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Abstract –Understanding the complex behavior of the near-Earth electromagnetic environment is one of
the main challenges of Space Weather studies. This includes both the correct characterization of the differ-
ent physical mechanisms responsible for its configuration and dynamics as well as the efforts which are
needed for a correct forecasting of several phenomena. By using a nonlinear multi-scale dynamical systems
approach, we provide here new insights into the scale-to-scale dynamical behavior of both quiet and dis-
turbed periods of geomagnetic activity. The results show that a scale-dependent dynamical transition occurs
when moving from short to long timescales, i.e., from fast to slow dynamical processes, the latter being
characterized by a more regular behavior, while more dynamical anomalies are found in the behavior of
the fast component. This suggests that different physical processes are typical for both dynamical regimes:
the fast component, being characterized by a more chaotic and less predictable behavior, can be related to
the internal dynamical state of the near-Earth electromagnetic environment, while the slow component
seems to be less chaotic and associated with the directly driven processes related to the interplanetary
medium variability. Moreover, a clear difference has been found between quiet and disturbed periods,
the former being more complex than the latter. These findings support the view that, for a correct forecast-
ing in the framework of Space Weather studies, more attention needs to be devoted to the identification of
proxies describing the internal dynamical state of the near-Earth electromagnetic environment.

Keywords: Earth’s magnetospheric dynamics / geomagnetic storms and substorms / empirical mode decomposition /
recurrence analysis / geomagnetic indices

1 Introduction

The dynamics of the near-Earth electromagnetic environ-
ment exhibits a nonlinear character which manifests in the
emergence of complex variability at a wide range of spatial
and temporal scales (Tsurutani et al., 1990; Consolini, 2018).
The origin of this multiscale character of the near-Earth space
(the magnetosphere–ionosphere system) is related to both, the
interplanetary medium variations (e.g., solar wind variability),
which is a turbulent plasma medium, and the internal dynamics

associated with the variability of a set of different electric cur-
rents flowing in the magnetosphere and the ionosphere (e.g.,
Alberti et al., 2017). This environment is a complex (with dif-
ferent components that may interact with each other), highly
dynamic (given its multi-scale nature) and chaotic (reflected
by its unpredictable behavior) nonlinear system which exhibits
scale-invariant features (Vassiliadis et al., 1990; Consolini et al.,
1996; Wanliss, 2005).

The dynamical configuration and variability of this complex
environment can be monitored and studied by means of
time series of several geomagnetic indices, which are capable
of monitoring the different current systems. For instance, the
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Auroral Electrojet (AE) indices (Davis & Sugiura, 1966) mon-
itor the evolution of the current systems in the high-latitude
ionosphere, whose dynamical changes can be related to different
source mechanisms like the dynamics of the tail current in the
magnetosphere, the electric convection field driving electric
currents within the polar dynamo regions, or the inherent
enhancements of solar wind particles entering the magneto-
sphere in the high-latitude regions (e.g., Ahn et al., 1983; Daglis
et al., 1994; Baker et al., 1995; Consolini et al., 1996). These
electric currents are the main drivers responsible for the occur-
rence of high-latitude enhancements in geomagnetic field varia-
tions, such as the development of magnetospheric substorms
(e.g., Kamide & Kokubun, 1996). On the other hand, low-
latitude geomagnetic field variations are related to the occur-
rence of storms which are mainly driven by the enhancements
of the magnetospheric ring current activity (e.g., Weygand &
McPherron, 2006), whose variability is monitored, among
others, by the SYM-H index (Iyemori, 1990; Joselyn &
Tsurutani, 1990; Wanliss & Showalter, 2006; Consolini, 2018).

Nowadays, the ongoing development of our technological
society results in an increased variety of both data and phenom-
ena which need to be properly analyzed and investigated in the
framework of Space Weather research (Camporeale et al.,
2018). This obviously requires, on the one hand, an increase
in the computational and data science resources for managing
what we know as big data, and, on the other hand, the develop-
ment and/or combination of both established and novel data
analysis and modeling tools for advancing our understanding
of the near-Earth electromagnetic environment and processes
(Alberti et al., 2017; Camporeale, 2019).

The understanding of the multi-scale and complex dynamics
of the magnetosphere–ionosphere (MI) system in response to
the changes of the physical conditions of the solar wind and
interplanetary medium is a crucial point to develop a reliable
modeling of the MI dynamics, which is at the basis of every
attempt for correctly forecasting the effects of a solar distur-
bance (e.g., Alberti et al., 2018; Camporeale, 2019). In other
words, the investigation of the nature of the MI dynamics is a
central issue in Space Weather research. For instance, questions
like what are the features of the MI system at different spatio-
temporal scales, or to what extent the dynamics of the solar
wind driving linearly affects the MI response and/or triggers
internal processes, have to be considered central for a correct
modeling of several Space Weather processes and phenomena,
such as geomagnetic storms and substorms (e.g., Camporeale
et al., 2018; Consolini et al., 2018).

In this paper, we demonstrate that a combination of two
state-of-the-art nonlinear data analysis methods – empirical
mode decomposition (EMD) and recurrence analysis (RA) –

applied to the SYM-H index (Iyemori, 1990; Alberti et al.,
2018) can provide a better understanding of the multi-scale
dynamical properties of a geomagnetic storm (as opposed to
periods of magnetospheric quiescence). First, the EMD is used
to decompose the recorded SYM-H time series into a finite num-
ber of intrinsic components at different timescales without any
specific a priori mathematical requirements (e.g., Huang et al.,
1998; Alberti et al., 2017, 2018). Then, RA is applied to each
derived intrinsic component to investigate different aspects of
the dynamical complexity of temporal fluctuations captured in
those different variability modes. Specifically, representative
measures originating from two complementary quantitative

concepts are used for this purpose – recurrence quantification
analysis (RQA) (Marwan et al., 2007) and recurrence network
analysis (RNA) (Donner et al., 2010; Zou et al., 2019). Although
both, EMD and RQA/RNA have been recently employed in
studies on geomagnetic variability (Alberti et al., 2017, 2018;
Mendes et al., 2017; Donner et al., 2018, 2019), the combina-
tion of these concepts is novel and has not been used before
for time series analysis in the context of space physics. Thereby,
insights are to be expected that go beyond those provided by
previous studies which have utilized more traditional analysis
concepts.

2 Data description

We focus our attention on the low-latitude geomagnetic
disturbances by analysing the SYM-H geomagnetic index
(Iyemori, 1990), which is a proxy for the geomagnetic activity
at mid-to-low latitudes as it monitors the symmetric (SYM) vari-
ations of the horizontal component (H) of the magnetic field
recorded at mid-to-low latitude geomagnetic observatories. This
index is provided at a 1 min temporal resolution and allows to
investigate the dynamical changes of the magnetospheric equato-
rial ring current due to the solar wind parameters’ changes, as for
example, the effects related to variations of the solar wind
dynamic pressure and the interplanetary magnetic field orienta-
tion, which enhance plasma convection toward the inner magne-
tospheric regions (Wanliss & Showalter, 2006). Data can be
freely retrieved from the NASA OMNI website (http://
omniwebgsfc.nasa.gov).

We have selected two different time intervals during the
months of August and September 2018 according to the different
mean values of the SYM-H index: a quiet period corresponding
to the time interval between 1 and 10 August, and a disturbed
storm period between 24 August and 3 September, as reported
in Figure 1. During the quiet period the average value of the
SYM-H index was ~3 nT reaching a minimum value of
�16 nT, while during the disturbed period the average and min-
imum values were�52 nT and�206 nT, respectively. The latter
contains the geomagnetic storm that occurred on 26 August,
which was characterized by a value of Kp = 7 (https://www.
spaceweatherlive.com/en/auroral-activity/top-50-geomagnetic-
storms/year/2018), ranking it as the third strongest geomag-
netic storm of the current solar cycle and the strongest storm
of the year 2018. It was related to a large-scale quiet-region
solar filament located around the central meridian, which grad-
ually erupted around 19:00 UT and produced a partial halo
CME detected by SoHO/LASCO around 21:12 UT (see http://
www.stce.be/newsletter/pdf/2018/STCEnews20180831.pdf). This
structure was originally expected to have only minor conse-
quences on the near-Earth electromagnetic environment;
however, its effects were not minor. Indeed, the associated
interplanetary coronal mass ejection (ICME), which impacted
the Earth’s magnetosphere on 26 August, was characterized
by a strong southward component of the interplanetary mag-
netic field which persisted throughout most of the day, and
by an increase of the plasma density, thus enabling reconnec-
tion and causing the geomagnetic storm observed by ground-
based geomagnetic observatories (see http://www.stce.be/
newsletter/pdf/2018/STCEnews20180831.pdf).
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During the disturbed period the Earth’s magnetosphere was
initially strongly compressed by the impact of the interplanetary
(IP) shock associated with the ICME, which caused the sudden
impulse (SI) before the storm main phase (Joselyn & Tsurutani,
1990), with the SYM-H index reaching the positive value of
27 nT (see Fig. 1). Then, a sudden decrease of the SYM-H
values was observed, reaching the minimum value of �206 nT
on 26 August at 07:11 UT during the main phase of the geomag-
netic storm associated with the southward turning of the inter-
planetary magnetic field Bz component (Bz ~ �15 nT). This
main phase lasted for many hours during which the equatorial
ring current became intensified, and was followed by a very long
recovery phase of several days during which the SYM-H index
moved towards normal quiet-time values (see Fig. 1).

3 Methods

3.1 Empirical mode decomposition

In Huang et al. (1998) developed a new tool for decompos-
ing time series with a fully data-adaptive approach, allowing to
reduce mathematical assumptions and artifacts. The new tool,
known as empirical mode decomposition (EMD), is based on
an algorithmic procedure through which the decomposition
basis can be derived, while assuming neither stationarity nor lin-
earity, directly from the local properties of an observed signal
sðtÞ (Alberti et al., 2018). Thus, the basis is not fixed a priori
and formed by a finite set of empirical modes, called intrinsic
mode functions (IMFs), satisfying two properties: (i) the
number of zero crossings and local extrema must be equal (or
differ at most by one) and (ii) at any point, the sum of the upper
and lower envelopes should be zero. The IMFs are derived by
the so-called sifting process, which consists of the following
steps:

1. Derive a zero-mean signal cðtÞ ¼ sðtÞ � hsðtÞi, with h. . .i
being the time average.

2. Identify the local extrema of cðtÞ (i.e.,
ftH 2 ½1; T � : dcðtÞ

dt jt¼tH ¼ 0gÞ.
3. Interpolate local maxima (minima) by using a cubic spline

interpolation to derive the upper (lower) envelope uðtÞ
(lðtÞ).

4. Evaluate the mean envelope mðtÞ ¼ uðtÞþlðtÞ
2 .

5. Evaluate the detail hðtÞ ¼ cðtÞ � mðtÞ.

The main purpose of the sifting process is to eliminate riding
waves from time series. It requires that the sifting process must
be repeated several times until an IMF is obtained and stored as
ckðtÞ ¼ hðtÞ (Huang et al., 1998). Then, the steps from 1 to 5
must be repeated on the signal sðtÞ � ckðtÞ until a new IMF is
found, iterating this process until no more IMFs can be obtained.
As suggested by Huang et al. (1998), in order to guarantee that
the IMFs retain enough physical meaning of both amplitude and
frequency modulations, a stopping criterion needs to be defined,
taking into account to limit the size of the standard deviation
between two consecutive sifting results, e.g.,

r ¼
XT

t¼1

jhj�1ðtÞ � hjðtÞj2
h2j�1ðtÞ

< rc; ð1Þ

with rc being typically between 0.2 and 0.3 (Huang et al.,
1998). For our analysis a threshold value rc ¼ 0:3 is selected.
At the end, we can write

sðtÞ ¼
XN

k¼1

ckðtÞ þ rðtÞ; ð2Þ

where rðtÞ is the final residue of the decomposition, a mono-
tonic function from which no more empirical modes (i.e.,
IMFs) can be extracted (Huang et al., 1998). Thus, a com-
pletely adaptive and a posteriori decomposition method is
built, particularly suitable to investigate various aspects of both
known and unknown physical processes in the framework of
nonlinear geosciences (e.g., Huang et al., 1999; Huang &
Wu, 2008; De Michelis et al., 2012; Consolini et al., 2017).

Another interesting property of the EMD is that each IMF
can be written as an oscillating function with time-dependent
amplitude akðtÞ and phase ukðtÞ, respectively, by using the
so-called Hilbert–Huang Transform (HHT) (Huang et al.,
1998). Indeed, the HHT allows us to derive both akðtÞ and
ukðtÞ by introducing a complex signal zkðtÞ ¼ akðtÞeiukðtÞ ¼
ckðtÞ þ iHfckðtÞg where

HfckðtÞg ¼ p�1 P

Z 1

0

ckðt0Þ
t � t0

dt0 ð3Þ

is the Hilbert Transform of the k-th IMF and P is the Cauchy
principal value (e.g., Huang et al., 1998; Carbone et al., 2018).
Thus, we derive

akðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckðtÞ2 þHfckðtÞg2

q
ð4Þ

ukðtÞ ¼ tan�1 HfckðtÞg
ckðtÞ

� �
ð5Þ

such that ckðtÞ ¼ ak tð Þ cos ukðtÞ½ � (Huang et al., 1998; Huang
& Wu, 2008).
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Fig. 1. The SYM-H time series of the period considered in this
work. The green and red lines refer to the quiet and the disturbed
period, respectively. The dashed gray line is used as a reference to
SYM-H = 0 nT.
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Having derived the instantaneous phase ukðtÞ, its time-
derivative allows us to introduce the concept of instantaneous
frequency xkðtÞ ¼ dukðtÞ

dt (e.g., Huang et al., 1998), from which
a typical timescale of oscillation sk ¼ 2phxkðtÞi�1, where h. . .i
again refers to the time average, can be derived for each IMF (e.
g., Huang et al., 1998; Alberti et al., 2019).

Thus, some limitations of classical decomposition methods
are overcome by the EMD, such as the requirement of a priori
assumptions on the decomposition basis or the use of fixed scale
eigenfunctions not allowing for a suitable description of nonsta-
tionarities. Obviously, some outstanding features need to be
properly addressed in order to deal with specific problems like
end or boundary effects and to avoid misleading results. For
more details, we refer the reader to previous works (e.g., Huang
et al., 1999; Huang & Wu, 2008; Wu & Huang, 2009; Alberti
et al., 2018).

3.2 Recurrence analysis

Our nonlinear characterization of the time series provided
by the different IMFs of the EMD is based on the concept of
recurrences in the state space of a dynamical system. Since
univariate time series commonly cannot fully capture the
dynamical complexity of a higher-dimensional complex system
(in our case, the externally driven Earth’s magnetosphere),
additional unobserved components are first qualitatively
reconstructed by the concept of time delay embedding (Takens,
1981). Here, we replace each value ckðtÞ of a given IMF by a
pattern of m values associated with distinct points in time, which
are mutually separated by some time delay d, i.e. ckðtÞ ¼
ðckðtÞ; ckðt � dÞ; ckðt � 2dÞ; . . .Þ. This so-called reconstructed
state vector or embedding vector does not only characterize
the present value of the time series, but rather the dynamical
evolution of the system culminating in the associated
observation.

The two parameters of the described embedding process,
embedding dimension m and delay d, can be selected by some
standard criteria like the false nearest neighbor approach and
average mutual information method (Donner et al., 2018). In
the present analysis, a trade-off is taken into consideration for
both parameters.

On the one hand, a choice of m = 3 balances between the
possibly high-dimensional nature of the observed dynamics
especially in the faster EMD modes (which would call for some
large m) and the fact that suitable statistics can only be expected
up to a given maximum embedding dimension depending on
the number of available state vectors (requiring a low m).
Specifically, since we will close our present study with some
sliding window analysis with a window size of only 200 min
(see Sect. 4.5), using a larger embedding dimension could lead
to some parts of the reconstructed state space not being suffi-
ciently populated by state vectors to allow for a proper statistical
characterization. Although we may expect different intrinsic
dimensionality of different IMFs, we will therefore keep this
value fixed throughout all analyses.

On the other hand, the intrinsic timescales of variability
differ strongly among the different IMFs, so that we select the
embedding delays individually for each IMF according to the
first zero crossing of the associated autocorrelation function as
a generally accepted criterion in nonlinear time series analysis
(see Table 1). As we will show in Section 4.1, each IMF is

associated with a relatively narrow range of instantaneous time-
scales, so that this first root is always of the order one fourth of
the mean instantaneous timescale as expected for oscillatory
signals. Notably, although the choice of d may well affect the
recurrence characteristics of a time series quantitatively, the
general results typically do not change qualitatively under minor
variations of this embedding parameter.

A more detailed discussion on how to choose embedding
parameters for applications to geomagnetic activity time series
can be found in the Supplementary Material of Donner et al.
(2018).

In the abstract metric space spanned by the coordinates of
the aforementioned embedding vectors, the recurrence of a state
vector is defined according to the spatial closeness of two
vectors corresponding to different points in time (Eckmann
et al., 1987; Marwan et al., 2007). As a common criterion for
proximity, we select the 5% mutually closest pairs of state
vectors among all pairs of such vectors. That is, a proximity
threshold eðkÞ is applied to all pairwise distances between state
vectors obtained by embedding the k-th IMF that corresponds
to the empirical 5th percentile of all those distances. The loca-
tion of recurrent state vectors in terms of their associated obser-
vation times is summarized in the binary recurrence matrix,
accordingly defined as

RðkÞ
ij ðeðkÞÞ ¼ HðeðkÞ � jjckðtiÞ � ckðtjÞjjÞ; ð6Þ

where Hð. . .Þ denotes the Heaviside function and jj. . .jj is the
maximum norm.

The dynamical patterns encoded in this recurrence matrix
can be characterized in several complementary ways. On the
one hand, recurrence quantification analysis (RQA) makes use
of the length distributions of diagonal (and vertical) line struc-
tures arising in the graphical representation of the recurrence
matrix (the so-called recurrence plot; Eckmann et al., 1987;
Marwan et al., 2007), emphasizing that diagonal lines indicate
the parallel evolution of two trajectory segments over a consid-
erable amount of time, which reflects a certain degree of pre-
dictability of the dynamics. Here, we focus on the so-called
degree of determinism (DET), defined as the fraction of recur-
rent state vectors contained in diagonal line structures consisting
of at least two points, and the diagonal line length entropy
(ENT), which is simply the Shannon entropy of the frequency
distribution of observed diagonal line lengths (Marwan et al.,
2007).

In addition to the line-based RQAmeasures that capture tem-
poral dependency structures, we also employ two characteristics
from recurrence network analysis (RNA), which reinterprets the
recurrence matrix equation (6) as the adjacency matrix of a
random geometric graph in the metric space of the embedding
vectors (Donner et al., 2010; Zou et al., 2019). Since network
characteristics are invariant under time-reordering of the state
vectors, the recurrence networks solely capture geometric prop-
erties of the observed dynamical system’s trajectory in the recon-
structed state space. Nonetheless, RNA measures have been
found recently to sensitively distinguish between geomagnetic
storm and quiescence phases (as reflected in the disturbance
storm-time index (Dst) (Donner et al., 2018), which is closely
related to the SYM-H index studied in the present work). Here,
we restrict ourselves to two RNA measures, the network transi-
tivity (T ) (which is directly related to a generalized version of a
fractal dimension; Donner et al., 2011) and the average path
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length (L). For details on both measures, we refer to Donner
et al. (2015) and Zou et al. (2019).

4 Results and discussion

4.1 Timescale variability of the SYM-H index

As a first step, the timescale variability of the SYM-H index
during the whole study period (e.g., between 1 August and 1
October, 2018) is investigated by applying the EMD procedure.
A set of N = 17 empirical modes (IMFs) is derived whose char-
acteristic mean timescales sk and associated standard deviations
rsk , obtained from instantaneous frequencies (e.g., rsk = std
f2 px�1

k ðtÞg), are reported in Table 2.
The SYM-H index variability clearly shows a well-defined

multiscale variability over a wide range of timescales, e.g. from
few minutes up to several days. The short-timescale modes are
related to the fast dynamics of the SYM-H index, which is
mainly due to the internal dynamical state of the near-Earth
electromagnetic environment (e.g., Kamide & Kokubun,
1996; Consolini & DeMichelis, 2005), while the long-timescale
variability is related to the occurrence of geomagnetic storms
and to the effects of the interplanetary medium variability on
the magnetosphere-ionosphere system (e.g., Alberti et al.,
2017). These features can be clearly evidenced by looking at
the behavior of some selected IMFs at different timescales
(i.e., s3 ~ 12 min, s7 ~ 110 min, s11 ~ 1.5 days, and
s15 ~ 13 days) and the residue rðtÞ of the decomposition
reported in Figure 2. As expected, empirical modes typically
show amplitude enhancements during the geomagnetic storm
(see the red line in Fig. 2), although irregular amplitude varia-
tions are also found during the quiet period (see the green
line in Fig. 2), especially in the short timescale IMFs (see, for

example, the behavior of c7ðtÞ in comparison with that of
c11ðtÞ). These features completely support the existence of
different dynamical components characterizing the SYM-H
index variability: a fast component, which is less affected by
the solar wind variability, and a slow component, which is
strongly coupled with solar wind variations (Alberti et al.,
2017, 2018).

The different multiscale characteristics of SYM-H are also
highlighted by looking at the behavior of the energy content

Table 1. Embedding delays d (in min) for each IMF during the quiet and storm period, respectively. Only the first 13 IMFs are studied in terms
of their recurrence properties, since the remaining four do not exhibit sufficient dynamics over the respective study periods to allow for a
meaningful statistical analysis.

IMF number

1 2 3 4 5 6 7 8 9 10 11 12 13

Quiet 4 3 4 6 10 23 39 85 155 353 656 1826 1918
Storm 1 2 3 7 10 20 31 165 316 497 723 910 1782

Table 2. Characteristic timescales sk and standard deviations rsk for
each IMF estimated for the whole time period between 1 August and
1 October, 2018.

IMF number sk � rsk (min) IMF number sk � rsk (days)

1 4 ± 1 10 0.8 ± 0.1
2 7 ± 1 11 1.5 ± 0.2
3 12 ± 2 12 2.8 ± 0.5
4 19 ± 3 13 4.4 ± 0.7
5 33 ± 5 14 9 ± 1
6 59 ± 8 15 13 ± 2
7 110 ± 13 16 23 ± 4
8 247 ± 28 17 37 ± 7
9 545 ± 41

Fig. 2. The SYM-H time series (upper panel), the empirical modes
c3ðtÞ, c7ðtÞ, c11ðtÞ, and c15ðtÞ (middle panels), and the residue rðtÞ
(lower panel). The green and red lines refer to the quiet and the
disturbed period, respectively. The dashed gray line is used as a
reference to SYM-H = 0 nT.
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during both quiet and disturbed periods, the latter being mainly
controlled by the solar wind variability as opposed to the former
(e.g., Baker et al., 1995; Wanliss, 2005; Consolini, 2018). This
can be simply done by evaluating the mean variances of all
empirical modes during the two different time intervals sepa-
rately, e.g. during the quiet and the disturbed period. For this
purpose, we also evaluated the mean timescales during both
periods separately by averaging the inverse of the instantaneous
frequencies xkðtÞ over the two different time intervals. The
obtained mean timescales do not significantly differ from those
evaluated by considering the whole period of two months, espe-
cially for the first IMFs associated with the short-term variability
of the SYM-H index, thus suggesting that the observed multi-
scale variability is a common feature of both quiet and disturbed
periods. Moreover, by looking at the variance-timescale distri-
bution of empirical modes (see Fig. 3), we clearly note that a
larger energy content (e.g., larger variance) is stored in the
long-timescale IMFs during the disturbed period as compared
with the quiet one (up to one order of magnitude), while a sim-
ilar energy content is found at timescales below 200 min during
both the quiet and the disturbed periods. This implies that the
role of the long-term geomagnetic variability significantly
increases during disturbed periods suggesting a close connec-
tion with the solar wind variability associated with the effects
of a solar disturbance on the near-Earth electromagnetic envi-
ronment (Alberti et al., 2017).

4.2 Dynamical complexity of the overall SYM-H
variability

In order to further characterize the differences between the
short- and long-term variability of the SYM-H index, we inves-
tigated their complexity by firstly looking at the behavior of the
resulting recurrence plots for two different empirical modes, i.e.,
c7ðtÞ and c11ðtÞ, as reported in Figure 4, during both the quiet
and the storm periods, respectively. It is evident that the IMF

capturing faster timescales (e.g., c7ðtÞ) exhibits a much richer
dynamics than c11ðtÞ, resulting in the presence of diagonal
and vertical line structures arranged in larger blocks. While
diagonal lines indicate a certain degree of predictability, with
the typical line length corresponding to the prediction horizon
with respect to a maximum tolerable prediction error determined
by the recurrence threshold e, vertical lines indicate slowly vary-
ing states and, hence, temporary laminar dynamics. Taking both
together, the emerging large-scale block structures are com-
monly indicative of multistable and/or intermittent dynamics
(Marwan et al., 2007). The latter interpretation matches very
well with the known presence of intermittency not only in the
solar wind as the main external driver of magnetospheric
dynamics, but also geomagnetic activity itself (e.g., Bruno
et al., 2003; Wanliss et al., 2004; Vörös et al., 2005), which
is expected to manifest particularly in the fast component of
geomagnetic variability (e.g., Alberti et al., 2018; Consolini
et al., 2018).

Although visually appearing less densely populated than for
c7ðtÞ, the recurrence plots for c11ðtÞ exhibit the same total num-
ber of recurring pairs of state vectors. This can be understood
when zooming into the respective plots (not shown): while
the recurrence patterns for c7ðtÞ have complex fine-scale struc-
tures, the slower ones form rather thick diagonal lines especially
during the quiet period. This behavior originated from the slow
variability encoded in c11ðtÞ, necessarily appearing more regular
and predictable due to its clearer oscillatory character (cf.
Fig. 2), also calling for the emergence of long diagonal line
structures in the recurrence plot. At the same time, the overall
amplitude of variations is rather large as compared to the ampli-
tude differences of subsequent points, which implies that subse-
quent state vectors (appearing next to each other in the
recurrence plot) are very likely similar and, hence, most often
identified as recurrent pairs. Hence, the more regular appearance
of the obtained recurrence plot as compared to c7ðtÞ basically
reflects the considerably higher degree of smoothness and asso-
ciated larger decorrelation time of c11ðtÞ.

10 0 10 1 10 2 10 3 10 4 10 5 10 6

k
 [min]

10 -1

10 0

10 1

10 2

k2

quiet
disturbed

Fig. 3. The variance-timescale distribution of the different empirical
modes (r2

k vs. sk). The green and red symbols refer to the quiet and
the disturbed period, respectively. The mean timescales are evaluated
by considering only the quiet or the disturbed time interval,
respectively.

Fig. 4. An example of recurrence plots for two empirical modes
c7ðtÞ and c11ðtÞ. The green and red colors refer to the quiet and the
disturbed period, respectively.
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4.3 Dynamical complexity during quiet and disturbed
periods

While the overall differences between the recurrence plots
for different IMFs can be explained in a straightforward manner
as discussed above, comparing the recurrence structures of the
same mode during quiet and disturbed periods is more informa-
tive. Despite the fact that IMFs are data-adaptive features and as
such can obey marked changes in the mean instantaneous fre-
quency as time proceeds, the qualitative differences of the
shown plots between both considered time intervals can not
only be explained by a change in the intrinsic frequency, but
also reflect marked amplitude changes. This is particularly evi-
dent for c11ðtÞ, for which the secondary diagonal lines (beside
the main diagonal) visible during the quiet period almost com-
pletely vanish along with the storm interval. Instead, we find an
entirely different morphology of the recurrence plot structures
involving bended recurrence structures especially along with
the recovery phase after the storm. While the absence of recur-
rences over a large portion of the recurrence plot simply reflects
the uniquely large amplitude of the IMF during parts of this
time interval, bended lines are commonly indicative of changing
frequencies of oscillations (Marwan et al., 2007), which are also
clearly visible in Figure 2.

Conversely, the differences between the quiet and the dis-
turbed period for c7ðtÞ are more subtle, with the quiet period
being characterized by block structures in the recurrence plot
that are more pronounced than the storm one. This observation
suggests that the effect of intermittency is dominant in the
quiet-time magnetosphere, which could appear contradictory.
However, due to the complex nature of the magnetosphere
(Vassiliadis et al., 1990; Consolini, 2018) this result needs to
be interpreted in terms of the concurrent effects of fast and slow

dynamical processes. Indeed, a geomagnetic storm can be
understood as a coherent large-amplitude pattern embedded in
a multiscale chaotic signal which reflects in the slow dynamical
component, with the faster ones carrying less information on
relevant dynamical processes. Thus, since fast dynamical pro-
cesses are dominated by the slow ones during the main and
the recovery phases of a geomagnetic storm, this potentially
reflects in a higher degree of observational stochasticity (e.g.,
due to observing a spatially extended system only at some
selected sites) relative to what is contained in the same IMF
during magnetospheric quiescence.

4.4 Recurrence measures at different timescales:
quiet vs. storm periods

The dynamical patterns of the SYM-H index variability at
different timescales can be characterized by evaluating some
recurrence measures for each empirical mode, thus providing
an independent way to investigate the existence of a timescale
separation with respect to previous works (e.g., Alberti et al.,
2017, 2018; Consolini et al., 2018). For this purpose, we esti-
mated the degree of determinism, the network transitivity, the
diagonal line length entropy, and the average shortest path
length for each empirical mode as shown in Figure 5 during
both the quiet and the storm period. As highlighted in Figure 5,
all measures manifest a clear scale-dependent behavior.

First of all, the degree of determinism exhibits a steep rise
to values close to 1 (which are expected for a regular, com-
pletely deterministic dynamics). Notably, those values are
already reached for timescales of the order of 100 min. This
behavior can be considered typical for signals with pronounced
oscillations that are densely sampled (i.e., in our case for a sam-
pling interval of 1 min for oscillations with an instantaneous
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Fig. 5. Recurrence characteristics of the different IMFs of the SYM-H index in dependence on the associated average instantaneous periodicity
of each mode: degree of determinism (upper left), network transitivity (upper right), diagonal line length entropy (lower left), and average
shortest path length (lower right). The green and red symbols refer to the quiet and the disturbed period, respectively.
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periodicity of 100 min or even far longer). In such situations,
the degree of determinism loses its ability to sensitively distin-
guish between more or less predictable dynamics, as it is based
on line structures in the recurrence plot, which naturally appear
in case of slow oscillations even if those were completely unpre-
dictable. Note that predictability needs to be understood as
relative to the typical timescales of variability embedded in a
given signal. In this regard, RQA provides a methodology that
is intrinsically tailored to studying short-term fluctuations. As a
consequence, the timescale of 100 min at which DET saturates
should not be confused with the scale separation between fast
and slow modes, since it most likely depends on the time reso-
lution of the underlying data.

Turning to the diagonal line length entropy as a second
RQA measure, we note that this property exhibits a steady
increase as the timescales increase. In order to understand this,
it is important to note that this entropy is conceptually different
from other common entropic characteristics used in nonlinear
time series analysis, exhibiting increases if the observed dynam-
ics becomes more regular (Letellier, 2006). Other variants of
recurrence plot based entropy measures have been developed
recently to account for this conceptual ambiguity (Letellier,
2006; Eroglu et al., 2014; Corso et al., 2018), but have not
yet become standard tools in applications of RQA and therefore
not been used in the present work.

As an interesting feature, we find that the recurrence
network transitivity generally increases with increasing IMF
timescale, but only very slowly. Recalling the interpretation of
this measure as a proxy for the fractal dimension of the system,
this implies that the corresponding dimensionality of the differ-
ent IMF components does not change markedly over a range of
time scales up to the order of, say, one day. Only for the slowest
modes, transitivity increases more steeply, indicating a succes-
sive reduction in dimensionality.

Concerning the aforementioned three recurrence characteris-
tics, it is remarkable that the overall behavior with increasing
timescale does not exhibit marked differences between quiet
and disturbed periods. This is, however, distinctively different
for the average path length of the obtained recurrence networks.
Similar to network transitivity and diagonal line length entropy,
this measure also first increases with increasing timescale,
before suddenly changing its behavior at time scales of the order
of 100 min (for the quiet period) and 1000 min (for the storm
period), respectively (see Fig. 5, lower right panel).

According to the former observation, the average path
length is the only studied recurrence measure that reveals a clear
difference between quiet and storm periods when considering
timescales beyond 100 min. Specifically, while for the disturbed
period the average shortest path length continues to increase
with rising timescale up to a scale comparable with the typical
duration of a magnetic storm, the quiet period exhibits a transi-
tion near s7 ~ 110 min, beyond which the dynamics is charac-
terized by an almost constant value of the average path length of
about 5. A likely explanation for this qualitative change would
be the decomposition of the recurrence network into two or
more mutually disconnected parts (which could be avoided by
considering a higher number of recurrent pairs of state vectors
than the 5% used here), which prohibits the further rise of long
graph distances among the nodes. In general, unless such a split-
ting of the network takes place, a successive increase in average

path length with rising smoothness of the signal would be the
expected behavior. This is because for an oscillatory dynamics,
the topology of the network would increasingly resemble that of
a ring structure. Notably, for a given number of nodes and links
in a network as in the present case, such an almost regular ring
structure would maximize the average path length (except for
structures resembling a linear lattice with marked end nodes).

We emphasize that especially the network transitivity does
not seem to show strong differences between quiet and storm
periods when considering its variation with the different IMFs.
This does not necessarily contradict the results of previous stud-
ies for the Dst index (Donner et al., 2018, 2019) which have
demonstrated that this measure can sensitively distinguish
between magnetospheric variability in both types of conditions.
The former studies have notably focused on the integral vari-
ability aggregating over all time scales, while the present anal-
ysis explicitly accounts for the different scales separately by
utilizing the corresponding IMFs. Besides having used different
yet closely related indices, an absence of differences in network
transitivity for individual IMFs but presence in the aggregated
variability could point to changes in the interdependence struc-
ture between different variability modes, a hypothesis that
should be further studied in future work.

The presented analysis has necessarily been limited by the
choice of only four recurrence characteristics. While the selec-
tion made here has been mainly guided by previous successful
applications and the complementary nature of the four mea-
sures, we do not rule out that other statistical properties of the
IMFs’ recurrence structures could more sensitively trace differ-
ences between quiet and storm periods. Future in-depth studies
should further examine this idea, along with the consideration of
different quiet and storm periods.

4.5 Network transitivity for fast and slow dynamical
components

The above results support the previous findings of a time-
scale separation between the fast and the slow dynamical com-
ponents of the SYM-H variability (Alberti et al., 2017). In order
to examine the corresponding dynamics in more detail, we
finally reconstructed both the fast and the slow component by
considering partial sums of equation (2) involving empirical
modes with timescales below (fast component) and above (slow
component) 200 min (e.g., Alberti et al., 2017, 2018), respec-
tively, as reported in Figure 6. We note that the slow component
clearly reproduces the large-scale features of a geomagnetic
storm: it fluctuates around zero when a quiet period is consid-
ered, and is characterized by a positive value (the so-called
sudden impulse; Tsurutani et al., 1990) before exhibiting nega-
tive values corresponding to the main phase of the storm.
Conversely, the fast dynamics is overall characterized by fluctu-
ations around the common values during a quiet period, with lar-
ger amplitude enhancements during the main phase of the
geomagnetic storm, although significant deviations from the
background level can also be observed during the quiet period
(see Fig. 6, green line in the upper panel). This is clearly the
reflection of the occurrence of coherent intermittent activity
bursts due to loading-unloading dynamics of the Earth’s magne-
totail (Kamide & Kokubun, 1996; Uritsky & Pudovkin, 1998;
Consolini, 2002; Consolini & De Michelis, 2005), usually
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occurring on timescales of 100–200 min, characterizing the
internal state of the Earth’s magnetosphere (Alberti et al.,
2017, 2018).

To investigate the dynamical changes of recurrence proper-
ties in both fast and slow SYM-H components, during the quiet
and the disturbed periods, we finally evaluated the resulting net-
work transitivity following a sliding window approach (Donner
et al., 2018, 2019; Lekscha & Donner, 2019), using embedding
delays of 100 and 200 min for the fast and slow component,
respectively. The results thus obtained are reported in Figure 7.
What is interesting here is that we observe more dynamical
anomalies (i.e., periods with transitivity values that do not
match the expected range of values when simply taking random
state vectors from the time series for constructing a recurrence
network) in the quiet than in the storm period (without attempt-
ing here any physical interpretation of the individual highlighted
episodes, which appears challenging without considering
additional characteristics of the coupled magnetosphere–
ionosphere–solar wind system). This at first apparently surpris-
ing result can be explained by the origin of processes involved
in the fast and the slow dynamics. Indeed, the magnetosphere is
continuously interacting with the solar wind, which determines
its shape but not exactly its internal configuration. Thus, all the
currents inside the magnetosphere are stable also if the solar
wind would not exist. During a storm, a large number of solar
wind (and solar, e.g., suprathermal) particles enter the magneto-
sphere, thereby changing the intensity of the current systems,
transferring more information to these currents by directly
driving their changes and configurations. During a quiet period,
the configuration and dynamics is less driven and, hence, less
regular, since it is mostly the result of the information flow
between the different current systems.

Again, we note that an additional consideration of further
complementary recurrence characteristics could potentially help
better understanding the observed differences in the frequency
of dynamical anomalies between quiet and storm period.
Although it might at first glance appear discouraging that indi-
vidual anomalies in the network transitivity cannot be directly

Fig. 7. Recurrence network transitivity T estimated for sliding
windows in time with a width of 200 min for the fast (top) and slow
(bottom) SYM-H components as described in the text, using data
from the quiet (left, green) and storm period (right, red). The grey
horizontal shades indicate the respective ranges of expected values of
T if 200 state vectors had been randomly drawn from the whole
series for generating a recurrence network.
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related with marked disruptive events affecting the Earth’s mag-
netosphere, our findings rather motivate further in-depth studies
to uncover the dynamical differences between magnetic field
variations associated with “normal” and “extraordinary” transi-
tivity values along with their possible (internal or external)
origins.

5 Summary and perspectives

In this paper, we have dealt with the characterization of the
nonlinear recurrence properties of geomagnetic variability
during periods characterized by a different geomagnetic distur-
bance level by using a timescale dependent approach. By a
combined use of a nonlinear decomposition technique – the
EMD – and two flavors of RA, we have been able to disentan-
gle the different features of both quiet and disturbed periods.
Specifically, we have found that,

(i) Previous findings by Alberti et al. (2017) on the exis-
tence of two characteristic ranges of timescales, which
have been identified as fast and slow dynamics (Alberti
et al., 2018), are confirmed by both recurrence quantifi-
cation analysis and recurrence network analysis.

(ii) Both fast and slow components are characterized by dif-
ferent recurrence properties, with more temporary dynam-
ical anomalies during the quiet than the storm period.

The above results can be interpreted in the framework of the
complex and nonlinear interaction between the solar wind and
the Earth’s magnetosphere as a signature of the different origins
of processes occurring at different timescales, due to different
sources located in the interplanetary and near-Earth environ-
ment (Kamide & Kokubun, 1996; Consolini & De Michelis,
2005; Alberti et al., 2017). Indeed, the more regular behavior,
which can be observed in terms of its recurrence properties as
well as other nonlinear characteristics (e.g., Donner et al.,
2018, and references therein), during the disturbed period is a
direct reflection of the strong degree of dependency of geomag-
netic activity on solar wind variability (Alberti et al., 2017). This
implies that the magnetospheric response to interplanetary
changes can be quite reasonably forecasted during a disturbed
period in terms of an enhancement of convection processes,
as well as, that the slow component, i.e. the dynamics at time-
scales longer than 200 min, is characterized by a lower degree
of complexity, which is an indication of the external origin of
processes at these timescales (Alberti et al., 2017; Consolini,
2018). Conversely, the more complex and irregular behavior
at short timescales, i.e., below 200 min, can be related to impul-
sive energy releases occurring in the tail central plasma sheet as
well as in the turbulent state of the tail neutral sheet, being the
fingerprint of turbulent energy releases associated with the
unloading mechanisms and less affected by the external changes
of interplanetary conditions (Alberti et al., 2017; Consolini,
2018).

The results of this investigation show that more efforts are
needed to correctly deal with the complex nature of the near-
Earth electromagnetic environment. As also shown by
Consolini et al. (2018), the short-term dynamics is characterized

by a high-dimensional, low-predictability behavior, while the
long-term one shows a large forecast horizon (~50 min). This
can be interpreted as a sort of topological phase transition
(Chang et al., 2003) confirmed by the behavior of the recurrence
network transitivity (see Fig. 5) revealing a dimensionality
reduction when approaching large timescales.

Moreover, this manuscript offers new insights for Space
Weather purposes of forecasting the behavior of geomagnetic
indices, not only in terms of their response to the interplanetary
medium changes. Indeed, our analysis, in a complementary way
with that based on traditional fractal measures (e.g., Consolini
et al., 2018), allows to strengthen the need of providing
high-resolution proxies of the internal dynamical state of the
near-Earth electromagnetic environment for correctly dealing
with the characterization of fast dynamical processes, gener-
ally related to the explosive dynamics of the tail current
(Consolini, 2002; Vörös et al., 2005). The typical features of
the recurrence plots for the short-term component during both
the quiet and the disturbed periods point towards the primary
role of temporal laminar dynamical features which are associ-
ated with multistable and/or intermittent dynamics of the
magnetotail plasma (Wanliss et al., 2004; Vörös et al., 2005).
This type of dynamics has profound consequences on reliable
estimates of several Space Weather phenomena, such as, for
example, the generation of ground-induced currents (Tozzi
et al., 2019a, 2019b).

Future studies will be devoted to a statistical characterization
of the multiscale nature of geomagnetic indices, the dynamical
interplay between variations at different timescales, the compar-
ison of a larger variety of recurrence-based measures applied to
different geomagnetic indices monitoring both magnetospheric
and ionospheric current systems (e.g., ASY-H, AE, AU, AL),
as well as the investigation of higher-resolution time series
which could help in a deeper characterization of the short-term
fluctuations of geomagnetic variability.
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