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ABSTRACT

Solar activity affects the whole heliosphere and near-Earth space environment. It has been reported in the literature that the mech-
anism responsible for the solar activity modulation behaves like a low-dimensional chaotic system. Studying these kind of phys-
ical systems and, in particular, their temporal evolution requires non-linear analysis methods. To this regard, in this work we apply
the recurrence quantification analysis (RQA) to the study of two of the most commonly used solar cycle indicators; i.e. the series
of the sunspot number (SSN), and the radio flux 10.7 cm, with the aim of identifying possible dynamical transitions in the system;
a task which is particularly suited to the RQA. The outcome of this analysis reveals the presence of large fluctuations of two RQA
measures: namely the determinism and the laminarity. In addition, large differences are also seen between the evolution of the
RQA measures of the SSN and the radio flux. That suggests the presence of transitions in the dynamics underlying the solar activ-
ity. Besides it also shows and quantifies the different nature of these two solar indices. Furthermore, in order to check whether our
results are affected by dataartefacts, we have also applied the RQA to both the recently recalibrated SSN series and the previous
one, unveiling the main differences between the two data sets. The results are discussed in light of the recent literature on the

subject.
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1. Introduction

The impact of solar magnetism and its activity cycle on the
heliosphere and near-Earth space is nowadays well recognized.
Magnetic fields generated by dynamo processes in the interior
of the Sun (Charbonneau 2014; Karak et al. 2014), and
emerging to the solar atmosphere, modulate the flux of
particles, radiation and magnetic field in the heliosphere.
In our current technology-dependent society, the impact of
heliospheric changes driven by the solar activity is becoming
increasingly important (Hathaway & Wilson 2004; Baker &
Kanekal 2008; Jones et al. 2012), as well as the need for
accurate forecasting of the conditions in the heliosphere
(Hapgood 2012; Schrijver 2015).

Solar activity clearly shows a mean period of about
11 years, and variations in amplitude occurring on timescales
longer than the main period.

Non-linear analysis methods applied to different solar
indices have shown that the solar activity cycle behaves as a
low-dimensional chaotic and complex system (Consolini
et al. 2009; Hanslmeier & Brajsa 2010; Hanslmeier et al.
2013; Zhou et al. 2014). Hence, linear data analysis techniques,
such as Fast Fourier Transform (FFT) or wavelet, applied to
solar indices time series, can fail to give a complete description
of the process represented by the investigated data. This is
because in such techniques, non-linearities are not preserved,
meaning that a fundamental property of the system (i.e. its
non-linear behavior) cannot be studied at all. For a complete
description and analysis of the shortcomings of applying linear
techniques to non-linear systems, we refer the reader to Huang
et al. (1998).

To this regard, the analysis of the solar cycle indices in the
phase space allowed a significant step forward in the under-
standing of the solar activity and its underlying dynamics
(see for instance Consolini et al. 2009; Hanslmeier et al.
2013). Although, studying dynamical processes and gathering
physical information from their phase space embedding is gen-
erally not straightforward, robust non-linear techniques are
available nowadays. In particular, over the last 30 years, a
method of non-linear data analysis has been developed to
quantify the information contained in the phase space repre-
sentation of a dynamical system. This method, which is called
Recurrence Quantification Analysis (RQA; Marwan 2003), is
based on the analysis of the recurrence plots (RPs; Eckmann
et al. 1987) derived from the phase portraits of data series.
Recurrence plots are diagrams representing in a 2D plot the
distance between couples of states in the phase space, thus
representing the recurrences of a system, a general property
of dynamical systems already noticed by Poincaré (1890).

Many authors have already studied RPs of different solar
indices (e.g. Sparavigna 2008; Deng 2015; Ghosh & Chatterjee
2015) or used them to investigate periodicities and hemispheric
phase relationships of the indices themselves (see for instance
Zolotova & Ponyavin 2007; Li 2008; Zolotova et al. 2010;
Deng et al. 2013).

RQA was also successfully employed in the analysis of
non-linear systems in many different research fields (see e.g.
Marwan et al. 2007, for a complete review of the topic) and,
in particular, to uncover their dynamical transitions. However,
as far as the authors know, in solar physics and helio-
physics, this technique was only applied to study the temporal
evolution of the deterministic states of the solar activity
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(Pastorek & Voros 2002). In particular, the latter authors have
applied the RQA to the sunspot number (SSN), with the aim of
studying the intermittent nature of the solar activity cycle.
The most interesting finding of their study was that, during
the increasing phases of solar activity cycles, the determinism
of the system is reduced, and this correlates with the high-
frequency fluctuations of the SSN data. This is evidence for
an increase of the intermittency of the analysed system, a
feature which is easily uncovered by the RQA.

In this study, we extend the application of the RQA
technique to solar data, by also investigating the laminarity
of the solar cycle as represented by the most commonly used
time series of solar indices, namely the SSN and the radio flux
at 10.7 cm (hereafter also F10.7). Our primary goal is the
study of the RQA measures in time and highlight possible
differences between the two solar indicators. In addition, the
results of this analysis may also advance our understanding
of the underlying dynamics of the solar cycle and provide
useful information to be incorporated in numerical models
and simulations. Our investigation can also be regarded as a
timely examination of solar activity data available nowadays.
Indeed, very recently, the complete sequence of the SSN has
been revised to account for several calibration issues that were
identified in recent years (Clette et al. 2014b; Clette & Lefévre
2015). In this work we applied the RQA on both the previous
and the new SSN data series, hereafter also SSN1 and SSN2,
respectively. While this is done in order to test the sensitivity
of our results to the impact of data inaccuracies and artefacts,
this analysis is of more general interest, serving as a non-linear
comparison of the two SSN solar series.

2. Data set

Several indices have been introduced in order to represent the
many different observables modulated by the solar cycle
(Hathaway 2010; Ermolli et al. 2014).

The data analysed in our study consist of two time series,
which are by far the most widely employed in the literature, the
SSN (see e.g. Clette et al. 2014a) and the solar radio emission
at 10.7 cm (Tapping 2013, and references therein).

The SSN is defined accordingly to the formula introduced
by Wolf (1851) as SSN = &(10G + N) where G is the number
of sunspot groups, N is the number of individual sunspots in all
groups visible on the solar disk from visual inspection of the
solar photosphere in white-light integrated radiation, and
k denotes a correction factor that compensates for differences
in observational techniques and instruments used by the obser-
vers in time.

SSN constitutes one of the longest continuous measure-
ment programmes in the history of science. It is available since
1749 and although the series suffers discontinuities and
uncertainties, it continues to be used as the most common
index to describe and study solar cycle properties. As already
mentioned, very recently, the SSN has been scrutinized and the
series has been significantly revised (Cliver et al. 2013; Clette
et al. 2014a; Lefévre & Clette 2014; Clette & Lefévre 2015;
Cliver et al. 2015) to account for discontinuities due to
instrumental and observational practices. This led to the
recent release (1st July 2015) of a new SSN data series.
The revised sequence is available at SILSO.! For detailed
information on this series we refer the reader to the review

! SILSO, http://www.sidc.be/silso/datafiles
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of Clette et al. (2014b). In this work we use this new data
series, as well as the previous one for comparison, to test our
results against the effects of the data revision. We restrict our
attention to the analysis to the longest uninterrupted SSN
record spanning the last 167 years from 1849 to 2015 (SILSO
World Data Center 1949-2015). This is done in order to avoid
gaps that are not suited to the RQA. Indeed, the presence of
gaps would inject disruptions in the RPs that might be difficult
to handle. In this regard, the use of gap-filling numerical
techniques (see for instance Dudok de Wit 2011) may allow
the extension of the RQA to earlier epochs of the sunspot
record, where the analysis of dynamical transitions may offer
interesting insights. However, in order to apply the RQA on
such data series, a detailed analysis of the effects of gap-filling
methods on the RPs and RQA measures themselves is needed.

It is important to remark that SSN is not a physical
quantity, for this reason we complemented this data with
uninterrupted weekly-averaged measurements of the solar
radio flux from 1958 to 2015 (Benz 2009; Tapping & Valdés
2011). These measurements result from the synoptic observa-
tions of the solar radio emission made at the various observa-
tories since 1945 (Sullivan 2005) at different frequencies,
ranging from 0.1 to 15 GHz.

Among the various radio measurements, we analysed those
pertaining to the flux in the wavelength range of 2.8 GHz or,
equivalently, 10.7 cm, near the peak of the observed solar radio
emission, made by the National Research Council (NRC) of
Canada from 1947 to 1991 in Ottawa and thereafter in
Penticton. These measurements constitute the longest, most
stable and well-calibrated, almost uninterrupted record of
direct physical data of the solar activity available to date
(Svalgaard & Hudson 2010). The solar radio flux is measured
using the Solar Flux Unit (SFU; 107> Wm ™ Hz ). A pre-
liminary analysis of the effect of the averaging temporal
window (not shown here) demonstrated that, as far as localiza-
tion of the dynamical transitions is concerned, the choice of a
weekly average of the data represented a good tradeoff
between the signal-to-noise ratio and the number of samples
used. Although the F10.7 record is available since 1947, we
noted that before 1958 a number of null samples were present.
For this reason, and in order to be safe, we focused on the data
starting from 1958 where the number of unavailable measure-
ments was much more limited.

Figure 1 shows the weekly SSN2 and F10.7 values
analysed in our study. Specifically the weekly averages were
obtained with a seven-day average of the daily values.
The SSN (both SSN1 and SSN2) and F10.7 data analysed
derive from the archives at the Sunspot Index and Long-term
Solar Observation Centre at the Royal Observatory of Belgium
and Canadian Space Weather Forecast Centre,” respectively.
The series analysed in this study were retrieved in September
2015.

3. Methods

The starting point of our analysis is the evaluation and study of
the RPs from the phase reconstruction of the SSN2 and F10.7
series. Introduced by Eckmann et al. (1987), RPs are diagrams
that visualize the trajectory of the system, represented by the
analysed data series, in a 2D domain (Iwanski & Bradley
1998). In RPs, each point (i, j) of the diagram is shaded

2 CSWEC, http://www.spaceweather.ca/solarflux/sx-5-eng.php
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Fig. 1. Time series of the weekly averaged values of SSN2 and
F10.7 analysed in our study.

according to the distance between two points X; and X; on the
trajectory in the phase space. The closeness of the states of the
system at different times (recurrences) determines specific
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features and cluster of points in the plot, which describe the
nature of the dynamical system. Indeed, recurrences are a
characterizing property of any dynamical system (Kac 1947).

Figure 2 shows the thresholded RPs derived from the SSN2
(Fig. 2a) and F10.7 (Fig. 2b). For the sake of simplicity, the
embedding parameter is m = 1 (no embedding), while the time
delay parameter used to produce the phase portrait, from which
the RP are obtained, is 7 = 1. Indeed, Iwanski & Bradley
(1998) have shown that, qualitatively, features of RPs gener-
ated from high embedding dimensions are also seen when
using small embedding dimensions. This point will be further
discussed in the next sections. The threshold used to construct
the RPs is 15. In Figure 3 we show for comparison the RP of
the unfiltered SSN1. The convention adopted throughout the
manuscript is such that a recurrence state is marked by a black
dot in the RPs. It is worth mentioning that transition markers in
the RQA measures are rather insensitive to the exact choice of
the embedding parameters, as demonstrated by Iwanski &
Bradley (1998). The main features of plots of Figure 2 are
discussed in Section 4.

In order to extract quantitative information from RPs,
we applied the RQA technique (see e.g. Zbilut & Webber
1992; Trulla et al. 1996; Thiel et al. 2004; Webber & Zbilut,
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Fig. 2. (a) RP of the weekly unfiltered SSN2. (b) RP of the weekly unfiltered F10.7. The red box in the RP of the SSN identifies the period
associated with the RP of the F10.7. (c) RP of the low-frequency part of SSN2. (d) RP of the high-frequency part of SSN2.
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Fig. 3. RP of of the weekly unfiltered SSN1 (no embedding).

2005). This method is based on the analysis of the distributions
of recurrence points in the vertical lines and the diagonal lines
of RPs (for a review see e.g. Marwan 2003; Marwan et al.
2007). Indeed, diagonal lines in RPs identify trajectories that
regularly visit the same region of the phase space at different
times. This is a characteristic feature of deterministic systems.
For this reason, the length of the diagonal lines in RPs repre-
sents a measure of determinism (DET). In contrast to this,
vertical lines in RPs mark states which are trapped for some
time. Thus the length of vertical lines in RPs can be regarded
as a measure of the laminarity of the system (LAM).

The RQA also allows the study of other complexity
indicators of dynamical systems, although these are not rele-
vant to our aim (for a review see e.g. Zbilut & Webber
2006; Marwan et al. 2007). In this work, we restricted our
attention to DET and LAM. These two measures have been
successfully used several times to identify dynamical transi-
tions (e.g. Marwan et al. 2013).

In order to estimate DET and LAM from RPs, in this work
we used the well-tested command-line recurrence plots code,
which is part of the TOCSY (Toolboxes for Complex Systems)
toolbox” and, more in particular, its RQA utility and the time-
delay embedding of the time series. For more information
about the algorithms and methods employed in the toolbox
(time-delay embedding, generation of RPs, and RQA applica-
tion) we refer the reader to Marwan et al. (2007). In this code
the embedding is performed through a time-delay technique.
Given a time-discrete measurement of an observable
u; = u(iAt), where i = 1,...N and At is the sampling time,
the phase space can be reconstructed as follows:

m

X; = Z Uit (j+1)c€)5 (1)

=1

where m is the embedding dimension, 7 is the time delay, and
e; are unit vectors spanning an orthogonal coordinate system.

We applied the command-line recurrence plots code to the
aforementioned solar indices with a moving window of
100 weeks and a step of 1 week. This was done to study the
evolution of the RQA measures in time.

3 The command-line recurrence plot code is freely available at the
following link: http://tocsy.pik-potsdam.de/
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In order to quantify the effects of the new recalibration of
SSN2, we also made use of Joint Recurrence Plots (JRPs;
Marwan & Kurths 2004) that are suited for studying the
similarities between two data series in the phase space, and
specifically identifying times at which they share the same
recurrences. A JRP is a plot showing all the times at which
a recurrence in one dynamical system occurs simultaneously
with a recurrence in another dynamical system. Indeed, a
JRP is the Hadamard product of two RPs representing two
dynamical systems.

In Figures 2a and 2b it is clear that RPs of the time series
of such two indices are almost completely dominated by the
low-frequency modulation of the solar activity cycle
(11 years). In order not to make the RQA measures biased
by this modulation, both the SSN2 and F10.7 were high-pass
filtered. This was done, at first, by FFT filtering the data with
a filter whose cut-off was set at 2 x 10> days ' (see Fig. 4).
Figures 2c and 2d we show the RP of the low-frequency and
high-frequency parts, respectively. However, we note that, in
contrast to the RQA, the FFT technique is a linear method, thus
it might not represent a suitable preconditioning technique to
be used on the data. For this reason, and in order to indepen-
dently check the reliability of the results, we also used the
empirical mode decomposition (EMD; Huang et al. 1998) to
filter out the low-frequency dynamics. This was done only
on the SSN2 to check the consistency of the results obtained
from the FFT filtering. Indeed, the EMD technique preserves
the non-linearities of the signal, thus represents a more safe
option for the pre-processing of the data examined in this
work. The EMD analysis was already applied to decompose
the solar cycle (to the SSN) in a series of intrinsic mode func-
tions (IMFs; Gao 2016). It consists of an iterative process that,
starting from the envelopes of maxima and minima estimates
each IMF as the mean value of these two envelopes. The signal
is therefore decomposed in a sequence of IMFs which are
locally defined from the signal, without making use of any pre-
defined decomposition basis or assumption, and that offer a
data-driven decomposition of the signal. In Figure 5 we show
the EMD decomposition of the SSN2 data series. By co-adding
the low-frequency IMFs and the high-frequency IMFs, one can
decouple the 1l-year long-term periodicity from the rest.
In Figure 6 we show the result of that, where the high-
frequency part of the signal (the one used in this work) is
obtained by co-adding the first seven IMFs (see blue box in
Fig. 5). The high-frequency part of the data sequences is then
studied with the RQA.

As pointed out by many authors (see for instance Schinkel
et al. 2008), the choice of the optimal embedding may have
some impact on the exact value of RQA measures, but only
a negligible effect on the position of the markers of dynamical
transitions (Iwanski & Bradley 1998). Indeed, (Iwanski &
Bradley 1998), by analysing the RPs of well-understood
physical systems, have shown a good structural stability of
RPs for different values of the embedding parameter.
This means that, qualitatively, features in RPs are rather inde-
pendent of the exact choice of the embedding. This is the case
at least for those recurrence points that do not vanish in the
RPs due to the change of the embedding itself. This property
of RQA is recognized by the same authors as “counterintu-
itive”. In fact, since the embedding process is employed to
unfold the dynamics, one would expect a dramatic change of
the RP for different embeddings, but this is not the case.
The same authors have also shown that, while the position of
the dynamical markers in the RPs is insensitive to the choice
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Fig. 4. Power spectrum of SSN2 and high-pass filter (a). Reconstructed low-frequency (b) and high-frequency (c) parts of SSN2.

of the embedding, a gradual fading of the main features of RPs
is observed as the embedding dimension increases.

Formally, the optimal minimum embedding dimension is
linked to the dimension of the chaotic system d, so that
m > 2d + 1 (see for instance Ma & Han 2006, and references
therein). This implies that the dynamical system should be
perfectly known before performing a phase space reconstruc-
tion. But this obviously makes a contradiction. In this regard,
several methods were proposed to estimate the optimal embed-
ding dimension m (see e.g. Fredkin & Rice 1995; Rhodes &
Morari 1997). In particular, Sello (2001), using the false neigh-
bor method (see for instance Kennel et al. 1992; Abarbanel
et al. 1993), found that the minimum embedding dimension
for the sunspot number is m = 5. This result indicates that
the sunspot sequence is consistent to a low-dimensional
system, in agreement with other independent works on the
subject (e.g. Zhang 1996).

4. Results

4.1. Analysis of the RQA measures DET and LAM

Figure 2 shows the RPs derived from the SSN2 and F10.7 with
no embedding (m =1 and 7 =1). These RPs display the
density of the recurrence states of the dynamical system
represented by the two analysed series as a function of time.
The RPs show a varying density of recurrences and, although
most of the dynamics appears to be deterministic (see the large
presence of diagonally aligned features), sudden interruptions
can also be seen, as for example between 1955 and 1960.
It is worth noting here that this period was identified as an
unusual solar cycle (Wilson 1990; Temmer et al. 2006).
The RP of the SSN2 also shows an interval affected by an

AS5-p5

increase in the density of recurrence points, which is located
roughly between 1875 and 1940. While over long timescales,
an almost constant 11-year periodicity is evident as a repeating
pattern of diagonal states, some modulation of this period
can be found, for example, around 1900 as a small distortion
of the diagonal features. All these elements are even more
evident in the RP obtained from the low-frequency part of
SSN2 (Fig. 2c¢) and reflect the non-stationary nature of the
process represented by the analysed series. Another interesting
aspect of the RPs is the overdensity of recurrence points
between ~2007 and 2010.

Figure 7 shows that the evolution of DET (Figs. 7a and 7b)
and LAM (Figs. 7c and 7d) obtained by applying the RQA on
the high-pass filtered SSN2 time series, for both the FFT
(Figs. 7a and 7¢) and EMD (Figs. 7b and 7d) filtering. The
embedding parameters are m = 5 and t = 1. In the same plots
we also display a not-to-scale version of the SSN2 (orange
curve) to help the reader in the comparison of the evolution
of LAM and DET with the solar activity cycle. Following
Marwan et al. (2013), we used an adaptive threshold in the
sliding window employed to estimate the temporal variation
of the RQA measures. This is done to maintain an optimal
constant recurrence rate of the order of a few percent (10%
in our case), and to keep the statistical sample constant within
the sliding window. The adaptive threshold guarantees the
stability of the recurrences over the temporal window consid-
ered. This is needed in order for the RQA measures not to
reflect the intrinsic variations of the density of the recurrent
points. Indeed, in the presence of a modulating recurrence rate,
this modulation can enter the other RQA measures, prevent-
ing the analysis of the true fluctuations of DET and LAM.
Since the RQA measures are statistical values estimated from
the distribution of points in the moving temporal window, it is
of paramount importance to dynamically adapt the threshold in
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Fig. 5. EMD decomposition of the SSN2 data sequence. The first seven IMFs (blue box) are used as a representation of the high-frequency part

of the signal.

such a way that the density of recurrent points in different
temporal windows in the RP remains constant. In our case,
the standard deviation of the recurrence rate is reduced at
0.7% by the adaptive threshold.

The 10% is chosen in such a way that the RQA measures
do not show saturation or clipping. However, Marwan (2011)
has shown that the selection of the threshold is not critical.

As already mentioned, the size of the sliding window used
in the RQA (~2 years) is chosen to accurately sample the
underlying periodicity of the solar cycle, while maintaining
the computational load at a reasonable level.

AS5-p6

The results obtained by using the two filtering techniques
(i.e. FFT and EMD) are rather similar, and both show large
fluctuations of DET and LAM. Some of these fluctuations
appear in correspondence of the minima of SSN2 (see e.g.
the peak within 1970-1980), however this is not always the
case. More important, there exist specific times where LAM
and DET show a different behaviour. This is the case, for
instance, around ~1900 and during the last minimum
(2005-2008). In these two periods, in fact, LAM appears more
pronounced than DET, suggesting a possible increase of the
laminarity of the system.
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Fig. 6. EMD reconstruction of the low- (a) and high-frequency
(b) parts of the SSN2. The high-frequency part of the signal
is computed by co-adding the first seven IMFs, while the
low-frequency part, not used in the RQA, by adding the remaining
ones.

In the same plots, we also show with horizontal continuous
lines the 95% confidence levels as obtained from a significance
test as in Marwan et al. (2013). More in depth, the significance
test is based upon a randomization (random permutation) of
the SSN2 to get rid of any temporal correlation in the signal.
After the randomization of the time series, the RQA 1is applied
in order to estimate the 95% confidence level of each RQA
measure. Since the resulting RQA measures obtained from
the randomized signal show a non-gaussian distribution, we
used the cumulative distribution function (CDF) to select
the threshold corresponding to the 95% confidence level.
This analysis reveals that most of the peaks of DET and
LAM are statistically significant, as they exceed the upper
confidence level. In contrast, none of the “negative fluctua-
tions” (minima) exceed the lower confidence level and can
be considered statistically not significant.

In Figure 8 we compared the DET and LAM of the
SSN2, with those of the F10.7 data sequence, in the time
window where both measures are available (since 1958).
It is interesting to note here that, while the filtering technique
has a little effect on the RQA measures, the DET and LAM
of the F10.7 present large differences with respect to the
SSN2 sequence. This can be noted, for example, during the
last minima where the F10.7 shows a sharper peak of both
LAM and DET with respect to the SSN2. In addition, it is
interesting to note that most of the pronounced peaks of
DET and LAM obtained from F10.7 are located in proximity
of the solar minima, although some is not (see e.g. the peak
around 1980).
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4.2. Analysis of the fluctuations of the RQA measures

In order to investigate the oscillations seen in the RQA mea-
sures, here we study the power spectra of DET and LAM
obtained from SSN2 (both filtering techniques) and F10.7
(see Fig. 9). Interestingly, the power spectra highlight differ-
ences between SSN2 and F10.7, and between DET and
LAM. Indeed, while the power spectrum of DET parameter
from the SSN2 shows three different peaks around
1 — 3 x 10 * days ' (11-year period), 8 — 10 x 10~* days '
(three-year period), and 16 — 3 x 10~* days™' (two-year
period), the last two peaks are absent in the power spectra of
both LAM and DET from F10.7. In addition, restricting our
attention to the power spectrum of the RQA measures from
the SSN2, we note that the last peak aforementioned is much
less pronounced in the spectrum of DET with respect to that
of LAM. This suggest a different dynamical behaviour of the
RQA measures and, more important, of the investigated solar
indices. These differences will be further investigated in a
future work.

4.3. Comparison between the new SSN data series and the
previous one

Most of the works in the literature on large-scale solar
magnetism derive from the analysis, with different techniques,
of the previous SSN1 series. In order to point out differences in
the SSN1 and SSN2 that may be ascribed to the different
calibration, we applied the RQA on both SSN1 and SSN2
series. Since we are interested in comparing the two data series,
in this analysis we make use of unfiltered data. This is done in
order to keep the recurrences of the system unchanged and
allow the comparison of the two time series. In Figure 10a,
we show the evolution of DET obtained from the RQA of both
SSN1 and SSN2 with no embedding (i.e. embedding parame-
ters m = 1 and 7 = 1) and constant threshold ¢ = 5. The deter-
minism of the SSN2 appears larger than that of SSN1. This is
the case in correspondence of both minima and maxima of the
solar cycle. In Figure 10b we also show the relative variation of
DET of SSN2 with respect to DET of SSN1. The increase of
DET is larger at the turning points of the solar cycle. In other
words, the SSN2 data series shows a level of determinism
significantly larger than the determinism of the previous
SSNI series; this is found at all times, but especially during
the maxima of the solar cycle. In addition, this plot also shows
a period of decreased DET variability between ~1947 and
1980 (see Fig. 10b). We note that this period corresponds with
the well-known “Waldmeier” jump, an issue that was
previously identified through a comparison with the Sunspot
Group Number, and finally corrected in the SSN2 release
(Clette & Lefevre 2015).

However, we note that in general the recalibration of the
SSN series has the only effect of changing the level of
determinism of the system represented by the data, keeping
the transition markers unchanged.

In order to better visualize the differences between the two
SSN series, we made use of a JRP.

In Figure 11 we show the JRP of SSN2 and SSN1 without
embedding, as in Figure 2. A first look at the JRP (Fig. 11) and
the RPs in Figure 2 does reveal a remarkable similarity
between SSN1 and SSN2.

In the following we compare the two time series SSN1 and
SSN2 with the F10.7 time series by using JRPs. Indeed, the
comparison of the JRP obtained from SSN1 and F10.7, and
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the JRP obtained from SSN2 with F10.7, can reveal the
presence of discrepancies between the two SSN time series
much better than what the single JRP between SSN1 and
SSN2 can.

4.4. Comparison between the two SSN data series, and F10.7

With the aim of singling intrinsic variations of the system out
of data artefacts, in Figure 12 we also show the JRPs obtained
from F10.7 and the previous SSN1 data series (Fig. 12a), and
from the F10.7 and the new SSN2 (Fig. 12b). It is important to
note that the two JRPs show some difference at specific
epochs. More in particular, in the figure we highlight two
specific regions (blue and red boxes, respectively) where the
JRP of SSN1 and F10.7 shows a smaller number of simultane-
ous recurrences between the two time series. In comparison,
the JRP of SSN2 and F10.7 (Fig. 12b) does show a more
homogeneous distribution of simultaneous recurrence points
in the same regions selected. This quantifies the effect of the
recent recalibration of the SSN sequence as seen into the phase
space.
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5. Discussions

The results derived from our RQA of the two solar cycle indices
show that the determinism of the system represented by these
two data series undergoes rapid fluctuations in time. This beha-
viour is consistent with previous findings by Pastorek & Voros
(2002), who explained this fact in terms of variation of the inter-
mittency in the ascending and descending phases of the solar
activity. In our study we have also extended this analysis to
the laminarity of the system. After filtering out the low-
frequency solar cycle modulation (11-year period), both LAM
and DET show a modulation. While there exists some degree
of correlation between LAM and DET, we have identified peri-
ods at which these two RQA measures present a different beha-
viour. Interestingly, one of them corresponds with last solar
minimum, which has been longer than the previous ones. More
in detail, during this times, the increase of LAM (increase level
of disorder) is not accompanied by a similar increase of DET,
suggesting an overall increase of the laminarity of the system.

Besides, a randomization test of the data sequences has
shown that most of the peaks of DET and LAM, including
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those appearing during the last minimum, are statistically
significant, with a confidence level exceeding 95%. These
large fluctuations may suggest the presence of dynamical
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Fig. 12. JRPs of the SSN1 and F10.7 (a), and SSN2 and F10.7 (b).
The boxes highlight different epochs in the JRPs where a clear
difference between the two versions of SSN are observed (see text
for more details).

transitions Marwan et al. (2013). However, Schinkel et al.
(2008) noted that determinism does not relate exactly to
the mathematical notion of the term, but rather underlines
that deterministic processes have usually a larger number of
diagonal lines in RPs, if compared to purely stochastic
processes. This may also explain the periods at which the
increase of DET and LAM is synchronous. In this regard,
Marwan et al. (2013) have also argued that, in some physical
systems, the increase of the measure of DET together with
that of LAM can be understood as a slowing down of the
dynamics, typical of tipping points. These two facts together
solve the apparent contradiction of the simultaneous increase
of LAM and DET.

It is worth stressing that these results are obtained indepen-
dently of the filtering technique (either FFT or EMD) adopted
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to remove the low-frequency modulation of the solar cycle
indices.

However, the results of the RQA include much more
information than mentioned. Indeed, one of the most clear
indications emerging from them is represented by the different
dynamical behaviour of the two solar cycle indices investigated
(SSN and F10.7). This is emerging not only from the temporal
behaviour of the RQA measures of F10.7, whose peaks appear
sharper than those obtained from SSN2, but also from the
power spectra of DET and LAM fluctuations. In fact, while
the power spectrum of the RQA measures of SSN2 presents
power up to frequency of 1.7 — 2 x 10~ days ™! (or equiva-
lently periods in the range 1-2 years), the power spectrum of
both LAM and DET of F10.7 appear limited to frequencies
smaller than ~5 x 10~ days~'. These differences between
the two indicators are not surprising. As already mentioned
before, among the two, only F10.7 represents a physical
quantity, SSN being the weighted count of the sunspots appear-
ing on the solar disk over time. However, it is worth noting that
the RQA provides a quantification of these differences, which
in our opinion is helpful for uncovering the intrinsic meaning
of the SSN.

In addition to this, in this work we also tested our results
against the impact of the new SSN calibration. Although the
above dynamical transitions occurring at the minima of the
solar cycle are not sensitive to calibration issues, the JRP also
reveals a significant number of discrepancies between the two
data series which are, according to us, value-added results with
respect to the main scope of this work, providing information
that can be of more general interest to the community. Indeed,
since our analysis preserves the non-linearities of the process,
this comparison provides useful insight into the relationships
between the SSN1 and SSN2, which are the most used solar
index so far, and the one that will likely be the most commonly
used in the future, respectively.

In more detail, although on average the new data series
appears more deterministic, there exist specific times at which
the SSN1 is characterized by less simultaneous recurrences
with the F10.7 than the SSN2. This witness the improvements
made by the SSN2 over the former SSN1 Clette & Leféevre
(2015), although the residual differences between the F10.7
and SSN2 may offer good reasons for further working on the
revision of available series. However, it is useful to remark
once again that our analysis method is appropriate for the
analysis of the properties of non-linear systems that might be
particularly difficult to unveil with other techniques. For this
reason the identification of differences between the SSNI,
SSN2, and F10.7 in terms of recurrence states may provide
useful complementary information with respect to other
techniques. We also note that this topic deserves more attention
and a more complete comparative analysis of other solar
indices, which is beyond the scope here. This will be addressed
in a future work.

6. Summary and conclusions

In this work we have shown the results of the application of the
RQA on two indices of the solar cycle, namely the SSN and
the F10.7. The RQA is nowadays a widely used technique to
investigate non-linear dynamical systems and their transitions,
yet not fully exploited to investigate the solar activity cycle.
The RPs, as well as the RQA measures demonstrate the non-
stationarity of the system governing the activity cycle itself,

with a strong modulation of the RQA measures, and fluctua-
tions that may be linked to dynamical phase transition.
Besides, the RQA unveils significant differences in the dynam-
ics of SSN and F10.7, which reflects their different physical
nature.

Furthermore, our application of the RQA to both SSN1 and
SSN2 provides a timely non-linear comparison between the
newly recalibrated SSN data series and the previous one.
Indeed, we found that SSN2, the new series, shows a larger
degree of determinism with respect to the SSN1. Although this
analysis was mainly performed to test our findings and the
reliability of the transition markers of the dynamics, the results
of the comparative study appear of more general validity and
interest, providing a key reading for reconsidering the past
literature based upon the SSN1 data series, in light of its
recalibration.
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