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ABSTRACT

Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to
reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67.
Aims. We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also
ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail.
Methods. We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern
Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby
Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come
from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the
occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and
planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency
of planets for each star.
Results. All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around
the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet
candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability
or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which
increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in
this survey, we find an occurrence of giant planets of ∼18.0+12.0

−8.0 % in the selected period-mass range. This frequency is slightly higher
but consistent within the errors with the estimate for the field stars, which leads to the general conclusion that open cluster and field
statistics agree. However, we find that the rate of hot Jupiters in the cluster (∼5.7+5.5

−3.0%) is substantially higher than in the field.

Key words. techniques: radial velocities – planets and satellites: gaseous planets

1. Introduction

In recent years, several observational campaigns have been ded-
icated to search for planets in clusters or stellar associations,
where the majority of stars is considered to form. Stars in

? Based on observations collected at the ESO 3.6m telescope (La
Silla), at the 1.93 m telescope of the Observatoire de Haute-Provence
(OHP, France), at the Hobby Eberly Telescope (HET, Texas), at the
Telescopio Nazionale Galileo (TNG, La Palma) and at the Euler Swiss
Telescope (La Silla).
?? Individual RV measurements are available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A85

clusters constitute a homogeneous sample in age and chemi-
cal composition that is ideal for investigating the dependence
of planet formation on the mass and the properties of the cen-
tral star (González Hernández et al. 2013, 2010; Baumann et al.
2010; Johnson et al. 2010; Ramírez et al. 2010; Meléndez et al.
2009), for determining the formation timescale and distinguish-
ing different migration processes (Dong et al. 2014; Quinn et al.
2014; Dawson & Murray-Clay 2013), and finally for modeling
the effects of stellar encounters on the formation and evolu-
tion of planetary systems (Li & Adams 2015; Cai et al. 2016;
Shara et al. 2016; Davies et al. 2014; Malmberg et al. 2011;
Spurzem et al. 2009). However, the high-precision radial veloc-
ity (RV) technique and the transit method have been successful
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only very recently in discovering planetary-mass companions
around stars belonging to open clusters (OC). Of the most
recent results in this field, we mention the detection of a
hot Jupiter and a multi-planetary system in the Praesepe OC
(Quinn et al. 2012; Malavolta et al. 2016), of a hot Jupiter in
the Hyades (Quinn et al. 2014), of two sub-Neptune planets
in NGC 6811 (Meibom et al. 2013), and the discovery of five
Jupiter-mass planets in M 67 (Brucalassi et al. 2014, 2016). Pre-
vious RV surveys provided detections of a long-period giant
planet around one of the Hyades clump giants (Sato et al. 2007)
and a substellar-mass object in NGC 2423 (Lovis & Mayor
2007). No significant exoplanet candidates have been found by
either ground- or by space-based transit campaigns in globular
clusters (Gilliland et al. 2000; Nascimbeni et al. 2012).

These discoveries confirm that giant planets exist in a dense
cluster environment, and suggest that a complete census of
planet discoveries may be biased by the detection limit of the
instruments and the observations available today. Moreover, re-
sults from various simulations show that dense birth environ-
ments such as stellar clusters can significantly influence the
planet formation process and the resulting orbital properties of
the planetary systems. Close encounters between stars or bi-
nary companions can modify the structure of any planetary
system and also subsequently generate strong interactions be-
tween planets over very long timescales (Davies et al. 2014;
Malmberg et al. 2011). This leads to the ejection of some plan-
ets, but it also seems to favor the conditions for the formation
of hot Jupiters (Shara et al. 2016). Studying hot Jupiters in OCs
can therefore shed light onto the long-standing problem of iden-
tifying their dynamical origin.

For the past seven years we have carried out a search for mas-
sive planets around main-sequence (MS) and evolved stars in the
OC M 67. The scientific motivations for these studies include de-
termining the impact of a different environment on the frequency
and the evolution of planetary systems with respect to field stars.
As a long-term goal, we aim to study the connection between
giant planet formation and stellar mass and chemical compo-
sition. M 67 is the perfect target to search for planets around
OC stars. Chemical analysis from several works (Randich et al.
2006; Pace et al. 2008; Önehag et al. 2011, 2014) has shown that
M 67 has a chemical composition (not only Fe, but also the other
elements) that is extremely similar to solar, as close as allowed
by the precision of the measurements. In addition, the age of
M 67 (3–5 Gyr), according to numerous determinations, encom-
passes the accepted value of the Sun, while the age determina-
tion for field stars is always rather uncertain. Finally, M 67 is a
rich OC, which gives us the opportunity to find many stellar can-
didates that share similar properties and a large number of stars
with different masses, characteristics that are essential to address
the questions above.

Through RV measurements obtained with HARPS at La
Silla-ESO, SOPHIE at OHP, HRS at HET, HARPS-N at
the TNG, and CORALIE at the Euler Swiss Telescope, five
new giant planets have been discovered around M 67 stars
(Brucalassi et al. 2014, 2016): three hot Jupiters around MS
stars, and two long-period planets around evolved stars.

In this paper, we present our RV campaign around stars of
the OC M 67 considering data obtained until March 2015, and
we provide a complete census of all the stars.

The star sample is described in Sect. 2, RV observations and
analyses are reported in Sect. 3. In Sect. 4 we provide more de-
tailed information on individual objects. In Sect. 5 we report a
series of simulations based on a Monte Carlo approach that we

Table 1. List of the observations.

Instrument H S HET C HN
N. Stars 88 70 24 14 13
Observations 734 168 125 99 23
MS 481 75 59 0 12
TO 63 22 23 0 7
G 190 78 43 99 4

Notes. The table lists: number of observed stars, total number of obser-
vations, number of main-sequence (MS), turn-off (TO), and giant (G)
stars observed for each instrument. HARPS (H), SOPHIE (S), HET,
CORALIE (C), and HARPS-N (HN).

used to estimate the occurrence rate of giant planets in our radial
velocity survey. Finally, we summarize our results in Sect. 6.

2. Sample and observations

A complete description of the sample is reported in our previous
works (Pasquini et al. 2012; Brucalassi et al. 2014). We high-
light here those characteristics that are most relevant for the aim
of this paper.

The original M 67 sample includes a total of 88 stars with V
mag between 9 and 15, and a mass range of 0.9–1.4 M�.

Main-sequence stars have been selected following
Pasquini et al. (2008). In particular, we considered those
stars with a membership probability higher than 60% and a
proper motion lower than 6 mas/yr with respect to the average
according to Yadav et al. (2008). When we considered the
selection of the giants, we referred to Sanders (1977) for the
membership probability, and the RV membership was derived
according to Mermilliod & Mayor (2007) and Mathieu et al.
(1986). We are aware that several stars that are particularly close
to the turn-off point, although fulfilling our selection criteria,
have been not observed because the observation time was too
short.

Five different telescopes and instrument combinations have
been used to obtain the RV measurements. Table 1 summarizes
the number of the observations for each instrument.

The HARPS spectrograph (Mayor et al. 2003) at the ESO
3.6 m telescope was used in high-efficiency mode (EGGS mode)
since the M 67 stars are quite faint for this instrument. In this
configuration the fiber has an aperture on the sky of 1.2 arc-
sec, corresponding to R = 90 000, and is not equipped with
an optical scrambler. The precision is limited to 5–7 m s−1, but
the efficiency is 30–40% better than the high-resolution mode
(HAM mode), which allows us to obtain the highest resolving
power of 115 000 with a fiber aperture of 1 arcsec. The spectral
range covered is 378–691 nm. Exposure times ranged from 10 to
45 min, yielding a typical signal-to-noise ratio (S/N) per resolu-
tion element of 10 to 15 for the faintest stars. Between January
2008 and March 2015, we gathered 734 observations of 88 stars
with HARPS with an associated internal precision of ∼10 m s−1.
These observations represent the majority of this survey, and we
therefore consider HARPS as our reference.

The SOPHIE spectrograph (Bouchy & Sophie Team 2006)
at the OHP 1.93 m telescope was used in high-efficiency mode
with R = 40 000 and a spectral range of 387–694 nm. We ana-
lyzed 168 SOPHIE observations of 70 M 67 stars with an asso-
ciated internal precision of ∼12 m s−1.

For the HRS spectrograph (Tull et al. 1998) at the Hobby
Eberly Telescope we opted for a configuration with R = 60 000
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Fig. 1. Histogram showing the number of observations per star for
our total sample. All observations from HARPS, HARPS-N, SOPHIE,
CORALIE, and HET HRS are included in the plot and updated
to March 31, 2015. The order number of the stars corresponds to
Table A.1.

and a wavelength range of 407.6–787.5 nm. We obtained 125
observations for 24 stars with a typical error bar associated with
the observations of ∼25 m s−1. During the period 2013–2015,
the HET telescope was not accessible because of a telescope up-
grade.

Moreover, we gathered 99 RV data points for 14 giant stars
observed between 2003 and 2005 (Lovis & Mayor 2007) with
the CORALIE spectrograph at the 1.2 m Euler Swiss telescope.

In addition, 27 h in service mode have been allocated with
the TNG on La Palma Canary Island and the HARPS-N spectro-
graph. The HARPS-N is a fiber-fed echelle spectrograph, similar
to HARPS on the 3.6 m ESO telescope and covers the wave-
length range between 383 to 693 nm, with a spectral resolution
R = 115 000. The two HARPS fibers (object + Sky/ThAr) have
an aperture on the sky of 1 arcsec and are equipped with an im-
age scrambler to provide a uniform spectrograph pupil illumi-
nation. Unfortunately, the observing campaign during the winter
2013–2014 was not very successful. The run at the TNG was
impacted by bad weather and only 10 observing hours could be
used, with 23 spectra for 13 stars.

Figure 1 shows a histogram with the number of observations
per star updated to March 31, 2015. We have obtained 13 ob-
servations per star on average: 10 observations per star for MS
stars, and 18 observations per star for giants and turn-off stars.
Table A.1 shows the main data for the observed stars. In addi-
tion to the basic stellar parameters, the number of observations
per star is given for each spectrograph and as a total.

3. RV analysis

HARPS, SOPHIE, and HARPS-N are provided with a similar
automatic pipeline. The spectra are extracted from the detector
images and cross-correlated with a numerical mask. For all of
our stars, irrespective of the spectral type and luminosity, we
used a G2V mask obtained from Sun spectra. Radial velocities
are derived by fitting each resulting cross-correlation function
(CCF) with a Gaussian (Baranne et al. 1996; Pepe et al. 2002).
This real-time pipeline also provides an associated internal RV
error σpn (photon noise error).

For the HRS data, the radial velocities were computed using
a series of dedicated routines based on IRAF1. The procedures
are described in more detail in Cappetta et al. (2012). The dif-
ferent steps include the wavelength calibration using a Th-Ar
lamp exposure acquired before and after each stellar spectrum,
the normalization of the spectra, the cleaning of cosmic rays as
well as telluric and sky lines, the cross-correlation of the spec-
trum performed order by order with a G2V star template, and
finally, the computation of the heliocentric corrections. The re-
sulting CCFs were fitted with a Gaussian function to determine
the RVs. After the orders affected by telluric lines and low S/N
are rejected, the final RV value is given by the average value over
the retained orders. Finally, the internal RV uncertainties are cal-
culated by σpn = rms(v)/

√
N, where v is the RV of the individual

orders and N is the number of the orders.
We used nightly observations of the RV standard star

HD32923 to correct all observations for each star to the zero-
point of HARPS (as explained in Pasquini et al. 2012) and to
take any instrument instability or any systematic velocity shifts
between runs (such as the modification of the SOPHIE fiber link
in June 2011 (Perruchot et al. 2011) or technical problems dur-
ing the calibration phase at HARPS) into account. An additional
correction was applied to the SOPHIE data to account for the
low S/N of the observations. For this, we corrected our spectra
using Eq. (1) in Santerne et al. (2012). Finally, we considered
the total error of the RV measurements (σobs) to be the sum in
quadrature of all RV error sources described above. After all the
observations for each star were corrected to the zero-point of
HARPS, they were analyzed together. The combined measure-
ment uncertainties have been compared to the observed velocity
dispersions to evaluate the significance of any potential velocity
variation and to highlight any possible outliers that would sug-
gest the presence of exoplanets. In Table A.1 the mean stellar RV
of each star is given, together with the average associated error
(σobs) and the RV dispersion of the observations (σRV). Figure 2
shows (top panel) the histogram of the observed RV scatter (σRV)
for the sample stars. Binary candidates were excluded, and the
stars with significant RV trend are not shown. The bulk of our
observations have an RV scatter represented by a Gaussian dis-
tribution centered on ∼21±7 m s−1. Stars with an RV variability
at or above 40 m s−1 are considered very good candidates for
low-mass companion hosts.

Figure 2 also includes a second panel (bottom) showing the
histogram of the ratio between the observed RV scatter (σRV)
and the average associated error (σobs) for each star. Large vari-
ations for planet candidates or long-term objects (see Sect. 4)
are easy to identify. A clear peak results for most of the stars.
Considering only stars with σRV < 4σobs (the small variations)
and with no suspected companions, we calculated a peak of
∼1.3 (employing a kernel density estimator to smooth the dis-
tribution), which is a sign that we may have underestimated the
measurement errors. However, halos of excess scatter (RV vari-
ability) are present, which are most likely due to a combination
of effects. In evolved stars some measurable intrinsic RV vari-
ability is present, as shown also in Setiawan et al. (2004) and
Hekker et al. (2008), while for the faint MS stars the uncertainty
in the measurements increases because of the limited S/N. Fi-
nally, some of the stars still have only a few observational points
with poorly constrained RV variability, and their scatter is very
likely the result of our low data statistics. Pasquini et al. (2012)
also investigated whether other instrumental effects such as the
observed flux or airmass (not included in the data analysis) could

1 http://iraf.noao.edu/
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Fig. 2. Top: histogram showing the observed velocity dispersions (σRV)
for the MS stars (pink) and giants and turn-off stars (blue) of our sample.
Binary candidates and stars with high RV trend have been excluded. The
black line represents the Gaussian fit centered at ∼21 m s−1 of width
σ ∼ 7 m s−1. Bottom: histogram showing the ratio of the RV dispersion
(σRV) and the average measurements error (σobs). The symbols are the
same as in the top panel.

affect the RV measurement precision at low count levels, but no
correlation was found. In order to consider these effects during
the computation of the giant planet occurrence rate (see Sect. 5),
we empirically inflated the estimated errors by adding in quadra-
ture a term (σ′RV) equivalent, on average, to the excess RV scat-

ter. This is calculated by σ′RV =
√
σ̄2

RV,st − σ̄
2
obs,st, where σ̄2

RV,st

and σ̄2
obs,st are the mean RV scatter and the mean estimated error,

respectively, of stars without a trend and suspected companions.
In Table A.1 the corrected associated error for each star is re-
ported as σcor.

We studied the RV variations of our target stars by
computing the Lomb-Scargle periodogram (Scargle 1982;
Horne & Baliunas 1986). This is a commonly used technique
for searching for periodic sinusoidal signals in unevenly sam-
pled data and allows estimates of the detection threshold to be
written down for periods shorter than the duration of the observa-
tions (Horne & Baliunas 1986). The significance of the sinusoid
best fit of our RV values was determined by analytically calcu-
lating the false-alarm probability (FAP) level (Horne & Baliunas
1986). Afterward, we applied Levenberg-Marquardt analysis
(Wright & Howard 2009, RVLIN) to fit Keplerian orbits to the
radial velocity data.

Table 2. RV measurements, RV uncertainties, and instrument.

Star BJD RV σobs Instrument
(–2 450 000) ( km s−1) ( km s−1)

YBP266 4488.509042 33.78637 0.012 SOPHIE
4855.591058 33.77123 0.012 HARPS
4859.605234 33.77318 0.014 HARPS
4862.702784 33.77678 0.017 HARPS
5189.693914 33.79851 0.017 HARPS

Notes. All RV data points are corrected to the zero-point of HARPS.
The errors σobs do not include the correction for the excess RV scatter
(see Sect. 3).

Radial velocity periodic variation can be caused by rotational
inhomogeneities related to stellar surface activity, such as plages
or spots, including the one that is due to magnetic cycles of sev-
eral years (Santos et al. 2010). Stellar activity can be diagnosed
with spectral indicators or by monitoring the shape of the spec-
tral lines. The low S/N of our observations does not provide suf-
ficient signal in the region of the sensitive Ca II H and K lines.
We therefore followed a method similar to the one described in
Pasquini & Pallavicini (1991). We investigated the presence and
variability of chromospheric active regions in these stars by mea-
suring the variations of the core of Hα with respect to the contin-
uum (see Dollinger 2008, for a more detailed description of how
the Hα was measured). For each case we verified the correlation
between the RVs and the bisector span of the CCF (calculated
following Queloz et al. 2001) or with the FWHM of the CCF.

4. Results

In the following, we describe the general results of our survey
and discuss our analyses and interpretation of the RV time se-
ries for the most relevant targets in more detail. In particular,
two further planet candidates are reported in this work. For the
other stars, we refer to Table A.1, in which the main data for the
observed objects are summarized. Individual RV measurements
for all the stars are provided at the CDS in the format listed in
Table 2.

4.1. Binary candidates

Twelve binary candidates were previously published in
Pasquini et al. (2012). Here we present two other MS stars in the
sample (YBP1051, YBP673) that either show significant linear
trends or RV variations that are too large to be produced by an ex-
oplanet or by a non-stellar object. The RV measurements of these
stars are shown in Fig. 3. They display a peak-to-peak RV am-
plitude of ∼1.0 km s−1with an RV range spanned over more than
six years. All binaries are highlighted in boldface in Table A.1.

4.2. Planets and planetary candidates

Four planets were announced in our previous works
(Brucalassi et al. 2014, 2016) for the stars YBP401, YBP1194,
YBP1514, and S364. Table 3 reports the main stellar char-
acteristics and the resulting updated orbital parameters of
the Keplerian fit for all these stars. Another two stars (S978
and YBP778) show significant indication for the presence of
Jovian-mass companions.

YBP778. Twenty-one RV measurements have been obtained
for the MS star YBP778 since 2009: 15 with HARPS, the oth-
ers with SOPHIE and HARPS-N. The typical S/N is 10 and the
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Fig. 3. Stars with large RV or significant linear trends (suspected binaries). Black dots: HARPS measurements, red dots: SOPHIE measurements,
orange dots: HARPS-N measurements, and green dots: HRS measurements. RV error bars represent σcor.

Fig. 4. Phased RV measurements and Keplerian best fit, best-fit residu-
als, and bisector variation for YBP778. Same symbols as in Fig. 3.

average measurement uncertainty is ∼17 m s−1 for HARPS and
HARPS-N, and ∼10 m s−1 for SOPHIE. A clear periodic signal
can be seen in the periodogram at ∼398 days (see Fig. A.3). Thus
a single-planet Keplerian model was adjusted to the data, and the
best-fit solution corresponds to a signal with a period of 410.4 ±
6.2 days, a semi-amplitude 158.8 ± 21.4 m s−1 (see Fig. 4), and
an eccentricity of 0.27 ± 0.11. Although no peak is present in the
periodograms of the activity index or the bisector span, nor in the
CCF FWHM (see Fig. A.3), we detected an anticorrelation be-
tween the RVs and the bisector span with a Pearson correlation
coefficient of –0.56, and a slight correlation between the radial
velocities and the CCF FWHM (see Fig. A.4). The correlation
disappears when we consider the RV residual.

We therefore cannot completely exclude stellar activity
(magnetic cycles) or a binary companion with low sin(i) as
the cause of the RV variation at this point, although in the re-
cent study of Geller et al. (2015), YBP778 is also classified as
a single member. Interesting, Pace et al. (2012) noted that this
star is significantly underabundant in lithium compared to the
lithium abundances as a function of stellar mass for MS stars in
M 67. This could argue in favor of the possibility that the star
might indeed host a planet (see, e.g., Deal et al. 2015). How-
ever, Pace et al. (2012) warned that the distance of this star to the
isochrone in the color-magnitude diagram (CMD; ∼0.06 mag)

Fig. 5. Phased RV measurements and Keplerian best fit, best-fit resid-
uals, and bisector variation for S978. Same symbols as in Fig. 4. Green
dots: HRS measurements, blue dots: CORALIE measurements.

could also suggest the presence of a stellar or substellar com-
panion.

S978. The star is a K4 red giant and was observed 40
times over more than five years with HARPS, HRS, SOPHIE,
and HARPS-N. The average RV uncertainty is ∼3.0 m s−1 for
HARPS and SOPHIE, ∼26.0 m s−1 for HRS, and ∼8.0 m s−1

for HARPS-N. Ten additional RV measurements were obtained
with CORALIE between 2003 and 2005, with a mean measure-
ment uncertainty of ∼12.0 m s−1. The strongest peak in the pe-
riodogram of the RV time series lies at about 510.4 days (see
Fig. A.3). Aliases are also present in the periodogram, but at
half of the power of the main signal. The bisector inverse slope
as well as the activity indicator do not present any significant
variation at the period of 510.4 days. We fitted a single-planet
Keplerian orbit to this signal (see Fig. 5) and found an orbital so-
lution whose parameters are reported in Table 3. The dispersion
of the residuals is σ(O-C) = 12.90 m s−1 and the periodogram
of the residuals reveals some structures, but no significant peaks
(see Fig. A.3).

Several studies indicate that M 67 stars in general have a
low level of chromospheric activity. Pace & Pasquini (2004)
computed activity levels for M 67 and other clusters. The
paper shows that, for instance, the young Hyades and Pre-
saepe stars on average have a chromospheric emission flux
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Table 3. Top: stellar parameters of the M 67 stars that are newly found to host planet candidates. Bottom: orbital parameters of the planetary
companions.

Parameters YBP401 YBP1194 YBP1514 SAND364 SAND978
α (J2000) 08:51:19.05 08:51:00.81 08:51:00.77 08:49:56.82 08:51:17.48
δ (J2000) +11:40:15.80 +11:48:52.76 +11:53:11.51 +11:41:33.00 +11:45:22.69
Spec.type F9V G5V G5V K3III K4III
mV [mag] 13.70a 14.6a 14.77a 9.8b 9.71c

B − V [mag] 0.607a 0.626a 0.680a 1.360b 1.370c

M? [M�] 1.14 ± 0.02d 1.01 ± 0.02d 0.96 ± 0.01d 1.35 ± 0.05d 1.37 ± 0.02d

log g [cgs] 4.30 ± 0.035 f 4.44 ± 0.05e 4.57 ± 0.06g 2.20 ± 0.06h 1.80 ± 0.09i

Teff [K] 6165 ± 64 f 5780 ± 27e 5725 ± 45g 4284 ± 9h 4200 ± 21i

P [days] 4.087 ± 0.003 6.960 ± 0.001 5.118 ± 0.001 120.951 ± 0.453 511.21 ± 2.04
T [JD] 2 456 072.4 ± 0.6 2 455 679.9 ± 0.4 2 455 986.3 ± 0.3 2 456 231.22 ± 4.26 2 456 135.92 ± 21.23
e 0.16 ± 0.08 0.31 ± 0.08 0.27 ± 0.09 0.35 ± 0.10 0.16 ± 0.07
ω [deg] 343.33 ± 62.12 109.16 ± 20.16 328.58 ± 17.78 254.62 ± 15.91 291.68 ± 35.85
K [ m s−1] 49.29 ± 5.50 37.35 ± 4.55 50.47 ± 3.90 56.94 ± 4.26 45.48 ± 3.65
m sin i [MJup] 0.42 ± 0.05 0.33 ± 0.03 0.40 ± 0.35 1.57 ± 0.11 2.18 ± 0.17
γ [ km s−1] 33.179 ± 0.004 34.184 ± 0.003 34.058 ± 0.004 33.188 ± 0.019 34.567 ± 0.008
χ2

red 0.97 0.95 0.93 1.08 1.57
σ(O-C) [ m s−1] 12.31 11.51 14.24 15.93 12.90

Notes. P: period, T : time at periastron passage, e: eccentricity, ω: argument of periastron, K: semi-amplitude of the RV curve, m sin i: planetary
minimum mass, γ: average radial velocity, and σ(O-C): dispersion of the Keplerian fit residuals.

References. (a) Yadav et al. (2008). (b) Montgomery et al. (1993). (c) Sanders (1977). (d) Pietrinferni et al. (2004) and Girardi et al. (2000).
(e) Önehag et al. (2011). ( f ) Pasquini et al. (2008) and Pace et al. (2012). (g) Smolinski et al. (2011) and Lee et al. (2008). (h) Wu et al. (2011).
(i) Jacobson et al. (2011).

in the CaII K line of 〈F
′

K〉 ∼ 2.1 × 106 erg cm−2 s−1 and
〈F

′

K〉 ∼ 2.43 × 106 erg cm−2 s−1, respectively, while M 67 stars
have 〈F

′

K〉 ∼ 0.5 × 106 erg cm−2 s−1, which is not enough to ex-
plain the high RV variations we observe. In a survey of the
Ca II H and K core strengths of a sample of 60 solar-type stars
in M 67, Giampapa et al. (2006) found that the distribution of
the HK index (a measure of the strength of the chromospheric
H and K cores) is broader than the distribution seen in the con-
temporary solar cycle. Significant overlap between the HK dis-
tribution of the solar cycle and that for the Sun-like stars in
M 67 is seen with over 70% of the solar analogs exhibiting
Ca II H+K strengths within the range of the modern solar cy-
cle. About ∼10% are characterized by high activity in excess of
the solar maximum values, while approximately 17% have val-
ues of the HK index lower than the solar minimum. Of these,
none of the stars showing enhanced activity is present in our fi-
nal sample. In a following work, the same authors reported the
results of the analysis of high-resolution photospheric line spec-
tra obtained with the UVES instrument on the VLT for a sub-
set of 15 solar-type stars in M 67 selected by Giampapa et al.
(2006). They found upper limits to the projected rotation veloc-
ities that are consistent with solar-like rotation (i.e., v sin i ≤ 2–
3 km s−1) for objects with Ca II chromospheric activity within
the range of the contemporary solar cycle. Two solar-type stars
in their sample exhibit chromospheric emission well in excess
of even the solar maximum values: Sand747 and Sand1452.
In one case, Sand747, the authors found it to be a spectro-
scopic binary. The other star, Sand1452, was also present in
our original sample, but we discovered that the object was also
a binary system (Pasquini et al. 2012). Furthermore, of the 15
solar-type stars analyzed in Reiners & Giampapa (2009), seven
stars are in common with our sample (in particular our planet-
hosts YBP1194 and YBP1514). These objects are slow rotators
(v sin i ≤ 2 km s−1) and have Sun-like HK values.

Melo et al. (2001) used FEROS spectrograph observations
to determine accurate projected rotational velocities v sin i for
a sample of 28 MS, turn-off, and giant stars belonging to M 67.
They found that the stars show similar values of v sin i depend-
ing on their position in the CMD. Early MS G stars have a rota-
tional velocity twice higher than the Sun, and they show a pos-
sible trend with (B − V) color, with redder colors corresponding
to lower v sin i. The stars at the turn-off are the fastest rotators,
with v sin i between 6.3 and 7.6 km s−1, while stars just above the
turn-off are already significantly slower, with values between 4.6
and 4.9 km s−1. Along the subgiant branch rotation tends to drop
down, and for stars with (B − V) > 1 only upper limits can be
found, including for the clump stars (v sin i ≤ 1.5 km s−1). Most
of the stars in this last group are in common with our sample.

To rule out activity-related rotational modulation as the cause
of the RV variations in our data, we investigated chromospheric
activity by measuring the variations of the core of Hα with re-
spect to the continuum. Using public data with known correla-
tions between activity indicators and RVs, we verified that such
correlations could be still recorded at low S/N level of the M 67
spectra. Of our targets, S364 and S978 show a variability in Hα
of 2%, YBP1514 and YBP1194 of 3% without significant pe-
riodicity and YBP401 of 4%, exhibiting all a very low activity
level, while for YBP778 Hα variability is slightly higher, with a
value of 7%. The fact that these stars are of solar age and that our
research is focused on finding giant planets with an expected RV
variability of tens of m s−1 makes the contamination by activity
negligible.

4.3. Stars with long-term RV variability

The turn-off star S815 shows a peak-to-peak RV variation of
the order of ∼700 m s−1 (see Fig. 6). This star is retained in
the single-star sample, although the amplitude of RV values is
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Fig. 6. RV time series for S815 (left) and YBP2018 (right). For this latter a tentative Keplerian solution is overplotted in blue. Same symbols as in
Fig. 3.

possibly too high for a planet. Moreover, the RV measurements
would indicate a rather high eccentricity.

The MS star YBP2018 presents peak-to-peak RV variations
on the order of ∼400 m s−1 and appears to have almost com-
pleted one orbit. Figure 6 shows the RV measurements with a
tentative Keplerian solution, resulting in an orbiting object with
a minimum mass of ∼11.0 MJup and a period of ∼2487 days. The
residuals have an rms of ∼30.0 m s−1, but the periodogram of the
residuals does not show any clear periodicity. Extensive follow-
up over several years is required for this star to understand the
nature of the companion candidate.

The MS stars YBP1062 and YBP1137 exhibit a trend in
RV measurements of -28.75 m s−1/yr and 10.57 m s−1/yr. Fig-
ures 7 and 8 show the RV time series with the fitted linear
trend overlaid. Although the residuals of the linear fit present
an RV variability of 33.36 m s−1 for YBP1062 and 18.00 m s−1

for YBP1137, the periodogram of the residuals for the two stars
does not reveal any significant peaks.

The evolved star S488 also shows a high RV variability when
compared to the measurement errors but caution is necessary
with this star, which is located at the tip on the red giant branch.
Dupree et al. (1999) found a strong Ca II emission-line with no
visible change in the line asymmetries with time for this star,
suggesting the presence of outward mass motions.

When we compute a Lomb-Scargle periodogram, a peak is
present at ∼2257 days. At this period, the measurements base-
line is not yet long enough to constrain any significant orbital
solution. A tentative Keplerian curve is given in Fig. 9 and cor-
responds to an object with a minimum mass of ∼14.0 MJup and
a period of ∼2332 days. The residuals have an rms amplitude
of ∼55 m s−1, and when the main signal is removed, the peri-
odogram of the residual shows a peak at ∼95.03 days with a
lower significance close to a 0.05 FAP level. Additional obser-
vations are needed to draw further conclusions.

5. Planet frequency

A series of simulations based on a Monte Carlo approach have
been carried out to determine detection limits for the RV data
as a function of planet mass and planet period, and to derive a
trustworthy estimate of the occurrence rate of giant planets for
our RV survey. Understanding the frequency of different types
of planets around stars of different mass can provide impor-
tant clues about the processes of planet formation and evolution.

Moreover, the direct comparison with similar analyses on field
star samples can reveal important indications about the influence
of the stellar birth environment on the evolution of planetary sys-
tems.

In general, the determination of the detection efficiency for
an RV survey is based on the ability to recover a planetary
signal with a given level of statistical significance. This trans-
lates into lower limits on the detectable companion mass as a
function of orbital period. Several authors (e.g., Cumming et al.
2008; Howard et al. 2011) have presented statistical analyses
of their planet surveys and discussed different methods to de-
rive limits on companion detectability and unbiased distributions
for a number of RV planet surveys. They used mainly two ap-
proaches: one based on χ2 and F-tests to detect excess resid-
uals above an assumed Gaussian noise (Lagrange et al. 2009;
Sozzetti et al. 2009), and the other approach is based on a pe-
riodogram analysis to identify significant periodicity (Cumming
2004; Narayan et al. 2005; Mortier et al. 2012). For our project,
the second approach was selected for all the stars with enough
data points for a reliable periodogram analysis. For the stars
where the periodogram was not feasible because of the combined
effect of poor sampling and the small number of observations per
star, we evaluated the detection limit using the variability of the
RV values with respect to the measurement errors.

5.1. Method

In order to derive the detectability of planetary signals, we com-
puted synthetic datasets, simulating a series of mass and pe-
riod data pairs (∼106 values) of our “potential planets”, which
are uniformly distributed in a logarithmical mass range of 0.2–
10.0 MJup and in a linear period range of 1.0–1000 days.
From the real measurements of each star we retain the observa-
tion dates (expressed in Baricentric Julian Date) and the corre-
sponding measurement errors, which we inflated as explained in
Sect. 3. For random choices of the planet mass-period pairs and
assuming eccentric orbits, we calculated the contribution to the
radial velocity amplitude K from a giant planet using the relation

K =

(
2πG

P

)1/3 (
mp sin(i)

MJup

) (
M?

M�

)−2/3 (
1

√
1 − e2

)
, (1)

where M? is the mass of the host star that we obtained from
isochrone fitting. A random distribution of the orbit inclination
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Fig. 7. Left: RV time series with the fitted linear trend of YBP1062 overlaid. Right: periodogram of the residuals after the RV trend has been
removed. Same symbols as in Fig. 3.

Fig. 8. Left: RV time series with the fitted linear trend of YBP1137 overlaid. Right: periodogram of the residuals after the RV trend has been
removed. Same symbols as in Fig. 3.

Fig. 9. Phased RV measurements and Keplerian best fit (left), periodogram of the RV data (center), and periodogram of the residuals for S488.

was also assumed, and the eccentricity e was allowed to vary
randomly between 0.0 < e < 0.5. Then, we derived the synthetic
planetary signals following the equation for eccentric Keplerian
orbits,

Vr(t) = a cos ν(t) + b sin ν(t) + c, (2)

where a = K cosω, b = −K sinω and c = Ke cosω + γ. Here, K
is the RV amplitude, e the eccentricity, ω the longitude of perias-
tron, γ the systemic velocity of the system, ν(t) the true anomaly,
which is a function of t, P, and e, and t0 is the time of periastron
passage. The latter was selected randomly in the time span of
the observations, and γ was allowed to vary around the RV value

of the M 67 cluster obtained in Pasquini et al. (2012). We then
degraded the obtained RVs by adding noise corresponding to the
actual measurement error of the real observations.

5.1.1. Stars with at least ten data points

A periodogram-based analysis (Scargle 1982) was applied to
each synthetic dataset to verify whether the simulated planet
was observable. This approach was chosen for all the stars with
enough measurements for a reliable periodogram analysis. We
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note that this is the same procedure as we applied for the analy-
sis of the RV measurements in Sect. 3.

For a given mass and period values, we considered a planet
to be detected if we could obtain a signal from the periodogram
analysis that had a power higher than the power associated with
a 0.01 FAP. For each star 106 trials were used.

In the two-dimensional space of orbital period and planet
mass, we consider a grid of period and log-spaced mass cells
within which the planet detectability (or detection efficiency, Eij)
is individually computed as the number of the potentially de-
tected planets with respect to the total simulated planets in each
bin of mass and period. On the base of this analysis, the detec-
tion efficiency was carried out for 14 MS stars and 10 evolved
stars. Figures A.1 and A.2 show the detection efficiencies for the
24 stars as color contours from 0.0 to 1.0. The red regions have
a 100% detectability of planets, and blue regions have low de-
tectability. This means that in red regions (high detectability) all
potential planets at the given period and mass would be detected.
In the blue regions (low detectability) the detection efficiency
decreases, and we are not able to discover their presence at high
confidence. In Figs. A.1 and A.2, the resulting distribution of
the planet detection efficiency clearly reduced with decreasing
planet mass and with increasing period. This is due to the insuf-
ficient number of measurements, to the distribution of the obser-
vations, and to the weak RV signal. Moreover, windows of poor
detectability in the period-mass grid occur for two main reasons:
the data structure (number of observations and phase coverage),
and the one-year seasonal period that affects any ground-based
observing program.

5.1.2. Stars with poor sampling and few observations

In order to take into account the contribution of stars with poor
sampling and few observations, we derived the number of de-
tectable planets using the measurements rms. We considered the
same grid of period and log-spaced mass cells as described in
Sect. 5.1. In each cell of the mass-period grid, we evaluated the
average rms of the synthetic radial velocities for the simulated
planets (RMSsim). We set our detection threshold by identifying
for each star the mass-period cells with synthetic average RV
variation more than three times higher than the estimated errors
(RMSsim > 3σcorr) of our real measurements. Inflated measure-
ments errors were used in the analysis.

All potential planets with RMSsim smaller than 3σcorr were
instead considered undetectable.

Finally, we folded the results of all the stars by obtaining the
mass-period cell-matrix M. The value for each Mij cell repre-
sents the total number of poorly sampled stars for which planets
in that cell would be detected.

As an example, the detection regions for a star of the sam-
ple derived using the RV rms analysis is shown in Fig. 10. In
the red area the rms of the simulated RV values (RMSsim) is
more than three times higher than the real measurements error
(σcorr): all hypothetical planets in this mass-period range would
be detected. In the blue ruled area the rms of the simulated RV
values (RMSsim) is lower than 3σcorr: potential planets in this
mass-period range cannot be detected with our observations.

5.1.3. Planetary occurrence

We computed the planet occurrence rate γ(P,M), that is, the frac-
tion of stars of our survey that are orbited by giant planets in
the selected period-mass ranges, using the following formalism.

Fig. 10. Planet detection regions for a star of the sample derived using
the RV rms analysis. Red area: the rms of the simulated RV values is
more than three times higher than the real measurement error, thus all
potential planets can be detected. Blue ruled area: the rms of the simu-
lated RV values is lower than three times the real measurement errors.
Potential planets in this mass-period range cannot be detected with our
observations.

Considering the 24 stars analyzed with the Lomb-Scargle
method, we derived the completeness, expressed as detectable
planetary number, R?,k, for each k star. First we weighted the
calculated detection efficiency with the mass-period distribution
of planets derived from the relation of Cumming et al. (2008):
d f ∝ M−0.31±0.2P0.26±0.1d log Md log P. Therefore we defined

R?,k = c
Nbins∑

ij

Eij · Dij, (3)

where the sum is evaluated over the entire mass-period bins. Eij
corresponds to the detection efficiency for each period-mass cell,
Dij represents the mass-period distribution of planets within each
bin and is calculated by

Dij =

∫
bin

M−0.31±0.2P0.26±0.1d log Md log P. (4)

The normalization constant c is defined conveniently inside our
mass-period domain by the relation

1 = c
∫ 1000

1.0

∫ 10

0.2
M−0.31±0.2P0.26±0.1d log Md log P. (5)

Finally, we summed the values obtained from the analysis of all
the MS and giant stars (G) as

RMStot =
∑

MS stars

R?k, RGtot =
∑

G stars

R?k. (6)

RMStot and RGtot can be interpreted as the number of planets that
would be detected if every star in the sample were hosting a
planet. We imposed the result to be proportional to the number
of real detected planets in the seven-year-long RV survey (three
MS and two giant stars):

3 = γMSRMStot, 2 = γGRGtot. (7)

Therefore, the proportional constants γMS and γG represent an
estimate of the planet occurrence rate of our survey for the
MS and G stars respectively. In the analysis, turn-off stars with
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12.5 ≤ MV ≤ 13.5 and 0.540 ≤ (B−V) ≤ 0.640 were considered
part of the MS sample, and the others were considere part of the
G sample.

Subsequently, we decided to include a correction for the total
detection efficiency to take the contribution of the stars with few
observations and poor sampling into account in computing the
planet occurrence rate.

Two cases were evaluated.
In the first, the planet occurrence among the MS stars (NMS =

14) and the evolved stars (NG = 10) was rescaled with the ratio
of NMS or NG over the total number of stars considered in the
analysis: 14 of 56 for the MS and 10 of 20 for the giant stars.
This corresponds to the more conservative approach, where all
the stars with few observations do not have a companion.

In the second case, we instead decided to rescale the detec-
tion efficiency for each cell Eij as

E
′

ij =

(
Mij + Nstars

Nstars

)
· Eij, (8)

where Mij is the number of stars with potentially detectable plan-
ets for each mass-period cell calculated using the method based
on the RV value rms. In this case, only stars with few observa-
tions and poor sampling were considered. Nstars is the number
of the stars with potentially detectable planets obtained with the
periodogram-based analysis.

5.2. Discussion

When we consider only the 14 MS and the 10 evolved stars
described in the previous section, the planet occurrence in our
survey results in the values of γMS ∼ 58.3+56.4

−31.1% for the MS
and γG ∼ 43.8+57.2

−28.5% for giants. The errors on the number
of found planets are calculated following the prescription of
Gehrels (1986). Combining the values for MS and giants gives a
total occurrence rate of γtot ∼ 51.5+35.0

−22.7%. These 24 objects rep-
resent the fraction of the stars with a detection efficiency high
enough for the number of observations to observe giant planets
in the selected range of mass and period (see Figs. A.1 and A.2).

Applying then the correction for the detectability based on
those stars that have fewer observations, we obtained the follow-
ing values for the two considered approaches. In the more con-
servative case, without further detections, the planet occurrence
becomes ∼14.6+14.1

−8.0 % for the MS stars, ∼21.9+28.6
−14.2% for the giant

stars, and ∼16.3+11.0
−7.0 % for the whole sample.

In the more general case, the procedure previously described
instead gives a giant planet occurrence of ∼15.8+15.3

−8.4 % for the
MS stars and ∼23.0+29.9

−15.0% for the evolved stars. When referring
to the whole sample, the occurrence is ∼18.0+12.0

−8.0 %.
The values from the latter more general analysis are finally

considered as the final results of our study. Interestingly, they
are similar to the results of RV surveys around FGK field stars
that show exoplanet rates of ∼13% for Jupiter-mass stars in
approximately the same range of periods (Mayor et al. 2011;
Cumming et al. 2008).

Moreover, when we investigated only the frequency of hot
Jupiters around MS stars of our survey and exactly repeated the
procedure described in the previous sections, but focusing on ob-
jects with periods shorter than 10 days, we found a hot Jupiter
occurrence rate of ∼5.1+4.9

−3.0% for the conservative approach and
of ∼5.7+5.5

−3.0% for the more general case. These values appear to
be higher than what is observed in field stars (Wright et al. 2012;
Howard et al. 2011). About this argument in particular, we refer

to the discussion presented in our parallel work (Brucalassi et al.
2016). We pointed out in that paper that the high rate of hot
Jupiters could be favored by a formation scenario dominated by
strong encounters with other stars or binary companions and sub-
sequent planet-planet scattering, as predicted by N-body simula-
tions. In this context, we should consider that rescaling the actual
M 67 detectability with the mass-period distribution derived by
Cumming et al. (2008) for the field stars as done in the previous
section could produce a biased result. However, future investiga-
tions and a larger number of planet detections in stars cluster are
required to assess this hypothesis.

Finally, it is worth to point out that we did not find any clear
detection of long-period giant planets around MS stars, possibly
because the sensitivity of our survey decreases heavily for long-
period planets. However, the recent discovery in the Praesepe
cluster of a second massive outer planet around Pr0211 that hosts
a close hot Jupiter on a slightly eccentric orbit (Malavolta et al.
2016) suggests that further long-term monitoring could yield in-
dications of interesting discoveries in OCs.

6. Summary and conclusion

We have presented the results of a long-term search program
for giant planets in the solar-age, solar-metallicity open cluster
M 67.

Five different instruments were used, and after finding proper
zero-point corrections to HARPS, 1145 observations for 88 stars
were analyzed.

The problem of combining long-term precision RV data from
different instruments complicates the analysis. Zero-points off-
sets were derived with a limited precision, which leads to a loss
of sensitivity for trends and long periods. However, this prob-
lem quite frequently occurs in long-term surveys because spec-
trographs receive upgrades or survey projects are transferred to
new instruments. Long-term access to the same telescope or in-
strument configuration is therefore quite important for this type
of studies.

Five stars of our sample are found to host planets. One of
them (YBP401) has recently been presented in Brucalassi et al.
(2016), and in that work we have refined the parameters, based
on new measurements, of other two planets announced previ-
ously around YBP1194 and YBP1514 (Brucalassi et al. 2014).
The other planet-host candidate S978 was discussed in this pa-
per. We have no clear additional planet detection in our sample,
but some promising or controversial cases such as YBP778 and
YBP2018 call for follow-up observations. Fourteen new binaries
were identified and added to the catalog of known M 67 binaries
that has been created in Paper I (Pasquini et al. 2012). Moreover,
we see trends in S1062 and S1137, and large RV scattering is ex-
hibited by S815 and S488, which might be explained by stellar
companions or substellar objects. However, stellar chromospher-
ical activity and magnetic cycles may cause RV variations that
might be mistaken as companions. Activity indicators such as
the Ca II H&K lines, Hα, and the bisector span are fundamental
to verify claimed planets from RV variability.

We provided an estimate of the planet occurrence rate
γ(P,M), that is, the fraction of stars of our survey that is orbited
by Jupiter planets in the ranges of period between 1.0 day and
1000 days and has a planet mass between 0.2 MJ and 10.0 MJ.
Although one of the main problems of this survey was the poor
and sparse sampling and the small number of observations per
star, which complicates the statistical analysis and increases the
uncertainty on the frequency of Jupiters in our survey, we find
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a total occurrence rate of Jupiter-mass planets in the M 67 sam-
ple of ∼18.0+12.0

−8.0 % (precisely ∼15.8+15.3
−8.4 % for the MS stars and

∼23.0+29.9
−15.0% for the evolved stars). It is worth noting that on av-

erage we need a minimum number of 20 observations per star
to exclude Jupiter-mass planets at high confidence when a peri-
odogram analysis is applied.

The Jupiter-mass planets in our sample imply that our results
are consistent with the planet frequency of much larger surveys
carried out for field star samples. For example, from the ELODIE
survey, Naef et al. (2005) estimated that a fraction of 7.5 ± 1.5%
stars host giant planets with periods shorter than 10 yr, while
Cumming et al. (2008) derived a frequency of 12 ± 1.6% from
the Keck survey and Mayor et al. (2011) 13.9 ± 1.7% from the
HARPS/CORALIE survey.

As a general conclusion, our simulation study seems to con-
firm the recent finding (Meibom et al. 2013) that the frequency
of massive planets around stars of open clusters agrees with the
frequency of these planets around field stars.

However, we note that when we only investigate the fre-
quency of hot Jupiters around MS stars of our survey, we
find a hot Jupiter occurrence rate (∼5.7+5.5

−3.0%) that is substan-
tially higher than what is observed in field stars (see also
Brucalassi et al. 2016).

We have shown that the search for planets in open clusters
is a powerful test benchmark for the theory of planet forma-
tion and stellar evolution. The new generation of spectrographs
such as ESPRESSO (Pasquini et al. 2009) will extend this search
more effectively. It is clear, however, that to efficiently perform
a planet search survey in star clusters, a multi-object capability,
even with relatively low multiplex (10–50), is desirable. Unfor-
tunately, no such facility is currently planned.
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Appendix A: Accompanying plots and table

Table A.1. Observed targets in M 67.

Object B − V MV H S C HET H-N TOT RV( km s−1) σobs( km s−1) σcor( km s−1) σRV ( km s−1)

YBP219 0.570 13.6 6 5 0 0 0 11 33.714 0.016 0.022 0.323
YBP266 0.570 13.6 11 3 0 0 1 15 33.774 0.017 0.022 0.031
YBP285 0.663 14.5 7 2 0 0 0 9 34.397 0.016 0.022 0.019
YBP288 0.637 13.9 1 2 0 0 0 3 37.691 0.010 0.018 1.299
YBP291 0.570 13.5 23 3 0 0 0 26 32.521 0.017 0.022 0.026
YBP349 0.636 14.3 11 0 0 0 0 11 35.048 0.014 0.020 0.023
YBP350 0.561 13.6 11 2 0 0 0 13 33.227 0.015 0.021 0.020
YBP401 0.566 13.7 19 5 0 0 2 26 33.178 0.015 0.021 0.035
YBP473 0.658 14.4 7 0 0 0 0 7 33.266 0.016 0.022 0.023
YBP587 0.605 14.1 6 2 0 0 0 8 33.188 0.013 0.020 0.028
YBP613 0.612 13.3 10 4 0 0 0 14 33.565 0.015 0.021 0.020
YBP637 0.661 14.5 5 2 0 0 0 7 34.801 0.014 0.020 0.019
YBP673 0.665 14.4 14 1 0 14 2 31 33.496 0.026 0.030 0.249
YBP689 0.622 13.1 10 2 0 3 0 15 33.650 0.017 0.022 0.044
YBP750 0.598 13.6 4 1 0 0 0 5 34.251 0.014 0.020 0.011
YBP769 0.665 14.4 2 1 0 0 0 3 CCFDoublepeak
YBP778 0.582 13.1 15 4 0 0 2 21 34.288 0.016 0.022 0.090
YBP809 0.696 15.0 5 0 0 0 0 5 32.864 0.011 0.019 0.011
YBP851 0.617 14.4 3 1 0 0 0 4 33.759 0.010 0.018 1.417
YBP911 0.673 14.6 2 0 0 0 0 2 33.738 0.020 0.025 0.703
YBP988 0.598 14.2 5 1 0 0 0 6 32.862 0.013 0.020 0.016
YBP1032 0.598 14.4 6 0 0 0 0 6 34.913 0.013 0.020 0.013
YBP1036 0.690 15.0 15 0 0 0 0 15 34.025 0.015 0.021 0.025
YBP1051 0.595 14.1 15 3 0 5 0 23 33.364 0.016 0.022 0.156
YBP1062 0.626 14.5 19 3 0 0 0 22 33.462 0.017 0.022 0.067
YBP1067 0.642 14.6 7 0 0 2 0 9 33.667 0.019 0.024 1.030
YBP1075 0.633 13.7 11 1 0 0 1 13 33.858 0.014 0.020 0.034
YBP1088 0.618 14.5 8 0 0 0 0 8 33.434 0.014 0.020 0.022
YBP1090 0.650 13.8 2 1 0 0 0 3 35.186 0.021 0.025 1.265
YBP1101 0.661 14.7 4 1 0 0 0 5 33.484 0.015 0.021 0.029
YBP1129 0.583 14.2 4 1 0 0 0 5 34.479 0.009 0.018 0.009
YBP1137 0.657 14.9 13 0 0 0 0 13 34.227 0.018 0.023 0.031
YBP1194 0.626 14.6 16 6 0 5 2 29 34.189 0.017 0.022 0.027
YBP1197 0.565 13.3 10 0 0 0 0 10 34.591 0.017 0.022 0.015
YBP1247 0.568 14.1 5 1 0 0 0 6 32.966 0.013 0.020 0.014
YBP1303 0.636 14.6 4 1 0 0 0 5 33.395 0.017 0.022 0.019
YBP1304 0.723 14.7 2 1 0 0 0 3 32.512 0.019 0.024 2.670
YBP1315 0.693 14.3 5 2 0 6 0 13 34.885 0.022 0.026 0.801
YBP1334 0.639 14.4 6 1 0 0 0 7 33.066 0.014 0.020 0.021
YBP1387 0.585 14.1 5 1 0 0 0 6 34.059 0.012 0.019 0.017
YBP1392 0.675 14.8 8 1 0 0 0 6 34.556 0.016 0.022 0.023
YBP1458 0.698 15.0 6 0 0 0 0 6 33.417 0.013 0.020 0.015
YBP1496 0.556 13.9 8 1 0 0 0 9 34.786 0.015 0.021 0.017
YBP1504 0.584 14.2 4 1 0 0 0 5 33.761 0.013 0.020 0.018
YBP1514 0.680 14.8 17 5 5 0 0 27 34.048 0.018 0.023 0.036
YBP1587 0.600 14.2 11 1 0 0 1 13 33.446 0.011 0.019 0.035
YBP1622 0.591 14.2 6 0 0 0 0 6 33.951 0.012 0.019 0.015
YBP1716 0.619 13.3 5 1 0 7 0 13 36.205 0.010 0.018 0.651
YBP1722 0.560 14.1 10 1 0 5 1 17 34.483 0.018 0.023 0.025
YBP1735 0.620 14.3 5 0 0 0 0 5 33.976 0.013 0.020 0.014
YBP1758 0.653 13.2 2 1 0 0 0 3 29.653 0.011 0.019 1.521
YBP1768 0.615 14.4 3 0 0 0 0 3 34.497 0.012 0.019 0.003
YBP1787 0.626 14.5 8 1 0 0 0 9 34.065 0.014 0.020 0.016
YBP1788 0.622 14.4 8 0 0 0 0 8 34.162 0.014 0.020 0.042

Notes. Object name, basic stellar parameters, number of observations for each instrument (H: HARPS, S: SOPHIE, C: CORALE, HET: HRS
at Het, H-N: HARPS-N), total number of observations, mean stellar RV, average measurements error, average corrected measurements error,
observed RV dispersion. Binary candidates are indicated in bold face.
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Table A.1. continued.

Object B − V MV H S C HET H-N TOT RV( km s−1) σobs( km s−1) σcor( km s−1) σRV ( km s−1)

YBP1852 0.572 14.0 7 1 0 0 0 8 32.914 0.013 0.020 0.018
YBP1903 0.648 14.7 5 0 0 0 0 5 33.390 0.017 0.022 0.023
YBP1948 0.571 14.0 4 1 0 0 0 5 33.333 0.012 0.019 0.011
YBP1955 0.589 14.2 6 1 0 0 0 7 33.212 0.013 0.020 0.021
YBP2018 0.631 14.6 22 2 0 7 0 31 31.991 0.020 0.025 0.089
S364 1.360 9.8 14 6 7 5 0 32 33.198 0.010 0.018 0.042
S488 1.550 8.9 15 11 0 8 3 37 32.861 0.012 0.019 0.156
S602 0.512 12.9 6 4 0 7 0 17 33.894 0.018 0.023 0.047
S610 0.493 12.9 5 1 0 5 0 11 33.371 0.024 0.027 0.056
S657 0.559 12.3 8 0 0 0 0 8 33.234 0.008 0.017 0.015
S731 0.516 13.1 10 1 0 0 0 11 33.097 0.012 0.019 0.021
S815 0.497 12.9 14 4 0 7 3 28 34.139 0.019 0.024 0.207
S978 1.332 9.7 16 9 10 3 2 40 34.577 0.010 0.018 0.043
S989 1.048 11.4 8 1 8 3 0 20 34.795 0.019 0.024 0.024
S1001 0.759 12.4 3 1 0 0 0 4 33.409 0.007 0.017 0.024
S1010 1.069 10.5 7 3 6 0 0 16 33.746 0.009 0.018 0.025
S1016 1.098 10.3 7 11 0 0 0 18 33.872 0.004 0.016 0.072
S1054 0.859 11.2 8 1 9 0 0 18 33.500 0.015 0.021 0.025
S1074 1.111 10.4 3 1 9 0 0 13 34.139 0.014 0.020 0.042
S1084 1.086 10.5 15 1 6 5 0 27 33.900 0.007 0.017 0.021
S1230 0.524 13.1 4 0 0 0 0 4 33.773 0.013 0.020 0.005
S1254 0.999 11.5 10 3 5 0 0 18 32.867 0.013 0.020 0.058
S1271 0.506 12.9 11 2 0 0 0 13 33.648 0.016 0.022 0.023
S1279 1.081 10.6 7 2 7 0 0 16 33.384 0.010 0.018 0.021
S1288 1.016 11.3 5 1 6 0 0 12 33.454 0.020 0.025 0.040
S1293 0.565 12.1 13 10 0 7 0 30 34.094 0.010 0.018 0.042
S1305 0.945 12.2 14 2 0 6 0 22 33.964 0.011 0.019 0.020
S1316 1.077 10.6 9 2 6 4 0 21 32.860 0.012 0.019 0.028
S1402 1.109 10.9 4 1 0 0 0 5 33.781 0.007 0.017 0.008
S1479 0.682 10.5 6 1 6 0 0 13 34.319 0.011 0.019 0.013
S1557 1.249 10.1 13 13 6 4 1 37 33.797 0.010 0.018 0.138
S1583 0.665 14.4 2 1 0 0 0 3 CCFDoublepeak
S1592 1.032 10.5 4 2 8 0 0 14 33.639 0.011 0.018 0.024
S1607 0.548 12.7 12 6 0 2 2 22 33.391 0.013 0.019 0.062
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Fig. A.1. Contours of the planet detection efficiency for the MS stars in the domains of 1–1000 days for planet period and 0.2–10 MJ for planet
mass. A 0.01 FAP level has been used as detection planet threshold in the periodogram analysis. A filled circle indicates the planet position.
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Fig. A.2. Contours of the planet detection efficiency for the evolved stars in the domains of 1–1000 days for planet period and 0.2–10 MJ for planet
mass. A 0.01 FAP level has been used as detection planet threshold in the periodogram analysis. A filled circle indicates the planet position.
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RV values Residuals BIS span FWHM

Fig. A.3. Top: Lomb-Scargle periodogram of the RV measurements, residuals, bisector span, and FWHM for YBP778. Bottom: same plots for
S978. The dashed lines correspond to 5% and 1% FAPs, calculated according to Horne & Baliunas (1986) and white noise simulations.

Fig. A.4. Top: RV measurements versus bisector span, residuals versus bisector span, RV measurements versus CCF FWHM, and RV measurements
versus Hα activity indicator for YBP778. The Hα activity indicator is computed as the area below the core of Hα line with respect to the continuum.
CCF FWHM values are calculated by subtracting in quadrature the respective instrumental FWHM. The same symbols as in Fig. 4. Bottom: same
plots for S978.
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