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ABSTRACT   

We present the updated design and architecture of the End-to-End simulator model of the high resolution spectrograph 
HIRES for the future Extremely Large Telescope (ELT). The model allows to simulate the propagation of photons 
starting from the scientific object of interest up to the detector, allowing to evaluate the performance impact of the 
different parameters in the spectrograph design. The model also includes a calibration light module, suitable to evaluate 
data reduction requirements. In this paper, we will detail the architecture of the simulator and the computational model 
which are strongly characterized by modularity and flexibility that will be crucial in the next generation instrumentation 
for projects such as the ELT due to of the high complexity and long-time design and development. We also highlight the 
Cloud Computing Architecture adopted for this software based on Amazon Web Services (AWS). We also present 
synthetic images obtained with the current version of the End-to-End simulator based on the requirements for ELT-
HIRES (especially high radial velocity accuracy) that are then ingested in the Data reduction Software (DRS) of 
CRIRES+ as case study. 
 
Keywords: End-to-End simulators – Instrument modeling – Parallel computing – Cloud Computing Architecture – HIgh 
REsolution Spectrograph (ELT-HIRES) – ELT telescope. 
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1. INTRODUCTION  
Front line researches in di�erent fields of astrophysics are entering a new era, where the signal detection capabilities will 
be pushed to unprecedented sensitivity. In the context of exoplanetary science, the atmospheric characterization through 
high resolution spectroscopy, with the ultimate goal of detecting the few ppm amplitude signal of an Exo-Earth orbiting 
Solar-like star, and furthermore the possible detection of life bio-signature on exoplanets are only two of the most 
fascinating examples. 

However, the measurement of these properties is challenging both for the physics behind them and for the precise design, 
optimization, characterization and complexity of the required instrumentation. This unprecedented sensitivity, in fact, 
will be achieved thanks to more and more complex observation facilities in term of technologies, instrumentations, 
operative modes and procedures. This arises both from the infrastructure required by large aperture telescope and even 
more heterogeneous and complex instrumentation. In order to assess the impact of design architecture on the instruments 
behavior and to accurately predict instruments performances, end-to-end simulators have become key tools2,3. 

End-to-End instrument models (E2E) are simulators which allow physical modeling of the whole system: from the light 
source to the raw-frame data. Synthetic raw-frames are the output, ingested by the Data Reduction Software (DRS), to be 
analyzed in order to assess if the scientific requirements (in terms of spectral resolution, SNR, Radial Velocity accuracy 
and precision, etc.), related to the specific science drivers, are satisfied with the specific instrument design and 
architecture. Moreover, E2E are valuable tools to be exploited to optimize performances, calibration procedures and 
observation plans, with the ultimate goal of maximizing the scientific return, before the on sky operations. 

In this paper we present the current design and development status of the E2E simulator for ELT-HIRES, the high 
resolution spectrograph for the ELT. The development of the simulator directly during the design phase will benefit the 
whole ELT-HIRES project, in addition to the aspects mentioned before, giving reliable simulations to gain a deep 
understanding of the instrument design, improving the capability of early identification of system level problems. This is 
fundamental to properly characterize error budget and systematic e�ects at system engineering level. 

 

2. ELT-HIRES OVERVIEW 
The huge photon collecting power of the 39 m primary mirror diameter ELT coupled with a High Resolution 
Spectrograph (ELT-HIRES) will allow to make fundamental discoveries in a wide range of astrophysical areas, outlined 
by the Science Team of the ELT HIRES consortium4,5,6,8:  

• The study of Exo-planetary atmospheres and the detection of signatures of life on rocky exo-planets. 

• The chemical composition, atmospheres, structures and oscillations of stars. 

• The spectroscopic study of the galaxies evolution as well as the three dimensional IGM reconstruction at high 
redshift. 

• Fundamental constants (such as the fine-structure constant α and the proton-to-electron mass ratio µ) variation 
and the related cosmology.  

The E-ELT will be the largest telescope to observe in visible and infra-red light; the baseline of the optical design (see 
Figure 1) is five mirror solution1: aspherical (almost paraboloid) primary mirror M1, a convex secondary mirror M2 with 
4 m diameter, concave tertiary mirror M3 with 3.75 m diameter, and two flat mirrors (called M4 and M5). These two 
latter mirrors have the purpose to feed two Nasmyth focal stations and for adaptive optics; below each Nasmyth platform 
a Gravity Invariant focal station, fed by a steerable and removable mirror (M6), will be located (see Figure 1). In 
addition the M6 mirror and a Coudè-train relay optics will allow to feed a Coudè focal station, which will be specialized 
to host instruments requiring very high long term stability in terms of thermal and mechanical perturbations. The 
telescope structure will be alt-azimuth type. 
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Figure 1. E-ELT optical layout: Nasmyth focus (left) and Gravity invariant focus (right), taken from [1] 

 

HIRES is a modular fiber-fed cross-dispersed echelle spectrograph that will operate both at a Nasmyth and at Coudé 
focus of the ELT. The baseline architecture, defined in the Phase A of the project, consists of two separate spectrographs 
operating in the visible (BVRI) and infrared (ZYJH) bands, (see Figure 2, and for details reference21).  A more complete 
solution consisting of four separate spectrographs with the addition of the U and K bands respectively is also taken into 
account in the instrument design (and handled by the software, described in reference7) even though this solution due to 
the cost cap is currently termed as “add-on”. 

 

 
Figure 2. Schematic of the proposed ELT-HIRES functional architecture concept. The di�erent sub-systems of the 
instrument (front-end, fiber link, calibration unit, spectrometers) are indicated, as well as the possible length of the fiber 
bundles, according to the specific wave-band. The wavelength splitting in the di�erent spectrograph modules is reported (in 
µm). 
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The light from the telescope is split, via dichroics in the Front-End (FE), in the two wavelength channels. The FE sub-
system also provides: atmospheric dispersion correction, field stabilization and guiding. Each wavelength channel 
interfaces with several fiber bundles that feed the corresponding spectrograph module (VIS and NIR). Each fiber-bundle 
corresponds to an observing mode. All spectrometer modules have a fixed configuration, i.e. no moving parts. They 
include a series of parallel entrance slits consisting of linear micro-lenses arrays each glued to the fiber bundles. In order 
to accomplish the specific scientific goals (see refrence8, as well as for a description of the observing modes), for the 
di�erent main observing modes two possible resolution capabilities (HR with R = 100000 and UHR with R = 150000, 
see Figure 2) are foreseen, which can be implemented by feeding the spectrograph modules with di�erent fibers bundles. 
The technique used by the Front-End and Fiber-Link sub-systems to feed the huge AΩ-product at the spectrograph 
entrance in the selected architecture is the field dicing (see for details reference9), in which each fiber of the bundle is 
looking at a slightly di�erent part of the object. 

The spectrometers can be ideally divided according to their specific function into two units: the pre-slit unit, a re-imaging 
system which collects the light from the fiber optics and feeds the spectrometer unit, which has the usual purpose of 
separate the light into its constitutive wavelengths and then refocus them onto the detector surface. The spectrometer 
units’ optical configuration (see for details21) is the white pupil layout with an o�-plane echelle grating; while the current 
camera optical configuration is the Schmidt camera.  

The Calibration Unit, located in the Coudé room, is connected via fibres to the Front End and to the Fibre Links. The 
foreseen calibration sources are intensity calibration sources (laser driven light source, halogen lamps, light emitting 
diodes, light bulbs) and spectral sources for simultaneous calibration (AstroComb, Faby-Perot, single wavelength laser, 
hollow-cathode lamps). 

ELT-HIRES has a Polarimeter arm, which is composed by two modules: Intermediate Focus Polarimetric Module 
(IFPM) and Front End Polarimetric Module (FEPM). The IFPM is located in the Adaptive Optics Tower of the telescope 
and is in charge of splitting the incoming beam into the ordinary and extraordinary beams via a birefringent prism 
(double Wollaston). This module uses also the calibration light via a fiber bundle coming from the Calibration Unit. The 
FEPM splits, via dichroics, the ordinary and extraordinary beams in the two wavelength channels (VIS and NIR) and 
provides usual Front-End functionalities listed above.  

 

3. END-TO-END SIMULATOR DESIGN PHILOSOPHY AND ARCHITECTURE 
The design philosophy of the E2E simulator is characterized by three fundamental aspects: 

• Modularity: the system is organized in Modules and Units, each in charge of its own responsibility, with 
specified interfaces and possibly with the maximum degree of independence. Since the instrument is itself 
complex (telescope, fiber-link, spectrograph, detectors) one of the key step is to identify and define the different 
Modules (and Units) and their interfaces. This allows to well characterize the behavior and the functionalities of 
each of them; 

• Flexibility: Since Units and Modules are, at first level of approximation, independent the system should allow to 
choose what to simulate or not, or to by-pass some units (e.g. simulate only emission from the object without 
atmospheric contamination or, instead, simulate the echellogram without taking into account PSF diffraction); 

• Speed: It is straightforward to expect that a certain amount of simulations will be performed during the whole 
design phase of the instrument. For this reason, it is crucial to design a solution that could achieve a fast 
computational time by adopting the proper state-of-the-art technologies. For this reason, the system has been 
design by the adoption of Cloud-Computing that allow to speed up by various orders of magnitude the 
computational time. 

 

The End-to-End simulator architecture, shown in the schematic of Figure 3, is highly modular, composed by different 
modules each one with specific tasks, units-functionalities and interfaces. In details, a Unit is a piece of software, 
function or interface of a part of the HIRES spectrograph and could be considered as a black-box that exchanges data 
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4.5 Detector Module 

The task of this module is to simulate, on the rendered data, the e�ects produced by the detector. Besides the nominal 
Quantum E�ciency response and the usual noises (like photon noise, Read-Out-Noise, Dark Current, pixel non 
uniformity, etc.) that are well characterized and, in most cases, straightforward to simulate, this module will also have 
the aim to add other e�ects that could be relevant for high precision radial velocity measurement. In particular, 
additional blurring types of the Spectral Resolution Elements (SRE) caused by the detector itself, are planned to be taken 
into account in future versions of the E2E simulator; these are: defocusing due to the not ideal planarity of the detector 
surface, optical defocusing of the diverging beam after focal point and Gaussian blurring due to the dispersion of 
electrons across the sensitive material. 
 
4.6 Image Simulator Module 

This portion of the simulator is the kernel of the whole system. This piece of software, which runs heavily in parallel in a 
cloud distributed environment (see next section), is responsible for rendering the photons distribution of each resolution 
element for each fiber, for each order for each wavelength as should be detected at the level of the detector. A portion of 
this module, written in MATLAB, is also in charge to glue the different Units and Modules to produce the actual 
echellogram. 
The perfect image of the fibers as seen at the level of the focal plane is estimated as explained in the Fiber-Link Unit 
subsection. Then, this distribution must be convolved with the PSF of the instrument that includes both aberration, 
diffraction and effects from the optics of the spectrograph. This is referred as 1st order PSF effect, and it could be carried 
out in two ways: 

• Analytically, using only the spectrograph paraxial model. In this scenario, the net effect is a Gaussian 
function whose FWHM represents the quality of the system. 

• Using ray tracing, by polling Zemax to recover the map of the PSF that could be used as a kernel to be 
convolved with the light distribution coming from the fiber. 

 
For the current version of the E2E simulator the first mode (analytically) has been adopted, although the whole 
architecture of the system is able to handle also the second one. 
The actual PSFs are also affected by the diffraction coming from the obstruction present in Schmidt cameras proposed in 
the current spectrograph optical design. Diffraction spikes in the PSF are generated by the presence of sharp edges within 
the beam shape at pupil position. Each spike extends towards orthogonal direction with respect to the edge that produced 
it and its spatial distribution is broader than the Airy diffraction halo, as deeply described in reference16. The importance 
of simulating diffraction spikes for a spectrograph like ELT-HIRES is that, if a spike happens to extend along the 
spectral direction in the final image, it will spread the flux of any bright spectral line onto the adjacent spectral intervals, 
thus increasing the local stray light contamination. This effect is especially important around the narrow and intense sky 
emission lines (see again reference16 for details). In this context, the Image Simulator Module (2nd order PSF effect) first 
computes an high resolution model of the beam obstruction, which depends on the beam shape, angle and position when 
the beam intersects the obstructing elements (different for each field and wavelength, and passed as inputs to this 
module, coming from the Spectrograph Unit of the Instrument Module). Then, it computes the diffraction component of 
the PSF shape by means of a Fast Fourier Transform of the obstruction model. The output of this module is a 2D image 
of the diffraction component computed on a sub-pixel sampling, combined with the 1st order optical aberration PSF 
(explained before). Finally, the Super-Lorentian illumination profile coming from fiber output end is convolved with the 
whole estimated PSF model, and the surface integral of the convolution is computed in each pixels to obtain the photons 
distribution for each SRE. 

5. COMPUTATIONAL ARCHITECTURE 
For a high resolution and high radial velocity precision spectrograph like ELT-HIRES, the wavelength image barycenter 
reconstruction accuracy will be the primary performance; to give an order of magnitude the spectral resolution element 
barycenter reconstruction accuracy should be better than ∼ 1nm. This requires, as expected, that the computation of the 
photons distribution for each SRE should be performed with high precision.  
For this reason, we have developed our own integral computation procedure using an innovative approach based on 
heavy parallel computing CUDA by NVIDIA for the evaluation of single point convolution value.  
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