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Abstract: We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016
observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over
a wide range of timescales. No statistically significant periods were found in the high-frequency
domain both in the ground-based data and in Kepler observations. In the longer-period domain, the
Lomb–Scargle periodogram revealed several peaks above the 99% significance level. The longest
one—about 95 days—corresponds to the innermost stable circular orbit (ISCO) period of the more
massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the
form of a two-armed spiral wave.

Keywords: galaxies: active; BL Lacertae objects: individual (OJ287); supermassive black holes

1. Introduction

OJ287 is the only blazar known to exhibit certain quasi-periodic variability in its light curve,
with a rough period of 12 years. A model that successfully explains this observational feature requires
the blazar central engine to contain a binary consisting of two supermassive black holes (SMBHs;
Valtonen et al. 2008 [1], and references therein). The two SMBHs orbit their common center of mass, and
the less-massive one (150 million solar mass) pierces the accretion disk surrounding the more-massive
one (18 billion solar mass) twice per orbit. The general relativistic orbital precession naturally explains
the quasi-periodic light-curve variability of OJ287.

Since 2006, OJ287 has been regularly monitored at optical wavelengths at the Mt. Suhora
Observatory, with supporting observations at Krakow and Athens. In the 2015/2016 season, we started
observations in September, soon after the blazar became visible after the summer conjunction with
the Sun. In anticipation of the outburst predicted for this season by the binary model, a multi-site
campaign was organized. Polarimetric observations were also scheduled to help reveal the nature
of the expected brightening. The predicted outburst started at the end of November 2015, with an
initial slow rise in brightness followed by a very rapid brightening. After our alert, almost two dozen
telescopes on four continents contributed photometric observations, providing very good coverage of
the event as shown in the upper panel of Figure 1. Polarimetric observations were taken at Hawaii, the
Canary Islands, Mt. Suhora, and in India. The full-season light curve of OJ287 taken until mid-May
2016 is presented in the bottom panel of Figure 1; symbols in green denote dates when low polarization
(p < 11%) was measured. Ultraviolet (UV) and X-ray data were also obtained with the Swift satellite.
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Timing of this and previous outbursts allowed revision of the masses of the SMBHs, and the measured
spin of the more-massive black hole (BH) is 0.31 ± 0.01 (Valtonen et al. 2016 [2]).

-1

-0.5

 0

 0.5

 1

 1.5

 57340  57350  57360  57370  57380  57390

13.24

13.74

14.74

15.15

Δ
m

a
g

 [
O

J2
8

7
 -

 c
o
m

p
]

JDhel - 2,400,000

OTH
SUH
KRK

 UOAO
PROM
COMU

KAIT
ADYU
JENA

AMAT
 OSAKA
MODEL

-1

-0.5

 0

 0.5

 1

 1.5

 57250  57300  57350  57400  57450  57500

Δ
m

a
g
 [

O
J2

8
7

 -
 c

o
m

p
]

JDhel - 2,400,000

    

OJ287  2015/16 season [R]

Sep 2015 May 2016Dec 2015

PD not measured
PD low

PD high

Figure 1. R-band light curve of OJ287 gathered during the 2015/2016 season. The December
2015 outburst is shown in the top panel, while the full-season light curve is in the bottom panel.
The December 2015 high-amplitude flare turned out to be unpolarized.

2. Search for QPOs

2.1. Ground-Based Data

Variability at all wavelengths is commonly observed in blazars. Amplitudes of flux changes in
the optical band can reach a few magnitudes. These variations can be fast; often, intraday variability is
seen. There are physical processes in blazars that could lead to periodic or quasi-periodic behaviour
(e.g., those arising at the innermost stable circular orbit). Detection of such quasi-periodic oscillations
(QPOs) could give a better understanding of the underlying physical processes in blazars. There were
numerous periodicity analyses and discussions of the physical significance of the various frequencies
in OJ287. Results covering the previous outburst in 2005 were published by Valtonen et al. (2012) [3]
and by Pihajoki et al. (2013) [4].

The intensive multisite monitoring of OJ287 in the 2015/2016 season resulted in the best coverage
ever obtained from the ground: between mid-November 2015 and mid-May 2016, OJ287 was observed
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a few times per day. Our first goal was to search for any periodic signal present in the data around
the December flare. We analysed the residuals left after the trend plotted as the model line (Figure 1,
top panel) was subtracted. Three methods were applied: regular Fourier transform (FT), wavelet,
and running Fourier transform (rFT). We found no significant (above the 4σ level) peaks with FT. A
period of about 3 hr can be recognized, but only at the ∼ 2σ level. Both the wavelet and rFT techniques
revealed the presence of a statistically significant, short-lived period of about 3 days at the outburst
maximum. The period of its visibility was centered at the maximum of brightness (Figure 2) — it
showed up near JD 2,457,360 and disappeared after ∼ 4 days.
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Figure 2. Running Fourier transform Running Fourier transform (rFT) of the OJ287 data gathered
during the 2015/2016 outburst.

We also performed a thorough search using the entire season dataset covering the period from
mid-September 2015 to mid-May 2016. Several statistical tools have been used, and we show the
Lomb–Scargle periodogram (Lomb 1976 [5], Scargle 1982 [6]) in the left panel of Figure 3. The red-noise
(β = 1.5) light curves were simulated by the randomization of both phase and amplitude, as described
by Timmer & Koenig 1995 [7]. The light curves were then resampled according to the sampling
of the real light curve, and their Lomb–Scargle periodogram (LSP) was computed. The mean LSP
of 1000 simulated light curves is shown in black in the left panel of Figure 3. No significant peaks
corresponding to short periods were found. In the longer-period domain, there seem to be statistically
significant peaks in the range between 0.01 and 0.1 c/d. However, the weighted wavelet Z-transform
analysis (WWZ; Foster 1996 [8]) indicates that they are not stable. As seen in Figure 3 (right panel),
the length of the longest period (about 95 days) has been increasing since it started to be visible at
about JD 2457330.
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Figure 3. (a) Left panel: Lomb-Scargle periodogram (LSP) of the 2015/2016 data (blue line). The 99%
confidence level is shown as the red contour; (b) Right panel: the resulting graph from the wavelet
Z-transform analysis.

2.2. K2 Observations

OJ287 was observed by the Kepler spacecraft during K2 Campaign 5. This run resulted in almost
continuous coverage over 75 days ( 27 April 2015 to 10 July) with about 1-min cadence. We used both
short- and long-cadence target pixel files. We employed our custom IRAF tasks to pull out fluxes,
applying three-pixel circular apertures. We computed power spectral density (PSD) functions for
the resulting light curve and also the 2015/2016 ground-based data. Neither show any statistically
significant periodicities that could be attributed to QPOs.

3. Conclusions

We found no stable periods in the OJ287 photometric data over the entire 2015/2016 season.
However, the 95-day peak in the power spectrum is close to the period for the more-massive BH ISCO,
while the 43-day peak is half of this value. Accretion in the form of a one-armed stationary spiral
density wave should show up as the full ISCO period, while a two-armed stationary wave will feed
the central BH at one-half of the ISCO period. Both types of density waves are observed, such as in
galactic disks under perturbation. These phenomena are not expected to produce stable periodicities,
since interactions between the exact ISCO period and wave frequencies may occur. The 95-day period
started to be visible somewhat before the December outburst, and its best visibility continued after
the outburst. The period increased with time, and simultaneously, high optical variability of OJ287
was observed.

We found no firm evidence of any short-period variability that could be attributed to the secondary
black hole (at the ISCO or the event horizon). The peaks that different techniques revealed are either
transient—like the 3-day period found in the maximum of the December 2015 flare—or the periods
and the variability amplitudes in the higher-frequency domain change with time. Such flux changes
at shorter timescales most likely originate in the jet. The 3-day quasiperiodicity is the expected jet
counterpart of the half-ISCO, with a Lorentz compression factor of 14.

The PSD analysis of both ground-based and Kepler data shows no statistically significant peaks.
However, if they do exist, they could be hidden by the high-amplitude variability of the flaring
component present after the unprecedented December 2015 outburst.
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Abbreviations

The following abbreviations are used in this manuscript:

BH Black Hole
SMBH Supermassive Black Hole
ISCO Innermost Stable Circular Orbit
PSD Power Spectral Density
LSP Lomb–Scargle Periodogram
QPO Quasi-Periodic Oscillation
WWZ Weighted Wavelet Z-transform
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