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Abstract

We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey
Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a
bright (V=8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of
about 430 μHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the
redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of
thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a
robust determination of the host star radius (Rå=2.943±0.064 Re), mass (Må=1.212±0.074Me), and age
(4.9±1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining
asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a “hot Saturn”
(Rp=9.17±0.33 R⊕) with an orbital period of ∼14.3 days, irradiance of F=343±24 F⊕, and moderate mass
(Mp=60.5±5.7M⊕) and density (ρp=0.431±0.062 g cm−3). The properties of HD 221416 b show that the
host-star metallicity–planet mass correlation found in sub-Saturns (4–8 R⊕) does not extend to larger radii,
indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of
densities. With a density measured to ∼15%, HD 221416 b is one of the best characterized Saturn-size planets to
date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power
of TESS to characterize exoplanets and their host stars using asteroseismology.

Key words: asteroseismology – techniques: photometric – planets and satellites: individual (HD 221416 b) – stars:
fundamental parameters – planets and satellites: fundamental parameters
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1. Introduction

Asteroseismology is one of the major success stories of the
space photometry revolution initiated by CoRoT (Baglin et al.
2006) and Kepler(Borucki et al. 2010). The detection of
oscillations in thousands of stars has led to breakthroughs such
as the discovery of rapidly rotating cores in subgiants and red
giants, as well as the systematic measurement of stellar masses,
radii, and ages (see Chaplin & Miglio 2013 for a review).
Asteroseismology has also become the “gold standard” for
calibrating more indirect methods to determine stellar parameters
such as surface gravity (log g) from spectroscopy (Petigura
et al. 2017a) and stellar granulation (Mathur et al. 2011; Bastien
et al. 2013; Kallinger et al. 2016; Corsaro et al. 2017; Bugnet et al.
2018; Pande et al. 2018), and age from rotation periods
(gyrochronology; e.g., García et al. 2014; van Saders et al. 2016).

A remarkable synergy that emerged from space-based
photometry is the systematic characterization of exoplanet host
stars using asteroseismology. Following the first asteroseismic
studies of exoplanet host stars using radial velocities (Bazot
et al. 2005; Bouchy et al. 2005), the Hubble Space Telescope
(Gilliland et al. 2011), and CoRoT (Ballot et al. 2011b;
Lebreton & Goupil 2014), Kepler enabled the systematic
characterization of exoplanets with over 100 detections of
oscillations in host stars to date (Huber et al. 2013b; Lundkvist
et al. 2016). In addition to the more precise characterization of
exoplanet radii and masses (Ballard et al. 2014), the synergy
also enabled systematic constraints on stellar spin–orbit
alignments (Benomar et al. 2014; Chaplin et al. 2014a; Lund
et al. 2014; Campante et al. 2016a) and statistical inferences on
orbital eccentricities through constraints on the mean stellar
density (Sliski & Kipping 2014; Van Eylen & Albrecht 2015;
Van Eylen et al. 2019).

The recently launched NASA Transiting Exoplanet Survey
Satellite (TESS) Mission (Ricker et al. 2014) is poised to continue
the synergy between asteroseismology and exoplanet science.
Using dedicated 2minute cadence observations, TESS is expected
to detect oscillations in thousands of main-sequence, subgiant, and
early red-giant stars (Schofield et al. 2019), and simulations predict
that at least 100 of these will host transiting or nontransiting
exoplanets (Campante et al. 2016b). TESS host stars are on average
significantly brighter than typical Kepler hosts, facilitating ground-
based measurements of planet masses with precisely characterized
exoplanet hosts from asteroseismology. While some of the first
exoplanets discovered with TESS orbit stars that have evolved off
the main sequence (Brahm et al. 2018; Nielsen et al. 2019; Wang
et al. 2019), none of them were amenable to asteroseismology
using TESS photometry. Here, we present the characterization of
the HD 221416 (TESS Object of Interest 197, HIP 116158)
system, the first discovery by TESS of a transiting exoplanet
around a host star in which oscillations can be measured.

2. Observations

2.1. TESS Photometry

TESS observed HD 221416 in 2minute cadence during Sector
2 of Cycle 1 for 27 days. We used the target pixel files produced
by the TESS Science Processing Operations Center (Jenkins
et al. 2016) as part of the TESS alerts on 2018 November 11.78

We produced a light curve using the photometry pipeline79

(R. Handberg et al. 2019, in preparation) maintained by the
TESS Asteroseismic Science Operations Center (TASOC; Lund
et al. 2017), which is based on software originally developed to
generate light curves for data collected by the K2 Mission
(Lund et al. 2015).
Figure 1(a) shows the raw light curve obtained from the

TASOC pipeline. The coverage is nearly continuous (duty
cycle ∼93%), with a ∼2 day gap separating the two spacecraft
orbits in the observing sector. Two ∼0.1% brightness dips,
which triggered the identification of TOI-197.01 as a planet
candidate, are evident near the beginning of each TESS orbit
(see triangles in Figure 1(a)). The structure with a period of
∼2.5 days corresponds to instrumental variations due to the
angular momentum dumping cycle of the spacecraft.
To prepare the raw light curve for an asteroseismic analysis,

the current TASOC pipeline implements a series of corrections
as described by Handberg & Lund (2014), which includes the
removal of instrumental artifacts and of the transit events using
a combination of filters utilizing the estimated planetary period.
Future TASOC-prepared light curves from full TESS data
releases will use information from the ensemble of stars to
remove common instrumental systematics (M. N. Lund et al.
2019, in preparation). Alternative light-curve corrections using
transit removal and gap interpolation (García et al. 2011; Pires
et al. 2015) yielded consistent results. The corrected TASOC
light curve is shown in Figure 1(b). Figure 1(c) shows a power
spectrum of this light curve, revealing the clear presence of a
granulation background and a power excess from solar-like
oscillations near ∼430 μHz, both characteristic of an evolved
star near the base of the red-giant branch.

2.2. High-resolution Spectroscopy

We obtained high-resolution spectra of HD 221416 using
several facilities within the TESS Follow-up Observation Program
(TFOP), including HIRES (Vogt et al. 1994) on the 10m telescope
at Keck Observatory (Maunakea, Hawai’i); the Hertzsprung
SONG Telescope at Teide Observatory (Tenerife; Grundahl
et al. 2017); HARPS (Mayor et al. 2003), FEROS (Kaufer et al.
1999), Coralie (Queloz et al. 2001), and FIDEOS (Vanzi et al.
2018) on the MPG/ESO 3.6m, 2.2m, 1.2m, and 1m telescopes
at La Silla Observatory (Chile); Veloce (Gilbert et al. 2018) on the
3.9m Anglo-Australian Telescope at Siding Spring Observatory
(Australia); TRES (Fürész 2008) on the 1.5m Tillinghast reflector
at the F. L. Whipple Observatory (Mt. Hopkins, Arizona); and
iSHELL (Rayner et al. 2012) on the NASA IRTF Telescope
(Maunakea, Hawai’i). All spectra used in this paper were obtained
between 2018 November 11 and December 30 and have a
minimum spectral resolution of R≈44,000. FEROS, Coralie, and
HARPS data were processed and analyzed with the CERES
package (Brahm et al. 2017a), which performs the optimal
extraction and wavelength calibration of each spectrum, along with
the measurement of precision radial velocities and bisector spans
via the cross-correlation technique. Most instruments have been
previously used to obtain precise radial velocities to confirm
exoplanets, and we refer to the publications listed above for details
on the reduction methods.
To obtain stellar parameters, we analyzed a HIRES spectrum

using Specmatch (Petigura 2015), which has been extensively
applied for the classification of Kepler exoplanet host stars
(Johnson et al. 2017; Petigura et al. 2017a). The resulting
parameters were Teff=5080±70 K, log g=3.60±0.08 dex,
[Fe/H]=−0.08±0.05 dex, and v sin i=2.8±1.6 km s−1,

78 https://doi.org/10.17909/t9-wx1n-aw08
79 https://tasoc.dk/code/
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consistent with an evolved star as identified from the power
spectrum in Figure 1(c). To account for systematic differences
between spectroscopic methods (Torres et al. 2012), we added
59K in Teff and 0.062 dex in [Fe/H] in quadrature to the formal
uncertainties, yielding final values of Teff=5080±90K and
[Fe/H]=−0.08±0.08 dex. Independent spectroscopic analyses
yielded consistent results, including an analysis of a HIRES
spectrum using ARES+MOOG (Sousa 2014; Sousa et al. 2018),
FEROS spectra using ZASPE (Brahm et al. 2017b), TRES spectra
using SPC (Buchhave et al. 2012) and iSHELL spectra using BT-
Settl models (Allard et al. 2012).

2.3. Broadband Photometry and Gaia Parallax

We fitted the spectral energy distribution (SED) of HD 221416
using broadband photometry following the method described by
Stassun & Torres (2016). We used NUV photometry from
GALEX, BTVT from Tycho-2 (Høg et al. 2000), BVgri from
APASS, JHKS from 2MASS (Skrutskie et al. 2006), W1–W4
from WISE (Wright et al. 2010), and the G magnitude from Gaia

(Evans et al. 2018). The data were fit using Kurucz atmosphere
models, with Teff, [Fe/H], and extinction (AV) as free parameters.
We restricted AV to the maximum line-of-sight value from the
dust maps of Schlegel et al. (1998). The resulting fit yield-
ed Teff=5090±85K, [Fe/H]=−0.3±0.3 dex, and AV=
0.09±0.02mag with a reduced χ2 of 1.9, in good agreement
with spectroscopy. Integrating the (dereddened) model SED
gives the bolometric flux at Earth of Fbol=(1.88±0.04)×
10−8 erg s cm−2. An independent SED fit using 2MASS,
APASS9, USNO-B1, and WISE photometry and Kurucz models
yielded excellent agreement, with Fbol=(1.83±0.09)×
10−8 erg s cm−2 and Teff=5150± 130 K. Additional indepen-
dent analyses using the method by Mann et al. (2016) and
PARAM (Rodrigues et al. 2014, 2017) yielded bolometric fluxes
and extinction values that are consistent within 1σ with the values
quoted above.
Combining the bolometric flux with the Gaia DR2 distance

allows us to derive a nearly model-independent luminosity,
which is a valuable constraint for asteroseismic modeling (see

Figure 1. Panel (a): raw TESS 2 minute cadence light curve of HD 221416 produced by the TESS Asteroseismic Science Operations Center (TASOC). The red line is
the light curve smoothed with a 10 minute boxcar filter (shown for illustration purposes only). Triangles mark the two transit events. Panel (b): light curve after
applying corrections by the TASOC pipeline. Panel (c): power spectrum of panel (b), showing a granulation background and power excess due to oscillations near
∼430 μHz. The solid red line is a global fit, consisting of granulation plus white noise and a Gaussian describing the power excess due to oscillations. Dashed red lines
show the two granulation components and the white noise level, respectively.
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Section 3.3). Using a Gaia parallax of 10.518±0.080 mas
(adjusted for the 0.082±0.033 mas zero-point offset for nearby
stars reported by Stassun & Torres 2018) with the two methods
described above yielded Lå=5.30±0.14 Le(using Fbol=
(1.88±0.04)×10−8 erg s cm−2) and Lå=5.13±0.13 Le
(using Fbol=(1.83±0.09)×10−8 erg s cm−2). We also derived
a luminosity using isoclassify (Huber et al. 2017),80

adopting 2MASS K-band photometry, bolometric corrections
from MIST isochrones (Choi et al. 2016), and the composite
reddening map mwdust (Bovy et al. 2016), yielding Lå=
5.03±0.13 Le. Our adopted luminosity was the mean of these
methods with an uncertainty calculated by adding the mean
uncertainty and scatter over all methods in quadrature, yielding
Lå=5.15±0.17 Le.

2.4. High-resolution Imaging

HD 221416 was observed with the NIRC2 camera and Altair
adaptive optics system on Keck II (Wizinowich et al. 2000) on
UT 2018 November 25. Conditions were clear but seeing was
poor (0 8–2″). We used the science target as the natural guide
star, and images were obtained through a K-continuum plus
KP501.5 filter using the narrow camera (10mas pixel scale). We
obtained eight images (four each at two dither positions), each
consisting of 50 coadds of 0.2 s each, with correlated double-
sampling mode and four reads. Frames were coadded, and we
subtracted an average dark image, constructed from a set of darks
with the same integration time and sampling mode. Flat-fielding
was performed using a dome flat obtained in the K′ filter. “Hot”
pixels were identified in the dark image and corrected by median
filtering with a 5×5 box centered on each affected pixel in the
science image. Only a single star appears in the images. We
performed tests in which “clones” of the stellar image reduced by
a specified contrast ratio were added to the original image. These
show that we would have been able to detect companions as faint
asΔK=5.8mag within 0 4 of HD 221416, 3.8 mag within 0 2,
and 1.8mag within 0 1.

Additional NIRC2 observations were obtained in the narrow-
band Br − γ filter (λo=2.1686; Δλ=0.0326 μm) on UT 2018
November 22. A standard three-point dither pattern with a step
size of 3″ was repeated twice with each dither offset from the
previous dither by 0 5. An integration time of 0.25 s was used
with one coadd per frame for a total of 2.25 s on target, and the
camera was used in the narrow-angle mode. No additional stellar
companions were detected to within a resolution of ∼0 05
FWHM. The sensitivities of the final combined AO image were
determined following Ciardi et al. (2015) and Furlan et al. (2017),
with detection limits as faint as ΔBr−γ=7.4 mag within 0 4,
6.1 mag within 0 2, and 3.2mag within 0 1.

The results from NIRC2 are consistent with Speckle observa-
tions using HRCam (Tokovinin et al. 2010) on the 4.1m SOAR
telescope.81 Because the companion is unlikely to be bluer than
HD 221416, these constraints exclude any significant dilution
(both for oscillation amplitudes and the depth of transit events).

3. Asteroseismology

3.1. Global Oscillation Parameters

To extract oscillation parameters characterizing the average
properties of the power spectrum, we used several automated

analysis methods (e.g., Huber et al. 2009; Mathur et al. 2010;
Benomar et al. 2012; Kallinger et al. 2012; Mosser et al.
2012a; Corsaro & De Ridder 2014; Lundkvist 2015; Stello
et al. 2017; Campante 2018; Bell et al. 2019), many of which
have been extensively tested on Kepler data (e.g., Hekker et al.
2011; Verner et al. 2011). In most of these analyses, the power
contributions due to granulation noise and stellar activity were
modeled by a combination of power laws and a flat
contribution due to shot noise, and then corrected by dividing
the power spectrum by the background model. The individual
contributions and background model using the method by
Huber et al. (2009) are shown as dashed and solid red lines in
Figure 1(c), and a close-up of the power excess is shown in
Figure 2(a).
Next, the frequency of maximum power (νmax) was measured

either by heavily smoothing the power spectrum or by fitting a
Gaussian function to the power excess. Our analysis yielded
νmax=430±18μHz, with uncertainties calculated from the
scatter between all fitting techniques. Finally, the mean oscillation
amplitude per radial mode was determined by taking the peak of
the smoothed, background-corrected oscillation envelope and
correcting for the contribution of nonradial modes (Kjeldsen et al.
2008a), yielding A=18.7±3.5 ppm. We caution that the νmax
and amplitude estimates could be significantly biased by the
stochastic nature of the oscillations. The modes are not well
resolved, as demonstrated by the non-Gaussian appearance of the
power spectrum and the particularly strong peak at 420 μHz.
Global seismic parameters such as νmax and amplitude

follow well-known scaling relations (Huber et al. 2011; Mosser
et al. 2012b; Corsaro et al. 2013), allowing us to test whether

Figure 2. Panel (a): power spectrum of HD 221416centered on the frequency
region showing oscillations. Vertical dashed lines mark identified individual
frequencies. Panel (b): grayscale échelle diagram (see footnote 83) of the
background-corrected and smoothed power spectrum in panel (a). Identified
individual mode frequencies are marked with blue circles (l=0, radial modes),
green squares (l=2, quadrupole modes), and red diamonds (l=1, dipole
modes). Note that the diagram is replicated for clarity (Bedding 2012).

80 https://github.com/danxhuber/isoclassify
81 https://exofop.ipac.caltech.edu/tess/target.php?id=441462736
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the detected oscillations are consistent with expectations.
Figure 3 compares our measured νmax and amplitude with
results for ∼1500 stars observed by Kepler(Huber et al. 2011).
We observe excellent agreement, confirming that the detected
signal is consistent with solar-like oscillations. We note that the
oscillations in the TESS bandpass are expected to be ∼15%
smaller than in the bluer Kepler bandpass, which is well within
the spread of amplitudes at a given νmax observed in the Kepler
sample. The result confirms that the redder bandpass of TESS
only has a small effect on the oscillation amplitude, supporting
the expected rich yield of solar-like oscillators with TESS
2 minute cadence observations (Schofield et al. 2019).

3.2. Individual Mode Frequencies

The power spectrum in Figure 2(a) shows several clear peaks
corresponding to individual oscillation modes. Given that TESS
instrument artifacts are not yet well understood, we restricted
our analysis to the frequency range 400–500 μHz where we
observe peaks well above the background level.

To extract these individual mode frequencies, we used
several independent methods ranging from traditional iterative
sine-wave fitting, i.e., prewhitening (e.g., Kjeldsen et al. 2005;
Lenz & Breger 2005; Bedding et al. 2007), to fitting of
Lorentzian mode profiles (e.g., Handberg & Campante 2011;
Appourchaux et al. 2012; Mosser et al. 2012b; Corsaro & De
Ridder 2014; Corsaro et al. 2015; Vrard et al. 2015; Davies &
Miglio 2016; Handberg et al. 2017; Roxburgh 2017; Kallinger
et al. 2018), including publicly available code such as
DIAMONDS.82 We required at least two independent methods
to return the same frequency within uncertainties and that the
posterior probability of each peak being a mode was �90%
(Basu & Chaplin 2017). A comparison of the frequencies
returned by different fitters showed very good agreement, at a
level smaller than the uncertainties for all reported modes. For
the final list of frequencies, we adopted values from one fitter
who applied prewhitening (HK), with uncertainties derived
from Monte Carlo simulations of the data, as listed in Table 1.

To measure the large frequency separation Δν, we
performed a linear fit to all identified radial modes, yielding
Δν=28.94±0.15 μHz. Figure 2(b) shows a grayscale
échelle diagram83 using this Δν measurement, including the
extracted mode frequencies. The l=1 modes are strongly
affected by mode bumping, as expected for the mixed-mode
coupling factors for evolved stars in this evolutionary stage.
The offset ò of the l=0 ridge is ∼1.5, consistent with the
expected value from Kepler measurements for stars with
similar Δνand Teff(White et al. 2011).

3.3. Frequency Modeling

We used a number of independent approaches to model the
observed oscillation frequencies, including different stellar
evolution codes (ASTEC, Cesam2K, GARSTEC, Iben, MESA,
and YREC; Iben 1965; Christensen-Dalsgaard 2008; Demarque
et al. 2008; Morel & Lebreton 2008; Scuflaire et al. 2008; Weiss
et al. 2008; Paxton et al. 2011, 2013, 2015; Choi et al. 2016),
oscillation codes (ADIPLS, GYRE, and Pesnell; Pesnell 1990;
Christensen-Dalsgaard 2008; Townsend & Teitler 2013), and
modeling methods (including AMP, ASTFIT, BeSSP, BASTA,
and PARAM; Deheuvels & Michel 2011; Lebreton & Goupil
2014; Rodrigues et al. 2014, 2017; Silva Aguirre et al. 2015;
Yıldız et al. 2016; Ball & Gizon 2017; Creevey et al. 2017;
Serenelli et al. 2017; Mosumgaard et al. 2018; Tayar &
Pinsonneault 2018; Ong & Basu 2019). Most of the adopted
methods applied corrections for the surface effect (Kjeldsen et al.
2008b; Ball & Gizon 2017). Model inputs included the spectro-
scopic temperature and metallicity, individual frequencies, Δν,
and the luminosity (Section 2.3). To investigate the effects of
different input parameters, modelers were asked to provide
solutions using both individual frequencies and only using Δν,
with and without taking into account the luminosity constraint.
The constraint on νmax was not used in the modeling because it
may be affected by finite mode lifetimes (see Section 3.1).
Overall, the modeling efforts yielded consistent results, and

most modeling codes were able to provide adequate fits to the
observed oscillation frequencies. The modeling confirmed that

Figure 3. Amplitude per radial mode vs. frequency of maximum power for a
sample of ∼1500 stars spanning from the main sequence to the red-giant
branch observed by Kepler(Huber et al. 2011). The red star shows the
measured position of HD 221416 (TOI-197). The uncertainties are approxi-
mately equal to the symbol size.

Table 1
Extracted Oscillation Frequencies and Mode Identifications for HD 221416

f (μHz) σf (μHz) l

413.12 0.29 1
420.06 0.11 0
429.26 0.14 1
436.77 0.24 1
445.85 0.21 2
448.89 0.21 0
460.16 0.33 1
463.81 0.43 1
477.08 0.31 1
478.07 0.35 0

Note. The large frequency separation derived from radial modes is
Δν=28.94±0.15 μHz. Note that the l=1 modes at ∼460 and ∼463 μHz
are listed for completeness, but it is unlikely that both of them are genuine (see
the text).

82 https://github.com/EnricoCorsaro/DIAMONDS

83 Échelle diagrams are constructed by dividing a power spectrum into equal
segments with lengthΔν and stacking one above the other, so that modes with
a given spherical degree align vertically in ridges (Grec et al. 1983). Departures
from regularity arise from sound speed discontinuities and from mixed modes,
and thus probe the interior structure of a star.
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only one of the two closely spaced mixed modes near
∼460 μHz is likely real, but we have retained both frequencies
in Table 1 for consistency. An échelle diagram with observed
frequencies and a representative best-fitting model is shown in
Figure 4.

Independent analyses confirmed a bimodality splitting into
lower mass, older models (∼1.15Me, ∼6 Gyr), and higher
mass, younger models (∼1.3Me, ∼4 Gyr). Surface rotation
would provide an independent mass diagnostic (e.g., van
Saders & Pinsonneault 2013), but the insufficiently constrained
v sin i and the unknown stellar inclination mean that we cannot
decisively break this degeneracy. Combining an independent
constraint of log g=3.603±0.026 dex from an autocorrela-
tion analysis of the light curve (Kallinger et al. 2016) with a
radius from L and Teff favors a higher mass solution (Må=
1.27±0.13Me), but may be prone to small systematics in the
νmaxscaling relation (which was used for the calibration). To
make use of the most observational constraints available, we
used the set of nine modeling solutions, which used Teff,
[Fe/H], frequencies, and the luminosity as input parameters.
From this set of solutions, we adopted the self-consistent set of
stellar parameters with the mass closest to the median mass
over all results. A more detailed study of the individual
modeling results will be presented in a follow-up paper (T. Li
et al. 2019, in preparation).

For ease of propagating stellar parameters to exoplanet
modeling (see the next section), uncertainties were calculated
by adding the median uncertainty for a given stellar parameter
in quadrature to the standard deviation of the parameter for
all methods. This method has been commonly adopted for

Kepler(e.g., Chaplin et al. 2014b) and captures both random
and systematic errors estimated from the spread among
different methods. For completeness, the individual random
and systematic error estimates are Rå=2.943± 0.041(ran)±
0.049(sys) Re, Må=1.212±0.052(ran)±0.055(sys)Me,
ρå=0.06702±0.00019(ran)±0.00047(sys)gcc, and t=
4.9±0.6(ran)±0.9(sys) Gyr. This demonstrates that sys-
tematic errors constitute a significant fraction of the error
budget for all stellar properties (in particular stellar age),
and emphasizes the need for using multiple model grids to
derive realistic uncertainties for stars and exoplanets. The final
estimates of the stellar parameters are summarized in Table 2,
constraining the radius, mass, density, and age of HD 221416
to ∼2%, ∼6%, ∼1% and ∼22%, respectively.

4. Planet Characterization

To fit the transits observed in the TESS data, we used the
PDC-MAP light curve provided by the TESS Science
Processing and Operations Center, which has been optimized
to remove instrumental variability and preserve transits (Smith
et al. 2012; Stumpe et al. 2014). To optimize computation time,
we discarded all data more than 2.5 days before and after each
of the two observed transits. We have repeated the fit and data
preparation procedure using the TASOC light curve and found
consistent results.
A total of 107 radial-velocity measurements from five different

instruments (see Section 2.2 and Table 3) were used to constrain
the mass of the planet. No spectroscopic observations were taken
during transits, and hence the measurements are unaffected by the
Rossiter–McLaughlin effect (∼2.3m s−1 based on the measured
v sin i and Rp/Rå). To remove variations from stellar oscillations,
we calculated weighted nightly means for all instruments that
obtained multiple observations per night. We performed a joint

Figure 4. Échelle diagram showing observed oscillation frequencies (filled
gray symbols) and a representative best-fitting model (open colored symbols)
using GARSTEC, ADIPLS, and BeSSP (Serenelli et al. 2017). Model symbol
sizes for nonradial modes are scaled using the mode inertia (a proxy for mode
amplitude) as described in Cunha et al. (2015). Thick model symbols
correspond to modes that were matched to observations. Uncertainties on the
observed frequencies are smaller than or comparable to the symbol sizes. Note
that the l=1 mode at 460 μHz has been omitted from this plot (see the text).

Table 2
Host Star Parameters

Basic Properties

HD ID 221416
Hipparcos ID 116158
TIC ID 441462736
V magnitude 8.15
TESS magnitude 7.30
K magnitude 6.04

SED and Gaia Parallax

Parallax, π (mas) 10.518±0.080
Luminosity, L (Le) 5.15±0.17

Spectroscopy

Effective temperature, Teff (K) 5080±90
Metallicity, [Fe/H] (dex) −0.08±0.08
Projected rotation speed, v sin i (km s−1) 2.8±1.6

Asteroseismology

Stellar mass, Må (Me) 1.212±0.074
Stellar radius, Rå (Re) 2.943±0.064
Stellar density, ρå (gcc) 0.06702±0.00067
Surface gravity, log g (cgs) 3.584±0.010
Age, t (Gyr) 4.9±1.1

Note. The TESS magnitude is adopted from the TESS Input Catalog (Stassun
et al. 2018).
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transit and radial-velocity fit using a Markov Chain Monte Carlo
algorithm based on the exoplanet modeling code ktransit
(Barclay 2018), as described in Chontos et al. (2019). We placed a
strong Gaussian prior on the mean stellar density using the value
derived from asteroseismology (Table 2) and weak priors on the
linear and quadratic limb-darkening coefficients, derived from the
closest I-band grid points in Claret & Bloemen (2011), with a
width of 0.6 for both coefficients. We also adopted a prior for the
radial-velocity jitter from granulation and oscillations of
2.5±1.5m s−1, following Yu et al. (2018; see also Tayar et al.
2018), and a 1/e prior on the eccentricity to account for the linear
bias introduced by sampling in e cosω and e sinω (Eastman et al.
2013). Independent zero-point offsets and stellar jitter values for
each of the five instruments that provided radial velocities.
Independent joint fits using EXOFASTv2 (Eastman et al. 2013)
yielded consistent results.

Figures 5 and 6 show the radial-velocity time series, phase-
folded transit and RV data, and the corresponding best-fitting
model. Table 4 lists the summary statistics for all planet and
model parameters. The system is well described by a planet in a
14.3 day orbit, which is nearly equal in size but ∼35% less
massive than Saturn (Rp=0.836±0.031 RJ, Mp=0.190±
0.018MJ), with tentative evidence for a mild eccentricity
(e=0.11±0.03). The long transit duration (∼0.5 days) is
consistent with a nongrazing (b≈0.7) transit given the
asteroseismic mean stellar density, providing further confirma-
tion for a gas-giant planet orbiting an evolved star. The radial-
velocity data do not show evidence for any other short-period
companions. Continued monitoring past the ∼4 orbital periods
covered here will further reveal details about the orbital
architecture of this system.

5. Discussion

HD 221416 b joins an enigmatic but growing class of
transiting planets orbiting stars that have significantly evolved
off the main sequence. Figure 7 compares the position of HD
221416 within the expected population of solar-like oscillators
to be detected with TESS (panel a) and within the known
population of exoplanet host stars. Evolutionary states in
Figure 7(b) have been assigned using solar-metallicity
PARSEC evolutionary tracks (Bressan et al. 2012) as described
in Berger et al. (2018).84 HD 221416 sits at the boundary
between subgiants and red giants, with the measured Δν value
indicating that the star has just started its ascent on the red-giant
branch (Mosser et al. 2014). HD 221416 is a typical target for
which we expect to detect solar-like oscillations with TESS,
predominantly due to the increased oscillation amplitude,
which are well known to scale with luminosity (Kjeldsen &
Bedding 1995). On the contrary, HD 221416 is rare among
known exoplanet hosts: while radial-velocity searches have
uncovered a large number of planets orbiting red giants on long
orbital periods (e.g., Wittenmyer et al. 2011), fewer than 15

Table 3
High-precision Radial Velocities for HD 221416

Time (BJD) RV (m s−1) σRV (m s−1) Instrument

2458426.334584 4.258 11.260 SONG
2458426.503655 6.328 11.270 SONG
2458427.575230 −12.667 3.000 FEROS
2458428.547576 17.328 18.540 SONG

L L L L
2458443.535340 −14.667 3.600 CORALIE
2458443.541210 −3.067 3.800 CORALIE
2458443.714865 −6.815 0.780 HIRES
2458443.825283 −4.375 0.720 HIRES

L L L L
2458482.562290 19.433 2.000 HARPS
2458483.541710 16.133 2.000 HARPS
2458483.553240 19.233 2.000 HARPS
2458483.564690 16.233 2.000 HARPS

Note. Error bars do not include contributions from stellar jitter, and
measurements have not been corrected for zero-point offsets.

(This table is available in its entirety in machine-readable form.)

Figure 5. Radial-velocity time series (panel a) and residuals after subtracting the best-fitting model (panel b) for HD 221416 b. Data points are corrected for zero-point
offsets of individual instruments, and error bars include contributions from stellar jitter.

84 See alsohttps://github.com/danxhuber/evolstate.
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transiting planets are known around red-giant stars (as defined
in Figure 7(b)). HD 221416 b is the sixth example of a
transiting planet orbiting a late subgiant/early red giant with
detected oscillations, following Kepler-91 (Barclay et al. 2013;
Lillo-Box et al. 2014a, 2014b), Kepler-56 (Steffen et al. 2012;
Huber et al. 2013a), Kepler-432 (Quinn et al. 2015; Ciceri et al.
2015), K2-97 (Grunblatt et al. 2016), and K2-132 (Grunblatt
et al. 2017; Jones et al. 2018).

Transiting planets orbiting evolved stars are excellent systems
to advance our understanding of the effects of stellar evolution on
the structure and evolution of planets (see, e.g., Veras 2016 for a
review). For example, such systems provide the possibility of
testing the effects of stellar mass, evolution, and binarity on planet
occurrence (e.g., Johnson et al. 2010; Schlaufman & Winn 2013;
Stephan et al. 2018), which are still poorly understood.
Furthermore, the increased irradiance on the planet caused by
the evolution of the host star has been proposed as a means to
distinguish between proposed mechanisms to explain the inflation
of gas-giant planets beyond the limits expected from gravitational
contraction and cooling (Hubbard et al. 2002; Lopez & Fortney
2016). Recent discoveries by the K2 mission have indeed yielded
evidence that planets orbiting low-luminosity RGB stars are
consistent with being inflated by the evolution of the host star
(Grunblatt et al. 2016, 2017), favoring scenarios in which the
energy from the star is deposited into the deep planetary interior
(Bodenheimer et al. 2001).

Based on its radius and orbital period, HD 221416 b would
nominally be classified as a warm Saturn, sitting between the

well-known population of hot Jupiters and the ubiquitous
population of sub-Neptunes uncovered by Kepler (Figure 8(a)).
Taking into account the evolutionary state of the host star,
however, HD 221416 b falls at the beginning of the “inflation
sequence” in the radius–incident flux diagram (Figure 8(b)), with
planet radius strongly increasing with stellar incident flux (Kovács
et al. 2010; Demory & Seager 2011; Miller & Fortney 2011;
Thorngren & Fortney 2018). Because HD 221416 b is currently
not anomalously large compared to the observed trend and scatter
for similar planets (Figure 8(b)) and low-mass planets are
expected to be more susceptible to planet reinflation (Lopez &
Fortney 2016), HD 221416 b may be a progenitor of a class of
reinflated gas-giant planets orbiting RGB stars.
If confirmed, the mild eccentricity of HD 221416 b would be

consistent with predictions of a population of planets around
evolved stars for which orbital decay occurs faster than tidal
circularization (Villaver et al. 2014; Grunblatt et al. 2018).
Moreover, combining the asteroseismic age of the system with the
possible nonzero eccentricity would allow constraints on the tidal

Figure 6. TESS light curve (panel a) and radial-velocity measurements (panel b)
folded with the best-fitting orbital period. Gray points in panel (a) show the
original sampling, and black points are binned means over 10 minutes. Red lines in
both panels show the best-fitting model from the joint fit using stellar parameters,
transit, and radial velocities. Gray lines show random draws from the joint MCMC
model. Error bars in panel (b) include contributions from stellar jitter.

Table 4
Planet Parameters

Parameter Best Fit Median 84% 16%

Model Parameters

γHIRES 4.8 5.4 +1.6 −1.6
γSONG 1.1 0.2 +1.5 −1.5
γFEROS −15.4 −15.7 +1.2 −1.2
γCORALIE −5.4 −5.0 +1.2 −1.2
γHARPS 8.1 8.8 +1.5 −1.5
σHIRES 2.71 2.68 +0.85 −0.80
σSONG 2.06 2.11 +0.91 −0.89
σFEROS 3.49 3.47 +0.75 −0.71
σCORALIE 1.88 2.50 +0.75 −0.64
σHARPS 2.41 2.69 +0.75 −0.63
z (ppm) 199.4 199.1 +10.6 −10.7
P (days) 14.2762 14.2767 +0.0037 −0.0037
T0 (BTJD) 1357.0135 1357.0149 +0.0025 −0.0026
b 0.744 0.728 +0.040 −0.049
Rp/Rå 0.02846 0.02854 +0.00084 −0.00071
e cos ω −0.054 −0.028 +0.063 −0.061
e sin ω −0.099 −0.096 +0.029 −0.030
K (m s−1) 14.6 14.1 +1.2 −1.2
ρå (gcc) 0.06674 0.06702 +0.00052 −0.00052
u1 0.12 0.35 +0.36 −0.24
u2 0.71 0.44 +0.30 −0.44

Derived Properties

e 0.113 0.115 +0.034 −0.030
ω −118.7 −106.0 +34.7 −31.1
a (AU) 0.1233 0.1228 +0.0025 −0.0026
a/Rå 9.00 8.97 +0.27 −0.27
i (o) 85.67 85.75 +0.36 −0.35
Rp(R⊕) 9.16 9.17 +0.34 −0.31
Rp(RJ) 0.835 0.836 +0.031 −0.028
Mp(M⊕) 63.4 60.5 +5.7 −5.7
Mp(MJ) 0.200 0.190 +0.018 −0.018
ρp(gcc) 0.455 0.431 +0.064 −0.060

Note. Parameters denote velocity zero points γ, radial-velocity jitter σ,
photometric zero-point z, orbital period P, time of transit T0, impact parameter
b, star-to-planet radius ratio Rp/Rå, eccentricity e, argument of periastron ω,
radial-velocity semi-amplitude K, mean stellar density ρå, linear and quadratic
limb-darkening coefficients u1 and u2, semimajor axis a, orbital inclination i, as
well as planet radius (Rp), mass (Mp) and density (ρp).

9

The Astronomical Journal, 157:245 (14pp), 2019 June Huber et al.


