauge fields for any value of the coupling g. We introduce a suitable adiabatic expansion for mode
functions of physical states of the gauge fields which correctly reproduces ultraviolet divergences in
average quantities and identifies corresponding counterterms. Our calculations shed light on the accuracy
and the range of validity of approximated analytic estimates of the energy density and helicity terms

previously existed in the literature in the strongly coupled regime only, i.e., for g _ϕ=ð2HÞ ≫ 1. We discuss
the implications of our analytic calculations for the backreaction of quantum fluctuations onto the inflaton
evolution.
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I. INTRODUCTION

Inflation driven by a real single scalar field (inflaton)
slowly rolling on a smooth self-interaction potential
represents the minimal class of models in general rela-
tivity which are in agreement with observations. Not only
are the details of the fundamental nature of the inflaton
and of its interaction with other fields needed to study the
stage of reheating after inflation, but also they can be
important for theoretical and phenomenological aspects of
its evolution.
Axion inflation, and more generally, inflation driven by a

pseudoscalar field is the archetypal model to include parity
violation during a nearly exponential expansion and it has a
rich phenomenology. An interaction of the pseudoscalar
field with gauge fields of the type

Lint ¼ −
gϕ
4
FμνF̃μν; ð1Þ

where g is a coupling constant with a physical dimen-
sion of length, or inverse energy (we put ℏ ¼ c ¼ 1), leads
to decay of the pseudoscalar field into gauge fields
modifying its background dynamics [1] and to a wide
range of potentially observable signatures including pri-
mordial magnetic fields [2–10], preheating at the end of
inflation [4,11,12], baryogenesis and leptogenesis [13–15],
equilateral non-Gaussianites [16–18], chiral gravitational
waves in the range of direct detection by gravitational wave
antennas [19–22], and primordial black holes [18,23–26].
The decay of the inflaton into gauge fields due to the

coupling in Eq. (1) is a standard problem of amplification of
quantum fluctuation (gauge fields) in an external classical
field (the inflaton).Applicationsof the textbookregularization
techniques used for calculation of quantum effects in curved
space-time [27,28] have led to interesting novel results in the
de Sitter [29] and inflationary space-times [30–32], also
establishing a clear connection between the stochastic
approach [33,34] and field theory methods [35,36].
In this paper, we apply the technique of adiabatic

regularization [37,38]1 to the energy density and helicity
of gauge fields generated through the interaction in Eq. (1).
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The evolution equation of gauge fields admits analytical
solutions under the assumption of a constant ξ≡ g _ϕ=ð2HÞ
[5], where H ≡ _a

a is the Hubble parameter during inflation,
also considered constant in time. Here we solve in an
analytical way for the averaged energy density and helicity
of gauge fields for any value of ξ. Previously, only
approximate results valid in the strongly coupled regime
ξ ≫ 1 were obtained in the literature. Our technique of
computing integrals in the Fourier space is based on
previous calculations of the Schwinger effect for a Uð1Þ
gauge field in the de Sitter space-time [39–42], but now it is
applied to a novel problem in which the classical external
field is the inflaton. More recent papers apply similar
techniques to calculate backreaction of SUð2Þ gauge fields
[43,44] and fermions [45,46] on the de Sitter space-time.
Our paper is organized as follows. In Secs. II and III, we

review the basic equations and the averaged energy-
momentum tensor and helicity of the gauge fields, respec-
tively. In Sec. IV, we present analytical results for the bare
averaged quantities, and we direct the interested reader to
Appendixes A and B for more detailed calculations. In
Sec. V, we outline the adiabatic regularization scheme used
(see also [32]). We also show that counterterms appearing
in the adiabatic subtraction method can be naturally inter-
preted as coming from renormalization of self-interaction
terms of the scalar field either existing in the bare
Lagrangian density, or those which have to be added to
it due to the nonrenormalizability of the problem involved
(that is clear from g being dimensional). We then describe
the implications of our results to the homogeneous dynam-
ics of inflation with the backreaction of one-loop quantum
effects taken into account in Sec. VI, particularly focusing
on the new regime of validity jξj≲ 1 and commenting on
the differences from previous results existing in the
literature. We then conclude in Sec. VII.

II. SETTING OF THE PROBLEM

The Lagrangian density describing a pseudoscalar infla-
ton field ϕ coupled to a Uð1Þ gauge field is

L ¼ −
1

2
ð∇ϕÞ2 − VðϕÞ − 1

4
ðFμνÞ2 − gϕ

4
FμνF̃μν; ð2Þ

where F̃μν ¼ ϵμναβFαβ=2 ¼ ϵμναβð∂αAβ − ∂βAαÞ=2 and ∇
is the metric covariant derivative. We consider the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
ds2 ¼ −dt2 þ a2dx2, where aðtÞ is the scale factor, and
we write the coupling constant g ¼ α=f, where f is the
axion decay constant. We consider gauge fields to linear
order in a background driven only by a nonzero time-
dependent vev ϕðtÞ.
In this context, it is convenient to adopt the basis of

circular polarization ϵ� transverse to the direction of
propagation defined by the comoving momentum k.
In the Fourier space, we then have

k · ϵ� ¼ 0; ð3Þ

k × ϵ� ¼ ∓{jkjϵ�: ð4Þ
Expanding the second quantized gauge field in terms of
creation and annihilation operators for each Fourier mode
k, we get

Aðt; xÞ ¼
X
λ¼�

Z
d3k
ð2πÞ3 ½ϵλðkÞAλðτ; kÞakλ e{k·x þ H:c:�;

ð5Þ
where the Fourier mode functions A� for the two circular
polarizations satisfy the following equation of motion:

d2

dτ2
A�ðτ; kÞ þ ðk2 ∓ gkϕ0ÞA�ðτ; kÞ ¼ 0: ð6Þ

Here the prime denotes the derivative with respect to the
conformal time τ (dτ ¼ dt=a).
The above equation admits a simple analytic solution for

a constant _ϕ ð≡dϕ=dtÞ in a nearly de Sitter stage during
inflation. A constant time derivative for the inflaton
evolution can be obtained for VðϕÞ ¼ Λ4ð1 − CjϕjÞ with
jCϕj ≪ 1, or for VðϕÞ ∝ m2ϕ2 [47,48]. Natural inflation
with VðϕÞ ¼ Λ4½1 ∓ cosðϕ=fÞ� can be approximated bet-
ter and better bym2ϕ2 for f ≫ Mpl withm ¼ Λ2=f, which
is the regime allowed by cosmic microwave background
(CMB henceforth) anisotropy measurements [49,50].
We thus study the inflationary solution assuming a de

Sitter expansion, i.e., aðτÞ ¼ −1=ðHτÞ, with τ < 0, H ≃
const and _ϕ ≃ const. In such a case, we can write ϕ0 ≃
−

ffiffiffiffiffiffiffi
2ϵϕ

p
Mpl=τ with ϵϕ ¼ _ϕ2=ð2M2

plH
2Þ being one of the

slow-roll parameters. In this case, the equation of motion for
the two circular polarization mode functions becomes [1]

d2

dτ2
A�ðτ; kÞ þ

�
k2 � 2kξ

τ

�
A�ðτ; kÞ ¼ 0; ð7Þ

where ξ≡ g _ϕ=ð2HÞ. The above equation reduces to ([51]
p. 538) with L ¼ 0 and admits a solution in terms of the
regular and irregular Coulomb wave functions correspond-
ing to the positive frequency for −kτ > 0,

A�ðτ; kÞ ¼
½G0ð�ξ;−kτÞ þ {F0ð�ξ;−kτÞ�ffiffiffiffiffi

2k
p : ð8Þ

These can be rewritten in the subdomain−kτ > 0 in terms of
the Whittaker W functions,

A�ðτ; kÞ ¼
1ffiffiffiffiffi
2k

p e�πξ=2W�{ξ;1
2
ð−2{kτÞ: ð9Þ

Note that the abovesolutions are symmetricunder thechange
Aþ → A− and ξ → −ξ in Eq. (7).
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III. ENERGY-MOMENTUM TENSOR
AND HELICITY

From the Lagrangian density in Eq. (2), it is easy to
derive the metric energy-momentum tensor (EMT) for the
gauge-fields

TðFÞ
μν ¼ FρμFρ

ν þ gμν
E2 − B2

2
; ð10Þ

with E and B being the associated electric and magnetic
field. We then obtain for the energy density and pressure the
following expressions:

TðFÞ
00 ¼ E2 þ B2

2
; ð11Þ

TðFÞ
ij ¼ −EiEj − BiBj þ δij

E2 þB2

2
: ð12Þ

Note that there are no terms in the EMT depending on the

pseudoscalar coupling. Their absence in the TðFÞ
00 compo-

nent follows from impossibility to construct a pseudoscalar
invariant under spatial rotations from E and B. Then the
fact that the EMT trace remains zero in the presence of
the interaction of Eq. (1), due to the conformal invariance
of the gauge field, leads to the absence of such terms in

TðFÞ
ij , too.
By using Eqs. (11) and (12), the Friedmann equations

take the form

H2 ¼ 1

3M2
pl

�
_ϕ2

2
þ VðϕÞ þ hE2 þB2i

2

�
; ð13Þ

_H ¼ −
1

2M2
pl

�
_ϕ2 þ 2

3
hE2 þB2i

�
: ð14Þ

Using the relations E⃗ ¼ −A⃗0=a2 and B⃗ ¼ ∇⃗ × A⃗0=a2, the
averaged energy density is

hE2 þ B2i
2

¼
Z

dk
ð2πÞ2a4 IðkÞ

¼
Z

dk
ð2πÞ2a4 k

2½jA0þj2 þ jA0−j2

þ k2ðjAþj2 þ jA−j2Þ�: ð15Þ

The electric (magnetic) contribution is given by the first and
second (third and fourth) terms in the integrand. It is easy to
see that this integral diverges for large momentum k. This is
a common behavior for averaged quantities in quantum
field theory (QFT henceforth) in curved background, or in
external fields, and a renormalization procedure is needed
to remove these UV divergences. In Sec. V, we will use the
adiabatic regularization method [37,38] for this purpose,

and we will present counterterms needed to renormalize the
bare constants in the Lagrangian in Sec. VA. In the present
section, we identify the UV divergent contributions in the
integrands.
Expanding the integrand of Eq. (15) for −kτ ≫ 1, we

obtain quartic, quadratic, and logarithmic UV divergences,

IdivðkÞ ∼ 2k3 þ ξ2k
τ2

þ 3ξ2ð−1þ 5ξ2Þ
4τ4k

þO
�
1

k

�
3

: ð16Þ

It is interesting to note that the logarithmic divergence
changes its sign when ξ crosses jξj ¼ 1=

ffiffiffi
5

p
. On the other

hand, expanding in the IR limit (−kτ ≪ 1), the integrand of
Eq. (15) has no IR divergences.
The equation of motion for the inflation ϕ is affected by

the backreaction of these gauge fields,

ϕ̈þ 3H _ϕþ Vϕ ¼ ghE · Bi; ð17Þ

where the helicity integral is given by

hE · Bi ¼ −
Z

dk
ð2πÞ2a4 JðkÞ

¼ −
Z

dkk3

ð2πÞ2a4
∂
∂τ ðjAþj2 − jA−j2Þ: ð18Þ

The integrand in Eq. (18) has a different divergent
behavior compared to the energy density, since it has only
quadratic and logarithmic divergences,

JdivðkÞ ∼
ξk
τ2

−
3ξð1 − 5ξ2Þ

2τ4k
þO

�
1

k

�
5=2

: ð19Þ

Also, in this case, the integrand in Eq. (18) does not have
any IR pathology. We point out that, even if we called it
“helicity integral,” the above integral in Eq. (18) is actually
the derivative of what is usually called the helicity integral
H ¼ hA ·Bi (which is also gauge invariant for a coupling
to a pseudoscalar).

IV. ANALYTICAL CALCULATION OF
DIVERGENT AND FINITE TERMS

In order to find an analytical expression for the finite
part, we note that the bare integrals in Eqs. (15) and (18)
can be solved by using the expression of the mode
functions A� given in Eq. (9). We identify the divergences
by imposing a UV physical cutoff Λ in order to avoid time-
dependent coupling constants at low energies: we therefore
impose a comoving k-cutoff kUV ¼ Λa [37,52] in the
integrals in Eqs. (15) and (18). Note that Eq. (7) can be
solved analytically by Whittaker functions also in presence
of a mass term [22]. We restrict in this section to the results
for the massless case, but we also give the generalization to
nonzero mass in Appendix B.
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A. Energy density

We first compute the energy density (see Appendix A for details). With the help of the integral representation of
the Whittaker functions and carefully choosing the integration contour, we obtain for the energy density stored in the
electric field,

hE2i
2

¼ Λ4

16π2
−
ξ2H2

16π2
Λ2 þ ξ2ð19 − 5ξ2ÞH4 logð2Λ=HÞ

32π2
þ 9γH4ξ2ð7 − 5ξ2Þ

32π2
þH4ð148ξ6 − 163ξ4 − 221ξ2 þ 18Þ

96π2ðξ2 þ 1Þ

þH4ξð30ξ2 − 11Þ sinhð2πξÞ
128π3

−
iH4ξ2ð5ξ2 − 19Þ sinhð2πξÞψ ð1Þð1 − iξÞ

128π3

þ iH4ξ2ð5ξ2 − 19Þ sinhð2πξÞψ ð1Þðiξþ 1Þ
128π3

þH4ξ2ð5ξ2 − 19ÞðH−iξ−2 þHiξ−2Þ
64π2

; ð20Þ

while for the magnetic field, we find

hB2i
2

¼ Λ4

16π2
þ 3ξ2H2

16π2
Λ2 þ 5ξ2ð7ξ2 − 5ÞH4 logð2Λ=HÞ

16π2
−
H4ð533ξ4 − 715ξ2 þ 36Þ

384π2

þH4ð210ξ4 − 185ξ2 þ 18Þ sinhð2πξÞ
384π3ξ

þ 5iH4ξ2ð7ξ2 − 5Þ sinhð2πξÞψ ð1Þð1 − iξÞ
128π3

−
5iH4ξ2ð7ξ2 − 5Þ sinhð2πξÞψ ð1Þðiξþ 1Þ

128π3
−
5H4ξ2ð7ξ2 − 5Þ½ψð−iξÞ þ ψðiξÞ�

64π2
: ð21Þ

Summing the two contributions, the total energy density becomes

hE2 þ B2i
2

¼ Λ4

8π2
þ ξ2H2

8π2
Λ2 þ 3ξ2ð5ξ2 − 1ÞH4 logð2Λ=HÞ

16π2
þ γð11 − 10ξ2Þξ2H4

8π2
þ ξð30ξ2 − 11Þ sinhð2πξÞH4

64π3

þ ξ2ð7ξ6 − 282ξ4 þ 123ξ2 þ 124ÞH4

256π2ðξ2 þ 1Þ −
3{ξ2ð5ξ2 − 1Þ sinhð2πξÞψ ð1Þð1 − {ξÞH4

64π2

þ 3{ξ2ð5ξ2 − 1Þ sinhð2πξÞψ ð1Þð1þ {ξÞH4

64π2
þ 3ξ2ð5ξ2 − 1Þ½ψð−{ξ − 1Þ þ ψð{ξ − 1Þ�H4

32π2
; ð22Þ

where ψ is the Digamma function, ψ ð1ÞðxÞ≡ dψðxÞ=dx,
Hx ≡ ψðxþ 1Þ þ γ is the harmonic number of order x, and
γ is the Euler-Mascheroni constant. The finite terms in
Eq. (22) have the corresponding asymptotic behavior,

H4

64π2
ð21þ 76γÞξ2 when jξj ≪ 1; ð23Þ

9H4 sinhð2πξÞ
1120π3ξ3

when jξj ≫ 1: ð24Þ

We now compare our results with those used in the
literature which are based on the use of UV and IR cutoffs
and an approximation of the integrand. More precisely
Refs. [1,5] and subsequent works use the following
approximation to estimate the integral.

(i) The integral has a physical UV cutoff at −kτ ¼ 2jξj.
(ii) Only the growing mode function Aþ in Eq. (9) is

considered for ξ > 0 (the situation is reversed for
ξ < 0) and it is approximated in this regime to

Aþðτ; kÞ ≃
1ffiffiffiffiffi
2k

p
�
−kτ
2ξ

�
1=4

eπξ−
ffiffiffiffiffiffiffiffiffi
−8ξkτ

p
: ð25Þ

Under this approximation, Ref. [5] obtains when ξ ≫ 1,

hE2 þ B2iAS
2

≃ 1.4 × 10−4
H4

ξ3
e2πξ: ð26Þ

Our result in Eq. (22) is one of the main original results of
this paper and is valid for any ξ.
In Fig. 1, we plot the terms of Eq. (22), which do not

depend on the UV cutoff,

I finðξÞ≡ hE2 þ B2i
2

−
�
Λ4

8π2
þ ξ2H2

8π2
Λ2

þ 3ξ2ð5ξ2 − 1ÞH4 logð2Λ=HÞ
16π2

�
ð27Þ
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in units of ð2πÞ2=H4 (for ξ > 0 for simplicity). These terms
would correspond to the renormalized energy density
obtained by a minimal subtraction scheme.
In Fig. 2, we plot the electric and magnetic finite

contributions to the energy density (by restricting to
ξ > 0, again). The electric contribution to the energy
density is larger than the magnetic one for ξ≳ 0.75,
whereas they are comparable for ξ≲ 0.75.
In Fig. 3, we plot the relative difference with Eq. (26),

ΔI finðξÞ≡ 2I finðξÞ − hE2 þB2iAS
hE2 þ B2iAS

: ð28Þ

It can be seen from Eq. (24) and Fig. 3 that the
behavior in the regime jξj ≫ 1 of our solution is similar

to that of Eq. (26), which has thoroughly been studied in
the literature. Nevertheless, Fig. 3 shows that there is a
relative difference of approximately the order of 10% in
the numerical coefficient that multiplies expð2πξÞ=ξ3,
which can be ascribed to the assumptions described
above.
The main difference of our new result in Eq. (22) with

respect to Eq. (26) is in the regime of jξj ≲ 10, that has been
studied for the first time in this paper. Equation (26) cannot
be extrapolated to jξj ≪ 1, whereas our result shows that
the finite part of the energy density is Oðξ2Þ as shown in
Eq. (23). This difference can be understood by noting that
the contributions from Aþ and A− become comparable in
this regime of ξ and neglecting A− is no longer a good
approximation.
We end on noting that the finite contribution by a

minimal subtraction scheme to the energy density, which
is Oðξ2Þ for ξ ≪ 1, becomes negative for 0.8≲ ξ≲ 1.5,
although its classical counterpart of Eq. (22) is positive
definite. This is not totally surprising since it is known that
in QFT in curved space-times the renormalized terms of
expectation values of classically defined positive terms can
be negative [27].

B. Helicity integral

The helicity integral in Eq. (18) is only logarithmi-
cally and quadratically divergent because of the can-
cellation of the quartic divergence and does not exhibit
any IR divergence. Note that only by considering both
Aþ and A−, quartic divergent terms in the UV regime
cancel.
It is possible to derive an exact solution of Eq. (18) with a

UV cutoff and we give the final result in the following,
leaving the details for the interested reader in Appendix A.
The result for the helicity is

FIG. 1. We plot, respectively, the quantities I finðξÞ (blue line)
and J finðξÞ (orange line) defined in Eqs. (27) and (33).

FIG. 2. We plot in blue (orange) the electric (magnetic)
contribution to I finðξÞ.

FIG. 3. We plot respectively the quantities ΔI finðξÞ (blue line)
and ΔJ finðξÞ (orange line) defined in Eqs. (28) and (34).
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−hE ·Bi ¼ ξH2

8π2
Λ2 þ 3ξð5ξ2 − 1ÞH4 logð2Λ=HÞ

8π2

þ ½6γξð5ξ2 − 1Þ þ ð22ξ − 47ξ3Þ�H4

16π2

þ ð30ξ2 − 11Þ sinhð2πξÞH4

32π3

−
3ξð5ξ2 − 1ÞðH−{ξ þH{ξÞH4

16π2

þ {
3ξð5ξ2 − 1Þ sinhð2πξÞψ ð1Þð1 − {ξÞH4

32π3

− {
3ξð5ξ2 − 1Þ sinhð2πξÞψ ð1Þð{ξþ 1ÞH4

32π3
:

ð29Þ

The finite terms have the corresponding asymptotic values,

H4

32π2
ð11 − 6γÞξ when ξ ≪ 1; ð30Þ

9 sinhð2πξÞH4

560π3ξ4
when ξ ≫ 1: ð31Þ

The result reported in the literature for the integral in
Eq. (18) is derived under the same assumptions discussed in
the context of Eq. (26) and is given by [5]

−hE · BiAS ¼
H4

ξ4
e2πξ: ð32Þ

Again, we define

J finðξÞ≡ −hE ·Bi

−
�
ξH2

8π2
Λ2 þ 3ξð5ξ2 − 1ÞH4 logð2Λ=HÞ

8π2

�
; ð33Þ

and the relative differences between our solution and
Eq. (32)

ΔJ finðξÞ≡ −
J finðξÞ þ hE ·BiAS

hE ·BiAS
; ð34Þ

which we plot in Figs. 1 and 3, respectively.
For ξ ≪ 1, the backreaction in Eq. (30) is reminiscent of

an extra dissipative term of the type ΓdS
_ϕ. It is interesting to

note that the effective ΓdS in this nearly de Sitter evolution
is larger than the perturbative decay rate Γ ¼ g2m3

ϕ=ð64πÞ
by a factor OðH3=m3

ϕÞ.
Analogously to the energy density case, Fig. 3 shows

that in the regime of ξ≳ 10 Eqs. (31) and (32) have a
similar functional form, but still a 10% difference. Our
exact result can be more precisely used for ξ≲ 10 and in
particular in the ξ≲ 1 regime. Note that the difference

between the exact result and the result given in [5] is now
larger than in the energy density case and that we have a
linear dependence on ξ for the helicity integral for ξ ≪ 1, in
a regime to which the standard result in the literature in
Eq. (32) cannot be extrapolated.

V. ADIABATIC EXPANSION AND
REGULARIZATION

The adiabatic regularization method [37,38] relies on the
adiabatic, or Wentzel-Kramer-Brillouin (WKB henceforth),
expansion of the mode functions A� solution of Eq. (6).
Following the standard adiabatic regularization procedure,
we proceed by adding a mass term regulator μ to the
evolution equations of the two different helicity states
obtaining a modified version of Eq. (6),

d2

dτ2
AWKB
� ðk; τÞ þ

�
k2 ∓ gkϕ0 þ μ2

H2τ2

�
AWKB
� ðk; τÞ ¼ 0;

ð35Þ

where the adiabatic mode function solution AWKB
λ is

defined as

AWKB
λ ðk; τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ωλðk; τÞ
p e{

R
τ dτ0Ωλðk;τ0Þ; ð36Þ

with λ ¼ �. The mass term regulator μ is inserted to avoid
additional IR divergences which are introduced by the
adiabatic expansion for massless fields. Inserting the adia-
batic solution (36) in Eq. (35), we then obtain the following
exact equation for the WKB frequencies Ωλ:

Ω2
λðk; τÞ ¼ Ω̄2

λðk; τÞ þ
3

4

�
Ω0

λðk; τÞ
Ωλðk; τÞ

�
2

−
Ω00

λðk; τÞ
2Ωλðk; τÞ

; ð37Þ

with

Ω̄2
λðk; τÞ ¼ ω2ðk; τÞ þ λkgϕ0ðτÞ ð38Þ

and

ω2ðk; τÞ ¼ k2 þ μ2a2ðτÞ: ð39Þ

The usual procedure is then to solve Eq. (37) iteratively,
introducing an adiabatic parameter ϵ assigning a power of ϵ
to each of the derivative with respect to τ. To arrive to order
2n, we have then to do n iterations. Finally, we have to
further Taylor-expand Ω̄λ in power of ϵ around ϵ ¼ 0
discarding all the resulting terms of adiabatic order larger
than 2n in the final result.
One can then mode expand Aλðx; τÞ using the nth

adiabatic order mode functions AðnÞ
λ ðk; τÞ and the associated

adiabatic creation and annihilation operators, and then
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define the nth order adiabatic vacuum as aðnÞλ;k j0ðnÞi ¼ 0

when τ → −∞. In particular, in our case, we have that
ω0=ω → 0 for τ → −∞. Thus, in this limit, the adiabatic
vacuum defined at any adiabatic order becomes essentially
the adiabatic vacuum of infinite order which we call j0iA.
The adiabatic regularization is a procedure to remove the

UV divergences and consists in subtracting from an
expectation value its adiabatic counterpart. In practice,
we will proceed by introducing a UV physical cutoff Λ
for the mode integral, performing the subtraction, and
only after that we will send the cutoff to infinity. Namely,
we have

hOireg ¼ lim
Λ→∞

½hOiΛ − hOiA;Λ�; ð40Þ

whereO denotes a quadratic operator in the quantum fields,
such as the energy density or the helicity. By hOiΛ, we then

mean the bare expectation value of these operators evalu-
ated with a UV cutoff Λ, while by hOiA;Λ we mean the
expectation value of their adiabatic counterpart evaluated
using the same UV cutoff Λ.
Considering the energy density and the helicity, the bare

expectation values are those computed in the previous
section for μ ¼ 0 [see Eqs. (15) and (18)] or their
extensions to μ ≠ 0 given in Appendix B. Their adiabatic
counterpart is instead given by their corresponding inte-
grals expressed in terms of the WKB mode functions of a
given adiabatic order n. Namely, these are given by
Eqs. (15) and (18) where we take the adiabatic solution
in Eq. (36) for the mode function using the solution of
adiabatic order n and expanding again up to order n. In the
case under consideration, the fourth order adiabatic expan-
sion is needed in order to remove the UV divergences from
the bare integral. We then obtain

hE2 þ B2iA;Λ
2

¼
Z

Λa

c

dk k2

ð2πÞ2
��

1

2Ωþ
þ 1

2Ω−

�
ω2ðk; τÞ þΩ−

2
þΩþ

2
þ ϵ2Ω00−

8Ω3
−
þ ϵ2Ω00þ

8Ω3þ

�

¼
Z

Λa

c

dk
ð2πÞ2a4

�
2ωþ ϵ2k4ξ2

τ2ω5
þ ϵ2k2μ2ξ2

H2τ4ω5
þ ϵ415k8ξ4

4τ4ω11
−
ϵ43k8ξ2

4τ4ω11

þ ϵ43μ8

64H8τ12ω11
þ ϵ43k2μ6

4H6τ10ω11
−

ϵ415k4μ4

16H4τ8ω11
þ ϵ419k2μ6ξ2

8H6τ10ω11
þ ϵ4μ4

4H4τ6ω5

þ ϵ467k4μ4ξ2

8H4τ8ω11
þ ϵ415k6μ2ξ4

2H2τ6ω11
þ ϵ421k6μ2ξ2

4H2τ6ω11
þ ϵ415k4μ4ξ4

4H4τ8ω11

�
; ð41Þ

hE ·BiA;Λ ¼ −
Z

Λa

c

dk k2

ð2πÞ2a4
�
ϵΩ0þ
2Ω2þ

−
ϵΩ0−
2Ω2

−

�
¼

Z
Λa

c

dk
ð2πÞ2a4

�
−
ϵ2k3ξ
τ2ω5

þ ϵ22kμ2ξ
H2τ4ω5

þ ϵ4121k3μ4ξ
8H4τ8ω11

−
ϵ415k7ξ3

2τ4ω11
þ ϵ43k7ξ
2τ4ω11

þ ϵ45k5μ2ξ3

2H2τ6ω11
−
ϵ423k5μ2ξ
H2τ6ω11

þ ϵ4kμ6ξ
4H6τ10ω11

þ ϵ410k3μ4ξ3

H4τ8ω11

�
: ð42Þ

In the above equations, the IR k-cutoff c is also considered as an alternative to the mass term regulator to cure the IR
divergences which appear when considering the fourth order adiabatic expansion of a massless field.
As said, the fourth order adiabatic expansion of the mode functions is sufficient to generate the same UV divergences of

the bare integrals in Eqs. (16) and (19). However, the fourth order expansion also generates logarithmic IR divergences
since gauge fields are massless. One way to avoid the IR divergence is to use the mass term in Eq. (35) as an IR regulator.2 In
this way, we get for the energy density

hE2 þ B2iμA;Λ
2

¼ Λ4

8π2
þ Λ2ξ2H2

8π2
þ 3H4ξ2ð5ξ2 − 1Þ logð2Λ=HÞ

16π2

−
H4

480π2
−
H4ξ2ð23ξ2 − 9Þ

16π2
−
3H4ξ2ð5ξ2 − 1Þ logðμHÞ

16π2
: ð43Þ

Analogously, for the helicity term, we get

hE · BiμA;Λ ¼ Λ2ξH2

8π2
þ 3H4ξð5ξ2 − 1Þ logð2ΛH Þ

8π2
−
3H4ξð5ξ2 − 1Þ logðμHÞ

8π2
þH4ð19ξ − 56ξ3Þ

16π2
: ð44Þ

2See Ref. [53] for an interpretation of the mass regulator μ in terms of running the coupling constant.
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Note that our WKB ansatz correctly reproduces the UV
divergences of the energy density and helicity terms. As
already known, the fourth order adiabatic expansions leads
also to finite terms, including a term with a logarithmic
dependence on the effective mass regulator. Let us also
comment on the term independent on ξ, i.e.,H4=ð480π2Þ in
Eq. (43). This term is generated by the fourth order
adiabatic subtraction and is connected to the conformal
anomaly. The term we find corresponds to twice the result
for a massless conformally coupled scalar field, i.e.,
H4=ð480π2Þ ¼ 2 ×H4=ð960π2Þ [27,54], as expected since
the two physical states A� behave like two conformally
coupled massless scalar fields for ξ ¼ 0.3

An alternative procedure to avoid IR divergences in the
adiabatic subtraction is to introduce a time-independent IR
cutoff k ¼ c in the adiabatic integrals. In this way, we
obtain for the energy density and helicity term, respectively,

hE2 þ B2icA;Λ
2

¼ Λ4

8π2
þ Λ2ξ2H2

8π2

þ 3H4ξ2ð5ξ2 − 1Þ logð2Λ=HÞ
16π2

−
3H4ξ2ð5ξ2 − 1Þ log ð2c=ðaHÞÞ

16aHπ2

−
c4

8π2a4
−
c2ξ2H2

8a2π2
; ð45Þ

hE ·BicA;Λ ¼ Λ2ξH2

8π2
þ 3H4ξð5ξ2 − 1Þ logð2ΛH Þ

8π2

−
c2ξH2

8a2π2
−
3H4ξð5ξ2 − 1Þ logð 2caHÞ

8π2
: ð46Þ

As for the case with the effective mass regulator, the UV
divergences of the energy density and helicity terms are
also correctly reproduced, although the finite terms are
different. Let us note that the term connected to the
conformal anomaly is absent, as it comes from the k¼0
pole structure of the WKB energy density integrand
[27,57]. By comparing Eqs. (45) and (46) with (43) and
(44), the terms which do not depend on Λ obtained with the
IR cutoff can have the same time dependence of the

effective mass term by instead considering a comoving
IR cutoff c ¼ ΛIRa. Further quantitative consistency from
the two approaches can be obtained by matching μ to a
physically motivated value for ΛIR correspondent to the
scale at which the WKB approximation breaks down
(see [58,59]).
We have seen that the adiabatic regularization applied to

the two physical helicity states, because of the massless
nature of the gauge field, introduces logarithmic IR
divergences. This effect happens in many other contexts;
see, e.g., Ref. [60] for a review of IR effects in de Sitter
space-time. Logarithmic IR divergences in averaged quan-
tities also appear in the context of the Schwinger effect in
de Sitter where they lead to the so-called IR hypercon-
ductivity effect [40]. Furthermore, it has been shown that
such logarithmic IR divergences also appear when using
other renormalization methods such as point splitting
renormalization and thus seem to be generic and not
specific of the adiabatic regularization method [61].

A. Counterterms

We have introduced a fourth order adiabatic expansion
which correctly reproduced the UV divergences of the bare
quantities. These divergent terms are associated to non-
renormalizable derivative interaction counterterms of the
pseudoscalar field,

ΔL ¼ −
α

4
∇μ∇νϕ∇μ∇νϕ −

β

4
∇μϕ∇νϕ∇μϕ∇νϕ; ð47Þ

where α and β are constants of mass dimension −2 and −4,
respectively.
With the new interaction added, the Klein-Gordon

equation for the inflaton becomes

½□ − α□2 þ βð∇ϕÞ2□�ϕ ¼ Vϕ þ
g
4
FμνF̃μν; ð48Þ

where □2 ≡∇μ∇ν∇μ∇ν. The two additional terms in
Eq. (47) lead to the following modification of the energy
density:

TðϕÞ
00 ¼ Λþ ϕ02

2a2
þ VðϕÞ þ α

a4
ðc1ϕ002 þ c2ϕ0ϕð3ÞÞ

þ β

a4
c3ϕ04; ð49Þ

where we have also added a cosmological constant Λ, and
the values of the constants ci, i ¼ 1, 2, 3, are not important
for our purposes.
We now isolate the divergences coming from the energy

density and the helicity integral using dimensional regu-
larization [62], where, working in a generic n-dimensional
FRLW space-time, the UV divergences show up as poles at
n ¼ 4. This makes clear and explicit the connection
between adiabatic expansion and counterterms. We will
use in this section results derived in the previous section.

3It was recently shown in Ref. [55] that in case of photons the
standard result hTi=4 ¼ −31H4=ð480π2Þ can be obtained by
adiabatic regularization only by including Faddeev-Popov fields.
On the other hand, it is possible to get the same result without
consideration of the Faddeev-Popov ghosts by, first, calculating
the photon vacuum polarization in the closed static FLRW
(Einstein) universe in which all geometric terms in the trace
conformal anomaly become zero and a nonzero average photon
energy density arises due to the Casimir effect [56], and then
using the known form of the conserved vacuum polarization
tensor in a conformally flat space-time that produces the
RμνRμν − 1

3
R2 term in the trace anomaly. Note that the same

procedure yields the correct answer for spins s ¼ 0; 1
2
, too.
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However, we will keep explicit track of derivatives of the
pseudoscalar field ϕ here, instead of using the variable ξ.
The integral measure in n dimensions is

Z
dk k2

ð2πÞ3 →
Z

dk kn−2

ð2πÞn−1 : ð50Þ

1. Energy density

As noted in Secs. III and IV, the energy density of the
gauge field presents quartic, quadratic, and logarithmic
divergences. From the adiabatic expansion of Eq. (15), the
term that contributes to the quartic divergence is

Z
∞

0

dk kn−2

ð2πÞn−1a4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2a2

q
¼ μ4

16π2ðn − 4Þ þ � � � ; ð51Þ

where we have retained only the pole at n ¼ 4.
Equation (51) shows that the quartic divergence can be
absorbed by the cosmological constant counterterm δΛ.
Similarly, the quadratic divergence comes from

Z
∞

0

dk kn−2

ð2πÞn−1a4
g2k4ϕ02

4ðk2 þ μ2a2Þ5=2 ¼
5g2μ2ϕ02

32π2a2ðn − 4Þ þ � � � ;

ð52Þ

which shows that we can absorb the quadratic divergence in
the field strength counterterm δZ. Finally, the logarithmic
divergences come from the terms

Z
∞

0

dk kn−2

ð2πÞn−1a4
�

15g4k8ðϕ0Þ4
64ðk2 þ μ2a2Þ11=2 þ

g2k8ðϕ00Þ2
16ðk2 þ μ2a2Þ11=2

−
g2k8ϕð3Þϕ0

8ðk2 þ μ2a2Þ11=2
�

¼ −
15g4ϕ04

256π2ðn − 4Þa4 −
g2ðϕ00Þ2

64π2a4ðn − 4Þ þ
g2ϕð3Þϕ0

32π2a4ðn − 4Þ :

ð53Þ

The first term can be absorbed in the counterterm δβ,
whereas the second and the third can be absorbed in the δα
counterterm.

2. Helicity integral

We now consider the divergences in the adiabatic
approximation of ghE ·Bi, since this is the term which
enters the Klein-Gordon equation (48), to see which are the
counterterms needed to absorb them. The helicity integral
contains only quadratic and logarithmic divergences.
The quadratic divergence comes from the term

Z
∞

0

dk kn−2

ð2πÞn−1a4
g2k3ϕ00

2ðk2 þ μ2a2Þ5=2 ¼
5g2μ2ϕ00

16π2a2ðn − 4Þ þ � � � ;

ð54Þ

which, again, can be absorbed in the redefinition of the
scalar field δZ. Note that the factor of a2 at the denominator
is not a problem since every term with the derivative of the
scalar field in the Klein-Gordon equation (48) contains it.
The logarithmic divergence comes instead from the

terms
Z

∞

0

dk kn−2

ð2πÞn−1a4
�
−

15g4k7ϕ02ϕ00

16ðk2 þ μ2a2Þ11=2 þ
g2k7ϕð4Þ

8ðk2 þ μ2a2Þ11=2
�

¼ g4ϕ02ϕ00

4π2a4ðn − 4Þ −
g2ϕð4Þ

32π2a4ðn − 4Þ þ � � � ; ð55Þ

which can be absorbed in the counterterms δβ and δα,
respectively.

VI. IMPLICATIONS FOR BACKGROUND
DYNAMICS

We now consider the implications of our results for the
background dynamics. The regularized helicity integral
term behaves as an additional effective friction term and
slows down the inflaton motion through energy dissipation
into gauge fields. The regularized energy-momentum
tensor of the gauge field produces an additional contribu-
tion to the Friedmann equations.
In order to study backreaction, we introduce the quantity

Δwhich parametrizes the contribution of the gauge fields to
the number of e folds during inflation,

N ¼ H
Z

dϕ
_ϕ
≃ −

Z
dϕ

3H2

V 0

�
1 − g

hE ·Bi
3H _ϕ

�

≡ N̄ð1þ ΔÞ; ð56Þ
where in the second equality we have used the Klein-
Gordon equation during slow roll and we have defined N̄ as
the number of e folds without taking backreaction into
account. For simplicity, we consider the case of a minimal
subtraction scheme to avoid the analysis for different values
of the IR mass term regulator or cutoff involved in the
adiabatic subtraction described in the previous section.
The extreme case with strong dissipation and strong

coupling, i.e., 3H _ϕ ≪ ghE · Bi with ξ ≫ 1, has been the
target of the original study in [1]. For ξ ≫ 1, our exact
results for the averaged energy-momentum tensor and
helicity term differ about 10% from the approximated ones
in [1] and therefore we find estimates consistent with [1] at
the same level of accuracy.
As we have shown, our results for ξ≲ 10 differ from

previous ones in the literature. We can give an estimate of
the difference in the number of e folds. As a working
example, we use a linear potential VðϕÞ ¼ Λ4ð1 − CjϕjÞ
and we compare our results obtained with those for jξj ∼ 5
based on the incorrect extrapolation from ξ ≫ 1 in
Eqs. (26) and (32). Assuming a standard value of
H ∼ 2 × 10−5Mpl, a coupling ∼60 and jξj ∼ 5 we obtain
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Δ ≃ 0.32 and 0.37 for the extrapolated and exact result,
respectively. Our results thus lead to a 5% longer duration
of inflation compared to the extrapolated ones in this case.
We note that when backreaction changes the duration of
inflation appreciably, it is possible that the gauge field
contribution to _H is not negligible when observationally
relevant scales exit from the Hubble radius, potentially
affecting the slopes of the primordial spectra.
To complement and confirm these analytic estimates, we

now present numerical results based on the Einstein-Klein-
Gordon equations (13), (14), and (17) including the
averaged energy-momentum tensor and helicity of gauge
fields where we allow ξ ¼ g _ϕ=2H to vary with time. In
the case of the aforementioned linear potential, VðϕÞ ¼
Λ4ð1 − CjϕjÞ, and of VðϕÞ ¼ Λ4½1þ cosðϕ=fÞ� with f ∼
2Mpl (such value of f is close to the regime for which

natural inflation is well approximated by a quadratic
potential [49]). The results are shown in Fig. 4, comparing
our exact results for jξj ∼ 5 (solid) with those for jξj ∼ 5
based on the incorrect extrapolation from ξ ≫ 1 (dashed)
and those in the absence of gauge fields (dotted). As can be
seen, the approximation of ξ ∼ const works very well in
both the models.
Figure 5 shows the importance of backreaction in the

case of natural inflation for three different values of f. The
inflaton decay into gauge fields allows for a longer period
of inflation compared to the case in which coupling to
gauge fields is absent. Figures 4 and 5 also show that our
correct expressions lead to a longer period of inflation than
the incorrect extrapolation from ξ ≫ 1. Furthermore, we
show in Fig. 6 how the slow-roll parameter ϵ is dominated

FIG. 4. Numerical evolution of − _H=H2 (top) and ξ (bottom) for
the linear model (magenta line) and for natural inflation (orange
line) for jξj ∼ 5 (solid) compared with the case by extrapolating
ξ ≫ 1 results (dashed) or no coupling (dotted). We have chosen
jgj ¼ 60=Mpl in both cases. For natural inflation, we have
used f ¼ 5Mpl.

FIG. 5. Numerical evolution of ξ for natural inflation for three
different values of f and g. We use dotted lines for no back-
reaction, dashed lines for extrapolated results for backreaction,
and solid lines for our results.

FIG. 6. Numerical evolution of ϵ, ϵϕ, and ϵA as defined in the
text for the same models shown in Fig. 4.
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by ϵA ≡ hE2 þ B2i=3M2
plH

2 rather than by the usual scalar

field contribution ϵϕ ≡ _ϕ2=2M2
pl at the end of inflation.

Note also that the previously unexplored regime ξ ≪ 1 is
regular and included in our calculations, whereas the
approximation of Eqs. (26) and (32) become singular in
this regime.

VII. CONCLUSIONS

We have studied the backreaction problem for a pseu-
doscalar field ϕ which drives inflation and is coupled to
gauge fields. As in other problems in QFT in curved space-
times, this backreaction problem is plagued by UV diver-
gences. We have identified the counterterms necessary to
heal the UV divergences for this not renormalizable
interaction, which are higher order in scalar field deriva-
tives. We have also introduced a suitable adiabatic expan-
sion capable to include the correct divergent terms of the
integrated quantities. Under the assumption of a constant
time derivative of the inflaton, we have performed ana-
lytically the Fourier integrals for the energy density and for
the helicity in an exact way with an identification of
divergent and finite terms.
Since previous approximate results were available only

for ξ ≫ 1, our calculation which is valid for any ξ has
uncovered new aspects of this backreaction problem. We
have shown that the regime of validity of previous results is
ξ≳ 10 with a 10% level of accuracy. We have then
provided results which are more accurate than those present
in the literature in the regime ξ≲ 10.
Our results show that the inflaton decay into gauge fields

leads to a longer stage of inflation even for ξ≲ 10. This is
particularly relevant for natural inflation since f ≲Mpl is a
viable regime for a controlled effective field theory [63] and
a controlled limit of string theory [64].
The techniques of integration used here in the compu-

tation of the bare integrals of hE2i, hB2i, and hE ·Bi could
have a wide range of applications in axion inflation, baryo-
genesis, and magnetogenesis. Moreover, it would be
interesting to compute analytically the energy-momentum
tensor and the helicity term for a nonconstant time
derivative of the pseudoscalar field which we have adopted
in this paper. Other directions would be the calculation of
the contribution of gauge fields onto scalar fluctuations
leading to non-Gaussian corrections to the primordial
power spectra and onto gravitational waves at wavelengths

which range from CMB observations to those relevant
for the direct detection from current and future interfer-
ometers. We hope to return to these interesting topics in
future works.
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APPENDIX A: CALCULATION OF THE ENERGY
DENSITY AND ITS BACKREACTION

In this appendix, we give the analytical expressions of
the bare integrals in Eqs. (15) and (18). We carefully show
the calculation f the energy density of Eq. (15); the
calculation of Eq. (18) is then straightforward, so we only
outline the differences from the one for the energy density.
In the following, we will use techniques introduced in
Refs. [39,40].

1. Energy density

We write Eq. (15) as

hE2 þ B2i
2

≡ 1

ð2πÞ2a4 lim
Λ→∞

½Iðξ; τ;ΛÞ þ Ið−ξ; τ;ΛÞ�;

ðA1Þ

where

Ið�ξ; τ;ΛÞ ¼
Z

Λa

0

dk k2½k2ðjA�j2Þ þ jA0
�j2�; : ðA2Þ

and Λ is a UV physical cutoff (recall that the physical
momentum kphys is related to the comoving one by
kcom ¼ kphysa) used to isolate the UV divergences. Using
Eq. (9) and the properties of the Whittaker functions
ðWλ;σðxÞÞ� ¼ Wλ�;σ� ðx�Þ and d

dxWλ;σðxÞ ¼ ð1
2
− λ

xÞWλ;σðxÞ−
1
xWλþ1;σðxÞ, we obtain

Iðξ; τ;ΛÞ ¼
Z

Λa

0

dk k3
eπξ

2

��
1þ

�
1þ ξ

kτ

�
2
�
W{ξ;1

2
ð−2{kτÞW−{ξ;1

2
ð2{kτÞ

þ
�

{
2kτ

þ {ξ
2k2τ2

�
½W{ξ;1

2
ð−2{kτÞW−{ξþ1;1

2
ð2{kτÞ −W−{ξ;1

2
ð2{kτÞW{ξþ1;1

2
ð−2{kτÞ�

þ 1

2k2τ2
W−{ξþ1;1

2
ð2{kτÞW{ξþ1;1

2
ð−2{kτÞ

�
: ðA3Þ
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In order to solve this integral, we now make use of the Mellin-Barnes representation of the Whittaker function Wλ;σðxÞ,

Wλ;σðxÞ ¼ e−
x
2

Z
Cs

ds
2π{

Γð−sþ σ þ 1
2
ÞΓð−s − σ þ 1

2
ÞΓðs − λÞ

Γð−λ − σ þ 1
2
ÞΓð−λþ σ þ 1

2
Þ xs; ðA4Þ

with j arg xj < 3
2
π and the integration contour Cs runs from −{∞ to þ{∞ and is chosen to separate the poles of

Γð−sþ σ þ 1
2
Þ and Γð−s − σ þ 1

2
Þ from those of Γðs − λÞ.

Using Eqs. (A3) and (A4), the reflection formula for the gamma functions and integrating the k-dependent factor up to the
cutoff Λ, it is straightforward to find

Iðξ; τ;ΛÞ þ Ið−ξ; τ;ΛÞ ¼ I1 þ I2 þ I3; ðA5Þ

where

I1 ¼
sinh2ðπξÞ

2π2

Z
Cs

ds
2π{

Z
Ct

dt
2π{

ð2{τÞsþtΓð−sÞΓð1 − sÞΓð−tÞΓð1 − tÞ
��

ðe{πðs−{ξÞ þ e{πðtþ{ξÞÞ ðaΛÞ
4þsþt

4þ sþ t

þ ðe{πðs−{ξÞ − e{πðtþ{ξÞÞ ξ
τ

ðaΛÞ3þsþt

3þ sþ t
þ ðe{πðs−{ξÞ þ e{πðtþ{ξÞÞ ξ2

2τ2
ðaΛÞ2þsþt

2þ sþ t

�
Γðs − {ξÞΓðtþ {ξÞ

þ
�
ðe{πðt−{ξÞ þ e{πðsþ{ξÞÞ ðaΛÞ

4þsþt

4þ sþ t
þ ðe{πðt−{ξÞ − e{πðsþ{ξÞÞ ξ

τ

ðaΛÞ3þsþt

3þ sþ t

þ ðe{πðt−{ξÞ þ e{πðsþ{ξÞÞ ξ2

2τ2
ðaΛÞ2þsþt

2þ sþ t

�
Γðt − {ξÞΓðsþ {ξÞ

�
; ðA6Þ

I2 ¼
ξsinh2ðπξÞ

2π2

Z
Cs

ds
2π{

Z
Ct

dt
2π{

ð2{τÞsþtΓð−sÞΓð1 − sÞΓð−tÞΓð1 − tÞ

×

�
ð1 − {ξÞ

�
ðe{πðt−{ξÞ − e{πðsþ{ξÞÞ 1

τ

ðaΛÞ3þsþt

3þ sþ t
þ ðe{πðt−{ξÞ þ e{πðsþ{ξÞÞ ξ

τ2
ðaΛÞ2þsþt

2þ sþ t

�
Γðsþ {ξ − 1ÞΓðt − {ξÞ

þ ð1þ {ξÞ
�
ðe{πðs−{ξÞ − e{πðtþ{ξÞÞ 1

τ

ðaΛÞ3þsþt

3þ sþ t
þ ðe{πðs−{ξÞ þ e{πðtþ{ξÞÞ ξ

τ2
ðaΛÞ2þsþt

2þ sþ t

�
Γðs − {ξ − 1ÞΓðtþ {ξÞ

�
; ðA7Þ

and

I3 ¼
ðξ2 þ ξ4Þsinh2ðπξÞ

4π2

Z
Cs

ds
2π{

Z
Ct

dt
2π{

ðaΛÞ2þsþt

2þ sþ t
1

τ2
ð2{τÞsþtΓð−sÞΓð1 − sÞΓð−tÞΓð1 − tÞ

× ½ðe{πðt−{ξÞ þ e{πðsþ{ξÞÞΓðsþ {ξ − 1ÞΓðt − {ξ − 1Þ þ ðe{πðs−{ξÞ þ e{πðtþ{ξÞÞΓðtþ {ξ − 1ÞΓðs − {ξ − 1Þ�; ðA8Þ

where we have assumed ℜðnþ sþ tÞ > 0 for the terms
proportional to Λnþsþt in order to have convergence.
We now analyze each of these contributions in turn,

starting from the first integral in Eq. (A6). We integrate first
over the variable t. Let us further specify the integration
contour by requiring ℜðtÞ;ℜðsÞ < 0. The integrand can
have poles at t ¼ �{ξ − n (n ¼ 0; 1; 2;…), located on the
left of the integration contour of t, and at t ¼ n and
t ¼ −4 − s;−3 − s;−2 − s, located on the right of the
integration contour of t. We close the contour counter-
clockwise on the left half-plane. The added contours do
not contribute to the result since an integral of the inte-
grand over a finite path along the real direction vanishes at

ℑðtÞ → �∞ and because any integral in the region
ℜðtÞ < −5 vanishes in the limit Λ → ∞. The integral is
thus 2π{ times the sum of the residues of the poles,

t ¼ �{ξ;�{ξ − 1;�{ξ − 2;�{ξ − 3;�{ξ − 4;�{ξ − 5;

− s − 4;−s − 3;−s − 2: ðA9Þ

Note that the poles at t ¼ −s − 4;−s − 3;−s − 2 lie
slightly on the right of the axis ℜðtÞ ¼ 0, thus we slightly
deform the contour to pick it up; the integration contour is
illustrated in Fig. 7. The latter poles give a contribution
which is independent on the cutoff, whereas the sum of the
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former ones gives cutoff-dependent results; we summarize
this writing I1 as

I1 ¼ I1;Λ þ I1;fin: ðA10Þ

We first analyze the cutoff-dependent part of the result
I1;Λ that we summarize as follows in order to reduce
clutter:

I1;Λ ¼
Z
Cs

ds
2π{

Γð1 − sÞΓð−sÞfΓðs − {ξÞ

× ½O1ðΛ4þs−{ξ;…;Λ−1þs−{ξÞ�
þ Γðsþ {ξÞ½O2ðΛ4þsþ{ξ;…;Λ−1þsþ{ξÞ�g: ðA11Þ

The integral over s can be carried out in the sameway as the
t integral and is thus 2π{ times the sum over the residues of
the integrand from the points

s ¼ �{ξ;�{ξ − 1;�{ξ − 2;�{ξ − 3;�{ξ − 4; ðA12Þ

the residues from the points s ¼ �{ξ − n with n > 4 vanish
as Λ → ∞. We schematically write the result of this
integral as

I1;Λ ¼ f4ðξ; τÞΛ4 þ f2ðξ; τÞΛ2 þ flogðξ; τÞ logð2Λ=HÞ
þ f1ðξ; τÞ; ðA13Þ

and we will write explicitly only the final result, together
with the results from the integral I2 and I3.
We now turn to calculate I1;fin, which is the sum of the

pole of the integrand in the points t¼−4−s;−3−s;−2−s
and can be written as

I1;fin ¼ I1;t¼−4−s þ I1;t¼−3−s þ I1;t¼−2−s: ðA14Þ

We analyze in detail the integral over the pole t ¼ −4 − s;
the other two are similiar. The former is given by

I1;t¼−4−s ¼
Z
Cs

ds
2π{

πsinh2ðπξÞ
64τ4

� ðe−πξ−iπs þ eπξþiπsÞ
sin2ðπsÞ sinðπðs − iξÞÞ

×

�
ar

s − {ξ
þ BrðsÞ − Brðs − 1Þ

��
þ ξ → −ξ;

ðA15Þ

where ξ → −ξ stands for a second integral equal to the first
one, but with ξ replaced by −ξ and BrðsÞ is a function of
the form

BrðsÞ ¼
br;1

s − {ξþ 1
þ br;2
s − {ξþ 2

þ br;3
s − {ξþ 3

þ br;4
s − {ξþ 4

þ br;5sþ br;6s2 þ br;7s3 þ br;8s4; ðA16Þ

and the coefficients ar, br;j for j ¼ 1;…; 8 are independent
on s.
We first consider the term with ar. We rewrite the

integrand as follows:

lim
p→1

πsinh2ðπξÞ
64τ4

ðe−πξ−iπs þ eπξþiπsÞ
sin2ðπsÞ sinðπðs − iξÞÞ

ar
ðs − {ξÞp ; ðA17Þ

with p > 1. The integral of this function vanishes on an arc
of infinite radius on the left half-plane, so we can close the
contour on the left half-plane with a counterclockwise
semicircle of infinite radius, as illustrated in Fig. 8. The
integral is then 2πi times the sum of the residues in the
poles s ¼ �{ξ − n and s ¼ −n − 1 with n ¼ 0; 1; 2;… . As
for the other integrals, we do not give the result here, but we
will just write the final result.
Now we conclude integrating the terms with BrðsÞ−

Brðs − 1Þ. We shift the integration variable in the second
term by s → y ¼ s − 1 so that the integral is given by

Z
Cs

ds
2π{

ð…Þ½BrðsÞ − Brðs − 1Þ�

¼
�Z

Cs

−
Z
Cs−1

�
ds
2π{

ð…ÞBrðsÞ; ðA18Þ

as illustrated in Fig. 9. Thus, we can evaluate this integral
summing 2π{ times the residues of the singularities of the
integrand which fall in the region sandwiched by the

FIG. 7. Integration contour Ct for the term proportional
to Λ4þsþtΓðtþ {ξÞ of Eq. (A6). Blue points are poles of
Γð1 − tÞΓð−tÞ and lie outside the integration contour. Red points
are poles of Γðtþ {ξÞ and lie inside the contour [in the terms
proportional to Γðt − {ξÞ the red points are in t ¼ {ξ − n]. The
green point is the pole t ¼ −s − 4, and it has been drawn there to
emphasize that it is slightly on the right of the imaginary axis (in
the terms proportional to Λ3þsþt and Λ2þsþt the green point
corresponds to t ¼ −s − 3;−s − 2). The contour does not pass
through any of the poles.
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original integration contour and the shifted one, which are
the poles at s ¼ −1 and s ¼ �{ξ. We write the result
as F1ðξ; τÞ.
The integral over the poles t ¼ −s − 3;−s − 2 can be

written in a similar way as

I1;t¼−3−s ¼
Z
Cs

ds
2π{

A3ðξ; τÞ
sin2ðπsÞ sinðπðs − {ξÞÞ

×

�
cr

s − {ξ
þDrðsÞ −Drðs − 1Þ

�
þ ξ → −ξ

ðA19Þ
for the integral over the pole t ¼ −3 − s and

I1;t¼−2−s ¼
Z
Cs

ds
2π{

A2ðξ; τÞ
sin2ðπsÞ sinðπðs − {ξÞÞ

×

�
er

s − {ξ
þ KrðsÞ − Krðs − 1Þ

�
þ ξ → −ξ

ðA20Þ
for the integral over the pole t ¼ −2 − s. The functions A2

and A3 are regular functions of ξ. DrðsÞ is given by

DrðsÞ ¼
dr;1

s − {ξþ 1
þ dr;2
s − {ξþ 2

þ dr;3
s − {ξþ 3

þ dr;4sþ dr;5s2 þ dr;6s3 ðA21Þ
and KrðsÞ is given by

KrðsÞ ¼
kr;1

s − {ξþ 1
þ kr;2
s − {ξþ 2

þ kr;3sþ kr;4s2: ðA22Þ

The integrals in Eqs. (A19) and (A20) can be made exactly
as done in the previous case for the integral over the residue
in t ¼ −s − 4 in Eq. (A15). The full solution of the integral
in Eq. (A6) is thus

I1 ¼ f4ðξ; τÞΛ4 þ f2ðξ; τÞΛ2

þ flogðξ; τÞ logð2Λ=HÞ þ f1ðξ; τÞ þ ffinðξ; τÞ;
ðA23Þ

where we have included the contributions of Eqs. (A15),
(A19), and (A20) in the term ffinðξ; τÞ.
The integrals I2 and I3 can be done following the

same procedure and we only give the final result in the
following.4

Defining the contributions to the divergences and finite
part of Eq. (A5) as

Iðξ; τ;ΛÞ þ Ið−ξ; τ;ΛÞ
¼ g4ðξ; τÞΛ4 þ g2ðξ; τÞΛ2 þ glogðξ; τÞ logð2Λ=HÞ
þ gfinðξ; τÞ; ðA24Þ

it can be found that the coefficient of the quartic
divergence is

FIG. 9. Integration contour in Eq. (A18). The contour does not
pass through any of the poles. Blue points are the poles of
Γð1 − sÞΓð−sÞ, whereas red points are the poles of Γðs − {ξÞ and
cscðs − {ξÞ. Green points are the poles of cscðπsÞ. For the term
with ξ → −ξ in Eq. (A15), the red points move to s ¼ −{ξ − n.

FIG. 8. Integration contour for the term proportional to ar in
Eq. (A15). The radius of the semicircle is taken to be infinite, and
the contour does not pass through any of the poles. Blue points
are the poles of Γð1 − sÞΓð−sÞ, whereas red points are the poles
of Γðs − {ξÞ and cscðs − {ξÞ. Green points are the poles of
cscðπsÞ. For the term with ξ → −ξ in Eq. (A15), the red points
move to s ¼ −{ξ − n.

4Note that I2 is not explicitly invariant under the exchange
of t with s: we therefore symmetrize it before taking the integral
in s and t.
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g4ðξ; τÞ ¼
1

2H4τ4
: ðA25Þ

The coefficient of the quadratic divergence is

g2ðξ; τÞ ¼
ξ2

2H2τ4
: ðA26Þ

The coefficient of the logarithmic divergence is

glogðξ; τÞ ¼
3ξ2ð5ξ2 − 1Þ

4τ4
: ðA27Þ

The finite part is

gfinðξ; τÞ ¼
3ξ2ð5ξ2 − 1Þðψð−{ξ − 1Þ þ ψð{ξ − 1ÞÞ

8τ4
þ γð11 − 10ξ2Þξ2

2τ4
þ ξ2ð7ξ6 − 282ξ4 þ 123ξ2 þ 124Þ

64ðξ2 þ 1Þτ4

−
3{ξ2ð5ξ2 − 1Þ sinhð2πξÞðψ ð1Þð1 − {ξÞ − ψ ð1Þð{ξþ 1ÞÞ

16πτ4
þ ξð30ξ2 − 11Þ sinhð2πξÞ

16πτ4
; ðA28Þ

where ψ is the Digamma function and γ is the Euler-Mascheroni constant.

2. BACKREACTION: E · B

We now calculate the integral in Eq. (18). The quantity we are interested in is

hE ·Bi ¼ −
1

ð2πÞ2a4
Z

dk k3
∂
∂τ ðjAþj2 − jA−j2Þ≡ −

1

ð2πÞ2a4 lim
Λ→∞

J ðξ; τ;ΛÞ; ðA29Þ

where, obviously, J has not to be confused with the one of the previous sections and is given by

J ðξ; τ;ΛÞ ¼ −
1

2τ

Z
Λa

0

dk k2eπξ½W{ξ;1
2
ð−2{kτÞW−{ξþ1;1

2
ð2{kτÞ þW−{ξ;1

2
ð2{kτÞW{ξþ1;1

2
ð−2{kτÞ

þW−{ξ;1
2
ð−2{kτÞW{ξþ1;1

2
ð2{kτÞ þW{ξ;1

2
ð2{kτÞW−{ξþ1;1

2
ð−2{kτÞ�; ðA30Þ

where, again, we put the IR cutoff to 0. As in the previous section, we can use the Mellin-Barnes representation of the
Whittaker functions Eq. (A4) to write

J ðξ; τ;ΛÞ ¼ −
ξsinh2ðπξÞ

2π2τ

Z
Cs

ds
2π{

Z
Ct

dt
2π{

Λ3þsþt

3þ sþ t
ð2{τÞsþtΓð−sÞΓð1 − sÞΓð−tÞΓð1 − tÞ

× fð{þ ξÞðe{πðsþ{ξÞ − e{πðt−{ξÞÞΓðsþ {ξ − 1ÞΓðt − {ξÞ þ ð−{þ ξÞðe{πðtþ{ξÞ − e{πðs−{ξÞÞΓðs − {ξ − 1ÞΓðtþ {ξÞg;
ðA31Þ

converging for ℜðsþ tÞ > −3. We only give the final result here since the integral can be carried out as previously
explained,

J ðξ; τ;ΛÞ ¼ Λ2ξ

2H2τ4
þ 3ξð5ξ2 − 1Þ logð2Λ=HÞ

2τ4
þ 3γξð5ξ2 − 1Þ

2τ4
þ 22ξ − 47ξ3

4τ4
þ ð30ξ2 − 11Þ sinhð2πξÞ

8πτ4

−
3ξð5ξ2 − 1ÞðH−{ξ þH{ξÞ

4τ4
þ {

3ξð5ξ2 − 1Þ sinhð2πξÞðψ ð1Þð1 − {ξÞ − ψ ð1Þð{ξþ 1ÞÞ
8πτ4

; ðA32Þ

where Hx ¼ ψðxþ 1Þ þ γ is the Harmonic number of
order x and ψ ð1ÞðxÞ ¼ dψðxÞ=dx.

APPENDIX B: CALCULATION OF THE ENERGY
DENSITY AND HELICITY INTEGRAL IN THE

PRESENCE OF A MASS TERM

We now generalize the previous calculations to include a
mass term. The mode equation for the two helicities,
Eq. (7), becomes

� ∂2

∂τ2 þ k2 þ μ2

H2τ2
� 2kξ

τ

�
A�ðk; τÞ ¼ 0; ðB1Þ

the solution of which being

A�ðk; τÞ ¼
1ffiffiffiffiffi
2k

p e�πξ=2W∓{ξ;1
2
−μ2

H2

ð−2{kτÞ: ðB2Þ

With this new solution for the mode function, we can
compute hE2þB2i

2
and hE ·Bi in the same way as done in the

previous appendix. There are only two caveats.
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(i) The presence of the mass term modifies the integral
in Eq. (18) to

hE2 þ B2i
2

¼
Z

dk
ð2πÞ2a4 k

2½k2ðjAþj2 þ jA−j2Þ

þ μ2a2ðjAþj2 þ jA−j2Þ þ jA0þj2
þ jA0−j2�: ðB3Þ

(ii) In the previous appendix, we expressed the
Whittaker functions through their Mellin-Barnes

transform. This led to integrals which we computed
closing the contour of integration and using the
residue theorem. Among the residues that we have
picked up, there were residues from the double poles
t; s ¼ −n where n was a positive integer number
(sometimes n ¼ 0 was included). In the case, where
the two helicities acquire a mass, these poles are
instead from the single poles t; s ¼ −nþ μ2=H2

and t; s ¼ −n − μ2=H2.
With these caveats in mind, the integrals can be computed
leading to

hE2 þ B2i
2

¼ Λ4

8π2
þH2Λ2ξ2ðxþ 1Þ

8π2
þH4ðð1 − xÞ2x2 þ 3ξ4ð2xþ 5Þ þ ξ2ð2ð−x − 6Þð1 − xÞx − 3ÞÞ logð2Λ=HÞ

16π2

þH4ððx4 − x5Þð3x − 5Þ − ξ6ð28xþ 79Þ þ ðx5ð84 − xð32xþ 113ÞÞ þ 41x4Þ þ ξ2xðxðxð80 − xð4xþ 45ÞÞ þ 16Þ − 8ÞÞ
64π2ðξ2 þ x2Þ

−
H4ξx2ðxðxðxðxð2xðxþ 1Þ þ 1Þ − 684Þ þ 979Þ þ 48Þ − 192Þ sinhð2πξÞ cscð2πxÞ

1536π2ðξ2 þ x2Þ

−
H4ξ3xðxðxðxð8x2 þ 6x − 553Þ − 1944Þ þ 1286Þ þ 528Þ sinhð2πξÞ cscð2πxÞ

1536π2ðξ2 þ x2Þ

−
H8ξ2 sinhð2πξÞ sinhð4πξÞðξ2 þ x2Þ2ð2ξ4 þ 2x4 þ 2x3 þ ξ2ð4x2 þ 2xþ 21Þ þ x2 − 12xþ 19Þ2 cotð2πxÞ

18874368π4sin2ðπðx − iξÞÞsin2ðπðxþ iξÞÞ sinð2πxÞ

−
H4ððx2 − xÞ2 þ 3ξ4ð2xþ 5Þ þ ξ2ðð2x2 − 2xÞðxþ 6Þ − 3ÞÞðψ ð0Þð−x − iξÞ þ ψ ð0Þðxþ iξÞÞð{ sinhð2πξÞ cscð2πxÞ þ 1Þ

64π2

þH4ððx2 − xÞ2 þ 3ξ4ð2xþ 5Þ þ ξ2ðð2x2 − xÞðxþ 6Þ − 3ÞÞðψ ð0Þðx − iξÞ þ ψ ð0Þð−xþ iξÞÞð{ sinhð2πξÞ cscð2πxÞ − 1Þ
64π2

ðB4Þ
and

hE ·Bi ¼ Λ2ξH2

8π2
þ 3H4ξð5ξ2 − 3ð1 − xÞx − 1Þ logð2Λ=HÞ

8π2

þH4ð−47ξ5 − 2ξ3ð−2ð9 − 17xÞx − 11Þ − ξxð3 − xð3ð10 − 7xÞxþ 13ÞÞÞ
16π4ðξ2 þ x2Þ

þH4x sinhð2πξÞð30ξ4 þ ξ2ð−2ð9 − 19xÞx − 11Þ þ ð1 − 2xÞð3 − 2xÞxð2xþ 1ÞÞ cscð2πxÞ
16π4ðξ2 þ x2Þ

−
3iH4ξð5ξ2 þ 3ðx − 1Þx − 1Þðψ ð0Þð−x − iξÞ þ ψ ð0Þðxþ iξÞÞðsinhð2πξÞ cscð2πxÞ − iÞ

32π4

þ 3iH4ξð5ξ2 þ 3ðx − 1Þx − 1Þðψ ð0Þðx − iξÞ þ ψ ð0Þðiξ − xÞÞðsinhð2πξÞ cscð2πxÞ þ iÞ
32π4

; ðB5Þ

where for reasons of convenience we have defined
x≡ μ2=H2. It can be easily seen that these expressions
reduce to those of the previous appendix for μ → 0.
We note that the presence of a mass term can come for an

interaction of the form

L ⊃ −BðϕÞFμνFμν

4
; ðB6Þ

where the function BðϕÞ is nearly constant in order to break
only slightly the shift symmetry breaking of the pseudoscalar
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field [22]. This interaction term gives the two helicities an
effective mass of the form μ2 ¼ H2 ffiffiffiffiffiffiffiffiffi

ϵϕϵB
p signðB0 _ϕÞ, where

ϵB ≡ M2
pl

2
ðB0
BÞ2 ≪ 1 and B0 ¼ dB=dϕ. In this case, the mode

function satisfying Eq. (B1) is Ã�ðk;τÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðϕðτÞp

A�ðk;τÞ
and the solution for A�ðk; τÞ is [22]

A�ðk; τÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2kB�

p e�πξ=2W∓{ξ;1
2
þ ffiffiffiffiffiffiffi

ϵϕϵB
p ð−2{kτÞ; ðB7Þ

where B� is the value of B evaluated at horizon crossing for
cosmologically interesting modes.
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