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Abstract 
 

As the Square Kilometre Array progresses toward the 

construction phase, the first prototypes of the 

low-frequency instrument have been deployed in 

Australia. To support such a crucial phase, a measurement 

campaign took place in the Murchison Radio-astronomy 

Observatory area in order to validate the electromagnetic 

models of the arrays by characterizing the embedded-

element patterns and the array beams. A set of significant 

results is shown in this contribution. 

 

1 Introduction 
 

The future Square Kilometre Array (SKA) [0] radio 

telescope is approaching the final stage of its 

development. Within the bridging phase of the low-

frequency instrument (SKA-low) [2], which will operate 

from 50 to 350 MHz, two stations have been built in the 

Murchison Radio-astronomy Observatory (MRO) area in 

Western Australia (see Figs. 1 and 2). Both the stations 

share a random array layout of 256 dual-polarized 

antennas mounted on a ground plane with a diameter of 

about 40 m. The Aperture Array Verification System 2.0 

(AAVS2.0) station is composed of log-periodic 

SKALA4.1-AL antennas [3], whereas the Engineering 

Development Array 2 (EDA2) [4] station is composed of 

bow-tie antennas already used in the Murchison Widefield 

Array (MWA) [5]. 

The accuracy of the electromagnetic models is a critical 

aspect for such advanced instruments. The embedded 

element patterns (EEPs) can present significant distortions 

with respect to the expected behavior [6]. In June 2019, a 

measurement campaign was carried out at MRO with the 

main purpose of validating the electromagnetic models of 

both arrays through an experimental measurement of the 

EEPs and the digitally beam-formed array patterns 

exploiting a radio-frequency test source mounted on a 

small unmanned aircraft. The measurements directly 

involved research institutions from Italy, Australia and 

Malta. Before this campaign, the Italian team conducted 

several activities on low frequency aperture arrays, 

including the instrumental calibration [7-9] and near-field 

verification strategies [10, 11]. This contribution shows 

the relevant results of the MRO campaign. 

2 Experimental Setup 
 

When the MRO campaign was carried out, 48 antennas 

out of 256 were deployed in 3 clusters of 16 antennas for 

AAVS2.0, for this reason its name was AAVS1.5 [12]. 

EDA2 was fully deployed but only 48 antennas where 

connected to the receiver. The arrays shared nearly the 

same configuration. In particular, the layout of AAVS1.5 

(illustration in Fig. 3) is slightly enlarged with respect to 

 

Figure 1. Aerial view of the AAVS1.5 and EDA2 

stations at the MRO site. Picture from https://virtualtours-

external.csiro.au/MRO/ 
 

   

Figure 2. The AAVS1.5 SKALA4.1-AL antennas (left) 

and the EDA2 bow-tie dipoles (right). 
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EDA2 to accommodate the larger footprint of the 

elements. The resulting station diameter is 40 m for 

AAVS1.5 and 35 m for EDA2. 

The measurements at MRO have been carried out by 

using the Unmanned Aerial Vehicle (UAV) system 

already adopted in [13], [14]. A small multicopter 

equipped with a Real Time Kinematic (RTK) differential 

GPS and a tunable radio-frequency generator operated as 

a flying test source. 

The measurements have been performed at the 

frequencies of 50, 70, 110, 160, 230 and 320 MHz. They 

consisted in linear scans at a constant height of 120 m or 

160 m to characterize the principal cuts of the radiation 

patterns with an angular coverage of ±45° from zenith 

[15]. Although at such flying height the test source was 

not in the far-field of the whole array (considering the 

three deployed clusters), the far-field condition was 

satisfied at the embedded-element level. 

 

3 Results 
 

Although a relatively small subset of antennas was 

deployed when the campaign took place, more than 

10 GB of data have been collected in two days, 

corresponding to 14 flights, despite the weather 

conditions characterized by frequent wind gusts at 

40 km/h. 

In Fig. 4, the EEPs of two antennas (#0 and #2 of cluster 

#0) at two different frequencies are shown for the 

AAVS1.5 station. Antenna #0 is located at the edge of the 

cluster whereas #2 is closer to other adjacent antennas. 

Fig. 5 shows the results for the corresponding antennas in 

the EDA2 station. As previously mentioned, both the 

arrays share the same layout. We generally observe a 

good agreement between measurements (blue curves) and 

simulations (red curves). Similar agreement levels have 

been obtained for the other 46 elements, a detailed 

statistical analysis will be shown at the conference. 

Figs. 6 and 7 show the normalized beam-formed pattern 

of cluster #0 (16 antennas) of AAVS1.5 and EDA2, 

respectively. As expected, the results are rather similar to 

each other, even though some elements present different 

behavior. The measured array pattern (blue) has been 

obtained by equalizing the complex EEPs at the zenith of 

the cluster. This corresponds to a near-field focusing. The 

simulations (red) are instead performed in far-field using 

the Method of Moments (MoM) of Galileo-EMT. The 

good agreement confirms the effectiveness of near-field 

focusing for array testing [16]. 

 

4 Conclusion 
 

This first measurement campaign in Western Australia 

using a UAV-mounted test source has been conceived to 

support the deployment the SKA-low prototypes and 

verify the array models. Further activities will concern the 

whole 256-elements stations both in terms of the pattern 

characterization (also adopting near-field strategies) and 

the evaluation of the instrument performance (e.g. 

sensitivity). 
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Figure 4. Normalized embedded-element patterns of 

antenna #0 (upper row) and #2 (lower row) of AAVS1.5 

(north-south polarization, cluster #0) at 70 MHz (left 

column) and 320 MHz (right column). Blue: 

measurements, red: simulations. 

 

Figure 6. Normalized beam-formed pattern of cluster #0 

of AAVS1.5 at 320 MHz. Blue: measurements, red: 

simulations. 

 
Figure 5. Normalized embedded-element patterns of 

antenna #0 (upper row) and #2 (lower row) of EDA2 

(north-south polarization, cluster #0) at 70 MHz (left 

column) and 320 MHz (right column). Blue: 

measurements, red: simulations. 

 

Figure 4. Normalized beam-formed pattern of cluster #0 

of EDA2 at 320 MHz. Blue: measurements, red: 

simulations. 


