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Abstract. The four main findings about the age and abundance structure of the Milky Way
bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity distribution
with distinct peaks at [Fe/H] = −1.09, −0.63, −0.20, +0.12, +0.41; (2) a high fraction of
intermediate-age to young stars where at [Fe/H] > 0 more than 35 % are younger than 8 Gyr, (3)
several episodes of significant star formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the ‘knee’
in the α-element abundance trends of the sub-solar metallicity bulge appears to be located at a
slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local thick disk.
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1. Introduction
The picture of the Galactic bulge has changed dramatically over the last decade. It is

now believed to be a boxy peanut-shaped (e.g. Dwek et al. 1995; Wegg & Gerhard 2013)
pseudo-bulge of a secular origin (e.g. Kormendy & Kennicutt 2004) rather than being a
classical spheroid (e.g. White & Rees 1978). Many of the new results come from studies
of evolved giant stars (e.g. McWilliam & Rich 1994; Fulbright et al. 2007; Alves-Brito
et al. 2010; Hill et al. 2011; Zoccali et al. 2017; Rojas-Arriagada et al. 2017). In contrast,
detailed studies of the Solar neighbourhood are generally based on dwarf stars (e.g.
Edvardsson et al. 1993; Fuhrmann 1998; Bensby et al. 2014), making direct comparisons
between the bulge and disk uncertain. In particular since the analysis of the rich giant
spectra is more challenging, and can be associated with larger uncertainties. In addition,
ages can easily be estimated from isochrones for individual turn-off and subgiant stars.

An issue is that turn-off stars in the bulge are too faint to observe with high-resolution
spectrographs under normal observing conditions. However, during gravitational mi-
crolensing events they may brighten by factors of several hundreds. The first high-
resolution spectroscopic studies of microlensed bulge dwarf stars showed very different
results compared to studies based on spectra of red giant stars (Johnson et al. 2007, 2008;
Cohen et al. 2008, 2009; Bensby et al. 2009; Epstein et al. 2010). Since 2009 we have
therefore conducted an observing campaign, a target-of-opportunity program with UVES
at VLT, to catch these elusive events (Bensby et al. 2010, 2011, 2013, 2017). The results
presented here is based on the sample of 90 dwarf and subgiant stars in the bulge from
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Figure 1. Top: Metallicity distribution of the microlensed bulge dwarf stars, both as a regular
histogram (grey area) and as a generalised histogram (blue solid line). Bottom: Metallicity
distribution for the 1845 red giant stars in the ARGOS b = −5◦ fields by Ness et al. (2013), as
a regular histogram and as a generalised histogram. The five peaks (A-E) claimed by Ness et al.
(2013) are marked by the solid vertical lines, and the peaks detected in the microlensed dwarf
metallicity distribution are marked by red dashed lines.

Bensby et al. (2017). The stars have been homogeneously analysed in exactly the same
way as the 714 nearby F and G dwarf stars in Bensby et al. (2014). All details on the
observations of the sample, determination of stellar parameters, elemental abundances,
stellar ages, and sample age, can be found in Bensby et al. (2017).

2. A microlensed view of the Galactic bulge
2.1. A multi-component metallicity distribution

The metallicity distribution is very wide and the underlying population does not have
a smooth distribution. Instead it is dominated by five peaks located at [Fe/H] = +0.41,
+0.12, −0.20, −0.63, and −1.09 that align almost perfectly with the peaks found by Ness
et al. (2013) in the ARGOS survey (see Fig. 1).

2.2. A significant fraction of younger stars
At metallicities below [Fe/H] ≈ −0.5 essentially all stars are older than 10 Gyr. At higher
metallicities the stars span all possible ages from around 1 Gyr, to around 12-13 Gyr. The
fraction of younger stars (< 8 Gyr) increases with metallicity, for [Fe/H] � −0.5 dex, the
fraction is around 20 %, and for [Fe/H] > 0 more than one third are younger than 8 Gyr.

2.3. Several star formation episodes
The star formation history of the bulge shows several peaks, with major episodes about
11, 8, 6, and 3 Gyr ago (see Fig. 3). The two oldest peaks could be connected with the
onset of the thick and thin disk populations, while the younger ones could be events
associated with the Galactic bar.
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Figure 2. Left: Age-metallicity diagram for the microlensed dwarf stars. Right: Fraction of stars
younger than 5 Gyr (blue dashed line) and 8 Gyr (red solid line), based on 10 000 bootstrapped
distributions (the shaded regions are the 1-σ dispersions around the median values).

Figure 3. Sample age distribution of the microlensed bulge dwarf stars. The peaks show
episodes of significant star formation.

2.4. Elemental abundance trends

The α-abundance trends show great resemblance with the trends observed in the nearby
disk (see trend for Mg in Fig. 4). As discussed in Bensby et al. (2017) the ‘knee’ appears
to be located at slightly higher [Fe/H], about 0.1 dex, than in the local thick disk, an
indication of a slightly faster star formation rate in the inner parts of the disk.

3. The bulge - a region, not a population
These findings, together with other findings such as the cylindrical rotation (Kunder

et al. 2012), support the idea of a secular origin for the Galactic bulge. This means that
it is not a unique stellar population on its own, but rather the central region of the Milky
Way where all the other Galactic populations reside and widely overlap.
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Figure 4. Magnesium abundance trend for the microlensed dwarf stars. The grey dots in the
background is the full sample of 714 nearby dwarf stars from Bensby et al. (2014).
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