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Maximum-Likelihood Retrieval of Volcanic Ash
Concentration and Particle Size From

Ground-Based Scanning Lidar
Luigi Mereu , Simona Scollo, Saverio Mori , Member, IEEE, Antonella Boselli,

Giuseppe Leto, and Frank S. Marzano, Fellow, IEEE

Abstract— An inversion methodology, named maximum-1

likelihood (ML) volcanic ash light detection and ranging (Lidar)2

retrieval (VALR-ML), has been developed and applied to estimate3

volcanic ash particle size and ash mass concentration within4

volcanic plumes. Both estimations are based on the ML approach,5

trained by a polarimetric backscattering forward model coupled6

with a Monte Carlo ash microphysical model. The VALR-ML7

approach is applied to Lidar backscattering and depolarization8

profiles, measured at visible wavelength during two eruptions9

of Mt. Etna, Catania, Italy, in 2010 and 2011. The results10

are compared with those of ash products derived from other11

parametric retrieval algorithms. A detailed comparison among12

these different retrieval techniques highlights the potential of13

VALR-ML to determine, on the basis of a physically consistent14

approach, the ash cloud area that must be interdicted to flight15

operations. Moreover, the results confirm the usefulness of16

operating scanning Lidars near active volcanic vents.17

Index Terms— Ash mean size, backscattering and depolar-18

ization, explosive eruption, retrieval algorithms, scanning light19

detection and ranging (Lidar), volcanic ash concentration.20

I. INTRODUCTION21

AN EXPLOSIVE volcanic eruption can cause a variety22

of severe and widespread threats to human well-being23

and the environment [1], [3], [12]. The ash produced during24

explosive eruptions has a huge impact on the global environ-25

ment. Major eruptions strongly influence the earth’s radiative26

balance by injecting into the atmosphere a large quantity of27

particles and gases, which produce secondary aerosols [18].28
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Although the concentration of stratospheric volcanic aerosols 29

is usually very low and rare, they can have notable impact on 30

global climate due to their large-scale dispersion and residence 31

times in the order of months or even several years. By contrast, 32

the residence time of volcanic aerosols in the troposphere is 33

only in the order of several days or months depending on 34

the eruption intensity and duration. Furthermore, its spatial 35

distribution can be rather inhomogeneous affected mainly by 36

the eruption and atmospheric variability, so that the assessment 37

of their radiative effects is much more complicated [10]. 38

Volcanic ash is critical information for the flight safety of 39

jet-driven aircrafts. Indeed, due to their low melting tempera- 40

ture and their sharp-edged shapes, ash particles can severely 41

damage the turbines and again here and front windows of 42

aircraft [2], [4], [21], [29]. The ash concentration in the 43

atmosphere is an important parameter that needs to be detected 44

with some accuracy [42], because air traffic must be suspended 45

in the regions in which volcanic ash concentrations exceed 46

certain thresholds [10], [11]. 47

In recent years, light detection and ranging (Lidar) systems 48

have been widely used to study volcanic aerosol clouds 49

produced by major volcanic eruptions [22]. Lidar techniques 50

are a powerful method for monitoring the dispersion of a 51

volcanic cloud in the atmosphere because of their profiling 52

capability at very high range resolution. A Lidar can measure 53

not only backscatter but also depolarization once two-way 54

path attenuation is properly corrected. Lidar observations 55

can provide plume geometrical properties (i.e., top, bottom, 56

and thickness), its optical depth, aerosol category, and also 57

aerosol microphysical properties if advanced multiwavelength 58

Raman Lidar systems are used [45]. Using the depolarization 59

channel, it is also possible to distinguish various shapes of ash 60

particles [10], [12]. 61

The capability of Lidar systems to detect the finest particles 62

in volcanic plume and reliably estimate the ash concentra- 63

tion mainly depends on instrumental characteristics and the 64

type of explosive activity. For typical ground-based dual- 65

polarized Lidars, the evaluation of the aerosol backscattering 66

and depolarization coefficients may be carried out only in 67

those regions where the Lidar signal is not extinguished inside 68

the volcanic plume optical thickness. In these cases, assuming 69

the knowledge of the Lidar ratio (LR) between extinction 70

and backscattering, path attenuation correction algorithms can 71

be applied to reconstruct the effective Lidar observable [22]. 72
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Optically thick plumes can strongly attenuate the Lidar beam,73

reducing its penetration capability due to absorption effects.74

Inversion approaches can mitigate the effect of path attenuation75

by reconstructing the backscatter profile if the return signal is76

detectable [7], [15]. On the other hand, Lidar beam divergence77

is generally very small (about a few m3 at ranges of tens of78

kilometer) so that they can have a better spatial resolution than79

that of a radar microwave system, even though at the expense80

of a smaller wide-area search capability. Multiple scatter-81

ing (MS) is a further effect that can impact the ash retrieval82

due to the apparent increase of the return power [46], [47].83

However, for relatively low attenuation and/or highly directive84

lasers close to the explosive volcanic source, the MS tends to85

be negligible.86

Lidar sensors with scanning capability, installed a few87

kilometers away from the summit craters, can be valid supports88

in monitoring the finest airborne ash particles that are rapidly89

dispersed by the prevailing wind. Lidar measurements near90

an active volcano are crucial for continuous monitoring of91

long-lived explosive activity and improving the volcanic ash92

plume forecast during volcanic crises; nevertheless, Lidar93

systems can be seriously damaged by ash fallout if not94

properly protected. The measurements near Etna volcano in95

Italy, one of the most active volcanoes on the earth, were96

performed with the volcanic ash monitoring by polariza-97

tion (VAMP) Lidar [43]. The VAMP system is a portable98

dual-polarized Lidars with scanning capabilities, allowing99

detecting elastic backscattered radiation at 532 nm [22]. This100

system is able to provide highly accurate measurements of101

the backscatter coefficient and low depolarization ratio with102

a range resolution of 60 m and an azimuth resolution of 1°.103

Whereas water clouds and fog contain spherical liquid droplets104

exhibiting low aersosol depolarization values, volcanic ash105

particles are generally asymmetrical associated with high106

aerosol depolarization values. The latter is readily detected107

by the VAMP system thanks to its dual polarization chan-108

nels. Some recent eruptions of Etna volcano were exten-109

sively observed by the VAMP system. The calibration of the110

VAMP system and a detailed description of the apparatus are111

reported in [22] and [32]. These observations have opened112

the possibility to validate the scanning mode of Lidar instru-113

ments and, now, to test different retrieval approaches of ash114

properties.115

The main goals of this paper are as follows.116

1) To introduce the maximum-likelihood (ML) volcanic117

ash Lidar retrieval (VALR-ML) based on a Monte118

Carlo microphysically oriented backscattering polari-119

metric forward model. The overall numerical model,120

called hydrometeor-ash particle ensemble scattering sim-121

ulator (HAPESS), takes into account the physical and122

electromagnetic behavior of ash particle polydispersions123

in a statistical way.124

2) To apply the VALR-ML algorithm to the VAMP data125

collected during two different explosive events of Etna126

volcano: a prolonged ash emission activity occurring127

in 2010 at the North East Crater and during a lava128

fountain in 2011 at the New South East Crater. The129

VALR-ML algorithm results are compared with those of130

ash concentration estimations, obtained from a paramet- 131

ric retrieval model to evaluate the impact of choosing 132

different approaches for ash-mass no-flight zone con- 133

touring [22], [30], [33]. 134

This paper is organized as follows. Section II illustrates 135

the Lidar polarimetric data processing technique, focusing on 136

the numerical forward model, simulation of Lidar observ- 137

ables (also reported in the Appendix) and ML retrieval 138

methodology. Section III focuses on the application of 139

VALR-ML to the two Etna eruptions in 2010 and 2011 and on 140

the comparison of results with those obtained by other para- 141

metric retrieval algorithms. Section IV draws the conclusion 142

and sets out future work. 143

II. POLARIMETRIC LIDAR DATA PROCESSING 144

The physical approach to Lidar remote sensing requires 145

developing a microphysical model that takes into account 146

the volcanic particles features (size, density, shape, and 147

refractivity) and its associated backscattering polarimetric 148

response. This forward model can then be used to approach 149

the inverse problem by training an estimation algorithm by 150

means of a set of realistic randomly generated simulations 151

of the forward model itself. This physical–statistical approach 152

should tackle the issues of nonuniqueness and uncertainty, 153

which affect any remote sensing problem. 154

A. Volcanic Particle Lidar Model 155

The microphysical–electromagnetic forward model summa- 156

rizes the ash particle features, derived from available experi- 157

mental data and considered as a priori information to constrain 158

the inverse solution [35]. The main microphysical properties 159

of ash particle useful for modeling are as follows: 160

1) particle size distribution (PSD); 161

2) density; 162

3) angular orientation; 163

4) axial ratio in case of spheroidal shapes; 164

5) relative dielectric constant models for the frequency/ 165

wavelength of interest [16]. 166

The optical Lidar response is mainly determined by the 167

PSD of each microphysical species within the detected range 168

volume. The PSD is usually modeled through either a nor- 169

malized Gamma or Weibull size distribution. In the case of a 170

multimode size distribution, it is always possible to suppose 171

more than one analytical PSD characterized by different mean 172

sizes and total number of particles. We adopt the scaled- 173

gamma (SG) PSD as a general model for both ash and 174

hydrometeor particles modeled as a polydispersion of ran- 175

domly oriented spheroidal particles [17]. If r is the radius of a 176

volume-equivalent spherical particle (SP) (i.e., a sphere whose 177

volume is equivalent to the associated spheroidal particle), 178

the SG PSD Np , for a generic class of ash particles p, can be 179

written as 180

Np(r) = Nnp

�
r

rnp

�μp

e
−�np

�
r

rnp

�
(1) 181

where rnp is the number-weighted mean radius, whereas the 182

“intercept” parameter Nnp and the “slope” parameter �np in 183

a logarithmic plane are related to the “shape” parameter μp 184
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and to the particle density ρp , as in [48]. If particles are185

volume-equivalent spheres, their mass is m p = ρp · (4π/3) ·r3
186

with a constant density ρp; the minimum and maximum radius187

are 0 and infinite so that the complete moment mnp of order n188

of Np can be expressed by189

mnp = Nnp(2rnp)
n+1

�
n+μp+1
np

�(n + μp + 1) (2)190

where � (n + 1) = n! if n is an integer. Using (2), the total191

volumetric number of particles Ntp [m−3] is Ntp = m0p,192

whereas the mass concentration Cp [mg/m3] is given by193

Cp = π/6 · ρp · m3p and the number-weighted particle mean194

radius rnp [μm] is defined by rmp = m1p/m0p195 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cp =
� ∞

0

4

3
πr3ρp(r)Np(r)dr = 4

3
πρpm3

rnp =
	 ∞

0 r N(r)dr	 ∞
0 N(r)dr

= m1

m0
= Dnp

2

(3a)196

where197

rep =
	 ∞

0 r3 Np(r)dr	 ∞
0 r2 Np(r)dr

= m3

m2
=

�
m3

m2

m0

m1

�
rnp (3b)198

where rep being the effective radius [μm], expressed as a ratio199

between the third and second moments of Np , proportional200

to the number-weighted particle mean radius rnp and its201

associated mean diameter Dnp.202

For general purposes, we can define a number of ash classes203

with respect to their average size. It is worth noting that204

the following size discrimination differs to the one usually205

adopted by volcanologists [25], [37]. The following ash-206

diameter classes are identified (as integer powers of 2):207

1) very fine ash (VA) with mean equivalent diameters208

between 2−3 and 23 μm;209

2) fine ash (FA) between 23 and 26 μm;210

3) coarse ash (CA) between 26 and 29 μm;211

4) small lapilli (SL) between 29 and 212 μm;212

5) large lapilli (LL) between 212 and 215 μm.213

Each diameter class may be subdivided with respect to other214

main parameters, e.g., the ash concentration, orientation angle,215

and axis ratio. The model of ash particle properties is com-216

pleted by considering the following sets of ash subclasses,217

listed in Table I:218

1) five classes for four different ash concentrations219

(i.e., very small = VC, small = SC, moderate = MC,220

intense = IC, and uniform = UC, where the latter221

includes all previous ones);222

2) five classes for five different orientations (i.e., tumbling223

with θ = 30° = TO.1, tumbling with θ = 45° = TO.2,224

tumbling with θ = 60° = TO.3, oblate = OO, and225

prolate = PO);226

3) five classes for two different axis ratio models (RB: ratio227

basaltic–andesitic and RR: ratio rhyolitic), even though228

we have here selected only the RB case considering the229

particle features from Etna (see also [6], [17]).230

Considering all combinations, we can obtain subclasses231

for each size class. In general, we can list 5 × 4 ×232

5×2 = 200 subclasses if VC, SC, MC, and IC are considered233

and 5×1×5×2 = 50 subclasses if UC is considered. A priori 234

information about the volcanic scenario allows tailoring the 235

overall simulations data set in terms of contributing subclasses. 236

The goal, as mentioned, is to build a data set of simulated 237

Lidar observables, obtained with a Monte Carlo random gen- 238

eration of ash particle ensembles following the statistics of 239

their main descriptive parameters. The minimum significant 240

number of ash parameters, identified for our purposes, is given 241

in Table I and listed as follows: 242

1) PSD mean equivalent radius re; 243

2) mass concentration Cp; 244

3) PSD shape parameter μp; 245

4) particle density ρp; 246

5) mean canting angle mθ of the particle orientation distri- 247

bution (POD) pp(θ); 248

6) POD canting angle standard deviation σθ ; 249

7) axial ratio ρax; 250

8) dielectric constant with an SiO2 weight WSiO2 depen- 251

dence for the real and imaginary parts and relative 252

humidity fraction. 253

Table I summarizes the range of values for each parameter, 254

either derived from [6], [23], and [44] or determined heuris- 255

tically [1]. Supplementary information, sketched in Table I, 256

is also described in [16]. 257

The Lidar backscattering coefficients βhh, βvv, and βvh at 258

horizontal (h) and vertical (v) polarization states can be written 259

in terms of the scattering matrix elements Sxy and PSD Np , as 260

βxy(γ) =
� π

0

� ∞

0
4π



S(b)
xy (r, θ, γ)



2
Np(r) 261

pp(θ)dr sin θdθ = �
4π S(b)

xy (r, θ, γ)
�

(4) 262

where x = h, v again stands for the receiving mode and 263

y = h, v for the transmitting mode polarization. Note that 264

βxy is usually expressed in [km−1 · sr−1]. Considering that 265

βxy can go typically from 10−6 up to 10−3 km−1 · sr−1, here 266

we prefer to express βxy in dBβ, that is, a value in decibel 267

equals 10 · log10(βxy) when βxy is expressed in [m−1 · sr−1], 268

in analogy to radar meteorology where dBZ is widely used. 269

This means that typical values of backscatter will go from 270

−60 up to −30 dBβ. Note that for completeness, in the 271

Appendix, expressions of Lidar polarimetric observables are 272

also given in terms of the Stokes vectors and the scattering 273

phase (Muller) matrix in order to show the parallelism of 274

definitions for both Lidar and radar applications. 275

The specific attenuation or extinction coefficient αxy is 276

expressed in [km−1] and is defined as 277

αxy(γ) = 2γIm


4π S(b)
xy (r, ϕ, γ)

�
. (5) 278

Similar to (4), if αxy is in [km−1], αXY = 4.343 · αxy 279

is conventionally expressed in dB/km. The Lidar linear co- 280

polarization and cross-polarization (adimensional) ratios are 281

defined, respectively, by 282

δco = βvv(γ) − βhh(γ)

βvv(γ) + βhh(γ)
(6) 283

δcr = βvh(γ)

βhh(γ)
. (7) 284
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TABLE I

OVERVIEW OF SUPERVISED ASH CLASS PARAMETERIZATION WITH THE LIST OF THE MAIN VARIABLES AND THEIR ASSUMED STATISTICAL
CHARACTERIZATION EITHER DERIVED FROM THE LITERATURE OR HEURISTICALLY DETERMINED. NOTE THAT PDF STANDS FOR

PROBABILITY DENSITY FUNCTION (U: UNIFORM), PSD FOR PARTICLE SIZE DISTRIBUTION, x FOR RANGE VARIABILITY

OF x PARAMETER, mx FOR MEAN OF x AND σx FOR STANDARD DEVIATION OF x , AND

AR FOR PARTICLE ASPECT RATIO (SEE [17] FOR DETAILS)

Typically, for a Lidar system, other parameters are285

also defined, such as the extinction to backscatter286

LidarLR [sr]287

Rβαx (γ) = αx x(γ)

βx x(γ)
. (8)288

If the extinction coefficients at two wavelengths γ1 and γ2 are289

known, the extinction Angström coefficient (unitless) can be290

determined by291

Aαx(γ1/γ2) = − ln[αx x(γ1)/αx x(γ2)]
ln

�
γ1
γ2

� (9)292

where γ1 < γ2. Similarly, we can define the backscatter-293

related Angström coefficient (unitless) through294

Aβx(γ1/γ2) = − ln[βx x(γ1)/βx x(γ2)]
ln

�
γ1
γ2

� (10)295

where βx x replaces αx x in (9).296

In order to compute the Lidar observables in (4)–(10),297

the nonsphericity of ash particles is considered by assuming298

spheroids. The particle scattering and absorption properties are299

computed using the T-matrix method, supplemented by the300

geometrical optics approach in the optical scattering regime 301

where T-matrix is subject to numerical convergence problems. 302

The T-matrix method has been widely applied to studying 303

nonabsorbing and non-SPs in the visible and infrared spectral 304

regions [20], [51]. The VALR algorithm can also include the 305

ash–hydrometeor mixed and coexisting classes, in principle, 306

by combining ash and hydrometeor modeling. Hydrometeor 307

scattering and modeling is well described elsewhere. Any 308

advancement in the understanding of the observed ash clouds 309

can be, in principle, incorporated within the forward model 310

HAPESS in order to generalize its validity and better deal 311

with uncertainty. 312

For this paper, the HAPESS simulations have been limited 313

at the optical wavelength 532 nm. The correlation between 314

the ash concentration Ca and the zenith-pointing visible Lidar 315

observables βhh, αhh, δco, and δcr is shown in Figs. 1 and 2 316

for each size class VA, FA, CA, SL, and LL and all orienta- 317

tions (PO, OO, TO.2 hereinafter called TO, and also SP, where 318

SP stands for spherical particle). From Figs. 1 and 2, we can 319

observe the following. 320

1) The plot of ash class centroids in terms of αhh and αhh 321

clearly shows that LL (the largest size class) exhibits 322

the smallest extinction and backscatter, whereas VA 323



IEE
E P

ro
of

MEREU et al.: ML RETRIEVAL OF VOLCANIC ASH CONCENTRATION AND PARTICLE SIZE 5

Fig. 1. Correlation between backscattering (in dBβ) and extinction coef-
ficient (in dB/km) for the VA size class in terms of ash concentration and
orientation class centroid noting that as the concentration increases, there is
an increase of the simulated backscattering and extinction coefficients.

(the smallest size class) exhibits the largest. This is324

related to the scattering properties at 532-nm wavelength325

LL scatter in deep optical regime, whereas VA follows326

the Mie scattering resonances.327

2) The LidarLR is almost constant with respect to328

co-polar backscatter coefficient βhh for all subclasses,329

but is sensitive to particle orientation. The LidarLR330

is more dispersed for prolate and oblate orientations331

depending on the particle size. These variations are332

due to microphysical differences of the classes and the333

predominance of the Mie resonant scattering when the334

particle size is comparable with the wavelength.335

3) The co-polar extinction coefficient αhh is also linearly336

correlated with Ca for all subclasses and for each337

frequency. The extinction coefficient highlights a similar338

behavior of the backscatter coefficient.339

4) The co-polarization ratio δco is not significantly corre-340

lated with Ca , but is sensitive to the particle orientation341

and to the frequency, particularly for the size class VA.342

Indeed, increasing the size class, we can observe that343

the SP shows a behavior intercepting other orientation344

(FA, CA, and SL) and mixing for the size class LL.345

5) The cross-polarization ratio δcr is independent of the346

concentration for all subclasses and varies with TO, PO,347

OO, and SP orientation models and for each frequency,348

but this behavior is not clear for the VA size class at349

each considered frequency.350

6) The ash mass concentration Ca is almost linearly cor-351

related with co-polar backscatter coefficient βhh for all352

subclasses and for each frequency. βhh values of LL are353

larger than those of the VA class since, for a given con-354

centration, in the wavelength-insensitive optical regime,355

the Lidar logarithmic response is proportional to the356

particle concentration number. The latter is smaller for357

LL particles than do for VA particles since, for a given358

concentration, the volumetric number of big particles is359

less than that of small particles.360

For inversion purposes, it is worth stressing that ash mass 361

concentration and mean equivalent diameter can be derived 362

from a combination of βhh and αhh, whereas δcr and δco may 363

be successfully used to better discriminate the ash classes. 364

B. Retrieval Algorithm and Parametric Models 365

Several caveats need to be accepted to properly deal with 366

Lidar products. The major critical issue is the estimation of 367

the range profile of the extinction coefficient αx x , which can 368

be derived by properly inverting the backscatter profiles in the 369

cloud region where the signal is not totally attenuated and 370

using ad hoc path attenuation correction algorithms [7], [14]. 371

The latter typically exploits the knowledge of the LR needed 372

to invert the Lidar equation after distinguishing the ash from 373

different aerosol contributions [8], [14], [15]. In order to 374

distinguish spherical from non-SPs, it is crucial to use a polari- 375

metric Lidar instrument [26], [27], [43]. Lidar retrievals are 376

most often based on a solution of the classic Lidar equation, 377

which is a single-scattering approximation that ignores higher 378

order MS. The latter can alter the apparent extinction or trans- 379

mittance of the medium, produce depolarization of the return 380

signal, and cause a stretching of the return pulse. For most 381

Lidar systems, the magnitude of the multiply-scattered signal 382

is so small these effects are insignificant and can often be 383

ignored without introducing significant errors, but its impact 384

should be considered in some way [43]. 385

The VALR algorithm allows deriving the main ash particles 386

features from polarimetric Lidar observables by means of 387

model-based supervised retrieval algorithm. The algorithm 388

consists of two main steps: ash classification and estimation, 389

both performed in a probabilistic framework using the ML 390

approach. The detection of the ash class from a Lidar polari- 391

metric observable set for each range volume can be performed 392

using an ML identification technique. This technique may be 393

considered a special case of the Bayesian approach. Within the 394

latter, the maximum a posteriori probability (MAP) criterion 395

can be used to carry out ash cloud classification in a model- 396

based supervised context [19]. The basic rule is to minimize 397

a proper “distance” (or metric) between the measured and 398

simulated polarimetric set, the latter computed by using the 399

microphysical scattering of each ash class, taking into account 400

both the system noise and the a priori available information. 401

If the latter is assumed uniform, MAP becomes the ML 402

method. 403

The ML technique basically reduces to a minimization 404

process in order to assign the “cth” class to each available 405

Lidar measurement. Under the assumption of: 1) Gaussian- 406

likelihood statistics of the difference between simulated and 407

measured observables and 2) uncorrelation between the differ- 408

ences (errors) of the same observables, the ML method reduces 409

to the minimization of a quadratic form. The estimated ash 410

class c and the retrieved microphysical parameters are those 411

that exhibit the minimum ML square distance d2 between 412

the Lidar measurement set xm and simulated set xs of a 413

given class c [16]. If only measurements of attenuation- 414

corrected backscatter coefficient βxxmc and linear cross-polar 415

ratio δcrm are available to define xm , we can write the following 416
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Fig. 2. Numerical results of the HAPESS simulations at 532-nm wavelength (VIS). Correlation between ash mass concentration Ca (mg/m3) and both
backscatter (in dBβ) and extinction coefficients (in dB/km) in the top panels (left and right panels, respectively) and between LidarLR and backscatter and
between ash mass concentration Ca (mg/m3) and cross-polarization in the bottom panels (left and right panels, respectively), for each ash class VA, FA, CA,
SL, and LL (2 × 2 panels), for different orientations (OO, PO, SP, and TO) and for uniform concentration (UC) (between 1 and 107 μg/m3). See text and
Table I for details.

simplified metrics:
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(11)421

where “T ” stands for the transpose operator and Cεxεx is 422

the auto-covariance of the error vector εx = xm − xs with 423

“−1” its inverse. In the simplified ML approach with uncor- 424

related errors, the terms of (11) are basically weighted by 425

the inverse of variances σ
2(c)
εβ and σ

2(c)
εδ of the simulated data 426

set for the class c. In (11), it is explicit that the simulated 427

vector xs depends on the unknown Ca and Dn for each 428

class c. 429
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To retrieve the ash parameters such as concentration and430

mean size within the selected class c, we can extract their431

value from the geophysical parameters whose associated xs432

minimizes the quadratic distance (11), that is,433

Ĉ(c)
a = C(c)

a |argmin�
C (c)

a ,r(c)
n

�
d2�C(c)

a , D(c)
n

��
(12a)434

D̂(c)
n = D(c)

n |argmin�
C (c)

a ,r(c)
n

�
d2�C(c)

a , D(c)
n

��
(12b)435

where argmin is the function providing the minimum of its436

argument. It is worth highlighting that these retrievals are437

conditioned by the numerical forward model accuracy or,438

in other words, by microphysical–electromagnetic assumptions439

and their representativeness with respect to the observed scene.440

The uncertainty of the ash microphysical estimates in (12),441

due to noise and the variability of all other geophysical442

parameters (see Table I), can be derived by taking into443

account the error statistics around the Lidar-based retrieval444

distance minimum. By assuming an uncertainty of error vector445

εx = xm − xs due to instrumental noise and forward model446

representativeness, we can define an error threshold δε asso-447

ciated with this uncertainty (e.g., this threshold δε on the448

backscatter coefficient can be assumed between 10% and 50%,449

here typically assumed to be 20%). Thus, standard deviations450

σCa and σDn of ash concentration and mean diameter estimates,451

respectively, are given by452

σ
(c)
Ĉa

= std


C(c)
a |d2�C(c)

a , D(c)
n

�
< δ2

ε

�
(13a)453

σ
(c)
D̂n

= std


D(c)
n |d2�C(c)

a , D(c)
n

�
< δ2

ε

�
(13b)454

where std is the standard deviation function.455

In the literature, we can find several parametric models456

allowing deriving the ash concentration from the measured457

backscatter coefficient. The appealing feature of parametric458

retrieval techniques is their simplicity in the application to459

measurements sets, even though the downside is less flex-460

ibility (due to the fixed regression model) and frequency461

scalability (due to the prescribed coefficients valid at a given462

wavelength).463

The first retrieval parametric model (hereinafter PM1),464

employed to evaluate the ash concentration CaPM1 [g/m3] from465

ash backscattering, is based on the following relation [27]:466

CaPM1 = kc�Rβαx �ρaβxxmc (14)467

where kc is the ash conversion factor, function of the PSD.468

For a large masse, kc is mainly dependent on the ash effective469

radius rep [see (1)] and given by (2/3) · rep [10], [29], [33].470

In [22], a value of about 10 μm is assumed for rep so that471

kc is hence set to 0.6 × 10−5 m. In (13), �Rβαx � is the472

mean value of the estimated LidarLR [1], [2], [22], ρa is473

the density of volcanic ash fixed to 2450 kg/m3 [31], and474

βhhm is the measured volcanic ash backscatter coefficient [39].475

The errors on ash mass concentration are evaluated from the476

uncertainties of Rβαx , βhhm, and ρa and reach a value of 55%.477

An additional uncertainty of about 50% must be considered478

due to the assumption of the effective radius [22], [33]. In the479

absence of other sources, we can derive Dnp from VALR-ML480

and assume rep = Dnp/2 to estimate kc in (13).481

Another parametric approach, hereinafter referred to PM2, 482

to derive the ash concentration CaPM2 [g/m3] from the mea- 483

sured ash backscatter [13], [10] can be expressed as 484

CaPM2 = �1.346 rep−0.156��Rβαx �βxxmc (15) 485

where rep is the ash effective radius. The expression between 486

square brackets is known as the mass–extinction conversion 487

factor for volcanic ash concentration, depending on the par- 488

ticle effective radius rep [10], [13]. Indeed, if the infor- 489

mation about the effective radius is not available, we can 490

use a simplified version of (14), where the square brackets 491

can be substituted by the mass–extinction conversion factor 492

of 1.45 g/m2 (95% of the compatible ensembles are in the 493

range 0.87–2.32 g/m2) [10]. The relative uncertainty of the 494

retrieved mass concentration is estimated to be about 40% and 495

mainly caused by the uncertainty of the microphysics of the 496

particles (size distribution, refractive index, and shape) [13]. 497

As in (13), if not available elsewhere, we can derive 498

rep = Dnp/2 from VALR-ML. 499

Both parametric PM1 and PM2 models have some a pri- 500

ori information derived from the literature or available 501

sources and exploit the correlation between concentration 502

and backscatter. Indeed, by exploiting the HAPESS forward 503

model illustrated in Section II-A, we can derive a parametric 504

regressive formula, hereinafter named VALR-Reg, valid at 505

visible wavelengths. A logarithmic relation for estimating 506

ash concentration CaVALRReg [g/m3] can be expressed as 507

follows: 508

ĈaVALRReg = 10[aVA+bVA(log10βxxmc)] (16) 509

where aVA and bVA (0.8643 and 0.8370) are regressive 510

coefficients, derived from HAPESS simulations, including all 511

particle orientations (OO, PO, SP, and TO) for VA size class 512

(Dn between 0.125 and 8 μm). 513

C. Multiple Scattering Impact 514

We can attempt to evaluate the uncertainty in the estimated 515

particle extinction due to MS within clouds or aerosol layers. 516

If the particle effective radius becomes larger, the probability 517

of MS increases since a stronger forward scattering causes 518

photons to remain in the field of view (FOV) of the detector. 519

This MS effect typically leads to an increase of the particle 520

backscatter up to 50% and a consequent underestimation of 521

path attenuation or atmospheric optical depth up to 30% [24]. 522

The MS can affect the Lidar measurements, especially in the 523

presence of large optical thicknesses. The MS signal increases 524

as the laser beam divergence, the FOV of the receiver, and the 525

distance between the laser source and the investigated volume 526

increase [24], [47]. 527

Modeling MS effect in Lidar response is not an easy 528

task due to path dependence and optical thickness variability. 529

In order to test the sensitivity of backscatter coefficient to the 530

MS, we can simulate its impact on the backscatter coefficient 531

by introducing an MS factor fMS within the conventional 532

Lidar equation. This MS factor fMS is by construction defined 533

between 0 (no MS present) and 1 (full MS). The MS-affected 534
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Fig. 3. Lidar data collected during the November 15, 2010 ash emission at Mt. Etna in Italy. Superimposition between measured (dark dots) and
simulated backscatter coefficient βhh (in dBβ) and cross-polarization ratio δcr (in %) at (Left) 300, (Middle) 400, and (Right) 500 m of altitude above
Etna summit craters, respectively. Different color identifies different concentration classes (IC in magenta, MC in green, SC in red, and VC in blue), all for the
VA class.

measured backscatter coefficient can be expressed as535

βMS
xxm(s) = βxxm(s)e2ζ (s) fMS = βxxmc(s)e

−2ζ (s)e2ζ (s) fMS
536

= βxxmc(s)e
−2ζ (s)(1 − fMS) (17)537

where s is the range coordinate and ζ is the optical thick-538

ness (due to the integral of the extinction coefficient αx x ) along539

the two-way path. For simplicity, fMS has been assumed to540

be range independent, whereas the quantity ζ (1 − fMS) can541

be interpreted as the “apparent” optical thickness affected by542

MS radiation recovery.543

In order to evaluate the uncertainty of the ash concentration544

and mean diameter estimates due to MS effects, we can545

perform a sensitivity analysis by replacing the measurements546

Lidar data set (corrected for two-way path attenuation 2ζ )547

with the corresponding quantity βMS
xxmc in (17) where fMS is548

supposed to be between 0 and 0.3, whereas ζ is taken, as a first549

approximation, from the path-attenuation correction algorithm.550

This simplified approach does not aim at quantifying the551

MS effects, but only the sensitivity of the retrievals to its552

presence. In this respect, we define the total MS standard553

deviations of Ca and Dn as554

σCaMS =
�

σ 2
Ĉa

+ σ 2
Ĉa f MS

(18a)555

σDnMS =
�

σ 2
D̂n

+ σ 2
D̂n f MS

(18b)556

where σ 2
Ĉa

, σ 2
D̂n

, σ 2
Ĉa fMS

, and σ 2
D̂n fMS

are the standard devia-557

tions of concentration and mean diameter without and with558

the MS contribution, respectively.559

III. APPLICATION TO ETNA CASE STUDIES560

The ML retrieval methodology has been tested on two Etna561

eruptions: the ash emission of November 15, 2010 and the lava562

fountain of August 12, 2011. We have applied the VALR-ML563

to Lidar data in order to retrieve the ash concentration and564

ash particle mean diameter using (12). These retrievals are565

also compared with those already estimated in [30] and [33]566

in order to show the VALR-ML potential.567

The VAMP scanning Lidar system, whose measurement568

results are used in this paper, transmits a linearly polarized569

laser light at 532-nm wavelength and detects parallel and570

cross-polarized components of the elastic backscattered simul- 571

taneously. The VAMP system allows moving in azimuth and 572

elevation with the possibility to scan the volcanic plume either 573

horizontally and/or vertically at a maximum speed of 0.1 rad/s. 574

This system was installed at the “M.G. Fracastoro” 575

astrophysical observatory (14.97° E, 37.69° N), located 576

at 1760 m on the SW flank of the volcano, only 7 km away 577

from the Etna summit craters, allowing the laser beam to scan 578

the atmosphere around the summit craters. 579

The attenuation-corrected measured backscatter coefficients 580

βxxmc in (10) have been obtained by using the Klett–Fernald 581

algorithm [8], [15]. The LR, as defined in (7), has been 582

assumed to be about 36 sr inside the plume, as described 583

in [22], whereas the contribution of background aerosol load 584

was considered negligible, less than about 107 m−1 · sr−1 in 585

the Mediterranean region in clear-sky conditions [36]. Details 586

on the Lidar data processing can be found in [22]. 587

To train the VALR-ML algorithm, considering the typ- 588

ical Etna eruption modes and the available observations 589

of distal plumes, we have used a simulated data set (see 590

Sections II-A and II-B) consisting of the smallest ash class, 591

VA, with orientation classes TO, OO, PO together with a 592

class SP. The validity of these a priori choices can be assessed 593

by comparing the measured and simulated observables for 594

both case studies. Note that in the two analyzed study cases, 595

we have selected only the backscatter coefficients correlated 596

with optical depths less than 0.5 and depolarization between 597

0.1 and 0.5 of ash plume close to Lidar system (about 6 km) 598

in order to avoid any possible MS influence. 599

A. Etna Ash Emission in 2010 600

The first case study is related to ash emission observed 601

by the VAMP system on November 15, 2010 when both 602

backscatter and depolarization channels were available. During 603

this event, ash emissions from the North East Crater and 604

high degassing from the Bocca Nuova Crater were clearly 605

visible [33]. Water vapor and ash emission occurred every 606

1–2 min, as reported by volcanologists during a field sur- 607

vey at the summit craters. Different volcanic plume sec- 608

tions were obtained by pointing the laser beam with a fixed 609
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Fig. 4. Lidar data collected during the November 15, 2010 ash emission at Mt. Etna in Italy. Maps of the measured backscatter coefficient (in dBβ) and
linear volumetric depolarization (in %), left and right panels, respectively, at each elevation (300, 400, and 500 m) above the Etna summit craters.

direction defined by azimuth angle of 17.3° and three different610

elevations (14.4°, 14.65°, and 14.9°), corresponding approxi-611

mately to altitudes of 300, 400, and 500 m above summit612

craters (we will refer to these elevations in terms of corre-613

sponding altitudes in the following text) [33].614

As mentioned, in order to find the ash size classes best fit-615

ting the measured backscatter at the three elevations, we have616

first selected a simulated data subset to train the VALR-ML617

algorithm. Fig. 3 shows both measured and simulated ash618

backscatter and cross-polarization coefficient, expressed in619

dBβ and in percent, respectively, for VA size class with IC,620

MC, SC, and VC concentrations (see Table I).621

Measured Lidar observables are fairly well represented622

and consistent with the simulated ones. In the ash plume623

layer, βxxmc reaches values larger than 2 × 10−5 m−1 · sr−1
624

(−47 dBβ) with the highest values of about 5×10−5 m−1· sr−1
625

(−43 dBβ), usually associated with a larger concentration 626

of volcanic aerosols [32]. In all cases, the average and 627

maximum linear cross-polarization is about 4%–6% and 628

24%–26%, respectively. The latter values are a clear indi- 629

cation of a complex morphology of ash particles, the rela- 630

tively high cross-polarization being a significant indicator of 631

nonsphericity [42]. 632

It is worth remembering that the uncertainty of δcrm comes 633

primarily from systematic errors in the setup of the Lidar 634

systems, which cannot be reduced by statistical methods. 635

Indeed, we have found that the main error sources originate 636

from the depolarization calibration (with large differences 637
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TABLE II

PERCENTAGE RATIO BETWEEN THE STANDARD DEVIATION (σCa /�Ca� AND σDn /�Dn�) AS WELL AS OVERALL MS-INCLUDED STANDARD
DEVIATION (σCaM S /�Ca� AND σDnM S /�Dn�) WITH RESPECT TO THE AVERAGE RETRIEVED VALUE FOR BOTH CONCENTRATION

AND MEAN DIAMETER, RESPECTIVELY, CONSIDERING VARIOUS fMS (0, 0.1, 0.2, AND 0.3) FOR THREE CASES: 1) AT THREE

ELEVATIONS DURING THE NOVEMBER 15, 2010 ERUPTION (USING THE DEPOLARIZATION MEASUREMENTS); 2) DURING

THE ETNA ERUPTION ON AUGUST 12, 2011 (USING THE DEPOLARIZATION MEASUREMENTS); AND
3) PROFILE OF ASH PLUME ON AUGUST 12, 2011 (USING THE FULL DATA SET)

between different calibration methods) and by backscatter638

coefficient correction due to the uncertainty in the height-639

dependent LidarLR and the uncertainty in the signal cali-640

bration in the assumed clean and free troposphere [9]. High641

particle depolarization values of about 30%–35% are observed642

in the main volcanic ash layer and are similar to those found643

elsewhere with values of 35%–38% [2], [5], [24]. The latter644

values suggest a large fraction of volcanic aerosols. Low645

values of δcrm and values between 1% < δcrm < 2% are646

typically associated with SPs [13].647

Fig. 4 shows, for each considered elevation (labeled with648

respect to height in meters above the crater), the measured649

backscatter coefficient, again expressed as dBβ, and the vol-650

umetric depolarization ratio. The latter presents a variabil-651

ity between 2% and 25%, whereas few pixels show higher652

values. By applying the VALR-ML algorithm to data of653

Fig. 4, Fig. 5 shows the ash concentration and mean diameter654

retrievals, considering both measured Lidar observables βxxmc655

and δcrm and only the backscatter coefficient βxxmc. The656

latter indicates that at each elevation angle and when we657

consider both the measured Lidar observables, the average658

concentration is about 8.63 ± 6.04 mg/m3 and the mean659

diameter is about 3.37 ± 2.04 μm. If only the backscatter660

coefficient is taken into account, the average concentration661

is about 13.01 ± 4.50 mg/m3 and the mean diameter about662

5.80 ± 2.46 μm. This means that using only backscatter663

measurements, the retrieved values are on average larger than664

about 66% and 58% for concentration and mean diameter,665

respectively, with respect to the two-observable setup. A more666

complete set of Lidar observables (two or more) tends to667

preserve the smaller sizes and concentrations with a larger668

variability (standard deviation) of both ash concentration and669

mean diameter. Note also that VALR-ML retrieval results 670

suggest that the availability of depolarization measurements: 671

1) provides a more likely retrieval of non-SPs with a given 672

shape/orientation and 2) has a positive impact on the class 673

discrimination. 674

Standard deviations σĈa
and σD̂n

of the Lidar-based 675

VALR-ML retrievals can be estimated using (13) for both ash 676

concentration and mean diameter, respectively. As mentioned 677

in Section II-C, the impact of MS can be at least evaluated 678

in terms of increased uncertainties σĈa fMS
and σD̂n fMS

of the 679

Lidar-based retrievals, playing with the MS factor fMS defined 680

in (17). In this respect, block a) of Table II shows the uncer- 681

tainties as percentage ratio of the averaged standard deviation 682

�σĈa
� (without MS effects) and �σĈa fMS

� (with MS effects) 683

with respect to the average �Ĉa� as well as the percentage 684

ratio for the estimate of the mean diameter D̂n . Note that the 685

average values are computed over all the performed retrievals 686

and are needed to introduce an overall score. The results of 687

Table II indicate that on average both ash concentration and 688

mean diameter retrievals are not very sensitive to MS effects 689

(e.g., concentration estimate uncertainty goes from about 40% 690

up to 43%, whereas the mean diameter one from 4% up to 7%). 691

Indeed, mean diameter estimates seem to be more affected by 692

the increase of the MS fraction fMS. This is not surprising 693

since, as already mentioned, we have properly selected only 694

measurements close to the Lidar system (about 6 km) in order 695

to limit any possible MS influence. 696

B. Etna Lava Fountain in 2011 697

The second test case analyzed here is related to the Etna 698

lava fountain of August 12, 2011, when both backscatter 699
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Fig. 5. Mt. Etna eruption on November 15, 2010. Maps of VALR-ML estimates of ash concentration and mean diameter at each elevation at 300, 400,
and 500 m (first, second, and third rows, respectively) above the summit crater of Mt. Etna using: 1) both measured Lidar observables (first two columns on
the left) βxxmc and δcrm and 2) only the backscatter coefficient (last two columns on the right) βxxmc.

Fig. 6. Lidar data collected during the August 12, 2011 lava fountain event at Mt. Etna in Italy. (Left) Cross section of the measured backscatter coefficient
(in dBβ) of ash plume as a function of altitude above the craters and range. (Right) PM1 retrieval of ash concentration considering a reff = 10 μm.

Fig. 7. Lidar data collected during the lava fountain event on August 12, 2011 at Mt. Etna Italy. Cross sections of VALR-ML estimates of ash concentration
and mean diameter, respectively, considering a (left two panels) complete HAPESS simulation data set and (right two panels) partial simulation data set
without spherical particles.

and depolarization channels were available. The scanning by700

the VAMP system was performed by changing the elevation701

angle between 20° and 59° with a fixed azimuth of 36.7°.702

Lidar measurements were acquired from 08:59 till 11:56 UTC. 703

The volcanic particles were observed between 6.5 and 8 km 704

from the Lidar station along the laser beam path, when 705
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Fig. 8. Lidar data collected at 09:01–09:11 UTC during the August 12, 2011
lava fountain event at Mt. Etna in Italy. (Top panels) Range profiles of ash
backscattering and depolarization measured by the VAMP system at Serra
La Nave station. (Bottom panels) VALR-ML estimated ash concentration and
mean diameter(solid curve) together with the same estimates plus its standard
deviation (dashed curve) derived from (12).

a column height of about 7 km above sea level was present,706

as shown by the cross section of the corrected backscatter707

coefficient in Fig. 6 [30].708

We have used the same simulated training data set, pre-709

viously discussed in Section II-A, obtaining the most likely710

ash size classes similar to those on November 15, 2010 but711

with a larger ash concentration (about one order of mag-712

nitude), as shown in Fig. 6 (right). The latter is derived713

from the PM1 algorithm showing a mean concentration of714

about 9 mg/m3.715

The VALR-ML-derived ash concentration and mean diam-716

eter are shown in Fig. 7, considering a training data set717

with (complete) and without (partial) SPs. In both cases,718

the average concentration is about 65.00 ± 37.3 mg/m3
719

and the mean diameter is about 3.01 ± 1.2 μm as shown720

in Table III, which also includes the sensitivity analysis due721

to the inclusion or exclusion of spherical particles within the722

training data set. The percentage ratio between the number723

of spherical classes and the number of total detected ash724

classes is about 37%. This ratio underlines the impact of725

volumetric depolarization measurements useful to distinguish726

the ash particle category. It is remarkable how the lack of727

depolarization observables does not significantly affect the728

retrievals of ash size and concentration.729

Note that for this case study, an independent estimate, based730

on ground measurements and forecast model simulations,731

of the ash PSD is available in terms of percentage weight [30].732

The latter is obtained using the Lagrangian numerical PUFF733

model [34], [38] inside the region investigated by Lidar [30].734

The measured size distribution is clearly asymmetric, well735

approximated by a log-normal or a Gamma distribution [30].736

The PUFF-based average ash particle size is about 5.3 μm,737

slightly larger than VALR-ML-based mean diameter retrieval738

(3.01 ± 1.22 μm).739

Fig. 8 shows the range profiles of the measured backscatter-740

ing coefficient and depolarization ratio, obtained by pointing741

Fig. 9. Correlation between the backscatter coefficient (in dBβ) and the ash
concentration (in g/m3) derived from: 1) the HAPESS simulations (red dots)
referring to VA class with OO, PO, SP, and TO orientation (see title of each
panel) and 2) parametric models VALR-Reg (blue dots), PM1 (yellow dots),
and PM2 (green dots), respectively.

Fig. 10. Etna eruption on August 12, 2011 at 09:01–09:11 UTC.
(Left) Comparison between the simulated (colored dots for each considered
class in Table I) and measured backscatter coefficient (black dots, in dBβ) and
cross-polarization ratio (black dots, in %). (Right) Profile of the concentration
estimates derived from PM1 (with effective radius equal to 10 μm), PM2,
VALR-Reg, and VALR-ML algorithms.

the VAMP laser beam toward the plume for 10 min 742

(09:01–09:11 UTC) and when the eruption column reached 743

the height of 9 ± 0.5 km. Lidar profiles show two layers with 744

different properties. The first ash layer, at 6.1 km from the 745

Lidar station along the laser beam, is characterized by lower 746

βxxmc of about −58 dBβ and δcrm of about 5%. The second 747

ash layer, located between 6.2 and 6.8 km, is characterized 748

by high peak values of βxxmc of about −41 dBβ and δcrm of 749

about 20%, suggesting that volcanic ash was mainly contained 750

in this layer [30]. 751

The VALR-ML retrievals in terms of concentration and 752

mean diameter are also shown in the lower panels of Fig. 8. 753

The ash concentration peak is about 100 mg/m3, whereas the 754

mean diameter reaches a maximum value of 6.3 μm. In order 755

to attribute an uncertainty to VALR estimations, we have 756

assumed a backscattering coefficient error of 50% so that 757
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TABLE III

MEAN VALUE (MEAN) AND STANDARD DEVIATION (STD) OF THE VALR-ML ESTIMATES OF VA CONCENTRATION AND MEAN DIAMETER DURING
THE ETNA LAVA FOUNTAIN ON AUGUST 12, 2011 CONSIDERING THE HAPESS SIMULATED DATA SET WITH BOTH

SPHEROIDAL AND SPHERICAL PARTICLES (COMPLETE) AND WITHOUT SPS (PARTIAL)

Fig. 11. Etna eruption on November 15, 2010. Panels (first, second, and third couple of plots) are related to elevations at 300, 400, and 500 m above the
Etna summit craters. Ash concentration derived by the PM1 retrieval using: 1) (left panel of each couple of plots) an ash effective radius of 10 μm as in [33]
and 2) (right panel of each photograph) the mean radius derived from the VALR-ML retrieval for each detected pixel, as shown in Fig. 5.

the standard deviation of both ash concentration and mean758

diameter are evaluated and associated with each estimate,759

as in (12). This uncertainty is shown in Fig. 8. Note that there760

are ranges in Fig. 8 where, for a higher backscatter, we can761

retrieve a lower concentration from VALR-ML. This may seem762

a contradiction, but looking at (3), we realize that the same763

βxxmc can be associated with a large concentration of small764

particles or, vice versa, with a small concentration of large765

particles. Thus, the simultaneous retrieval of both Ca and Dn766

is essential to interpret this ambiguity.767

The impact of MS in this case study shows the same768

behavior of the previously analyzed case, as shown in769

blocks b) and c) of Table II. Indeed, the uncertainty, expressed770

as a percentage ratio, highlights how a smaller variability of771

ash concentration and mean diameter is associated with an772

increase of fMS, especially for higher altitudes.773

C. Comparison With Parametric Model Retrievals774

There is a reasonable interest in comparing the VALR-ML775

technique with other parametric methods in order to under-776

stand the potential of a physically based approach with respect777

to more straightforward parametric procedures.778

The HAPESS forward model simulations at 532 nm can779

provide an effective way to compare the three paramet-780

ric retrieval approaches (13)–(15) together with VALR-ML.781

Fig. 9 shows the HAPESS simulations superimposed on results782

of the selected models PM1 in (13) (assuming LR = 36 sr783

and reff = �Dn�/2 from the considered size class) and784

PM2 in (14) (assuming a default mass–extinction conversion785

factor of 1.45 g/m2 and reff = �Dn�/2 from the considered size786

class) together with VALR-Reg in (15). The PM1 formula for787

all orientations shows a higher ash concentration, whereas the788

PM2 typically lies between PM1 and VALR-Reg (which is the 789

best approximation of HAPESS simulated data by definition). 790

For the same backscatter coefficient, the VALR-Reg model 791

tends to predict a larger ash concentration. Indeed, VALR-ML 792

estimates may be larger or smaller than VALR-Reg as the 793

forward model simulations are randomly distributed around 794

the regression curve. This is due to the inherent best-fitting 795

approach of the VALR-Reg model (and any other regressive 796

approach) that is based on a minimization of the simulated 797

points with respect to the modeled regression curve. 798

A first example of intercomparison is shown in Fig. 10 799

where the profile of Fig. 8, related to August 12, 2011 Lidar 800

data, is reconsidered. In the left panel, the HAPESS sim- 801

ulations and the few measured samples are superimposed. 802

The right panel highlights the estimates of three analyzed 803

parametric models compared with the VALR-ML one, already 804

shown in Fig. 8. The PM1 parameters in (13) are similar 805

to those in Fig. 9, but reff = 10 μm as assumed in [30], 806

whereas PM2 is applied without modifications. PM1 estimates, 807

in this setup, are not always larger than the others, whereas 808

VALR-ML ones are typically but not necessarily lower, being 809

PM2 and VALR-Reg in the bottom. 810

A second application of the parametric retrieval models 811

is shown in Fig. 11 for the event of Etna eruption on 812

November 15, 2010. Fig. 11 is, indeed, the output of a 813

sensitivity study as it plots both retrievals from PM1 in (13) 814

using reff = Dn /2 derived from VALR-ML and PM1 with a 815

fixed value reff = 10 μm as assumed in [30]. As expected, 816

VALR-ML-based ash concentration retrievals are partly lower 817

than those of PM1 due to the difference in the average particle 818

size. This points out the impact of an arbitrary assumption of 819

the effective ash radius on ash retrievals. 820
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Fig. 12. Etna eruption on November 15, 2010. Ash concentration range maps obtained applying the (Left) VALR-ML-derived mass concentration and (Right)
PM1-derived mass concentration and referred to 300, 400, and 500 m of elevation. Different colors identify the area of LOWER (<2 × 10−4 g/m3), LOW
(2 × 10−4 g/m3 − 2 × 10−3 g/m3), MEDIUM (2 × 10−3 g/m3 − 4 × 10−3 g/m3), and HIGH (>4 × 10−3 g/m3) ash contamination defined by the ICAO
regulations.

The Lidar data analysis may help quantifying the impact821

that ash emissions may have on aviation safety in order to822

prevent flights in areas of high ash contamination whose lower823

threshold is 2×10−4 g/m3 in compliance with the International824

Civil Aviation Organization (ICAO) directives. In this respect,825

besides 2 × 10−4 g/m3, we can define four concentration826

ranges using increasing ash concentration values equal to827

2×10−3, 3×10−3, and 4×10−3 g/m3. Using these thresholds,828

we can identify four areas: LOWER (less than 2×10−4 g/m3),829

LOW (between 2 × 10−4 and 2 × 10−3 g/m3), MEDIUM830

(between 2×10−3 and 4×10−3 g/m3), and HIGH (larger than 831

4 × 10−3 g/m3). 832

The results are shown in Fig. 12 in terms of spatial maps 833

for the November 15, 2010 Etna eruption. These panels 834

refer to elevations corresponding to altitudes of 300, 400, 835

and 500 m, respectively, (see Fig. 4) and shows only the 836

ash concentration maps retrieved from VALR-ML and PM1 837

(setup as in Fig. 11 which as a standard configuration [30]). 838

As expected, for each elevation, VALR-ML ash concentration 839

retrievals are generally lower than those derived from PM1. 840
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TABLE IV

CONTINGENCY TABLE RELATED TO ASH CONCENTRATION MAP AT THREE
ELEVATIONS DURING THE NOVEMBER 15, 2010 ETNA ASH EMISSION,

RELATED TO THREE DIFFERENT CONCENTRATION

THRESHOLDS (SEE TEXT FOR DETAILS)

Indeed, a smaller amount of pixels are labeled as LOW and a841

larger quantity as HIGH by VALR-ML, whereas most pixels842

are classified as HIGH and MEDIUM by PM1 model, coher-843

ently with the previous retrievals and discussion (see Fig. 8).844

Even though no validation data set is available to assess845

the overestimation of parametric models, it can be interesting846

to quantitatively evaluate the impact of Lidar-based retrievals847

in terms of no flight zones. To this end, we have computed848

these differences in terms of weighted occurrences with respect849

to three concentration thresholds (Th1 = 2 × 10−4 g/m3,850

Th2 = 2 × 10−3 g/m3, and Th3 = 4 × 10−3 g/m3) following851

the ICAO regulations, as shown in Table IV. Substantially,852

if both techniques are above the given threshold there is853

a HIT, if PM1 is below and VALR-ML is below there854

is NEG, if PM1 is above and VALR-ML is below there is855

a FALSE, if PM1 is below and VALR-ML is above there856

is a MISS. From Table IV, it emerges that, as expected,857

considering less restrictive ash thresholds the HIT cases tend858

to decrease, the NEG and MISS cases tend to increase linearly,859

whereas FALSE cases grow, but for the Th2 larger values are860

noted essentially due to the PM1 estimates around this Th2861

value (2 × 10−3 g/m3).862

IV. CONCLUSION863

The use of a scanning Lidar located near volcanic sites864

may be useful to monitor volcanic activity and help drasti-865

cally reduce the risks to aviation during these eruptions. The866

application of the VALR-ML algorithm to Lidar data allows867

estimating ash concentration and size class in a physically868

consistent framework in order to better understand the eruptive869

activity nature. The analyzed Etna cases, using the scanning870

Lidar system at visible wavelength, show that this sensor can871

be employed to detect the lowest ash concentration values of872

dispersed plumes in the atmosphere.873

The proposed VALR-ML methodology can help finding the874

main microphysical ash features and the areas characterized875

by a specific mass concentration of smallest ash particles.876

This information may help quantify the impact that ash877

emissions have on aviation safety to halt flights in areas of 878

high ash contamination (where the threshold is typically set to 879

2 × 10−3 g/m3) in compliance with the ICAO. In the consid- 880

ered case study, the flight-interdicted area has been extended 881

when using the proposed VALR-ML due to lower estimates of 882

ash concentrations. Moreover, the knowledge of reliable ash 883

concentration in the atmosphere may help better define the 884

main eruption source parameters within ash dispersal models, 885

thus improving our ability to forecast volcanic ash cloud aerial 886

distribution. 887

The impact of using an advanced retrieval algorithm, such 888

as VALR-ML, with respect to parametric retrieval techniques, 889

has an appealing potential for improving ash mass concentra- 890

tion retrievals. The VALR-ML approach allows performing a 891

more accurate ash concentration retrieval using several Lidar 892

observables. If several Lidar observables are not available, 893

the VALR-Reg model represents a physically based efficient 894

compromise. Future work shall be devoted to assess the results 895

presented in this paper by selecting more case studies where 896

other Lidar data are collected or performing new measure- 897

ments with the aim of testing the model. 898

APPENDIX 899

FROM SCATTERING MATRIX TO MUELLER 900

MATRIX AND LIDAR OBSERVABLES 901

Electromagnetic scattering simulations can be performed in 902

two basic and mutually related coordinate systems: the for- 903

ward scatter alignment (FSA) convention and the backscatter 904

alignment (BSA) convention [21], [50]. Given an incident 905

field upon the target, in the FSA system, the scattered far- 906

field is basically an outward wave from the target, whereas 907

in the BSA system, it is a backward wave incident upon the 908

target itself (useful for monostatic systems). The polarimetric 909

response of a point or distributed target can be obtained by 910

simultaneously measuring both the amplitude and phase of 911

the scattered field using two orthogonal channels [26]. If the 912

incident and scattered field vectors are decomposed into their 913

horizontal (parallel) and vertical (orthogonal) components 914

Ei = Ei
v v̂i + Ei

h ĥi (A.1) 915

Es = Es
v v̂s + Es

h ĥs (A.2) 916

the polarimetric response can be represented by the scattering 917

matrix S, which for plane wave illumination is given by [41] 918

Es = e jkr

r

�
Svv Svh
Shv Shh

�
FSA

Ei = SFSA Ei (A.3) 919

where r is the distance from the sensor to the center of the 920

distributed target and Spq are called the scattering amplitudes 921

in the FSA convention with SFSA the complex scattering 922

matrix. In the backscattering case, reciprocity implies that 923

Svh = Shv. Each complex element of the scattering matrix 924

can be represented by [26] 925

Spq = |Spq |e jφpq =
N�

n=1

|Sn
pq |eiφn

pq (A.4) 926

with p, q = h, v and where N is the total number of 927

scatters that constitute the distributed target, each having 928
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scattering amplitude |Sn
pq | and phase φn

pq . It is possible to use a929

more efficient approach to represent the relationship between930

the scattered and incident field, based on the Stokes vector.931

Indeed, each complex scattering matrix (2×2) is converted to932

their corresponding real Mueller matrix or Stokes scattering933

operators (4 × 4). The elements of the Stokes vector are934

defined as935

I =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I = 

Ei
h



2 + 

Ei
v



2

Q = 

Ei
h



2 − 

Ei
v



2

U = −2Re
�

Ei∗
h Ei

v

�
V = 2Im

�
Ei∗

h Ei
v

�
.

(A.5)936

Physically I is proportional to the total power, whereas Q, U,937

and V contain the information about the polarization state. The938

modified Stokes vector representation of a polarized wave can939

also be introduced by defining Iv = I + Q and Ih = I − Q940

instead of I and Q, respectively.941

The relationship between transmitted and scattered Stokes942

vectors is expressed as a function of ensemble-averaged943

Mueller scattering matrix MFSA (in m2) and decreases as 1/r2
944

for a mixture of particles [28], [41]945

I s = 1

r2 MFSA I i . (A.6)946

A further useful definition is the normalized ensemble-947

averaged Mueller scattering matrix M̃ or scattering phase948

matrix949

M̃ = 4π

ks
MFSA (A.7)950

where all elements are averaged over the size distribution and951

orientation of the particle polydispersion, as shown in (3). For952

example, it holds953

M11 =
�

1

2
(|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2)

�
954

M22 =
�

1

2
(|Shh|2 − |Shv|2 − |Svh|2 + |Svv|2)

�
955

with the angle brackets standing for the ensemble average.956

The elements of the ensemble-average Mueller matrix MFSA957

are quantities given in terms of the elements of the scattering958

matrix SFSA:959

It is noted that the reciprocity relation, which is a manifes-960

tation of the symmetry of the scattering process with respect961

to an inversion of time [28], satisfies the condition Shv = Svh962

in FSA convention and Shv = −Svh in BSA. The Mueller963

matrix of a distributed target of partially oriented particles,964

for which Shv is uncorrelated with Svv and Shh contains only965

eight nonzero elements [41]966

MFSA =

⎡
⎢⎢⎣

M11 M12 0 0
M21 M22 0 0

0 0 M33 M34
0 0 M43 M44

⎤
⎥⎥⎦. (A.8)967

For randomly oriented particles, the scattering medium is968

macroscopically isotropic and mirror symmetric with respect969

to any plane, and in backward direction (θ = 180°). This 970

implies the following conditions in (A.8): 971

M44(180°) = M11(180°) − 2M22(180°) 972

M33(180°) = −M22(180°) 973

M12(180°) = M21(180°) = M34(180°) = 0. 974

For elastic Lidar applications, it is usual to define the 975

backscattering coefficients (in km−1 sr−1), co-polar and cross- 976

polar, defined as combination of the elements of MFSA as 977

(see [10], [24], [26]) 978

βhh = �4π |Shh|2� =
�

2π (M11 − M12 − M21 + M22)

103

�
979

βvv = �4π |Svv|2� =
�

2π(M11 + M12 + M21 + M22)

103

�
980

βhv = �4π |Shv |2� =
�

2π(M11 + M12 − M21 − M22)

103

�
. 981

(A.9) 982

The Lidar linear cross-polarization ratio and co-polarization 983

are defined, respectively, as 984

δcr = βhv

βhh
= �M11 + M12 − M21 − M22�

�M11 − M12 − M21 + M22� 985

δco = βvv − βhh

βvv + βhh
= �M12 + M21�

�M11 + M22� . (A.10) 986

It is noted that in the case of randomly oriented particles 987

M12 = M21 = 0 so that the expression of δcr is equal to 988

the ratio of the copolar elements only of the Mueller matrix, 989

as shown in (5) and (6). The Lidar ratio, defined in (7), 990

is expressed as a function of the single-scattering albedo 991

w0 and M11 992

Rβα = w0 M11

4π
(A.11) 993

where 994

w0 = ks

ke
= M11

ke
(A.12) 995

being ks and ke the scattering and extinction coefficients 996

(in km−1), respectively, of the particle ensemble, the latter 997

expressed by the extinction theorem 998

ke = 4π

k0
�Im{M11} + Im{M22}�. 999

Note that, in analogy to Lidar, for radar applications several 1000

similar observables can be defined such as the radar volumetric 1001

co-polar reflectivity (in m2 · m−3) at horizontal and vertical 1002

polarizations [50] 1003

ηhh =
�

4π
1

2
(M11 − M12 − M21 + M22)

�
1004

ηvv =
�

4π
1

2
(M11 + M12 + M21 + M22)

�
(A.13) 1005

where the elements of the Mueller matrix are, indeed, typically 1006

expressed in BSA convention. The volumetric cross-polar 1007

reflectivity (in m2 · m−3) is defined as 1008

ηhv =
�

4π
1

2
(M11 + M12 − M21 − M22)

�
. (A.14) 1009
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The radar reflectivity factor (in dBZ if the reflectivity is in1010

mm6 · m−3) is defined as1011

Zxy = 10log10
γ22π

π5|K p|2 ηxy (A.15)1012

where K p is a dielectric factor and ηxy is expressed in1013

mm6 · m−3. The differential reflectivity (in decibel) and linear1014

depolarization ratio (in decibel) can also be defined as1015

Zdr = 10 log10
ηhh

ηvv
1016

Ldr = 10 log10
ηvh

ηhh
. (A.16)1017
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Maximum-Likelihood Retrieval of Volcanic Ash
Concentration and Particle Size From

Ground-Based Scanning Lidar
Luigi Mereu , Simona Scollo, Saverio Mori , Member, IEEE, Antonella Boselli,

Giuseppe Leto, and Frank S. Marzano, Fellow, IEEE

Abstract— An inversion methodology, named maximum-1

likelihood (ML) volcanic ash light detection and ranging (Lidar)2

retrieval (VALR-ML), has been developed and applied to estimate3

volcanic ash particle size and ash mass concentration within4

volcanic plumes. Both estimations are based on the ML approach,5

trained by a polarimetric backscattering forward model coupled6

with a Monte Carlo ash microphysical model. The VALR-ML7

approach is applied to Lidar backscattering and depolarization8

profiles, measured at visible wavelength during two eruptions9

of Mt. Etna, Catania, Italy, in 2010 and 2011. The results10

are compared with those of ash products derived from other11

parametric retrieval algorithms. A detailed comparison among12

these different retrieval techniques highlights the potential of13

VALR-ML to determine, on the basis of a physically consistent14

approach, the ash cloud area that must be interdicted to flight15

operations. Moreover, the results confirm the usefulness of16

operating scanning Lidars near active volcanic vents.17

Index Terms— Ash mean size, backscattering and depolar-18

ization, explosive eruption, retrieval algorithms, scanning light19

detection and ranging (Lidar), volcanic ash concentration.20

I. INTRODUCTION21

AN EXPLOSIVE volcanic eruption can cause a variety22

of severe and widespread threats to human well-being23

and the environment [1], [3], [12]. The ash produced during24

explosive eruptions has a huge impact on the global environ-25

ment. Major eruptions strongly influence the earth’s radiative26

balance by injecting into the atmosphere a large quantity of27

particles and gases, which produce secondary aerosols [18].28

Manuscript received July 26, 2017; revised January 22, 2018; accepted
AQ:1 March 15, 2018. This work was supported in part by the European

FP7 Project APHORISM (FP7–SPA-2013) under Grant 606738 and in
part by H2020 Project EUROVOLC (call H2020-INFRAIA-2017-1) under
Grant 731070-2. (Corresponding author: Luigi Mereu.)

AQ:2 L. Mereu, S. Mori, and F. S. Marzano are with the Dipartimento di
Ingegneria dell’Informazione, Sapienza Università di Rome, Rome, Italy,
and also with the CETEMPS Center of Excellence, Università dell’Aquila,
L’Aquila, Italy (e-mail: mereu@diet.uniroma1.it; mori@diet.uniroma1.it;
marzano@diet.uniroma1.it).

S. Scollo is with the Istituto Nazionale di Geofisica e Vulcanologia, Osserva-
torio Etneo, Sezione di Catania, Catania, Italy (e-mail: simona.scollo@ingv.it).

A. Boselli is with the Istituto di Metodologie per l’Analisi
Ambientale, Consiglio Nazionale delle Ricerche, Naples, Italy (e-mail:
antonella.boselli@imaa.cnr.it).

G. Leto is with the Istituto Nazionale di Astrofisica, Osservatorio Astrofisico
di Catania, Catania, Italy, (e-mail: gle@oact.inaf.it).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2826839

Although the concentration of stratospheric volcanic aerosols 29

is usually very low and rare, they can have notable impact on 30

global climate due to their large-scale dispersion and residence 31

times in the order of months or even several years. By contrast, 32

the residence time of volcanic aerosols in the troposphere is 33

only in the order of several days or months depending on 34

the eruption intensity and duration. Furthermore, its spatial 35

distribution can be rather inhomogeneous affected mainly by 36

the eruption and atmospheric variability, so that the assessment 37

of their radiative effects is much more complicated [10]. 38

Volcanic ash is critical information for the flight safety of 39

jet-driven aircrafts. Indeed, due to their low melting tempera- 40

ture and their sharp-edged shapes, ash particles can severely 41

damage the turbines and again here and front windows of 42

aircraft [2], [4], [21], [29]. The ash concentration in the 43

atmosphere is an important parameter that needs to be detected 44

with some accuracy [42], because air traffic must be suspended 45

in the regions in which volcanic ash concentrations exceed 46

certain thresholds [10], [11]. 47

In recent years, light detection and ranging (Lidar) systems 48

have been widely used to study volcanic aerosol clouds 49

produced by major volcanic eruptions [22]. Lidar techniques 50

are a powerful method for monitoring the dispersion of a 51

volcanic cloud in the atmosphere because of their profiling 52

capability at very high range resolution. A Lidar can measure 53

not only backscatter but also depolarization once two-way 54

path attenuation is properly corrected. Lidar observations 55

can provide plume geometrical properties (i.e., top, bottom, 56

and thickness), its optical depth, aerosol category, and also 57

aerosol microphysical properties if advanced multiwavelength 58

Raman Lidar systems are used [45]. Using the depolarization 59

channel, it is also possible to distinguish various shapes of ash 60

particles [10], [12]. 61

The capability of Lidar systems to detect the finest particles 62

in volcanic plume and reliably estimate the ash concentra- 63

tion mainly depends on instrumental characteristics and the 64

type of explosive activity. For typical ground-based dual- 65

polarized Lidars, the evaluation of the aerosol backscattering 66

and depolarization coefficients may be carried out only in 67

those regions where the Lidar signal is not extinguished inside 68

the volcanic plume optical thickness. In these cases, assuming 69

the knowledge of the Lidar ratio (LR) between extinction 70

and backscattering, path attenuation correction algorithms can 71

be applied to reconstruct the effective Lidar observable [22]. 72
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Optically thick plumes can strongly attenuate the Lidar beam,73

reducing its penetration capability due to absorption effects.74

Inversion approaches can mitigate the effect of path attenuation75

by reconstructing the backscatter profile if the return signal is76

detectable [7], [15]. On the other hand, Lidar beam divergence77

is generally very small (about a few m3 at ranges of tens of78

kilometer) so that they can have a better spatial resolution than79

that of a radar microwave system, even though at the expense80

of a smaller wide-area search capability. Multiple scatter-81

ing (MS) is a further effect that can impact the ash retrieval82

due to the apparent increase of the return power [46], [47].83

However, for relatively low attenuation and/or highly directive84

lasers close to the explosive volcanic source, the MS tends to85

be negligible.86

Lidar sensors with scanning capability, installed a few87

kilometers away from the summit craters, can be valid supports88

in monitoring the finest airborne ash particles that are rapidly89

dispersed by the prevailing wind. Lidar measurements near90

an active volcano are crucial for continuous monitoring of91

long-lived explosive activity and improving the volcanic ash92

plume forecast during volcanic crises; nevertheless, Lidar93

systems can be seriously damaged by ash fallout if not94

properly protected. The measurements near Etna volcano in95

Italy, one of the most active volcanoes on the earth, were96

performed with the volcanic ash monitoring by polariza-97

tion (VAMP) Lidar [43]. The VAMP system is a portable98

dual-polarized Lidars with scanning capabilities, allowing99

detecting elastic backscattered radiation at 532 nm [22]. This100

system is able to provide highly accurate measurements of101

the backscatter coefficient and low depolarization ratio with102

a range resolution of 60 m and an azimuth resolution of 1°.103

Whereas water clouds and fog contain spherical liquid droplets104

exhibiting low aersosol depolarization values, volcanic ash105

particles are generally asymmetrical associated with high106

aerosol depolarization values. The latter is readily detected107

by the VAMP system thanks to its dual polarization chan-108

nels. Some recent eruptions of Etna volcano were exten-109

sively observed by the VAMP system. The calibration of the110

VAMP system and a detailed description of the apparatus are111

reported in [22] and [32]. These observations have opened112

the possibility to validate the scanning mode of Lidar instru-113

ments and, now, to test different retrieval approaches of ash114

properties.115

The main goals of this paper are as follows.116

1) To introduce the maximum-likelihood (ML) volcanic117

ash Lidar retrieval (VALR-ML) based on a Monte118

Carlo microphysically oriented backscattering polari-119

metric forward model. The overall numerical model,120

called hydrometeor-ash particle ensemble scattering sim-121

ulator (HAPESS), takes into account the physical and122

electromagnetic behavior of ash particle polydispersions123

in a statistical way.124

2) To apply the VALR-ML algorithm to the VAMP data125

collected during two different explosive events of Etna126

volcano: a prolonged ash emission activity occurring127

in 2010 at the North East Crater and during a lava128

fountain in 2011 at the New South East Crater. The129

VALR-ML algorithm results are compared with those of130

ash concentration estimations, obtained from a paramet- 131

ric retrieval model to evaluate the impact of choosing 132

different approaches for ash-mass no-flight zone con- 133

touring [22], [30], [33]. 134

This paper is organized as follows. Section II illustrates 135

the Lidar polarimetric data processing technique, focusing on 136

the numerical forward model, simulation of Lidar observ- 137

ables (also reported in the Appendix) and ML retrieval 138

methodology. Section III focuses on the application of 139

VALR-ML to the two Etna eruptions in 2010 and 2011 and on 140

the comparison of results with those obtained by other para- 141

metric retrieval algorithms. Section IV draws the conclusion 142

and sets out future work. 143

II. POLARIMETRIC LIDAR DATA PROCESSING 144

The physical approach to Lidar remote sensing requires 145

developing a microphysical model that takes into account 146

the volcanic particles features (size, density, shape, and 147

refractivity) and its associated backscattering polarimetric 148

response. This forward model can then be used to approach 149

the inverse problem by training an estimation algorithm by 150

means of a set of realistic randomly generated simulations 151

of the forward model itself. This physical–statistical approach 152

should tackle the issues of nonuniqueness and uncertainty, 153

which affect any remote sensing problem. 154

A. Volcanic Particle Lidar Model 155

The microphysical–electromagnetic forward model summa- 156

rizes the ash particle features, derived from available experi- 157

mental data and considered as a priori information to constrain 158

the inverse solution [35]. The main microphysical properties 159

of ash particle useful for modeling are as follows: 160

1) particle size distribution (PSD); 161

2) density; 162

3) angular orientation; 163

4) axial ratio in case of spheroidal shapes; 164

5) relative dielectric constant models for the frequency/ 165

wavelength of interest [16]. 166

The optical Lidar response is mainly determined by the 167

PSD of each microphysical species within the detected range 168

volume. The PSD is usually modeled through either a nor- 169

malized Gamma or Weibull size distribution. In the case of a 170

multimode size distribution, it is always possible to suppose 171

more than one analytical PSD characterized by different mean 172

sizes and total number of particles. We adopt the scaled- 173

gamma (SG) PSD as a general model for both ash and 174

hydrometeor particles modeled as a polydispersion of ran- 175

domly oriented spheroidal particles [17]. If r is the radius of a 176

volume-equivalent spherical particle (SP) (i.e., a sphere whose 177

volume is equivalent to the associated spheroidal particle), 178

the SG PSD Np , for a generic class of ash particles p, can be 179

written as 180

Np(r) = Nnp

(
r

rnp

)μp

e
−�np

(
r

rnp

)
(1) 181

where rnp is the number-weighted mean radius, whereas the 182

“intercept” parameter Nnp and the “slope” parameter �np in 183

a logarithmic plane are related to the “shape” parameter μp 184
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and to the particle density ρp , as in [48]. If particles are185

volume-equivalent spheres, their mass is m p = ρp · (4π/3) ·r3
186

with a constant density ρp; the minimum and maximum radius187

are 0 and infinite so that the complete moment mnp of order n188

of Np can be expressed by189

mnp = Nnp(2rnp)
n+1

�
n+μp+1
np

�(n + μp + 1) (2)190

where � (n + 1) = n! if n is an integer. Using (2), the total191

volumetric number of particles Ntp [m−3] is Ntp = m0p,192

whereas the mass concentration Cp [mg/m3] is given by193

Cp = π/6 · ρp · m3p and the number-weighted particle mean194

radius rnp [μm] is defined by rmp = m1p/m0p195 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cp =
∫ ∞

0

4

3
πr3ρp(r)Np(r)dr = 4

3
πρpm3

rnp =
∫ ∞

0 r N(r)dr∫ ∞
0 N(r)dr

= m1

m0
= Dnp

2

(3a)196

where197

rep =
∫ ∞

0 r3 Np(r)dr∫ ∞
0 r2 Np(r)dr

= m3

m2
=

(
m3

m2

m0

m1

)
rnp (3b)198

where rep being the effective radius [μm], expressed as a ratio199

between the third and second moments of Np , proportional200

to the number-weighted particle mean radius rnp and its201

associated mean diameter Dnp.202

For general purposes, we can define a number of ash classes203

with respect to their average size. It is worth noting that204

the following size discrimination differs to the one usually205

adopted by volcanologists [25], [37]. The following ash-206

diameter classes are identified (as integer powers of 2):207

1) very fine ash (VA) with mean equivalent diameters208

between 2−3 and 23 μm;209

2) fine ash (FA) between 23 and 26 μm;210

3) coarse ash (CA) between 26 and 29 μm;211

4) small lapilli (SL) between 29 and 212 μm;212

5) large lapilli (LL) between 212 and 215 μm.213

Each diameter class may be subdivided with respect to other214

main parameters, e.g., the ash concentration, orientation angle,215

and axis ratio. The model of ash particle properties is com-216

pleted by considering the following sets of ash subclasses,217

listed in Table I:218

1) five classes for four different ash concentrations219

(i.e., very small = VC, small = SC, moderate = MC,220

intense = IC, and uniform = UC, where the latter221

includes all previous ones);222

2) five classes for five different orientations (i.e., tumbling223

with θ = 30° = TO.1, tumbling with θ = 45° = TO.2,224

tumbling with θ = 60° = TO.3, oblate = OO, and225

prolate = PO);226

3) five classes for two different axis ratio models (RB: ratio227

basaltic–andesitic and RR: ratio rhyolitic), even though228

we have here selected only the RB case considering the229

particle features from Etna (see also [6], [17]).230

Considering all combinations, we can obtain subclasses231

for each size class. In general, we can list 5 × 4 ×232

5×2 = 200 subclasses if VC, SC, MC, and IC are considered233

and 5×1×5×2 = 50 subclasses if UC is considered. A priori 234

information about the volcanic scenario allows tailoring the 235

overall simulations data set in terms of contributing subclasses. 236

The goal, as mentioned, is to build a data set of simulated 237

Lidar observables, obtained with a Monte Carlo random gen- 238

eration of ash particle ensembles following the statistics of 239

their main descriptive parameters. The minimum significant 240

number of ash parameters, identified for our purposes, is given 241

in Table I and listed as follows: 242

1) PSD mean equivalent radius re; 243

2) mass concentration Cp; 244

3) PSD shape parameter μp; 245

4) particle density ρp; 246

5) mean canting angle mθ of the particle orientation distri- 247

bution (POD) pp(θ); 248

6) POD canting angle standard deviation σθ ; 249

7) axial ratio ρax; 250

8) dielectric constant with an SiO2 weight WSiO2 depen- 251

dence for the real and imaginary parts and relative 252

humidity fraction. 253

Table I summarizes the range of values for each parameter, 254

either derived from [6], [23], and [44] or determined heuris- 255

tically [1]. Supplementary information, sketched in Table I, 256

is also described in [16]. 257

The Lidar backscattering coefficients βhh, βvv, and βvh at 258

horizontal (h) and vertical (v) polarization states can be written 259

in terms of the scattering matrix elements Sxy and PSD Np , as 260

βxy(λ) =
∫ π

0

∫ ∞

0
4π

∣∣S(b)
xy (r, θ, λ)

∣∣2
Np(r) 261

pp(θ)dr sin θdθ = 〈
4π S(b)

xy (r, θ, λ)
〉

(4) 262

where x = h, v again stands for the receiving mode and 263

y = h, v for the transmitting mode polarization. Note that 264

βxy is usually expressed in [km−1 · sr−1]. Considering that 265

βxy can go typically from 10−6 up to 10−3 km−1 · sr−1, here 266

we prefer to express βxy in dBβ, that is, a value in decibel 267

equals 10 · log10(βxy) when βxy is expressed in [m−1 · sr−1], 268

in analogy to radar meteorology where dBZ is widely used. 269

This means that typical values of backscatter will go from 270

−60 up to −30 dBβ. Note that for completeness, in the 271

Appendix, expressions of Lidar polarimetric observables are 272

also given in terms of the Stokes vectors and the scattering 273

phase (Muller) matrix in order to show the parallelism of 274

definitions for both Lidar and radar applications. 275

The specific attenuation or extinction coefficient αxy is 276

expressed in [km−1] and is defined as 277

αxy(λ) = 2λIm
{

4π S(b)
xy (r, ϕ, λ)

}
. (5) 278

Similar to (4), if αxy is in [km−1], αXY = 4.343 · αxy 279

is conventionally expressed in dB/km. The Lidar linear co- 280

polarization and cross-polarization (adimensional) ratios are 281

defined, respectively, by 282

δco = βvv(λ) − βhh(λ)

βvv(λ) + βhh(λ)
(6) 283

δcr = βvh(λ)

βhh(λ)
. (7) 284
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TABLE I

OVERVIEW OF SUPERVISED ASH CLASS PARAMETERIZATION WITH THE LIST OF THE MAIN VARIABLES AND THEIR ASSUMED STATISTICAL
CHARACTERIZATION EITHER DERIVED FROM THE LITERATURE OR HEURISTICALLY DETERMINED. NOTE THAT PDF STANDS FOR

PROBABILITY DENSITY FUNCTION (U: UNIFORM), PSD FOR PARTICLE SIZE DISTRIBUTION, x FOR RANGE VARIABILITY

OF x PARAMETER, mx FOR MEAN OF x AND σx FOR STANDARD DEVIATION OF x , AND

AR FOR PARTICLE ASPECT RATIO (SEE [17] FOR DETAILS)

Typically, for a Lidar system, other parameters are285

also defined, such as the extinction to backscatter286

LidarLR [sr]287

Rβαx (λ) = αx x(λ)

βx x(λ)
. (8)288

If the extinction coefficients at two wavelengths λ1 and λ2 are289

known, the extinction Angström coefficient (unitless) can be290

determined by291

Aαx(λ1/λ2) = − ln[αx x(λ1)/αx x(λ2)]
ln

(
λ1
λ2

) (9)292

where λ1 < λ2. Similarly, we can define the backscatter-293

related Angström coefficient (unitless) through294

Aβx(λ1/λ2) = − ln[βx x(λ1)/βx x(λ2)]
ln

(
λ1
λ2

) (10)295

where βx x replaces αx x in (9).296

In order to compute the Lidar observables in (4)–(10),297

the nonsphericity of ash particles is considered by assuming298

spheroids. The particle scattering and absorption properties are299

computed using the T-matrix method, supplemented by the300

geometrical optics approach in the optical scattering regime 301

where T-matrix is subject to numerical convergence problems. 302

The T-matrix method has been widely applied to studying 303

nonabsorbing and non-SPs in the visible and infrared spectral 304

regions [20], [51]. The VALR algorithm can also include the 305

ash–hydrometeor mixed and coexisting classes, in principle, 306

by combining ash and hydrometeor modeling. Hydrometeor 307

scattering and modeling is well described elsewhere. Any 308

advancement in the understanding of the observed ash clouds 309

can be, in principle, incorporated within the forward model 310

HAPESS in order to generalize its validity and better deal 311

with uncertainty. 312

For this paper, the HAPESS simulations have been limited 313

at the optical wavelength 532 nm. The correlation between 314

the ash concentration Ca and the zenith-pointing visible Lidar 315

observables βhh, αhh, δco, and δcr is shown in Figs. 1 and 2 316

for each size class VA, FA, CA, SL, and LL and all orienta- 317

tions (PO, OO, TO.2 hereinafter called TO, and also SP, where 318

SP stands for spherical particle). From Figs. 1 and 2, we can 319

observe the following. 320

1) The plot of ash class centroids in terms of αhh and αhh 321

clearly shows that LL (the largest size class) exhibits 322

the smallest extinction and backscatter, whereas VA 323
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Fig. 1. Correlation between backscattering (in dBβ) and extinction coef-
ficient (in dB/km) for the VA size class in terms of ash concentration and
orientation class centroid noting that as the concentration increases, there is
an increase of the simulated backscattering and extinction coefficients.

(the smallest size class) exhibits the largest. This is324

related to the scattering properties at 532-nm wavelength325

LL scatter in deep optical regime, whereas VA follows326

the Mie scattering resonances.327

2) The LidarLR is almost constant with respect to328

co-polar backscatter coefficient βhh for all subclasses,329

but is sensitive to particle orientation. The LidarLR330

is more dispersed for prolate and oblate orientations331

depending on the particle size. These variations are332

due to microphysical differences of the classes and the333

predominance of the Mie resonant scattering when the334

particle size is comparable with the wavelength.335

3) The co-polar extinction coefficient αhh is also linearly336

correlated with Ca for all subclasses and for each337

frequency. The extinction coefficient highlights a similar338

behavior of the backscatter coefficient.339

4) The co-polarization ratio δco is not significantly corre-340

lated with Ca , but is sensitive to the particle orientation341

and to the frequency, particularly for the size class VA.342

Indeed, increasing the size class, we can observe that343

the SP shows a behavior intercepting other orientation344

(FA, CA, and SL) and mixing for the size class LL.345

5) The cross-polarization ratio δcr is independent of the346

concentration for all subclasses and varies with TO, PO,347

OO, and SP orientation models and for each frequency,348

but this behavior is not clear for the VA size class at349

each considered frequency.350

6) The ash mass concentration Ca is almost linearly cor-351

related with co-polar backscatter coefficient βhh for all352

subclasses and for each frequency. βhh values of LL are353

larger than those of the VA class since, for a given con-354

centration, in the wavelength-insensitive optical regime,355

the Lidar logarithmic response is proportional to the356

particle concentration number. The latter is smaller for357

LL particles than do for VA particles since, for a given358

concentration, the volumetric number of big particles is359

less than that of small particles.360

For inversion purposes, it is worth stressing that ash mass 361

concentration and mean equivalent diameter can be derived 362

from a combination of βhh and αhh, whereas δcr and δco may 363

be successfully used to better discriminate the ash classes. 364

B. Retrieval Algorithm and Parametric Models 365

Several caveats need to be accepted to properly deal with 366

Lidar products. The major critical issue is the estimation of 367

the range profile of the extinction coefficient αx x , which can 368

be derived by properly inverting the backscatter profiles in the 369

cloud region where the signal is not totally attenuated and 370

using ad hoc path attenuation correction algorithms [7], [14]. 371

The latter typically exploits the knowledge of the LR needed 372

to invert the Lidar equation after distinguishing the ash from 373

different aerosol contributions [8], [14], [15]. In order to 374

distinguish spherical from non-SPs, it is crucial to use a polari- 375

metric Lidar instrument [26], [27], [43]. Lidar retrievals are 376

most often based on a solution of the classic Lidar equation, 377

which is a single-scattering approximation that ignores higher 378

order MS. The latter can alter the apparent extinction or trans- 379

mittance of the medium, produce depolarization of the return 380

signal, and cause a stretching of the return pulse. For most 381

Lidar systems, the magnitude of the multiply-scattered signal 382

is so small these effects are insignificant and can often be 383

ignored without introducing significant errors, but its impact 384

should be considered in some way [43]. 385

The VALR algorithm allows deriving the main ash particles 386

features from polarimetric Lidar observables by means of 387

model-based supervised retrieval algorithm. The algorithm 388

consists of two main steps: ash classification and estimation, 389

both performed in a probabilistic framework using the ML 390

approach. The detection of the ash class from a Lidar polari- 391

metric observable set for each range volume can be performed 392

using an ML identification technique. This technique may be 393

considered a special case of the Bayesian approach. Within the 394

latter, the maximum a posteriori probability (MAP) criterion 395

can be used to carry out ash cloud classification in a model- 396

based supervised context [19]. The basic rule is to minimize 397

a proper “distance” (or metric) between the measured and 398

simulated polarimetric set, the latter computed by using the 399

microphysical scattering of each ash class, taking into account 400

both the system noise and the a priori available information. 401

If the latter is assumed uniform, MAP becomes the ML 402

method. 403

The ML technique basically reduces to a minimization 404

process in order to assign the “cth” class to each available 405

Lidar measurement. Under the assumption of: 1) Gaussian- 406

likelihood statistics of the difference between simulated and 407

measured observables and 2) uncorrelation between the differ- 408

ences (errors) of the same observables, the ML method reduces 409

to the minimization of a quadratic form. The estimated ash 410

class c and the retrieved microphysical parameters are those 411

that exhibit the minimum ML square distance d2 between 412

the Lidar measurement set xm and simulated set xs of a 413

given class c [16]. If only measurements of attenuation- 414

corrected backscatter coefficient βxxmc and linear cross-polar 415

ratio δcrm are available to define xm , we can write the following 416
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Fig. 2. Numerical results of the HAPESS simulations at 532-nm wavelength (VIS). Correlation between ash mass concentration Ca (mg/m3) and both
backscatter (in dBβ) and extinction coefficients (in dB/km) in the top panels (left and right panels, respectively) and between LidarLR and backscatter and
between ash mass concentration Ca (mg/m3) and cross-polarization in the bottom panels (left and right panels, respectively), for each ash class VA, FA, CA,
SL, and LL (2 × 2 panels), for different orientations (OO, PO, SP, and TO) and for uniform concentration (UC) (between 1 and 107 μg/m3). See text and
Table I for details.

simplified metrics:

AQ:3

417

d2(C(c)
a , D(c)

n

)
418

= [
xm − x(c)

s

(
C(c)

a , D(c)
n

)]T C−1
εx εx

[
xm − x(c)

s

(
C(c)

a , D(c)
n

)]
419

=
[
βxxmc − βxxs

(
C(c)

a , D(c)
n

)]2

σ 2(c)
εβ

+
[
δcrm − δxxs

(
C(c)

a , D(c)
n

)]2

σ 2(c)
εδ

420

(11)421

where “T ” stands for the transpose operator and Cεxεx is 422

the auto-covariance of the error vector εx = xm − xs with 423

“−1” its inverse. In the simplified ML approach with uncor- 424

related errors, the terms of (11) are basically weighted by 425

the inverse of variances σ
2(c)
εβ and σ

2(c)
εδ of the simulated data 426

set for the class c. In (11), it is explicit that the simulated 427

vector xs depends on the unknown Ca and Dn for each 428

class c. 429
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To retrieve the ash parameters such as concentration and430

mean size within the selected class c, we can extract their431

value from the geophysical parameters whose associated xs432

minimizes the quadratic distance (11), that is,433

Ĉ(c)
a = C(c)

a |argmin(
C (c)

a ,r(c)
n

){
d2(C(c)

a , D(c)
n

)}
(12a)434

D̂(c)
n = D(c)

n |argmin(
C (c)

a ,r(c)
n

){
d2(C(c)

a , D(c)
n

)}
(12b)435

where argmin is the function providing the minimum of its436

argument. It is worth highlighting that these retrievals are437

conditioned by the numerical forward model accuracy or,438

in other words, by microphysical–electromagnetic assumptions439

and their representativeness with respect to the observed scene.440

The uncertainty of the ash microphysical estimates in (12),441

due to noise and the variability of all other geophysical442

parameters (see Table I), can be derived by taking into443

account the error statistics around the Lidar-based retrieval444

distance minimum. By assuming an uncertainty of error vector445

εx = xm − xs due to instrumental noise and forward model446

representativeness, we can define an error threshold δε asso-447

ciated with this uncertainty (e.g., this threshold δε on the448

backscatter coefficient can be assumed between 10% and 50%,449

here typically assumed to be 20%). Thus, standard deviations450

σCa and σDn of ash concentration and mean diameter estimates,451

respectively, are given by452

σ
(c)
Ĉa

= std
{

C(c)
a |d2(C(c)

a , D(c)
n

)
< δ2

ε

}
(13a)453

σ
(c)
D̂n

= std
{

D(c)
n |d2(C(c)

a , D(c)
n

)
< δ2

ε

}
(13b)454

where std is the standard deviation function.455

In the literature, we can find several parametric models456

allowing deriving the ash concentration from the measured457

backscatter coefficient. The appealing feature of parametric458

retrieval techniques is their simplicity in the application to459

measurements sets, even though the downside is less flex-460

ibility (due to the fixed regression model) and frequency461

scalability (due to the prescribed coefficients valid at a given462

wavelength).463

The first retrieval parametric model (hereinafter PM1),464

employed to evaluate the ash concentration CaPM1 [g/m3] from465

ash backscattering, is based on the following relation [27]:466

CaPM1 = kc〈Rβαx 〉ρaβxxmc (14)467

where kc is the ash conversion factor, function of the PSD.468

For a large masse, kc is mainly dependent on the ash effective469

radius rep [see (1)] and given by (2/3) · rep [10], [29], [33].470

In [22], a value of about 10 μm is assumed for rep so that471

kc is hence set to 0.6 × 10−5 m. In (13), 〈Rβαx 〉 is the472

mean value of the estimated LidarLR [1], [2], [22], ρa is473

the density of volcanic ash fixed to 2450 kg/m3 [31], and474

βhhm is the measured volcanic ash backscatter coefficient [39].475

The errors on ash mass concentration are evaluated from the476

uncertainties of Rβαx , βhhm, and ρa and reach a value of 55%.477

An additional uncertainty of about 50% must be considered478

due to the assumption of the effective radius [22], [33]. In the479

absence of other sources, we can derive Dnp from VALR-ML480

and assume rep = Dnp/2 to estimate kc in (13).481

Another parametric approach, hereinafter referred to PM2, 482

to derive the ash concentration CaPM2 [g/m3] from the mea- 483

sured ash backscatter [13], [10] can be expressed as 484

CaPM2 = �1.346 rep−0.156�〈Rβαx 〉βxxmc (15) 485

where rep is the ash effective radius. The expression between 486

square brackets is known as the mass–extinction conversion 487

factor for volcanic ash concentration, depending on the par- 488

ticle effective radius rep [10], [13]. Indeed, if the infor- 489

mation about the effective radius is not available, we can 490

use a simplified version of (14), where the square brackets 491

can be substituted by the mass–extinction conversion factor 492

of 1.45 g/m2 (95% of the compatible ensembles are in the 493

range 0.87–2.32 g/m2) [10]. The relative uncertainty of the 494

retrieved mass concentration is estimated to be about 40% and 495

mainly caused by the uncertainty of the microphysics of the 496

particles (size distribution, refractive index, and shape) [13]. 497

As in (13), if not available elsewhere, we can derive 498

rep = Dnp/2 from VALR-ML. 499

Both parametric PM1 and PM2 models have some a pri- 500

ori information derived from the literature or available 501

sources and exploit the correlation between concentration 502

and backscatter. Indeed, by exploiting the HAPESS forward 503

model illustrated in Section II-A, we can derive a parametric 504

regressive formula, hereinafter named VALR-Reg, valid at 505

visible wavelengths. A logarithmic relation for estimating 506

ash concentration CaVALRReg [g/m3] can be expressed as 507

follows: 508

ĈaVALRReg = 10[aVA+bVA(log10βxxmc)] (16) 509

where aVA and bVA (0.8643 and 0.8370) are regressive 510

coefficients, derived from HAPESS simulations, including all 511

particle orientations (OO, PO, SP, and TO) for VA size class 512

(Dn between 0.125 and 8 μm). 513

C. Multiple Scattering Impact 514

We can attempt to evaluate the uncertainty in the estimated 515

particle extinction due to MS within clouds or aerosol layers. 516

If the particle effective radius becomes larger, the probability 517

of MS increases since a stronger forward scattering causes 518

photons to remain in the field of view (FOV) of the detector. 519

This MS effect typically leads to an increase of the particle 520

backscatter up to 50% and a consequent underestimation of 521

path attenuation or atmospheric optical depth up to 30% [24]. 522

The MS can affect the Lidar measurements, especially in the 523

presence of large optical thicknesses. The MS signal increases 524

as the laser beam divergence, the FOV of the receiver, and the 525

distance between the laser source and the investigated volume 526

increase [24], [47]. 527

Modeling MS effect in Lidar response is not an easy 528

task due to path dependence and optical thickness variability. 529

In order to test the sensitivity of backscatter coefficient to the 530

MS, we can simulate its impact on the backscatter coefficient 531

by introducing an MS factor fMS within the conventional 532

Lidar equation. This MS factor fMS is by construction defined 533

between 0 (no MS present) and 1 (full MS). The MS-affected 534
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Fig. 3. Lidar data collected during the November 15, 2010 ash emission at Mt. Etna in Italy. Superimposition between measured (dark dots) and
simulated backscatter coefficient βhh (in dBβ) and cross-polarization ratio δcr (in %) at (Left) 300, (Middle) 400, and (Right) 500 m of altitude above
Etna summit craters, respectively. Different color identifies different concentration classes (IC in magenta, MC in green, SC in red, and VC in blue), all for the
VA class.

measured backscatter coefficient can be expressed as535

βMS
xxm(s) = βxxm(s)e2τ (s) fMS = βxxmc(s)e

−2τ (s)e2τ (s) fMS
536

= βxxmc(s)e
−2τ (s)(1 − fMS) (17)537

where s is the range coordinate and τ is the optical thick-538

ness (due to the integral of the extinction coefficient αx x ) along539

the two-way path. For simplicity, fMS has been assumed to540

be range independent, whereas the quantity τ (1 − fMS) can541

be interpreted as the “apparent” optical thickness affected by542

MS radiation recovery.543

In order to evaluate the uncertainty of the ash concentration544

and mean diameter estimates due to MS effects, we can545

perform a sensitivity analysis by replacing the measurements546

Lidar data set (corrected for two-way path attenuation 2τ )547

with the corresponding quantity βMS
xxmc in (17) where fMS is548

supposed to be between 0 and 0.3, whereas τ is taken, as a first549

approximation, from the path-attenuation correction algorithm.550

This simplified approach does not aim at quantifying the551

MS effects, but only the sensitivity of the retrievals to its552

presence. In this respect, we define the total MS standard553

deviations of Ca and Dn as554

σCaMS =
√

σ 2
Ĉa

+ σ 2
Ĉa f MS

(18a)555

σDnMS =
√

σ 2
D̂n

+ σ 2
D̂n f MS

(18b)556

where σ 2
Ĉa

, σ 2
D̂n

, σ 2
Ĉa fMS

, and σ 2
D̂n fMS

are the standard devia-557

tions of concentration and mean diameter without and with558

the MS contribution, respectively.559

III. APPLICATION TO ETNA CASE STUDIES560

The ML retrieval methodology has been tested on two Etna561

eruptions: the ash emission of November 15, 2010 and the lava562

fountain of August 12, 2011. We have applied the VALR-ML563

to Lidar data in order to retrieve the ash concentration and564

ash particle mean diameter using (12). These retrievals are565

also compared with those already estimated in [30] and [33]566

in order to show the VALR-ML potential.567

The VAMP scanning Lidar system, whose measurement568

results are used in this paper, transmits a linearly polarized569

laser light at 532-nm wavelength and detects parallel and570

cross-polarized components of the elastic backscattered simul- 571

taneously. The VAMP system allows moving in azimuth and 572

elevation with the possibility to scan the volcanic plume either 573

horizontally and/or vertically at a maximum speed of 0.1 rad/s. 574

This system was installed at the “M.G. Fracastoro” 575

astrophysical observatory (14.97° E, 37.69° N), located 576

at 1760 m on the SW flank of the volcano, only 7 km away 577

from the Etna summit craters, allowing the laser beam to scan 578

the atmosphere around the summit craters. 579

The attenuation-corrected measured backscatter coefficients 580

βxxmc in (10) have been obtained by using the Klett–Fernald 581

algorithm [8], [15]. The LR, as defined in (7), has been 582

assumed to be about 36 sr inside the plume, as described 583

in [22], whereas the contribution of background aerosol load 584

was considered negligible, less than about 107 m−1 · sr−1 in 585

the Mediterranean region in clear-sky conditions [36]. Details 586

on the Lidar data processing can be found in [22]. 587

To train the VALR-ML algorithm, considering the typ- 588

ical Etna eruption modes and the available observations 589

of distal plumes, we have used a simulated data set (see 590

Sections II-A and II-B) consisting of the smallest ash class, 591

VA, with orientation classes TO, OO, PO together with a 592

class SP. The validity of these a priori choices can be assessed 593

by comparing the measured and simulated observables for 594

both case studies. Note that in the two analyzed study cases, 595

we have selected only the backscatter coefficients correlated 596

with optical depths less than 0.5 and depolarization between 597

0.1 and 0.5 of ash plume close to Lidar system (about 6 km) 598

in order to avoid any possible MS influence. 599

A. Etna Ash Emission in 2010 600

The first case study is related to ash emission observed 601

by the VAMP system on November 15, 2010 when both 602

backscatter and depolarization channels were available. During 603

this event, ash emissions from the North East Crater and 604

high degassing from the Bocca Nuova Crater were clearly 605

visible [33]. Water vapor and ash emission occurred every 606

1–2 min, as reported by volcanologists during a field sur- 607

vey at the summit craters. Different volcanic plume sec- 608

tions were obtained by pointing the laser beam with a fixed 609
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Fig. 4. Lidar data collected during the November 15, 2010 ash emission at Mt. Etna in Italy. Maps of the measured backscatter coefficient (in dBβ) and
linear volumetric depolarization (in %), left and right panels, respectively, at each elevation (300, 400, and 500 m) above the Etna summit craters.

direction defined by azimuth angle of 17.3° and three different610

elevations (14.4°, 14.65°, and 14.9°), corresponding approxi-611

mately to altitudes of 300, 400, and 500 m above summit612

craters (we will refer to these elevations in terms of corre-613

sponding altitudes in the following text) [33].614

As mentioned, in order to find the ash size classes best fit-615

ting the measured backscatter at the three elevations, we have616

first selected a simulated data subset to train the VALR-ML617

algorithm. Fig. 3 shows both measured and simulated ash618

backscatter and cross-polarization coefficient, expressed in619

dBβ and in percent, respectively, for VA size class with IC,620

MC, SC, and VC concentrations (see Table I).621

Measured Lidar observables are fairly well represented622

and consistent with the simulated ones. In the ash plume623

layer, βxxmc reaches values larger than 2 × 10−5 m−1 · sr−1
624

(−47 dBβ) with the highest values of about 5×10−5 m−1· sr−1
625

(−43 dBβ), usually associated with a larger concentration 626

of volcanic aerosols [32]. In all cases, the average and 627

maximum linear cross-polarization is about 4%–6% and 628

24%–26%, respectively. The latter values are a clear indi- 629

cation of a complex morphology of ash particles, the rela- 630

tively high cross-polarization being a significant indicator of 631

nonsphericity [42]. 632

It is worth remembering that the uncertainty of δcrm comes 633

primarily from systematic errors in the setup of the Lidar 634

systems, which cannot be reduced by statistical methods. 635

Indeed, we have found that the main error sources originate 636

from the depolarization calibration (with large differences 637



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE II

PERCENTAGE RATIO BETWEEN THE STANDARD DEVIATION (σCa /〈Ca〉 AND σDn /〈Dn〉) AS WELL AS OVERALL MS-INCLUDED STANDARD
DEVIATION (σCaM S /〈Ca〉 AND σDnM S /〈Dn〉) WITH RESPECT TO THE AVERAGE RETRIEVED VALUE FOR BOTH CONCENTRATION

AND MEAN DIAMETER, RESPECTIVELY, CONSIDERING VARIOUS fMS (0, 0.1, 0.2, AND 0.3) FOR THREE CASES: 1) AT THREE

ELEVATIONS DURING THE NOVEMBER 15, 2010 ERUPTION (USING THE DEPOLARIZATION MEASUREMENTS); 2) DURING

THE ETNA ERUPTION ON AUGUST 12, 2011 (USING THE DEPOLARIZATION MEASUREMENTS); AND
3) PROFILE OF ASH PLUME ON AUGUST 12, 2011 (USING THE FULL DATA SET)

between different calibration methods) and by backscatter638

coefficient correction due to the uncertainty in the height-639

dependent LidarLR and the uncertainty in the signal cali-640

bration in the assumed clean and free troposphere [9]. High641

particle depolarization values of about 30%–35% are observed642

in the main volcanic ash layer and are similar to those found643

elsewhere with values of 35%–38% [2], [5], [24]. The latter644

values suggest a large fraction of volcanic aerosols. Low645

values of δcrm and values between 1% < δcrm < 2% are646

typically associated with SPs [13].647

Fig. 4 shows, for each considered elevation (labeled with648

respect to height in meters above the crater), the measured649

backscatter coefficient, again expressed as dBβ, and the vol-650

umetric depolarization ratio. The latter presents a variabil-651

ity between 2% and 25%, whereas few pixels show higher652

values. By applying the VALR-ML algorithm to data of653

Fig. 4, Fig. 5 shows the ash concentration and mean diameter654

retrievals, considering both measured Lidar observables βxxmc655

and δcrm and only the backscatter coefficient βxxmc. The656

latter indicates that at each elevation angle and when we657

consider both the measured Lidar observables, the average658

concentration is about 8.63 ± 6.04 mg/m3 and the mean659

diameter is about 3.37 ± 2.04 μm. If only the backscatter660

coefficient is taken into account, the average concentration661

is about 13.01 ± 4.50 mg/m3 and the mean diameter about662

5.80 ± 2.46 μm. This means that using only backscatter663

measurements, the retrieved values are on average larger than664

about 66% and 58% for concentration and mean diameter,665

respectively, with respect to the two-observable setup. A more666

complete set of Lidar observables (two or more) tends to667

preserve the smaller sizes and concentrations with a larger668

variability (standard deviation) of both ash concentration and669

mean diameter. Note also that VALR-ML retrieval results 670

suggest that the availability of depolarization measurements: 671

1) provides a more likely retrieval of non-SPs with a given 672

shape/orientation and 2) has a positive impact on the class 673

discrimination. 674

Standard deviations σĈa
and σD̂n

of the Lidar-based 675

VALR-ML retrievals can be estimated using (13) for both ash 676

concentration and mean diameter, respectively. As mentioned 677

in Section II-C, the impact of MS can be at least evaluated 678

in terms of increased uncertainties σĈa fMS
and σD̂n fMS

of the 679

Lidar-based retrievals, playing with the MS factor fMS defined 680

in (17). In this respect, block a) of Table II shows the uncer- 681

tainties as percentage ratio of the averaged standard deviation 682

〈σĈa
〉 (without MS effects) and 〈σĈa fMS

〉 (with MS effects) 683

with respect to the average 〈Ĉa〉 as well as the percentage 684

ratio for the estimate of the mean diameter D̂n . Note that the 685

average values are computed over all the performed retrievals 686

and are needed to introduce an overall score. The results of 687

Table II indicate that on average both ash concentration and 688

mean diameter retrievals are not very sensitive to MS effects 689

(e.g., concentration estimate uncertainty goes from about 40% 690

up to 43%, whereas the mean diameter one from 4% up to 7%). 691

Indeed, mean diameter estimates seem to be more affected by 692

the increase of the MS fraction fMS. This is not surprising 693

since, as already mentioned, we have properly selected only 694

measurements close to the Lidar system (about 6 km) in order 695

to limit any possible MS influence. 696

B. Etna Lava Fountain in 2011 697

The second test case analyzed here is related to the Etna 698

lava fountain of August 12, 2011, when both backscatter 699
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Fig. 5. Mt. Etna eruption on November 15, 2010. Maps of VALR-ML estimates of ash concentration and mean diameter at each elevation at 300, 400,
and 500 m (first, second, and third rows, respectively) above the summit crater of Mt. Etna using: 1) both measured Lidar observables (first two columns on
the left) βxxmc and δcrm and 2) only the backscatter coefficient (last two columns on the right) βxxmc.

Fig. 6. Lidar data collected during the August 12, 2011 lava fountain event at Mt. Etna in Italy. (Left) Cross section of the measured backscatter coefficient
(in dBβ) of ash plume as a function of altitude above the craters and range. (Right) PM1 retrieval of ash concentration considering a reff = 10 μm.

Fig. 7. Lidar data collected during the lava fountain event on August 12, 2011 at Mt. Etna Italy. Cross sections of VALR-ML estimates of ash concentration
and mean diameter, respectively, considering a (left two panels) complete HAPESS simulation data set and (right two panels) partial simulation data set
without spherical particles.

and depolarization channels were available. The scanning by700

the VAMP system was performed by changing the elevation701

angle between 20° and 59° with a fixed azimuth of 36.7°.702

Lidar measurements were acquired from 08:59 till 11:56 UTC. 703

The volcanic particles were observed between 6.5 and 8 km 704

from the Lidar station along the laser beam path, when 705
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Fig. 8. Lidar data collected at 09:01–09:11 UTC during the August 12, 2011
lava fountain event at Mt. Etna in Italy. (Top panels) Range profiles of ash
backscattering and depolarization measured by the VAMP system at Serra
La Nave station. (Bottom panels) VALR-ML estimated ash concentration and
mean diameter(solid curve) together with the same estimates plus its standard
deviation (dashed curve) derived from (12).

a column height of about 7 km above sea level was present,706

as shown by the cross section of the corrected backscatter707

coefficient in Fig. 6 [30].708

We have used the same simulated training data set, pre-709

viously discussed in Section II-A, obtaining the most likely710

ash size classes similar to those on November 15, 2010 but711

with a larger ash concentration (about one order of mag-712

nitude), as shown in Fig. 6 (right). The latter is derived713

from the PM1 algorithm showing a mean concentration of714

about 9 mg/m3.715

The VALR-ML-derived ash concentration and mean diam-716

eter are shown in Fig. 7, considering a training data set717

with (complete) and without (partial) SPs. In both cases,718

the average concentration is about 65.00 ± 37.3 mg/m3
719

and the mean diameter is about 3.01 ± 1.2 μm as shown720

in Table III, which also includes the sensitivity analysis due721

to the inclusion or exclusion of spherical particles within the722

training data set. The percentage ratio between the number723

of spherical classes and the number of total detected ash724

classes is about 37%. This ratio underlines the impact of725

volumetric depolarization measurements useful to distinguish726

the ash particle category. It is remarkable how the lack of727

depolarization observables does not significantly affect the728

retrievals of ash size and concentration.729

Note that for this case study, an independent estimate, based730

on ground measurements and forecast model simulations,731

of the ash PSD is available in terms of percentage weight [30].732

The latter is obtained using the Lagrangian numerical PUFF733

model [34], [38] inside the region investigated by Lidar [30].734

The measured size distribution is clearly asymmetric, well735

approximated by a log-normal or a Gamma distribution [30].736

The PUFF-based average ash particle size is about 5.3 μm,737

slightly larger than VALR-ML-based mean diameter retrieval738

(3.01 ± 1.22 μm).739

Fig. 8 shows the range profiles of the measured backscatter-740

ing coefficient and depolarization ratio, obtained by pointing741

Fig. 9. Correlation between the backscatter coefficient (in dBβ) and the ash
concentration (in g/m3) derived from: 1) the HAPESS simulations (red dots)
referring to VA class with OO, PO, SP, and TO orientation (see title of each
panel) and 2) parametric models VALR-Reg (blue dots), PM1 (yellow dots),
and PM2 (green dots), respectively.

Fig. 10. Etna eruption on August 12, 2011 at 09:01–09:11 UTC.
(Left) Comparison between the simulated (colored dots for each considered
class in Table I) and measured backscatter coefficient (black dots, in dBβ) and
cross-polarization ratio (black dots, in %). (Right) Profile of the concentration
estimates derived from PM1 (with effective radius equal to 10 μm), PM2,
VALR-Reg, and VALR-ML algorithms.

the VAMP laser beam toward the plume for 10 min 742

(09:01–09:11 UTC) and when the eruption column reached 743

the height of 9 ± 0.5 km. Lidar profiles show two layers with 744

different properties. The first ash layer, at 6.1 km from the 745

Lidar station along the laser beam, is characterized by lower 746

βxxmc of about −58 dBβ and δcrm of about 5%. The second 747

ash layer, located between 6.2 and 6.8 km, is characterized 748

by high peak values of βxxmc of about −41 dBβ and δcrm of 749

about 20%, suggesting that volcanic ash was mainly contained 750

in this layer [30]. 751

The VALR-ML retrievals in terms of concentration and 752

mean diameter are also shown in the lower panels of Fig. 8. 753

The ash concentration peak is about 100 mg/m3, whereas the 754

mean diameter reaches a maximum value of 6.3 μm. In order 755

to attribute an uncertainty to VALR estimations, we have 756

assumed a backscattering coefficient error of 50% so that 757
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TABLE III

MEAN VALUE (MEAN) AND STANDARD DEVIATION (STD) OF THE VALR-ML ESTIMATES OF VA CONCENTRATION AND MEAN DIAMETER DURING
THE ETNA LAVA FOUNTAIN ON AUGUST 12, 2011 CONSIDERING THE HAPESS SIMULATED DATA SET WITH BOTH

SPHEROIDAL AND SPHERICAL PARTICLES (COMPLETE) AND WITHOUT SPS (PARTIAL)

Fig. 11. Etna eruption on November 15, 2010. Panels (first, second, and third couple of plots) are related to elevations at 300, 400, and 500 m above the
Etna summit craters. Ash concentration derived by the PM1 retrieval using: 1) (left panel of each couple of plots) an ash effective radius of 10 μm as in [33]
and 2) (right panel of each photograph) the mean radius derived from the VALR-ML retrieval for each detected pixel, as shown in Fig. 5.

the standard deviation of both ash concentration and mean758

diameter are evaluated and associated with each estimate,759

as in (12). This uncertainty is shown in Fig. 8. Note that there760

are ranges in Fig. 8 where, for a higher backscatter, we can761

retrieve a lower concentration from VALR-ML. This may seem762

a contradiction, but looking at (3), we realize that the same763

βxxmc can be associated with a large concentration of small764

particles or, vice versa, with a small concentration of large765

particles. Thus, the simultaneous retrieval of both Ca and Dn766

is essential to interpret this ambiguity.767

The impact of MS in this case study shows the same768

behavior of the previously analyzed case, as shown in769

blocks b) and c) of Table II. Indeed, the uncertainty, expressed770

as a percentage ratio, highlights how a smaller variability of771

ash concentration and mean diameter is associated with an772

increase of fMS, especially for higher altitudes.773

C. Comparison With Parametric Model Retrievals774

There is a reasonable interest in comparing the VALR-ML775

technique with other parametric methods in order to under-776

stand the potential of a physically based approach with respect777

to more straightforward parametric procedures.778

The HAPESS forward model simulations at 532 nm can779

provide an effective way to compare the three paramet-780

ric retrieval approaches (13)–(15) together with VALR-ML.781

Fig. 9 shows the HAPESS simulations superimposed on results782

of the selected models PM1 in (13) (assuming LR = 36 sr783

and reff = 〈Dn〉/2 from the considered size class) and784

PM2 in (14) (assuming a default mass–extinction conversion785

factor of 1.45 g/m2 and reff = 〈Dn〉/2 from the considered size786

class) together with VALR-Reg in (15). The PM1 formula for787

all orientations shows a higher ash concentration, whereas the788

PM2 typically lies between PM1 and VALR-Reg (which is the 789

best approximation of HAPESS simulated data by definition). 790

For the same backscatter coefficient, the VALR-Reg model 791

tends to predict a larger ash concentration. Indeed, VALR-ML 792

estimates may be larger or smaller than VALR-Reg as the 793

forward model simulations are randomly distributed around 794

the regression curve. This is due to the inherent best-fitting 795

approach of the VALR-Reg model (and any other regressive 796

approach) that is based on a minimization of the simulated 797

points with respect to the modeled regression curve. 798

A first example of intercomparison is shown in Fig. 10 799

where the profile of Fig. 8, related to August 12, 2011 Lidar 800

data, is reconsidered. In the left panel, the HAPESS sim- 801

ulations and the few measured samples are superimposed. 802

The right panel highlights the estimates of three analyzed 803

parametric models compared with the VALR-ML one, already 804

shown in Fig. 8. The PM1 parameters in (13) are similar 805

to those in Fig. 9, but reff = 10 μm as assumed in [30], 806

whereas PM2 is applied without modifications. PM1 estimates, 807

in this setup, are not always larger than the others, whereas 808

VALR-ML ones are typically but not necessarily lower, being 809

PM2 and VALR-Reg in the bottom. 810

A second application of the parametric retrieval models 811

is shown in Fig. 11 for the event of Etna eruption on 812

November 15, 2010. Fig. 11 is, indeed, the output of a 813

sensitivity study as it plots both retrievals from PM1 in (13) 814

using reff = Dn /2 derived from VALR-ML and PM1 with a 815

fixed value reff = 10 μm as assumed in [30]. As expected, 816

VALR-ML-based ash concentration retrievals are partly lower 817

than those of PM1 due to the difference in the average particle 818

size. This points out the impact of an arbitrary assumption of 819

the effective ash radius on ash retrievals. 820
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Fig. 12. Etna eruption on November 15, 2010. Ash concentration range maps obtained applying the (Left) VALR-ML-derived mass concentration and (Right)
PM1-derived mass concentration and referred to 300, 400, and 500 m of elevation. Different colors identify the area of LOWER (<2 × 10−4 g/m3), LOW
(2 × 10−4 g/m3 − 2 × 10−3 g/m3), MEDIUM (2 × 10−3 g/m3 − 4 × 10−3 g/m3), and HIGH (>4 × 10−3 g/m3) ash contamination defined by the ICAO
regulations.

The Lidar data analysis may help quantifying the impact821

that ash emissions may have on aviation safety in order to822

prevent flights in areas of high ash contamination whose lower823

threshold is 2×10−4 g/m3 in compliance with the International824

Civil Aviation Organization (ICAO) directives. In this respect,825

besides 2 × 10−4 g/m3, we can define four concentration826

ranges using increasing ash concentration values equal to827

2×10−3, 3×10−3, and 4×10−3 g/m3. Using these thresholds,828

we can identify four areas: LOWER (less than 2×10−4 g/m3),829

LOW (between 2 × 10−4 and 2 × 10−3 g/m3), MEDIUM830

(between 2×10−3 and 4×10−3 g/m3), and HIGH (larger than 831

4 × 10−3 g/m3). 832

The results are shown in Fig. 12 in terms of spatial maps 833

for the November 15, 2010 Etna eruption. These panels 834

refer to elevations corresponding to altitudes of 300, 400, 835

and 500 m, respectively, (see Fig. 4) and shows only the 836

ash concentration maps retrieved from VALR-ML and PM1 837

(setup as in Fig. 11 which as a standard configuration [30]). 838

As expected, for each elevation, VALR-ML ash concentration 839

retrievals are generally lower than those derived from PM1. 840
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TABLE IV

CONTINGENCY TABLE RELATED TO ASH CONCENTRATION MAP AT THREE
ELEVATIONS DURING THE NOVEMBER 15, 2010 ETNA ASH EMISSION,

RELATED TO THREE DIFFERENT CONCENTRATION

THRESHOLDS (SEE TEXT FOR DETAILS)

Indeed, a smaller amount of pixels are labeled as LOW and a841

larger quantity as HIGH by VALR-ML, whereas most pixels842

are classified as HIGH and MEDIUM by PM1 model, coher-843

ently with the previous retrievals and discussion (see Fig. 8).844

Even though no validation data set is available to assess845

the overestimation of parametric models, it can be interesting846

to quantitatively evaluate the impact of Lidar-based retrievals847

in terms of no flight zones. To this end, we have computed848

these differences in terms of weighted occurrences with respect849

to three concentration thresholds (Th1 = 2 × 10−4 g/m3,850

Th2 = 2 × 10−3 g/m3, and Th3 = 4 × 10−3 g/m3) following851

the ICAO regulations, as shown in Table IV. Substantially,852

if both techniques are above the given threshold there is853

a HIT, if PM1 is below and VALR-ML is below there854

is NEG, if PM1 is above and VALR-ML is below there is855

a FALSE, if PM1 is below and VALR-ML is above there856

is a MISS. From Table IV, it emerges that, as expected,857

considering less restrictive ash thresholds the HIT cases tend858

to decrease, the NEG and MISS cases tend to increase linearly,859

whereas FALSE cases grow, but for the Th2 larger values are860

noted essentially due to the PM1 estimates around this Th2861

value (2 × 10−3 g/m3).862

IV. CONCLUSION863

The use of a scanning Lidar located near volcanic sites864

may be useful to monitor volcanic activity and help drasti-865

cally reduce the risks to aviation during these eruptions. The866

application of the VALR-ML algorithm to Lidar data allows867

estimating ash concentration and size class in a physically868

consistent framework in order to better understand the eruptive869

activity nature. The analyzed Etna cases, using the scanning870

Lidar system at visible wavelength, show that this sensor can871

be employed to detect the lowest ash concentration values of872

dispersed plumes in the atmosphere.873

The proposed VALR-ML methodology can help finding the874

main microphysical ash features and the areas characterized875

by a specific mass concentration of smallest ash particles.876

This information may help quantify the impact that ash877

emissions have on aviation safety to halt flights in areas of 878

high ash contamination (where the threshold is typically set to 879

2 × 10−3 g/m3) in compliance with the ICAO. In the consid- 880

ered case study, the flight-interdicted area has been extended 881

when using the proposed VALR-ML due to lower estimates of 882

ash concentrations. Moreover, the knowledge of reliable ash 883

concentration in the atmosphere may help better define the 884

main eruption source parameters within ash dispersal models, 885

thus improving our ability to forecast volcanic ash cloud aerial 886

distribution. 887

The impact of using an advanced retrieval algorithm, such 888

as VALR-ML, with respect to parametric retrieval techniques, 889

has an appealing potential for improving ash mass concentra- 890

tion retrievals. The VALR-ML approach allows performing a 891

more accurate ash concentration retrieval using several Lidar 892

observables. If several Lidar observables are not available, 893

the VALR-Reg model represents a physically based efficient 894

compromise. Future work shall be devoted to assess the results 895

presented in this paper by selecting more case studies where 896

other Lidar data are collected or performing new measure- 897

ments with the aim of testing the model. 898

APPENDIX 899

FROM SCATTERING MATRIX TO MUELLER 900

MATRIX AND LIDAR OBSERVABLES 901

Electromagnetic scattering simulations can be performed in 902

two basic and mutually related coordinate systems: the for- 903

ward scatter alignment (FSA) convention and the backscatter 904

alignment (BSA) convention [21], [50]. Given an incident 905

field upon the target, in the FSA system, the scattered far- 906

field is basically an outward wave from the target, whereas 907

in the BSA system, it is a backward wave incident upon the 908

target itself (useful for monostatic systems). The polarimetric 909

response of a point or distributed target can be obtained by 910

simultaneously measuring both the amplitude and phase of 911

the scattered field using two orthogonal channels [26]. If the 912

incident and scattered field vectors are decomposed into their 913

horizontal (parallel) and vertical (orthogonal) components 914

Ei = Ei
v v̂i + Ei

h ĥi (A.1) 915

Es = Es
v v̂s + Es

h ĥs (A.2) 916

the polarimetric response can be represented by the scattering 917

matrix S, which for plane wave illumination is given by [41] 918

Es = e jkr

r

[
Svv Svh
Shv Shh

]
FSA

Ei = SFSA Ei (A.3) 919

where r is the distance from the sensor to the center of the 920

distributed target and Spq are called the scattering amplitudes 921

in the FSA convention with SFSA the complex scattering 922

matrix. In the backscattering case, reciprocity implies that 923

Svh = Shv. Each complex element of the scattering matrix 924

can be represented by [26] 925

Spq = |Spq |e jφpq =
N∑

n=1

|Sn
pq |eiφn

pq (A.4) 926

with p, q = h, v and where N is the total number of 927

scatters that constitute the distributed target, each having 928



IEE
E P

ro
of

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

scattering amplitude |Sn
pq | and phase φn

pq . It is possible to use a929

more efficient approach to represent the relationship between930

the scattered and incident field, based on the Stokes vector.931

Indeed, each complex scattering matrix (2×2) is converted to932

their corresponding real Mueller matrix or Stokes scattering933

operators (4 × 4). The elements of the Stokes vector are934

defined as935

I =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I = ∣∣Ei
h

∣∣2 + ∣∣Ei
v

∣∣2

Q = ∣∣Ei
h

∣∣2 − ∣∣Ei
v

∣∣2

U = −2Re
(

Ei∗
h Ei

v

)
V = 2Im

(
Ei∗

h Ei
v

)
.

(A.5)936

Physically I is proportional to the total power, whereas Q, U,937

and V contain the information about the polarization state. The938

modified Stokes vector representation of a polarized wave can939

also be introduced by defining Iv = I + Q and Ih = I − Q940

instead of I and Q, respectively.941

The relationship between transmitted and scattered Stokes942

vectors is expressed as a function of ensemble-averaged943

Mueller scattering matrix MFSA (in m2) and decreases as 1/r2
944

for a mixture of particles [28], [41]945

I s = 1

r2 MFSA I i . (A.6)946

A further useful definition is the normalized ensemble-947

averaged Mueller scattering matrix M̃ or scattering phase948

matrix949

M̃ = 4π

ks
MFSA (A.7)950

where all elements are averaged over the size distribution and951

orientation of the particle polydispersion, as shown in (3). For952

example, it holds953

M11 =
〈

1

2
(|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2)

〉
954

M22 =
〈

1

2
(|Shh|2 − |Shv|2 − |Svh|2 + |Svv|2)

〉
955

with the angle brackets standing for the ensemble average.956

The elements of the ensemble-average Mueller matrix MFSA957

are quantities given in terms of the elements of the scattering958

matrix SFSA:959

It is noted that the reciprocity relation, which is a manifes-960

tation of the symmetry of the scattering process with respect961

to an inversion of time [28], satisfies the condition Shv = Svh962

in FSA convention and Shv = −Svh in BSA. The Mueller963

matrix of a distributed target of partially oriented particles,964

for which Shv is uncorrelated with Svv and Shh contains only965

eight nonzero elements [41]966

MFSA =

⎡
⎢⎢⎣

M11 M12 0 0
M21 M22 0 0

0 0 M33 M34
0 0 M43 M44

⎤
⎥⎥⎦. (A.8)967

For randomly oriented particles, the scattering medium is968

macroscopically isotropic and mirror symmetric with respect969

to any plane, and in backward direction (θ = 180°). This 970

implies the following conditions in (A.8): 971

M44(180°) = M11(180°) − 2M22(180°) 972

M33(180°) = −M22(180°) 973

M12(180°) = M21(180°) = M34(180°) = 0. 974

For elastic Lidar applications, it is usual to define the 975

backscattering coefficients (in km−1 sr−1), co-polar and cross- 976

polar, defined as combination of the elements of MFSA as 977

(see [10], [24], [26]) 978

βhh = 〈4π |Shh|2〉 =
〈

2π (M11 − M12 − M21 + M22)

103

〉
979

βvv = 〈4π |Svv|2〉 =
〈

2π(M11 + M12 + M21 + M22)

103

〉
980

βhv = 〈4π |Shv |2〉 =
〈

2π(M11 + M12 − M21 − M22)

103

〉
. 981

(A.9) 982

The Lidar linear cross-polarization ratio and co-polarization 983

are defined, respectively, as 984

δcr = βhv

βhh
= 〈M11 + M12 − M21 − M22〉

〈M11 − M12 − M21 + M22〉 985

δco = βvv − βhh

βvv + βhh
= 〈M12 + M21〉

〈M11 + M22〉 . (A.10) 986

It is noted that in the case of randomly oriented particles 987

M12 = M21 = 0 so that the expression of δcr is equal to 988

the ratio of the copolar elements only of the Mueller matrix, 989

as shown in (5) and (6). The Lidar ratio, defined in (7), 990

is expressed as a function of the single-scattering albedo 991

w0 and M11 992

Rβα = w0 M11

4π
(A.11) 993

where 994

w0 = ks

ke
= M11

ke
(A.12) 995

being ks and ke the scattering and extinction coefficients 996

(in km−1), respectively, of the particle ensemble, the latter 997

expressed by the extinction theorem 998

ke = 4π

k0
〈Im{M11} + Im{M22}〉. 999

Note that, in analogy to Lidar, for radar applications several 1000

similar observables can be defined such as the radar volumetric 1001

co-polar reflectivity (in m2 · m−3) at horizontal and vertical 1002

polarizations [50] 1003

ηhh =
〈

4π
1

2
(M11 − M12 − M21 + M22)

〉
1004

ηvv =
〈

4π
1

2
(M11 + M12 + M21 + M22)

〉
(A.13) 1005

where the elements of the Mueller matrix are, indeed, typically 1006

expressed in BSA convention. The volumetric cross-polar 1007

reflectivity (in m2 · m−3) is defined as 1008

ηhv =
〈

4π
1

2
(M11 + M12 − M21 − M22)

〉
. (A.14) 1009
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The radar reflectivity factor (in dBZ if the reflectivity is in1010

mm6 · m−3) is defined as1011

Zxy = 10log10
λ22π

π5|K p|2 ηxy (A.15)1012

where K p is a dielectric factor and ηxy is expressed in1013

mm6 · m−3. The differential reflectivity (in decibel) and linear1014

depolarization ratio (in decibel) can also be defined as1015

Zdr = 10 log10
ηhh

ηvv
1016

Ldr = 10 log10
ηvh

ηhh
. (A.16)1017
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