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2Università di Udine, and INFN Trieste, I-33100 Udine, Italy

3Japanese MAGIC Consortium, Department of Physics, Kyoto University, Kyoto, Japan.

4National Institute for Astrophysics (INAF), I-00136 Rome, Italy

5ETH Zurich, CH-8093 Zurich, Switzerland

3



6Technische Universität Dortmund, 44221 Dortmund, Germany

7Croatian Consortium, University of Zagreb, FER, Zagreb, Croatia.

8Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064,

India

9Centro Brasileiro de Pesquisas Fı́sicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brasil

10Unidad de Partı́culas y Cosmologı́a (UPARCOS), Universidad Complutense, E-28040 Madrid,

Spain

11University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics,

90-236 Lodz, Poland
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Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from

the collapsing cores of dying massive stars. They are characterised by an initial phase of

bright and highly variable radiation in the keV-MeV band that is likely produced within the

jet and lasts from milliseconds to minutes, known as the prompt emission1, 2. Subsequently,

the interaction of the jet with the external medium generates external shock waves, respon-

sible for the afterglow emission, which lasts from days to months, and occurs over a broad

energy range, from the radio to the GeV bands1–6. The afterglow emission is generally well

explained as synchrotron radiation by electrons accelerated at the external shock7–9. Re-

cently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB

190114C10. Here we present the results of our multi-frequency observational campaign of

GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of mag-

nitude in energy, from 5 × 10−6 up to 1012 eV. We find that the broadband spectral energy

distribution is double-peaked, with the TeV emission constituting a distinct spectral compo-

nent that has power comparable to the synchrotron component. This component is associ-

ated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of
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synchrotron photons by high-energy electrons.

We find that the conditions required to account for the observed TeV component are not

atypical, supporting the possibility that inverse Compton emission is commonly produced in

GRBs.

On 14 January 2019, following an alert from the Neil Gehrels Swift Observatory (here-

after Swift) and the Fermi satellite, the Major Atmospheric Gamma Imaging Cherenkov (MAGIC)

telescopes observed and detected radiation up to at least 1 TeV from GRB 190114C. Before the

MAGIC detection, GRB emission has only been reported at much lower energies, . 100 GeV, first

by CGRO/EGRET in a handful of cases, and more recently by AGILE/GRID and Fermi/LAT (see

11 for a recent review).

Detection of TeV radiation opens a new window in the electromagnetic spectrum for the

study of GRBs10. Its announcement12 triggered an extensive campaign of follow-up observations.

Owing to the relatively low redshift z = 0.4245±0.0005 (see Methods) of the GRB (corresponding

to a luminosity distance of ∼ 2.3 Gpc) a comprehensive set of multi-wavelength data could be

collected. We present observations gathered from instruments onboard six satellites and 15 ground

telescopes (radio, submm and NIR/optical/UV and very high energy gamma-rays; see Methods)

for the first ten days after the burst. The frequency range covered by these observations spans more

than 17 orders of magnitude, from 1 to∼ 2× 1017 GHz, the most extensive to date for a GRB. The

light curves of GRB 190114C at different frequencies are shown in Fig. 1.

The prompt emission of GRB 190114C was simultaneously observed by several space mis-
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Figure 1: Multi-wavelength light curves of GRB 190114C. Energy flux at different wavelengths,

from radio to gamma-rays, versus time since the BAT trigger time T0 = 20:57:03.19 UT on 14

January 2019. The light curve for the energy range 0.3-1 TeV (green circles) is compared with

light curves at lower frequencies. Those for VLA (yellow square), ATCA (yellow stars), ALMA

(orange circles), GMRT (purple filled triangle), and MeerKAT (purple empty triangles) have been

multiplied by 109 for clarity. The vertical dashed line marks approximately the end of the prompt

emission phase, identified with the end of the last flaring episode. For the data points, vertical bars

show the 1-σ errors on the flux, while horizontal bars represent the duration of the observation.
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sions (see Methods), covering the spectral range from 8 keV to∼ 100 GeV. The prompt light curve

shows a complex temporal structure, with several emission peaks (Methods; Extended Data Fig. 1),

with total duration ∼ 25 s (see dashed line in Fig. 1) and total radiated energy Eγ,iso = (2.5 ± 0.1)

×1053 ergs (isotropic equivalent, in the energy range 1−104 keV 13). During the time of inter-burst

quiescence at t ∼ [5 − 15] seconds and after the end of the last prompt pulse at t & 25 s, the flux

decays smoothly, following a power law in time F ∝ tα, with α10−1000keV = −1.10± 0.01 13. The

temporal and spectral characteristics of this smoothly varying component support an interpretation

in terms of afterglow synchrotron radiation, making this one of the few clear cases of afterglow

emission detected in the band 10 − 104 keV during the prompt emission phase. The onset of the

afterglow component is then estimated to occur around t ∼ 5− 10 s 13, 14, implying an initial bulk

Lorentz factor between 300 and 700 (Methods).

After about one minute from the start of the prompt emission, two additional high-energy

telescopes began observations: MAGIC and Swift/XRT. The XRT and MAGIC light curves (1-

10 keV, blue data points in Fig. 1, and 0.3-1 TeV, green data points, respectively) decay with time as

a power law, and display the following decay rates: αX ∼ −1.36±0.02 and αTeV ∼ −1.51±0.04.

The 0.3-1 TeV light curve shown in Fig. 1 was obtained after correcting for attenuation by the

extragalactic background light (EBL)10. The TeV-band emission is observable until ∼ 40 minutes,

which is much longer than the nominal duration of the prompt emission phase. The NIR-optical

light curves (square symbols) show a more complex behaviour. Initially, a fast decay is seen,

where the emission is most likely dominated by the reverse shock component15. This is followed

by a shallower decay, and subsequently a faster decay at t & 105 s. The latter behaviour might
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indicate that the characteristic synchrotron frequency νm is crossing the optical band (Extended

Data Fig. 6), which is not atypical, but usually occurs at earlier times. The relatively late time at

which the break appears in GRB 190114C would then imply a very large value of νm, placing it in

the X-ray band at ∼ 102 s. The millimeter light curves (orange symbols) also show an initial fast

decay where the emission is dominated by the reverse shock, followed by emission at late times

with nearly constant flux (Extended Data Fig. 3).

The spectral energy distributions (SEDs) of the radiation detected by MAGIC are shown in

Fig. 2, where the whole duration of the emission detected by MAGIC is divided into five time in-

tervals. For the first two time intervals, observations in the GeV and X-ray bands are also available.

During the first time interval (68-110 s, blue data points and blue confidence regions), Swift/XRT-

BAT and Fermi/GBM data show that the afterglow synchrotron component is peaking in the X-ray

band. At higher energies, up to .1 GeV, the SED is a decreasing function of energy, as supported

by the Fermi/LAT flux between 0.1 and 0.4 GeV (see Methods). On the other hand, at even higher

energies, the MAGIC flux above 0.2 TeV implies a spectral hardening. This evidence is indepen-

dent of the EBL model adopted to correct for the attenuation (Methods). This demonstrates that

the newly discovered TeV radiation is not a simple extension of the known afterglow synchrotron

emission, but rather a separate spectral component that has never been clearly seen before.

The extended duration and the smooth, power-law temporal decay of the radiation detected

by MAGIC (see green data points in Fig. 1) suggest an intimate connection between the TeV

emission and the broadband afterglow emission. The most natural candidate is synchrotron self-
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Compton (SSC) radiation in the external forward shock: the same population of relativistic elec-

trons responsible for the afterglow synchrotron emission Compton upscatters the synchrotron pho-

tons, leading to a second spectral component that peaks at higher energies. TeV afterglow emission

can also be produced by hadronic processes such as synchrotron radiation by protons accelerated

to ultra-high energies in the forward shock16–18. However, due to their typically low efficiency

of radiation6, reproducing the luminous TeV emission as observed here by such processes would

imply unrealistically large power in accelerated protons10. TeV photons can also be produced via

the SSC mechanism in internal shock synchrotron models of the prompt emission. However, nu-

merical modeling (Methods) shows that prompt SSC radiation can account at most for a limited

fraction ( <∼ 20%) of the observed TeV flux, and only at early times (t . 100 s). Henceforth, we

focus on the SSC process in the afterglow.

SSC emission has been predicted for GRB afterglows9, 11, 17, 19–26. However, its quantitative

significance was uncertain, as the SSC luminosity and spectral properties depend strongly on the

poorly constrained physical conditions in the emission region (e.g., the magnetic field strength).

The detection of the TeV component in GRB 190114C and the availability of multi-band obser-

vations offer the opportunity to investigate the relevant physics at a deeper level. SSC radiation

might have been already detected in very bright GRBs, such as GRB 130427A. Photons with ener-

gies 10-100 GeV, as those detected in GRB 130427A are challenging to explain by the synchrotron

processes, suggesting a different origin27–29.

We model the full data set (from radio band to TeV energies, for the first week after the
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Figure 2: Multi-band spectra in the time interval 68-2400 s. Five time intervals are consid-

ered: 68-110 s (blue), 110-180 s (yellow), 180-360 s (red), 360-625 s (green), 625-2400 s (purple).

MAGIC data points have been corrected for attenuation caused by the extragalactic background

light. Data from other instruments are shown for the first two time-intervals: Swift/XRT, Swift/BAT,

Fermi/GBM, and Fermi/LAT. For each time interval, LAT contour regions are shown limiting the

energy range to the range where photons are detected. MAGIC and LAT contour regions are drawn

from the 1-σ error of their best-fit power law functions. For Swift data, the regions show the 90%

confidence contours for the joint fit XRT-BAT obtained fitting to the data a smoothly broken power

law. Filled regions are used for the first time interval (68-110 s, blue color).
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Figure 3: Modeling of the broadband spectra in the time intervals 68-110 s and 110-180 s.

Thick blue curve: modeling of the multi-band data in the synchrotron and SSC afterglow scenario.

Thin solid lines: synchrotron and SSC (observed spectrum) components; dashed lines: SSC if

internal γ-γ opacity is neglected. The adopted parameters are: s = 0, εe = 0.07, εB = 8 × 10−5,

p = 2.6, n0 = 0.5, and Ek = 8× 1053 erg, see the Text. Empty circles show the observed MAGIC

spectrum, i.e. not corrected by attenuation caused by the extragalactic background light. Contour

regions and data points as in Fig. 2.
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explosion) as synchrotron plus SSC radiation, within the framework of the theory of afterglow

emission from external forward shocks. The detailed modeling of the broadband emission and

its evolution with time is presented in Section Methods. We discuss here the implications for the

emission at t < 2400 s and energies above > 1 keV.

The soft spectra in the 0.2-1 TeV energy range (photon index ΓTeV < −2; see Extended Data

Table 1) constrain the peak of the SSC component to be below this energy range. The relatively

small ratio between the spectral peak energies of the SSC (ESSC
p . 200 GeV) and synchrotron

(Esyn
p ∼ 10 keV) components implies a relatively low value for the Lorentz factor of the electrons

(γ ∼ 2 × 103). This value is hard to reconcile with the observation of the synchrotron peak

at & keV energies. In order to explain the soft spectrum detected by MAGIC, it is necessary to

invoke the Klein-Nishina (KN) regime scattering for the electrons radiating at the spectral peak as

well as internal γ-γ absorption30. While both effects tend to become less important with time, the

spectral index in the 0.2-1 TeV band remains constant in time (or possibly evolves to softer values;

Extended Data Table 1). This implies that the SSC peak energy is moving to lower energies and

crossing the MAGIC energy band. The energy at which attenuation by internal pair production

becomes important indicates that the bulk Lorentz factor is ∼140-160 at 100 s.

An example of the theoretical modeling in this scenario is shown in Fig. 3 (blue solid curve,

see Methods for details). The dashed line shows the SSC spectrum when internal absorption is

neglected. The thin solid line shows the model spectrum including EBL attenuation, in comparison

to the MAGIC observations (empty circles).
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We find that acceptable models of the broadband SED can be obtained if the conditions at

the source are the following. The initial kinetic energy of the blastwave is Ek & 3 × 1053 erg

(isotropic-equivalent). The electrons swept up from the external medium are efficiently injected

into the acceleration process, and carry a fraction εe∼ 0.05 − 0.15 of the energy dissipated at

the shock. The acceleration mechanism produces an electron population characterized by a non-

thermal energy distribution, described by a power law with index p ∼ 2.4− 2.6, injection Lorentz

factor γm = (0.8− 2)× 104 and maximum Lorentz factor γmax ∼ 108 (at ∼ 100 s). The magnetic

field behind the shock conveys a fraction εB∼ (0.05 − 1) × 10−3 of the dissipated energy. At

t ∼ 100 s, corresponding to R ∼ (8 − 20) × 1016 cm, the density of the external medium is

n ∼ 0.5 − 5 cm−3, and the magnetic field strength is B ∼ 0.5 − 5 Gauss. The latter implies that

the magnetic field was efficiently amplified from values of a few µGauss that are typical of the

unshocked ambient medium, due to plasma instabilities or other mechanisms6. Not surprisingly,

we find that εe � εB, that is a necessary condition for the efficient production of SSC radiation17, 19.

The blastwave energy inferred from the modeling is comparable to the amount of energy

released in the form of radiation during the prompt phase. The prompt emission mechanism must

then have dissipated and radiated no more than half of the initial jet energy, leaving the other half

available for the afterglow phase. The modeling of the multi-band data also allows us to infer how

the total energy is shared between the synchrotron and the SSC components. The resultant power

in the two components are comparable. We estimate that the energy in the synchrotron and SSC

component are∼ 1.5×1052 erg and∼ 6.0×1051 erg respectively in the time interval 68-110 s, and

∼ 1.3 × 1052 erg and ∼ 5.4 × 1051 erg respectively in the time interval 110-180 s. Thus, previous
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studies of GRBs may have been missing a significant fraction of the energy emitted during the

afterglow phase that is essential to its understanding.

Finally, we note that the values of the afterglow parameters inferred from the modeling fall

within the range of values typically inferred from broadband (radio-to-GeV) studies of GRB af-

terglow emission. This points to the possibility that SSC emission in GRBs may be a relatively

common process that does not require special conditions to be produced with power similar to

synchrotron radiation.

The SSC component may then be detectable at TeV energies in other relatively energetic

GRBs, as long as the redshift is low enough to avoid severe attenuation by the EBL. This also

provides support to earlier indications for SSC emission at GeV energies 27–29.
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Methods

Prompt emission observations On 14 January 2019, the prompt emission from GRB 190114C

triggered several space instruments, including Fermi/GBM31, Fermi/LAT32, Swift/BAT33, Super-

AGILE34, AGILE/MCAL34, KONUS/Wind35, INTEGRAL/SPI-ACS36, and Insight/HXMT37. The

prompt emission light curves from AGILE, Fermi, and Swift are shown in Fig. 1 and in Ex-

tended Data Fig. 1, where the trigger time T0 (here and elsewhere) refers to the BAT trigger time

(20:57:03.19 UT). The prompt emission lasts approximately for 25 s, where the last flaring emis-

sion episode ends. Nominally, the T90, i.e. the time interval during which a fraction between

5% and 95% of the total emission is observed, is much longer (> 100 s, depending on the instru-

ment 13), but is clearly contaminated by the afterglow component (Fig. 1) and does not provide a

good measure of the actual duration of the prompt emission. A more detailed study of the prompt

emission phase is reported in 13.

AGILE (The Astrorivelatore Gamma ad Immagini LEggero 38) could observe GRB 190114C until

T0+330 s, before it became occulted by the Earth. GRB 190114C triggered the Mini-CALorimeter

(MCAL) from T0−0.95 s to T0+10.95 s. The MCAL light flux curve in Fig. 1 has been pro-

duced using two different spectral models. From T0−0.95 s to T0+1.8 s, the spectrum is fit-

ted by a power law with photon index Γph = -1.97+0.47
−0.70 (dN/dE ∝ EΓph). From T0+1.8 s to

T0 + 5.5 s the best fit model is a broken power law with Γph,1 = −1.87+0.54
−0.19, Γph,2 = −2.63+0.07

−0.07,

and break energy Eb =756+137
−159 keV. The total fluence in the 0.4−100 MeV energy range is F =

1.75×10−4 erg cm−2. The Super-AGILE detector also detected the burst, but the large off-axis

angle prevented any X-ray imaging of the burst, as well as spectral analysis. Panels a, d, and e
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Extended Data Figure 1: Prompt emission light curves for different detectors. The differ-

ent panels show light curves for: a, SuperAGILE (20-60 keV); b, Swift/BAT (15-150 keV); c,

Fermi/GBM (10-1000 keV); d, AGILE/MCAL (0.4-1.4 MeV); e, AGILE/MCAL (1.4-100 MeV);

f, Fermi/LAT (0.1-10 GeV). The light curve of AGILE/MCAL is split into two bands to show the

energy dependence of the first peak. Error bars show the 1-σ statistical errors.
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in Extended Data Fig. 1 show the GRB 190114C light curves acquired by the Super-AGILE de-

tector (20 − 60 keV) and by the MCAL detector in the low- (0.4 − 1.4 MeV) and high-energy

(1.4− 100 MeV) bands.

Fermi/GBM At the time of the MAGIC observations there are indications that some of the de-

tectors are partially blocked by structure on the Fermi Spacecraft that is not modeled in the GBM

detectors’ response. This affects the low-energy part of the spectrum 39. For this reason, out of cau-

tion we elected to exclude the energy channels below 50 keV. The spectra detected by the Fermi-

Gamma-ray Burst Monitor (GBM)40 during the T0+68 s to T0+110 s and T0+110 s to T0+180 s

intervals are best described by a power law model with photon index Γph = −2.10 ± 0.08 and

Γph = −2.05 ± 0.10 respectively (Fig. 2 and Fig. 3). The 10-1000 keV light curve in Extended

Data Fig. 1 (panel c) was constructed by summing photon counts for the bright NaI detectors.

Swift/BAT The 15 − 350 keV mask-weighted light curve of the Burst Alert Telescope (BAT 41)

shows a multi-peaked structure that starts at T0−7 s (Extended Data Fig. 1, panel b). The 68−110 s

and 110 − 180 s spectra shown in Figs. 2 and 3 were derived from joint XRT-BAT fit. The best-

fitting parameters for the whole interval (68 − 180 s) are: column density NH = (7.53+0.74
−1.74) ×

1022 cm−2 at z = 0.42, in addition to the galactic value of 7.5×1019 cm−2, low-energy photon index

Γph,1 = −1.21+0.40
−1.26, high-energy spectral index Γph,2 = −2.19+0.39

−0.19, peak energy Epk > 14.5 keV.

Errors are given at 90% confidence level.

Fermi/LAT The Fermi Large Area Telescope (LAT)42 detected a gamma-ray counterpart since

the prompt phase43. The burst left the LAT field of view (FoV) at T0+150 s and remained outside
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the LAT FoV until T0+8600 s. The count light curve in the energy range 0.1-10 GeV is shown

in Extended Data Fig. 1 (panel f). The LAT spectra in the time bins 68–110 s and 110–180 s

(Figs. 2 and 3) are described by a power law with pivot energies of, respectively, 200 MeV and

500 MeV, photon indices Γph(68 − 110) = −2.02 ± 0.95 and Γph(110 − 180) = −1.69 ± 0.42,

and corresponding normalisations of N0,68−110 = (2.02 ± 1.31) × 10−7 ph MeV−1cm−2 s and

N0,110−180 = (4.48± 2.10)× 10−8 ph MeV−1cm−2 s. In each time-interval, the analysis has been

performed limited to the energy range where photons have been detected. The LAT light curve

integrated in the energy range 0.1-1 GeV is shown in Fig. 1.

MAGIC We used the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) standard soft-

ware 44 and followed the steps optimised for the data taking under moderate moon illumination45

to analyse the data. The spectral fitting is performed by a forward-folding method assuming a

simple power law for the intrinsic spectrum and taking into account the extragalactic background

light (EBL) effect using the model of Domı́nguez et al.46. Extended Data Table 1 shows the fitting

results for various time bins (the pivot energy is chosen to minimise the correlation between nor-

malisation and photon index parameters). The data points shown in both Fig. 2 and 3 are obtained

from the observed excess rates in estimated energy whose fluxes are evaluated in true energy using

effective time and a spill-over corrected effective area obtained as a resultant of the best fit.

The time resolved analysis hints to a possible spectral evolution to softer values. Although

we can not exclude that the photon indices are compatible with a constant value of ∼ −2.5 up to

2400 s. The signal and background in the considered time bins are both in the low-count Poisson

regime. Therefore, the correct treatment of the MAGIC data provided here includes along with the
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Time bin Normalisation Photon index Pivot energy

[ seconds after T0 ] [ TeV−1 cm−2 s−1 ] [GeV]

62 - 90 1.95+0.21
−0.20 · 10−7 −2.17 +0.34

−0.36 395.5

68 - 180 1.10+0.09
−0.08 · 10−7 −2.27 +0.24

−0.25 404.7

180 - 625 2.26+0.21
−0.20 · 10−8 −2.56 +0.27

−0.29 395.5

68 - 110 1.74+0.16
−0.15 · 10−7 −2.16 +0.29

−0.31 386.5

110 - 180 8.59+0.95
−0.91 · 10−8 −2.51 +0.37

−0.41 395.5

180 - 360 3.50+0.38
−0.36 · 10−8 −2.36 +0.34

−0.37 395.5

360 - 625 1.65+0.23
−0.23 · 10−8 −3.16 +0.48

−0.54 369.1

625 - 2400 3.52+0.47
−0.47 · 10−9 −2.80 +0.48

−0.54 369.1

62 - 2400 (Nominal MC) 1.07+0.08
−0.07 · 10−8 −2.51 +0.20

−0.21 423.8

62 - 2400 (Light scale +15% MC) 7.95+0.58
−0.56 · 10−9 −2.91 +0.23

−0.25 369.1

62 - 2400 (Light scale -15% MC) 1.34+0.09
−0.09 · 10−8 −2.07 +0.18

−0.19 509.5

Extended Data Table 1: MAGIC spectral fit parameters for GRB 190114C. For each time

bin, columns represent a) start time and end time of the bin; b) normalisation of the EBL-

corrected differential flux at the pivot energy with statistical errors; c) photon indices with

statistical errors; d) pivot energy of the fit (fixed).
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use of the Poisson statistic also the systematic errors. To estimate the main source of systematic

error caused by our imperfect knowledge of the absolute instrument calibration and the total at-

mospheric transmission we vary the light-scale in our Monte Carlo (MC) simulation as suggested

in previous studies44. The result is reported in the last two lines of Extended Data Table 1 and in

Extended Data Fig. 2.

The systematic effects deriving from the choice of one particular EBL model were also stud-

ied. The analysis performed to obtain the time integrated spectrum was repeated employing other

three models47–49. The contribution to the systematic error on the photon index caused by the un-

certainty on the EBL model is σα =+0.10
−0.13 which is smaller than the statistical error only (1 standard

deviation) as already seen in a previous work10. On the other hand, the contribution to the system-

atic error on the normalisation, due to choice of the EBL model, is only partially at the same level

of the statistical error (1 standard deviation) σN =+0.30
−0.08 ×10−8. The chosen EBL model returns a

lower normalisation with respect to two of the other models and very close to the third one 47.

The MAGIC energy flux light curve that is presented in Fig. 1 was obtained by integrating

the best fit spectral model of each time bin from 0.3 to 1 TeV, in the same manner as a previous

publication10. The value of the fitted time constant reported here differs less than two standard

deviation from the one previously reported10. The difference is due to the poor constraints on the

spectral fit parameters of the last time bin, which influences the light curve fit.
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Extended Data Figure 2: MAGIC time integrated spectral energy distributions in the time

interval 62-2400 s after T0. The green (yellow, blue) points and band show the result with the

nominal (+15%, -15%) light scale MC, defining the limits of the systematic uncertainties. The

contour regions are drawn from the 1-σ error of their best-fit power law functions. The vertical

bars of the data points show the 1-σ errors on the flux.
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X-ray afterglow observations

Swift/XRT The Swift X-Ray Telescope (XRT) started observing 68 s after T0. The source light

curve50 was taken from the Swift/XRT light curve repository 51 and converted into 1-10 keV flux

(Fig. 1) through dedicated spectral fits. The combined spectral fit XRT+BAT in Figs. 2 and 3 has

been described above.

XMM-Newton and NuSTAR The XMM-Newton X-ray Observatory and the Nuclear Spectro-

scopic Telescope Array (NuSTAR) started observing GRB 190114C under DDT ToOs 7.5 hours

and 22.5 hrs (respectively) after the burst. The XMM-Newton and NuSTAR absorption-corrected

fluxes (see Fig. 1) were derived by fitting the spectrum with XSPEC adopting the same power law

model, with absorption in our Galaxy and at the redshift of the burst.

NIR, Optical and UV afterglow observations Light curves from the different instruments pre-

sented in this section are shown in Extended Data Fig. 3.

GROND The Gamma-ray Burst Optical/Near-infrared Detector (GROND52) started observations

3.8 hours after the GRB trigger, and the follow-up continued until January 29, 2019. Image re-

duction and photometry were carried out with standard IRAF tasks 53, as described in 54, 55. JHKs

photometry was converted to AB magnitudes to have a common flux system. Final photometry is

given in Extended Data Table 2.

GTC The BOOTES-2 ultra-wide field camera 56, took an image at the GRB 190114C location,

starting at 20:57:18 UT (30 s exposure time) (see Extended Data Fig. 4). The Gran Canarias
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Extended Data Figure 3: Afterglow light curves of GRB 190114C. Flux density at differ-

ent frequencies, as a function of the time since the initial burst T0. Panel a: observations in

the NIR/Optical/UV bands. The flux has been corrected for extinction in the host and in our

Galaxy. The contribution of the host galaxy and its companion has been subtracted. Fluxes have

been rescaled (except for the r filter). Panel b: Radio and sub-mm observations from 1.3 GHz to

670 GHz.

TGROND AB magnitude

(s) g′ r′ i′ z′ J H Ks

14029.94 ± 335.28 19.21 ± 0.03 18.46 ± 0.03 17.78 ± 0.03 17.33 ± 0.03 16.78 ± 0.05 16.30 ± 0.05 16.03 ± 0.07

24402.00 ± 345.66 19.50 ± 0.04 18.72 ± 0.03 18.05 ± 0.03 17.61 ± 0.03 17.02 ± 0.05 16.53 ± 0.05 16.26 ± 0.08

102697.17 ± 524.01 20.83 ± 0.06 20.00 ± 0.04 19.30 ± 0.04 18.87 ± 0.03 18.15 ± 0.05 17.75 ± 0.06 17.40 ± 0.09

106405.63 ± 519.87 20.86 ± 0.05 19.98 ± 0.03 19.34 ± 0.03 18.88 ± 0.03 18.17 ± 0.06 17.75 ± 0.06 17.34 ± 0.09

191466.77 ± 751.37 21.43 ± 0.07 20.61 ± 0.03 19.97 ± 0.03 19.52 ± 0.03 18.77 ± 0.06 18.28 ± 0.06 17.92 ± 0.14

275594.19 ± 747.59 21.57 ± 0.07 20.88 ± 0.04 20.31 ± 0.04 19.87 ± 0.04 19.14 ± 0.07 18.57 ± 0.06 18.26 ± 0.21

366390.74 ± 1105.79 21.87 ± 0.07 21.17 ± 0.04 20.62 ± 0.03 20.15 ± 0.03 19.43 ± 0.06 18.89 ± 0.06 18.46 ± 0.15

448791.55 ± 1201.33 21.90 ± 0.08 21.27 ± 0.04 20.79 ± 0.04 20.33 ± 0.03 19.66 ± 0.07 18.97 ± 0.07 18.55 ± 0.18

537481.41 ± 1132.16 22.02 ± 0.09 21.52 ± 0.05 21.00 ± 0.04 20.55 ± 0.03 19.87 ± 0.07 19.20 ± 0.07 18.83 ± 0.17

794992.63 ± 1200.69 22.14 ± 0.04 21.51 ± 0.03 21.05 ± 0.04 20.71 ± 0.05 20.31 ± 0.13 19.79 ± 0.14 19.59 ± 0.41

1226716.84 ± 1050.15 22.17 ± 0.04 21.59 ± 0.04 21.26 ± 0.04 20.97 ± 0.04 20.34 ± 0.12 19.95 ± 0.11 19.40 ± 0.34

Extended Data Table 2: GROND photometry. TGROND in seconds after the BAT trigger.

The AB magnitudes are not corrected for the Galactic foreground reddening.
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Telescope (GTC) equipped with the OSIRIS spectrograph57 started observations 2.6 hr post-burst.

The grisms R1000B and R2500I were used covering the wavelength range 3,700-10,000 Å (600 s

exposure times for each grism). The GTC detects a highly extinguished continuum, as well as CaII

H and K lines in absorption, and [OII], Hβ , and [OIII] in emission (see Extended Data Fig. 5), all

roughly at the same redshift z = 0.4245±0.0005 58. Comparing the derived rest-frame equivalent

widths (EWs) with the work by 59, GRB 190114C clearly shows higher than average, but not

unprecedented, values.

HST The Hubble Space Telescope (HST) imaged the afterglow and host galaxy of GRB 190114C

on 11 February and 12 March 2019. HST observations clearly reveal that the host galaxy is spiral

(Extended Data Fig. 4). A direct subtraction of the epochs of F850LP observations yields a faint

residual close to the nucleus of the host (Extended Data Fig. 4). From the position of the residual

we estimate that the burst originated within 250 pc of the host galaxy nucleus.

LT The robotic 2-m Liverpool Telescope (LT60) slewed to the afterglow location at UTC 2019-

01-14.974 and on the second night, from UTC 2019-01-15.814 and acquired images in B, g, V ,

r, i and z bands (45 s exposure each in the first night and 60 s in the second, see Extended Data

Table 3). Aperture photometry of the afterglow was performed using a custom IDL script with

a fixed aperture radius of 1.5′′. Photometric calibration was performed relative to stars from the

Pan-STARRS1 catalogue61.

NTT The ESO New Technology Telescope (NTT) observed the optical counterpart of GRB 190114C

under the extended Public ESO Spectroscopic Survey for Transient Objects (ePESSTO) using the
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Extended Data Figure 4: Images of the localisation region of GRB 190114C. Panel a: The

CASANDRA-2 at the BOOTES-2 station all-sky image. The image (30 s exposure, unfiltered) was

taken at T0+14.8 s. At the GRB 190114C location (circle) no prompt optical emission is detected.

Panel b: Three-colour image of the host of GRB 190114C with the HST. The host galaxy is a

spiral galaxy, and the green circle indicates the location of the transient close to its host nucleus.

The image is 8 ′′ across, north is up and east to the left. Panels c, d and e: F850LP imaging of

GRB 190114C taken with the HST. Two epochs are shown (images are 4 ′′ across), as well as the

result of the difference image. A faint transient is visible close to the nucleus of the galaxy, and we

identify this as the late time afterglow of the burst.
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UTC Filter Exposure (s) Magnitude
LT/IO:O

2019-01-14.975 g 45 19.08±0.06
2019-01-14.976 r 45 18.22±0.02
2019-01-14.977 i 45 17.49±0.02
2019-01-14.978 z 45 17.12±0.02
2019-01-14.979 B 45 19.55±0.15
2019-01-14.980 V 45 18.81±0.08
2019-01-15.814 r 60 19.61±0.05
2019-01-15.818 z 60 18.70±0.06
2019-01-15.820 i 60 19.04±0.04
2019-01-15.823 g 60 20.96±0.17

NOT/AlFOSC
2019-01-14.89127 g 1 × 300 17.72±0.03
2019-01-14.89512 r 1 × 300 16.93±0.02
2019-01-14.89899 i 1 × 300 16.42 ±0.04
2019-01-14.90286 z 1 × 300 16.17 ±0.04
2019-01-23.8896 i 6 × 300 21.02±0.05

UVOT

Tstart Tstop Filter Magnitude Tstart Tstop Filter Magnitude

56.63 57.63 V 12.17±0.14 130958 142524 UV M2 20.37
57.63 58.63 V 12.34±0.14 217406 222752 UV M2 20.48
58.63 59.63 V 12.44±0.13 107573 125233 U 20.29
59.63 60.63 V 12.29±0.14 205500 210750 U 20.25
60.63 61.63 V 12.44±0.14 291188 302718 U 20.49
61.63 62.63 V 12.16±0.13 400429 412385 U 20.82
62.63 63.63 V 12.51±0.13 616 627 V 16.25±0.20

615.95 625.95 V 16.32±0.20 16295 17136 V 19.03±0.14
73.34 83.34 white 13.86 26775 27682 V 19.50±0.27
83.34 93.34 white 14.10±0.06 39149 57221 V 20.09±0.23
93.34 103.34 white 14.19±0.06 108064 125736 V 20.02

103.34 113.34 white 14.36±0.06 206689 211356 V 20.02
113.34 123.34 white 14.64±0.06 292383 303996 V 20.42
123.34 133.34 white 14.65±0.06 401305 413316 V 20.17
133.34 143.34 white 14.91±0.06 4044 51522 UV W1 21.17
143.34 153.34 white 14.99±0.06 131216 142656 UV W1 20.47
153.34 163.34 white 15.05±0.06 217984 223056 UV W1 20.57
163.34 173.34 white 15.32±0.06 592 612 UV W2 17.65
173.34 183.34 white 15.38±0.06 6056 56384 UV W2 21.30
183.34 193.34 white 15.38±0.06 130699 142346 UV W2 20.52
193.34 203.34 white 15.59±0.06 216828 222404 UV W2 20.55
562.0 572.0 white 16.96±0.10 566 586 white 16.90±0.07
572.0 582.0 white 16.90±0.10 607389 613956 white 22.16
535.5 555.5 B 17.56±0.21 624452 682416 white 21.99±0.18
545.5 565.5 B 17.25±0.18 745033 769296 white 21.64±0.16
285.9 305.9 U 17.35±0.19 818840 837216 white 22.50
305.9 325.9 U 17.50±0.20 893522 907116 white 22.57
325.9 345.9 U 17.24±0.18 991065 1004196 white 22.49±0.35
345.9 365.9 U 17.26±0.18 1077542 1094616 white 22.41±0.31
365.9 385.9 U 17.80±0.24 1140343 1170336 white 22.50
385.9 405.9 U 17.64±0.22 1220661 1274376 white 22.36±0.29
405.9 425.9 U 17.82±0.24 5851 6050 white 19.25±0.09
425.9 445.9 U 17.84±0.25 21950 22857 white 20.25±0.09
445.9 465.9 U 17.87±0.25 1353459 1359284 white 21.70
465.9 485.9 U 17.79±0.24 1502211 1548336 white 21.98±0.24
485.9 505.9 U 17.81±0.24 1692292 1703935 white 22.07
505.9 525.9 U 17.65±0.22 2132978 2146056 white 22.58
542 561 B 17.38±0.14 2299521 2317956 white 22.41±0.31

5646 5845 B 19.54±0.19 63686 80942 white 21.07±0.24
21038 46521 B 21.14±0.35 107900 125591 white 21.40±0.28
62774 96486 B 21.33±0.29 206292 211137 white 21.52

107737 125412 B 21.00 291984 303556 white 21.48±0.23
205896 210944 B 20.78 401012 413029 white 21.84
291586 303137 B 21.29 491973 505356 white 22.21±0.24
400721 412707 B 21.22 74 224 white 14.90±0.02
3839 50615 UV M2 20.88±0.28

Extended Data Table 3: Liverpool Telescope, Nordic Optical Telescope, and UVOT observa-

tions. Magnitudes are SDSS AB-”like” for ugriz, Vega-”like” for all the other filters and are

not corrected for Galactic extinction. For UVOT data, magnitudes without uncertainties

are upper limits.
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NTT/EFOSC2 instrument in imaging mode 62. Observations started at 04:36:53 UT on 2019 Jan-

uary 16 with the g, r, i, z Gunn filters. Image reduction was carried out by following the standard

procedures63.

OASDG The 0.5 m remote telescope of the Osservatorio Astronomico “S. Di Giacomo” (OASDG),

located in Agerola (Italy) started observations in the opticalRc-band 0.54 hours after the burst. The

afterglow of GRB 190114C was clearly detected in all the images.

NOT The Nordic Optical Telescope (NOT) observed the optical afterglow of GRB 190114C with

the Alhambra Faint Object Spectrograph and Camera (AlFOSC) instrument. Imaging was obtained

in the griz filters with 300 s exposures, starting at Jan 14 21:20:56 UT, 24 minutes after the BAT

trigger. The normalised spectrum (Extended Data Fig. 5) reveals strong host interstellar absorption

lines due to Ca H & K and Na I D, which provided a redshift of z = 0.425.

REM The Rapid Eye Mount telescope (REM) performed optical and NIR observations with

the REM 60 cm robotic telescope equipped with the ROS2 optical imager and the REMIR NIR

camera64. Observations were performed starting about 3.8 hours after the burst in the r, and J

bands and lasted about one hour.

Swift/UVOT The Swift UltraViolet and Optical Telescope (UVOT65) began observations at T0+54

seconds in the UVOT v band. The first observation after settling started 74 s after the trigger for

150 s in the UVOTwhite band66. A 50 s exposure with the UV grism was taken thereafter, followed

by multiple exposures rotating through all seven broad and intermediate-band filters until switching

to only UVOT’s clear white filter on 2019-01-20. Standard photometric calibration and methods
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Extended Data Figure 5: Optical/NIR spectra of GRB 190114C. Panel a: The NOT/AlFOSC

spectrum obtained at a mid-time 1 hr post-burst. The continuum is afterglow dominated at this

time, and shows strong absorption features of Ca II and Na I (in addition to telluric absorption).

Panel b: the normalised GTC (+OSIRIS) spectrum on Jan 14, 23:32:03 UT, with the R1000B and

R2500I grisms. The emission lines of the underlying host galaxy are noticeable, besides the Ca

II absorption lines in the afterglow spectrum. Panel c: The visible light region of the VLT/X-

shooter spectrum obtained approximately 3.2 d post-burst, showing strong emission lines from the

star-forming host galaxy.
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were used for deriving the aperture photometry67, 68. The grism zeroth order the data were reduced

manually69 to derive the b-magnitude and error.

VLT The STARGATE collaboration used the Very Large Telescope (VLT) and observed GRB 190114C

using the X-shooter spectrograph. Detailed analysis will be presented in forthcoming papers. A

portion of the second spectrum is shown in Extended Data Fig. 5, illustrating the strong emission

lines characteristic of a strongly star-forming galaxy, whose light is largely dominating over the

afterglow at this epoch.

Magnitudes of the underlying galaxies The HST images show a spiral or tidally disrupted galaxy

whose bulge is coincident with the coordinates of GRB 190114C. A second galaxy is detected at an

angular distance of 1.3′′, towards the North East. The SED analysis was performed with LePhare

70, 71 using an iterative method that combined both the resolved photometry of the two galaxies

found in the HST and VLT/HAWK-I data and the blended photometry from GALEX and WISE,

where the spatial resolution was much lower. Further details will be given in a paper in preparation

(de Ugate Postigo et al.). The estimated photometry, for each object and their combination, is given

in Extended Data Table 4.

Optical Extinction The optical extinction toward the line of sight of a GRB is derived assuming

a power law as intrinsic spectral shape72. Once the Galactic extinction (EB−V = 0.0173) is taken

into account and the fairly bright host galaxy contribution is properly subtracted, a good fit to the

data is obtained with the LMC recipe and AV = 1.83 ± 0.15. The spectral index β (Fν ∝ νβo)

evolves from hard to soft across the temporal break in the optical light-curve at about 0.5 days,
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Filter Host Companion Combined

Sloan u 23.54 25.74 23.40

Sloan g 22.51 23.81 22.21

Sloan r 22.13 22.81 21.66

Sloan i 21.70 22.27 21.19

Sloan z 21.51 21.74 20.87

2MASS J 20.98 21.08 20.28

2MASS H 20.68 20.82 20.00

2MASS Ks 20.45 20.61 19.77

Extended Data Table 4: Observations of the host galaxy. For each filter, the estimated

magnitudes are given for the host galaxy of GRB 190114C, the companion and the com-

bination of the two objects.
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moving from βo,1 = −0.10± 0.12 to βo,2 = −0.48± 0.15.

Radio and Sub-mm afterglow observations The light curves from the different instruments are

shown in Extended Data Fig. 3.

ALMA The Atacama Large Millimetre/Submillimetre Array (ALMA) observations are reported

in Band 3 (central observed frequency of 97.500 GHz) and Band 6 (235.0487 GHz), between 2019

January 15 and 2019 January 19. Data were calibrated within CASA (Common Astronomy Soft-

ware Applications, version 5.4.074) using the pipeline calibration. Photometric measurements were

also performed within CASA. ALMA early observations at 97.5 GHz are taken from 15.

ATCA The Australia Telescope Compact Array (ATCA) observations were made with the ATCA

4 cm receivers (band centres 5.5 and 9 GHz), 15 mm receivers (band centres 17 and 19 GHz), and

7 mm receivers (band centres 43 and 45 GHz). ATCA data were obtained using the CABB con-

tinuum mode 75 and reduced with the software packages MIRIAD 76 and CASA 74 using standard

techniques. The quoted errors are 1σ, which include the RMS and Gaussian 1σ errors.

GMRT The upgraded Giant Metre-wave Radio Telescope 77 (UGMRT) observed on 17th January

2019 13.44 UT (2.8 days after the burst) in band 5 (1000-1450 MHz) with 2048 channels spread

over 400 MHz. GMRT detected a weak source with a flux density of 73±17 µJy at the GRB

position 78. The flux should be considered as an upper limit, as the contribution from the host79 has

not been subtracted.
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ATCA

Start Date and Time End Date and Time Frequency Flux
GHz mJy

1/16/2019 6:47:00 1/16/2019 10:53:00 5.5 1.92±0.06

9 1.78±0.06

18 2.62±0.26

1/18/2019 1:45:00 1/18/2019 11:18:00 5.5 1.13±0.04

9 1.65±0.05

18 2.52±0.27

44 1.52±0.15

1/20/2019 3:38 1/20/2019 10:25:00 5.5 1.78±0.06

9 2.26±0.07

18 2.30±0.23

JCMT SCUBA-2

UT Date Time since Time on Typical Typical 850µm RMS 450µm RMS
trigger source 225 GHz CSO elevation density density
(days) (hours) Opacity (degrees) (mJy/beam) (mJy/beam)

2019-01-15 0.338 1.03 0.026 39 1.7 9.2

2019-01-16 1.338 1.03 0.024 39 1.6 8.4

2019-01-18 3.318 0.95 0.031 37 1.7 11.4

Extended Data Table 5: Observations of GRB 190114C by ATCA and JCMT SCUBA-2. For

ATCA data, start and end date and times (UTC) of the observations, frequency, and flux

(1σ error) are reported. For JCMT SCUBA-2 data, the CSO 225 GHz opacity measures

the zenith atmospheric attenuation.
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MeerKAT The new MeerKAT radio observatory 80, 81 observed on 15 and 18 January 2019, with

DDT requested by the ThunderKAT Large Survey Project 82. Both epochs used 63 antennas and

were done at L-band spanning 856 MHz and centered at 1284 MHz. MeerKAT flux estimation

was done by finding and fitting the source with the software PyBDSF v.1.8.15 83. Adding the RMS

noise in quadrature to the flux uncertainty leads to final flux measurements of 125±14 µJy/beam

on 15 January and 97±16 µJy/beam on 18 January. The contribution from the host galaxy79 has

not been subtracted. Therefore, these measurements provide a maximum flux of the GRB.

JCMT SCUBA-2 Sub-millimeter Sub-millimeter observations were performed simultaneously

at 850µm and 450µm on three nights using the SCUBA-2 continuum camera84. GRB 190114C

was not detected on any of the individual nights. Combining all the SCUBA-2 continuum camera84

observations, the RMS background noise is 0.95 mJy/beam at 850µm and 5.4 mJy/beam at 450µm

at 1.67 days after the burst trigger.

Prompt emission model for the early time MAGIC emission In the standard picture the prompt

sub-MeV spectrum is explained as a synchrotron radiation from relativistic accelerated electrons

in the energy dissipation region. The associated inverse Compton component is sensitive to the

details of the dynamics: e.g. in the internal shock model if the peak energy is initially very high

and the IC component is suppressed due to Klein-Nishina (KN) effects, the peak of the IC com-

ponent may be delayed and become bright only at late times when scatterings occur in Thomson

regime. Simulations showed that magnetic fields required to produce the GeV/TeV component are

rather low85, εB ∼10−3. In this framework the contribution of the IC component to the observed

flux at early times (62-90 s, see Extended Data Table 1) does not exceed ∼ 20%. Alternatively, if
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Extended Data Figure 6: Radio to X-rays SED at different epochs. The synchrotron frequency

νm crosses the optical band, moving from higher to lower frequencies. The break between 108 and

1010 Hz is caused by the self-absorption synchrotron frequency νsa. Optical (X-ray) data have been

corrected for extinction (absorption).
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the prompt emission originates in reprocessed photospheric emission, the early TeV flux may arise

from IC scatterings of thermal photons by freshly heated electrons below the photosphere at low

optical depths. Another possibility for the generation of TeV photons might be the inverse Comp-

ton scattering of prompt MeV photons by electrons in the external forward shock region where

electrons are heated to an average Lorentz factor of order 104 at early times.

Afterglow model Synchrotron and SSC radiation from electrons accelerated at the forward shock

has been modelled within the external shock scenario 7, 8, 19, 24, 86. The results of the modeling are

overlaid to the data in Fig. 3, and Extended Data Figs. 6 and 7.

We consider two types of power law radial profiles n(R) = n0R
−s for the external environ-

ment: s = 0 (homogeneous medium) and s = 2 (wind-like medium, typical of an environment

shaped by the stellar wind of the progenitor). In the last case, we define n0 = 3 × 1035A? cm−1.

We assume that electrons swept up by the shock are accelerated into a power law distribution de-

scribed by spectral index p: dN/dγ ∝ γ−p, where γ is the electron Lorentz factor. We call νm the

characteristic synchrotron frequency of electrons with Lorentz factor γm, νc the cooling frequency,

and νsa the synchrotron self-absorption frequency.

The early time optical emission (up to ∼ 1000 s) and radio emission (up to ∼ 105 s) are

most likely dominated by reverse shock radiation 15. Detailed modeling of this component is not

discussed in this work, where we focus on forward shock radiation.

The XRT flux (Fig. 1, blue data points) decays as FX ∝ tαX with αX = −1.36 ± 0.02. If

νX > max(νm, νc), the X-ray light curve is predicted to decay as t(2−3p)/4, that implies p ∼ 2.5.
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Extended Data Figure 7: Modeling of the broadband light curves. Modeling of forward shock

emission is compared to observations at different frequencies (see legend). The model shown with

solid and dashed lines is optimised to describe the high-energy radiation (TeV, GeV and X-ray).

It has been obtained with the following parameters: s = 0, εe = 0.07, εB = 8 × 10−5, p = 2.6,

n0 = 0.5, and Ek = 8× 1053 erg. Solid lines show the total flux (synchrotron and SSC), while the

dashed line refers to the SSC contribution only. Dotted curves are derived to test a better modeling

of observations at lower frequencies, but fail to explain the behaviour of the TeV light curve. These

are obtained with the following model parameters: s = 2, εe = 0.6, εB = 10−4, p = 2.4, A? = 0.1,

and Ek = 4× 1053 erg.
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Another possibility is to assume νm < νX < νc, which implies p = 2.1 − 2.2 for s = 2 and

p ∼ 2.8 for s = 0. A broken power law fit provides a better fit (5.3 × 10−5 probability of chance

improvement), with a break occurring around 4 × 104 s and decay indices αX,1 ∼ −1.32 ± 0.03

and αX,2 ∼ −1.55± 0.04. This behaviour can be explained by the passage of νc in the XRT band

and assuming again p = 2.4− 2.5 for s = 2 and p ∼ 2.8 for s = 0.

The optical light curve starts displaying a shallow decay in time (with temporal index poorly

constrained, between -0.5 and -0.25) starting from ∼ 2 × 103 s, followed by a steepening around

8×104 s, when the temporal decay becomes similar to the decay in X-ray band, suggesting that after

this time the X-ray and optical band lie in the same part of the synchrotron spectrum. If the break

is interpreted as the synchrotron characteristic frequency νm crossing the optical band, after the

break the observed temporal decay requires a steep value of p ∼ 3 for s = 0 and a value between

p = 2.4 and p = 2.5 for s = 2. Independently of the density profile of the external medium and on

the cooling regime of the electrons, νm ∝ t−3/2, placing it the soft X-ray band at 102 s. The SED at

∼100 s is indeed characterised by a peak in between 5-30 keV (Fig. 3). Information on the location

of the self-absorption frequency are provided by observations at 1 GHz, showing that νsa∼ 1 GHz

at 105 s (Extended Data Fig. 6).

Summarizing, in a wind-like scenario X-ray and optical emission and their evolution in time

can be explained if p = 2.4− 2.5, the emission is initially in fast cooling regime and transitions to

a slow cooling regime around 3 × 103 s. The optical spectral index at late times is predicted to be

(1− p)/2 ∼ −0.72, in agreement with observations. νm crosses the optical band at t ∼ 8× 104 s,

explaining the steepening of the optical light curve and the flattening of the optical spectrum.
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The X-ray band initially lies above (or close to) νm, and the break frequency νc starts crossing

the X-ray band around 2 − 4 × 104 s, producing the steepening in the decay rate (the cooling

frequency increases with time for s = 2). In this case, before the temporal break, the decay rate

is related to the spectral index of the electron energy distribution by αX,1 = (2 − 3p)/4 ∼ −1.3,

for p ∼ 2.4− 2.5. Well after the break, this value of p predicts a decay rate αX,1 = (1− 3p)/4 =

−1.55−1.62. Overall, this interpretation is also consistent with the fact that the late time (t > 105 s)

X-ray and optical light curves display similar temporal decays (Fig.1), as they lie in the same part

of the synchrotron spectrum (νm < νopt < νX < νc). A similar picture can be invoked to explain

the emission also assuming a homogeneous density medium, but a steeper value of p is required.

In this case, however, no break is predicted in the X-ray light curve.

We now add to the picture the information brought by the TeV detection. The modeling is

built with reference to the MAGIC flux and spectral indices derived considering statistical errors

only (see Extended Data Table 1 and green data points in Extended Data Fig. 2). The light curve

decays in time as t−1.51 and the photon index is consistent within ∼ 1σ with Γph,TeV ∼ −2.5 for

the entire duration of the emission, although there is evidence for an evolution from harder (∼ −2)

to softer (∼ −2.8) values. In the first broadband SED (Fig. 3, 68-110 s), LAT observations provide

strong evidence for the presence of two separated spectral peaks.

Assuming Thomson scattering, the SSC peak is given by:

νSSC
peak ' 2 γ2

eν
syn
peak (1)
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while in KN regime, the SSC peak should be located at:

hνSSC
peak ' 2 γe Γme c

2/(1 + z) (2)

where γe = min(γc, γm). The synchrotron spectral peak is located at Esyn
peak ∼ 10 keV, while

the peak of the SSC component must be below Essc
peak . 100 GeV to explain the MAGIC photon

index. Both the KN and Thomson scattering regimes imply γe . 103. This small value faces

two problems: i) if the bulk Lorentz factor Γ is larger than 150 (that is a necessary condition to

avoid strong γ-γ opacity, see below), a small γm translates into a small efficiency of the electron

acceleration, with εe < 0.05, ii) the synchrotron peak energy can be located at Esyn
peak ∼ 10 keV

only for B Γ & 105 G. Large B and small εe would make difficult to explain the presence of a

strong SSC emission. These calculations show that γ-γ opacity likely plays a role in shaping and

softening the observed spectra of the SSC spectrum30, 87.

For a gamma-ray photon with energy Eγ , the τγγ opacity is:

τγγ(Eγ) = σγγ (R/Γ)nt(Eγ) , (3)

where nt = Lt/(4 π R
2 cΓEt) is the density of target photons in the comoving frame, Lt is the

luminosity andEt = (me c
2)2 Γ2/Eγ/(1+z)2 is the energy of target photons in the observer frame.

Target photons for photons with energy Eγ = 0.2 − 1 TeV and for Γ ∼ 120 − 150 have energies

in the range 4 − 30 keV. When γ − γ absorption is relevant, the emission from pairs can give a

non-negligible contribution to the radiative output.

To properly model all the physical processes that are shaping the broadband radiation, we

use a numerical code that solves the evolution of the electron distributions and derives the radiative
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output taking into account the following processes: synchrotron and SSC losses, adiabatic losses,

γ − γ absorption, emission from pairs, and synchrotron self-absorption88–91. We find that for

the parameters assumed in the proposed modeling (see below), the contribution from pairs to the

emission is negligible.

The MAGIC photon index (Extended Data Table 1) and its evolution with time constrain the

SSC peak energy to be at . 1 TeV at the beginning of observations (Extended Data Table 1). In

general the internal opacity decreases with time and KN effects become less relevant. A possible

softening of the spectrum with time, as the one suggested by the observations, requires that the

spectral peak decreases with time and moves below the MAGIC energy range. In the slow cooling

regime, the SSC peak evolves to higher frequencies for a wind-like medium and decreases very

slowly (νSSC
peak ∝ t−1/4) for a constant-density medium (both in KN and Thomson regimes). In fast

cooling regime the evolution is faster (νSSC
peak ∝ t−1/2 − t−9/4 depending on medium and regime).

We model the multi-band observations considering both s = 0 and s = 2. The results are

shown in Fig. 3, Extended Data Figs. 6 and 7 where model curves are overlaid to observations.

The model curves shown in these figures have been derived using the following parameters. The

model in Fig. 3 and in 7 (solid and dashed curves) we have used s = 0, εe = 0.07, εB = 8× 10−5,

p = 2.6, n0 = 0.5, and Ek = 8 × 1053 erg. For the dotted curves in Extended Data Fig. 7 and the

SEDs in Extended Data Figs. 6 we have used s = 2, εe = 0.6, εB = 10−4, p = 2.4, A? = 0.1, and

Ek = 4× 1053 erg.

Using the constraints on the afterglow onset time (taft
peak ∼ 5− 10 s from the smooth compo-
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nent detected during the prompt emission) the initial bulk Lorentz factor is constrained to assume

values Γ0 ∼ 300 and Γ0 ∼ 700 for s = 2 and s = 0, respectively.

Consistently with the qualitative description above, we find that late time optical observa-

tions can indeed be explained with νm crossing the band (see the SED modeling in Extended Data

Fig. 6 and dotted curves in Extended Data Fig. 7). However a large νm is required in this case

and consequently also the peak of the SSC component would be large and lie above the MAGIC

energy range. The resulting MAGIC light curve (green dotted curve in Extended Data Fig. 7) does

not agree with observations. Relaxing the requirement on νm, the TeV spectra (Fig. 3) and light

curve (green solid curve in Extended Data Fig. 7) can be explained. As noted before, a wind-like

medium can explain the steepening of the X-ray light curve at 8 × 104 s, while in a homogeneous

medium no steepening is expected (blue dotted and solid lines in Extended Data Fig. 7). We find

that the GeV flux detected by LAT at late time (t ∼ 104 s) is dominated by the SSC component

(dashed line in Extended Data Fig. 7).
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