

#### Rapporti Tecnici INAF INAF Technical Reports

| Number                      | 97                                                                                                                                                                                                            |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Publication Year            | 2021                                                                                                                                                                                                          |
| Acceptance in<br>OA@INAF    | 2021-10-07T12:07:24Z                                                                                                                                                                                          |
| Title                       | BC-SIM-TR-012 HRIC ICO1 REPORT                                                                                                                                                                                |
| Authors                     | DELLA CORTE, VINCENZO; ZUSI, MICHELE; SIMIONI,<br>EMANUELE; CAPACCIONI, FABRIZIO; CAPRIA, MARIA<br>TERESA; Doressundiram, alain; Langevin, Yves; PALUMBO,<br>PASQUALE; Vincedon, Mathieu; CREMONESE, Gabriele |
| Affiliation of first author | IAPS Roma                                                                                                                                                                                                     |
| Handle                      | http://hdl.handle.net/20.500.12386/31063;<br>http://dx.doi.org/10.20371/INAF/TechRep/97                                                                                                                       |

# BC-SIM-TR-012 HRIC ICO1 REPORT

Vincenzo Della Corte<sup>1</sup>, Michele Zusi<sup>1</sup>, Emanuele Simioni<sup>2</sup>, Fabrizio Capaccioni<sup>1</sup>, Maria Teresa Capria<sup>1</sup>, Alain Doressundiram<sup>3</sup>, Yves Langeven<sup>4</sup>, Pasquale Palumbo<sup>5</sup>, Mathieu Vincendon<sup>4</sup>, Gabriele Cremonese<sup>2</sup>

<sup>1</sup>INAF-IAPS, Via Fosso del Cavaliere 100, 00133, Rome, Italy <sup>2</sup>INAF-OAPd, Vicolo Osservatorio 5,35122, Padua, Italy <sup>3</sup>OLESIA (Observatoire de Paris, Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique), 92195 Meudon Cedex, France <sup>4</sup>CNRS (Institut d'Astrophysique Spatiale), Université Paris Sud, 91405, Orsay, France<sup>5</sup>Università Parthenopea, Centro Direzionale Isola 4, 80133, Naples, Italy



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page2 of 15

#### Index

| APPRO | OVATION                         |    |
|-------|---------------------------------|----|
| DOCUN | MENT CHANGE RECORD              | 3  |
| 1 IN  |                                 | 4  |
| 1.1   | SCOPE                           | 4  |
| 1.2   | REFERENCE DOCUMENTS             | 4  |
| 1.3   | ACRONYMS                        | 4  |
| 1.4   | DOCUMENT FORMAT AND REPOSITORY  | 5  |
| 1.5   | DOCUMENT ORGANIZATION           | 6  |
| 2 DE  | EFINITIONS AND ASSUMPTIONS      | 7  |
| 2.1   | HRIC SENSORS                    | 7  |
| 3 HF  | RIC-ICO1 TESTS                  | 9  |
| 3.1   | TEST DESCRIPTION AND COMMANDING | 9  |
| 3.2   | HK INTERPRETATION               | 10 |
| 3.3   | FUNCTIONAL TEST DATA ANALYSIS   |    |
| 3.4   | DARK CURRENT TEST DATA ANALYSIS | 14 |



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page3 of 15

#### Approvation

| Edited by:   | Vincenzo Della Corte |  |
|--------------|----------------------|--|
|              | Michele Zusi         |  |
|              |                      |  |
| Approved by: | Pasquale Palumbo     |  |
|              |                      |  |

#### **Document change record**

| Issue | Revision | Date       | Affected<br>Pages | Change description |
|-------|----------|------------|-------------------|--------------------|
| 1     | 0        | 27/09/2021 | All               | First issue        |



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page4 of 15

## **1** Introduction

### 1.1 Scope

The present document has been issued to describe the Instrument Check Out Phase (ICO#1) Tests of HRIC channel of the Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIO-SYS).

#### **1.2 Reference Documents**

- [RD.1] BC-SIM-TN-003\_-\_Reports\_and\_Note\_Layout\_and\_Flow, 10.20371/INAF/TechRep/36
- [RD.2] BC-ALS-TN-00099 MPO PFM Monitoring Thermistors Location
- [RD.3] BC-SIM-GAF-MA-002 rev.8\_SIMBIO-SYS FM User Manual, 2017
- [RD.4] BC-SIM-PL-002-Checkout\_01\_Test\_Summary\_Issue1\_27Jun2019, 10.20371/INAF/TechRep/64
- [RD.5] BC-SIM-IAPSUPA-TR-001 HRIC NECP report, 10.20371/INAF/TechRep/32
- [RD.6] BC-SIM-GAF-TR-113 rev.0\_TEC Control Parameters Revision for Commissioning\_F1
- **[RD.7]** Della Corte et al. 2018 "Performances of the SIMBIO-SYS High Resolution Imaging Channel on Board BepiColombo/ESA Spacecraft Channel Performance Parameters as Derived by on Ground Calibration Measurements". 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) Year: 2018

#### **1.3 Acronyms**

| ACK  | Acknowledgment                          |
|------|-----------------------------------------|
| ADC  | Analogical Digit Converter              |
| APID | Application Process IDentifier          |
| ASW  | Application SoftWare                    |
| СМ   | Color Mode                              |
| CSV  | Comma Separated Values                  |
| DSNU | Dark Signal Not Uniformity              |
| FOP  | Flight Operation Procedure              |
| FPA  | Focal Plane Assembly                    |
| НК   | HouseKeeping                            |
| HRIC | High spatial Resolution Imaging Channel |
| ICO  | Instrument CheckOut                     |
| IT   | Integration Time                        |



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page5 of 15

| ME         | Main Electronics                           |
|------------|--------------------------------------------|
| NECP       | Near Earth Commissioning Phase             |
| OBCP       | On-Board Control Procedure                 |
| ОВ         | Optical Bench                              |
| OBSW       | On Board Software                          |
| PDOR       | Payload Direct Operation Request           |
| PDS        | Planetary Data System                      |
| PE         | Proximity Electronics                      |
| PNG        | Portable Network Graphics                  |
| PSC        | Packet Sequence Control                    |
| RT         | Repetition Time                            |
| SIMBIO-SYS | Spectrometers and Imagers for MPO          |
|            | BepiColombo Integrated Observatory SYStem  |
| SSC        | Source Sequence Count                      |
| SSMM       | Solid State Mass Memory                    |
| STC        | STereo imaging Channel                     |
| S/C        | SpaceCraft                                 |
| тс         | TeleCommand                                |
| TEC        | Thermo-Electric Cooler                     |
| ТМ         | Telemetry                                  |
| VIHI       | VIsible and Hyper-spectral Imaging channel |
| XML        | eXtensible Markup Language                 |

#### **1.4 Document Format and Repository**

This document is compliant with the SIMBIO-SYS Report and Note Layout and Flow [RD.1] and will be archived both on the INAF Open Access repository and the SIMBIO-SYS team Archive.



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page6 of 15

#### **1.5 Document Organization**

This document is organized in sections whose topics are listed as follows:

- Section 2 sensors definition, with a brief description of the HRIC sensors used to monitor the environment in which the channel executes the tests
- Section 3 ICO1-HRIC tests, with a brief description of the executed tests and a report on obtained HKs and data



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page7 of 15

#### **2 Definitions and assumptions**

In this section the main physical and technical terms are defined. The physical and instrumental assumptions are also included.

#### **2.1 HRIC Sensors**

Table 1 reports the main HRIC sensors covering the temperature measurement of the Focal Plane Assembly (FPA), the Proximity Electronics (PE), the backside of the detector and the HRIC Optical Bench (OB), the Current and the Voltage measurement of the Thermo-Electric Cooler (TEC) and the PE.

| Param.ID | Param Name            | Unit | Calibration |
|----------|-----------------------|------|-------------|
| NSS11040 | HRIC Temperature FPA1 | К    | CSSP0010TM  |
| NSS11041 | HRIC Temperature FPA2 | К    | CSSP0011TM  |
| NSS11042 | HRIC Temperature PE   | К    | CSSP0012TM  |
| NSS11043 | HRIC Temp Tele1       | К    | CSSP0013TM  |
| NSS11044 | HRIC Temp Tele2       | К    | CSSP0014TM  |
| NSS11050 | HRIC PE 3.3V Measured | V    | CSSP0015TM  |
| NSS11051 | HRIC TEC Current      | А    | CSSP0016TM  |
| NSS11051 | HRIC TEC Current      | А    | CSSP0016TM  |

**Table 1:** Main HRIC temperature sensors of the FPA, PE, the backside of the detector and the<br/>HRIC OB as reported in [RD.2]. All HKs are part of the Packet YSS40001.

Table 2 and Figure 1 report the position of the above listed sensors.

| Unit          | Instrument<br>Controlled<br>Thermistors | Temp.  | Location    | Parameter        |
|---------------|-----------------------------------------|--------|-------------|------------------|
| HRIC Optics 1 | PT1000                                  | -40/65 | TIRD filter | HRIC_Temp_Tele_1 |
| HRIC Optics 2 | PT1000                                  | -40/65 | FPA package | HRIC_Temp_Tele_2 |
| HRIC SCA 1    | DT470                                   | -40/65 | FPA SCA     | HRIC_Temp_FPA_1  |
| HRIC SCA 2    | DT470                                   | -40/65 | FPA SCA     | HRIC_Temp_FPA_2  |
| HRIC PE       | PT1000                                  | -40/65 | PE hot spot | HRIC_Temp_PE     |

**Table 2:** HRIC temperature sensor position.

| SINCE IS A REAL PROVIDE IN THE POINT OF THE | DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page8 of 15 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |



(b)

**Figure 1:** HRIC-FPA temperature sensors [RD.3] next to the FPA, called SCA1 (on the left) and SCA2 (on the right) and associated respectively to the NSS11040 and NSS11041.



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page9 of 15

### **3 HRIC-ICO1 Tests**

As reported in [RD.4], the ICO1 SIMBIO-SYS Phase had the scope to verify the health status of the instrument at channel and system level after 6 months after launch. To do this, few functional and performance tests are planned to monitor the evolution of some key instrument parameters.

To note that, during the Functional Tests, differently from NECP phase (see [RD.5]) the switch on of the channels was performed after the upload of the optimized parameters (see [RD.6]) for the gentle activation of the TEC (to avoid peak of the TEC current in the case of difference of temperature greater than 10K).

#### **3.1 Test description and commanding**

All the test details and command timelines are reported in [RD.4].



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page10 of 15

#### Temperatures 295 3.262 • 3.26 290 3.258 285 3.256 [] 3.254 J. 3.254 J. Temperatures [K] 280 275 3.252 • Temperature FPA 1 • Temperature FPA 2 270 Temperature PE 3.25 • Temperature TIRD filter -• Temperature FPA Package •• • Voltage at 3,3V 265 3.248 624611000 624609000 624609500 624610000 624610500 624611500 624612000 624612500 Time (SCET seconds)

#### **3.2 HK interpretation**

**Figure 2:** HRIC housekeeping for the entire ICO-01 tests. Left y axis reports the temperatures; right y axis reports the Voltage.



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page11 of 15



Figure 3: TEC Current for the entire ICO-01 tests.

Figure 2 and Figure 3 plots show the trends of the HK related to the temperatures and the TEC current during the all the HRIC test in ICO1. The temperatures trends are nominal: since the PE power on, PE temperature starts to grow up reaching at the end of the test a maximum value of about 287 K.

The temperature sensors linked to the detector show a trend connected to the operations: the temperatures after the switch on of the TEC drops down to the setting point.

The Temperature of FPA Package (i.e., Tele 2 of Table 1 and Table 2), that is connected to the external case of the FPA, shows a trend linked to the TEC and FPA activation with a small temperature increase.

The Temperature of the TIRD filter (i.e., Tele 1 of Table 1 and Table 2) shows a small increasing trend from the beginning of the test: the increase of the temperature during the test is less than 1 °C.

With the correct values for the TEC activation parameters, the TEC current trend shows the expected soft start. Nevertheless, the presence of several overshoot both in temperature and current before the temperature stabilization, requires revising again the values for the PID parameters.



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page12 of 15

#### **3.3 Functional Test data analysis**

The analysis of the frames acquired during the functional test show that the signals read from the detector are compatible with the values characterized during the on-ground calibrations. Average Signal Level and Standard deviation measured on the frames are compatible with the same parameters acquired in similar conditions during the calibration campaign and during NECP activities (see [RD.5]).

For both the measurements (at short and long) integration times the average values show small (in amplitude) trends. These do not show any simple correlation with the housekeeping parameters.



**Figure 4:** In the plot the frame average and the standard deviation are reported (orange plots refer to left y-axis while blu plots refer to right y-axis). The frames have been acquired in three steps changing the integration time: a) short integration time 38  $\mu$ s; b) long integration time 0.3148 s; c) short integration time 38  $\mu$ s.

The analysis of collected data shows different results with respect to NECP (Figure 5):

- 1. During the first switch on the average values of the acquired frames have different trend;
- 2. At longer integration time the average values are higher than in the NECP test.



Figure 5: Comparison of the results of functional test between NECP and ICO\_01.

The second effect is compatible with the different temperatures setting of the focal plane. In fact, during the ICO-01 the FPA temperature was about 1 °C higher than the temperature during the NECP, this results in an increased value for the dark current and thus the average value for the acquired frames is higher than in the NECP test.

The second effect will be investigated during the IC02 where a longer sequence of acquisitions will be commanded to check the presence of a low frequency oscillation on the detector background.



DocumentBC-SIM-TR-012Date27/09/2021Issue1Revision0Page14 of 15

#### **3.4 Dark Current Test data analysis**

During the Dark test/measurement the areas of the detector corresponding to the Panchromatic, has been acquired with different integration times starting from the minimal (400 nano-seconds in the configuration used for the ROIC) up to about 6 seconds. The values of the average of the acquired frames are reported in Figure 6. The trend shown in the plot is compatible with the trends measured during the calibration campaign on ground and reported in [RD.6].



**Figure 6:** Average of the pixel values over the frames acquired during the DARK test. In the plot are reported the values of the average of the frame for the Panchromatic filter and the corresponding linear fit of the data.

In Figure 7 is reported the Dark acquisitions comparison among on-ground calibration (Blu), NECP data (Green) 4, ICO data (Red). The NECP dark rate seems better that the data acquired during the calibration, while the ICO-01 data show an increase of the Dark current. These fluctuation in the Dark rate are compatible with the small differences in temperature of the focal plane among the three tests. This behavior will be monitored in the next cruise checkout.



Figure 7: Comparison of the dark current trends acquired during the on-ground calibration, NECP and ICO-01.