INAF

ISTITUTO MAZIOMNALE
Ol ASTROFISICA

MATICHMAL INSTITLITE
FOR ASTROPHYSICS

Rapporli Tecnici INAF
INAF Technical Reporls

Number

143

Publication Year

2022

Acceptance in

2022-03-09T10:50:26Z

OA@INAF
Title WebSocket Integration in Django
Authors RACITI, MARIO; VITELLO, FABIO ROBERTO

Affiliation of first
author

O.A. Catania

Handle

http://hdl.handle.net/20.500.12386/31533;
https://doi.org/10.20371/INAF/TechRep/143

Technical Report

WebSocket Integration in Django

Raciti Mario
Vitello Fabio Roberto

L 4

ISTITUTO NAZIONALE DI ASTROFISICA
OSSERVATORIO ASTROFISICO DI CATANIA

L 4

Abstract

Nowadays Web technologies have become more common as they improve the work of
astronomers by easing, for example, the monitoring and analysing of data. The Django
Python framework is one of the most widely used libraries for developing Web applica-
tions as it offers several advantages. However, the necessity of continuously deal with data
in real time, such as tracking atmospheric parameters, analysing the evolution of the light
curve during a transient event, displaying inline vector graphics for interactive plots and
representation, has constantly grown in Astronomy and Astrophysics, and this has natu-
rally involved in new challenges. Nevertheless the WebSocket protocol represents the best
option to manage real-time data, but it is not supported by Django natively.

This report provides an overview of the WebSocket protocol and advances the integration of
a WebSocket server as a loosely coupled service within a Django application by illustrating
a simple and non-invasive methodology, within a proof-of-concept using open source soft-
ware, which avoid switching to new deployment architectures, with all its consequences.
Such proposed technique can be applied to any generic scenarios, such as done for the
TMSS project included in the report as use case example.

5
6

Table of Contents

Introduction

WebSocket Protocol Overview
2.1 WebSocket Connections
2.2 WebSocket Messages

2.3 WebSocket Security

WebSocket State-of-the-Art

WebSocket Integrations in Django
4.1 Software Architecture
4.2 Implementation Details
4.2.1 UpdateSignal
4.2.2 WebSocketHandler
4.2.3 WSServerWrapper
4.2.4 WebsocketIntegrationConfig

Use Case: TMSS

Conclusions

References

0 000X I I &N Lt W W

jud
W W =

1. Introduction

Real-time Web applications have constantly grown during last years as of the increasing
necessity of dealing with streams of data constantly updating, especially for sensor data
in the IoT (Internet of Things) field. Furthermore, it is also common in Astronomy and
Astrophysics the necessity of continuously monitoring and/or analyse data in real time, for
example, to track atmospheric parameters and telemetry data, analyse the evolution of the
light curve during a transient event, monitor antennas configurations, display inline vector
graphics for interactive plots and representation, etc.

Traditionally, the approach to build Web applications that demand real-time communication
between client and server has required an excessive use of the HTTP protocol[1] to contin-
uously poll the server to fetch updates and send upstream data via distinct HTTP calls. In
such protocol the client sends a request and the server returns a response. Typically, this
response occurs immediately and the transaction is complete. Even if the network connec-
tion stays open, this will be used for a separate transaction of a request and a response.
Therefore, a continuous polling involves in issues related to the nature of real-time data,
1.e., it is not predictable when an event will occur thereby there will be unnecessary HTTP
requests flooding the network. In addition, a Web server could also potentially run out of
request threads and end up discarding further requests.

2. WebSocket Protocol Overview

The WebSocket Protocol[2], defined in RFC 6455, enables full-duplex communication
channels between a client and a server over a single TCP connection. The protocol consists
of an opening handshake followed by basic message framing, layered over TCP. The goal
of the WebSocket is to provide a mechanism for browser-based applications that need a
two-way communication with servers that does not rely on opening multiple HTTP con-
nections. This technique is particularly useful in situations where low-latency or server-
initiated messages are required, and it can be adopted for a variety of Web applications,
such as multiplayer games, stock tickers, shared document editing, instant messaging, real-
time analytics, push notifications, et cetera.

Basically the protocol works as follow: once the client and server have both sent their hand-
shakes, and the procedure was successful, then the data transfer part starts. The method
results in a two-way communication channel where each side can, independently from the
other, send data at will. After a successful handshake, clients and servers transfer data back
and forth in conceptual units referred to in the WebSocket specification as “messages”. On
the wire, a message is composed of one or more frames. The WebSocket message does
not necessarily correspond to a particular network layer framing, as a fragmented message
may be coalesced or split by an intermediary.

The WebSocket protocol represent one of the most suitable solutions to overcome the is-
sues illustrated in Sec. 1: in fact, its implementations are commonly used in modern Web
applications for streaming data and other asynchronous traffic.

WebSocket

Client Server

N

Handshake (HTTP upgrade)

connection opened

N

awiy

Bi-directional messages

N
N

open and persistent connection

One side closes channel

N
A4

connection closed

Fig. 1. WebSocket Protocol

2.1 WebSocket Connections

WebSocket connections are typically long-lived as they normally stay open and idle until
either the client or the server is ready to send a message. Supposing a WebSocket server
is properly configured and listening for incoming connections, a WebSocket client can
normally use client-side JavaScript to create a connection to the server, as follows:

let ws = new WebSocket("wss://my-website.com/chat");

The connection is established by the client and the server performing a WebSocket hand-
shake over HTTP. The client issues a WebSocket handshake request like the following:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGh1IHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

On success, the server then returns a WebSocket handshake response as follows:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=
Sec-WebSocket-Protocol: chat

At the end of the handshake, the network connection remains open and can be used to send
WebSocket messages in either direction until one party sends a close frame.

4

2.2 WebSocket Messages

Once a WebSocket connection has been established upon a successful handshake, the client
and server can send messages asynchronously in either direction, as messages are not trans-
actional in nature. In principle, WebSocket messages can contain UTF-8 strings[3] or bi-
nary data and, to this regard, in modern applications it is very common for JSON[4] to be
used to send structured data — or BSON (Binary JSON) when data serialisation is involved
— within WebSocket messages.

Below two examples of simple messages sent from the browser using client-side JavaScript:

// Send message as a string
const msg = "Observation succeeded!";
ws.send(msg) ;

// Send message as a JSON object
const data = {"status": "ready", "data": {"parameters": ["x1", "x2"]}};
ws.send(data) ;

2.3 WebSocket Security

By default, the employment of the WebSocket protocol may expose an application to sev-
eral risks[5]: in fact the protocol does not consider some security implications by design,
therefore some measures need to be adopted in order to avoid undesired incidents. In this
section we provide a concise overview regarding WebSocket security and best-practices.
In the first place, it is extremely important to properly validate client inputs and server
data to avoid potential XSS (Cross-Site-Scripting) attacks et similia, such as SQL injec-
tion or XML external entity injection. Futhermore similarly to HTTP, it is recommended
to add a layer of encryption by using the TLS protocol thus opting for the WSS (Web-
Socket Secure) protocol instead of the regular WS — this ensures the communication is
encrypted and also data integrity can be guaranteed. However, this action does not im-
ply an authentication method which, together with authorisation, is inherently completely
lacking in the WebSocket specification. It is also important to avoid relying on the Origin
header field, defined from the standard, as it is essentially advisory and does not represent
a proof of authentication. The preferred way to overcome this problem is to implement a
ticket-based authentication mechanism. Eventually, it is also recommended to adopt the
following steps: avoid tunneling, as it may allow an escalation of attacks into a complete
remote breach; implement rate limiting to prevent denial of service (DoS) attacks; pro-
tect the WebSocket handshake message against cross-site request forgery (CSRF) that may
come from a cross-site WebSocket hijacking attack.

3. WebSocket State-of-the-Art

In general, there is a variety of implementations of the WebSocket protocol for differ-
ent programming languages. As we already disclosed in Sec. 2.1, among the Web APIs
and interfaces (object types) that JavaScript natively comes with, we have the WebSocket
Web APIs[6] to create connections with a WebSocket server and exchange messages with.
However, the state-of-the-art tools for the WebSocket protocol also include client-side im-
plementations in addition to server-side.

Below the most well-known and widespread used tools:

* ws[7] is a simple to use, blazing fast and thoroughly tested WebSocket client and
server for Node.js;

* Socket.IO[8] is the wide-spread and most used module that enables real-time bidi-
rectional event-based communication between clients and a server. The official im-
plementations are written in JavaScript and Node.js, but there are several community-
maintained packages which provide equivalent implementations for other languages
(i.e., C++, Java, Python, Golang, Rust, etc.). It is important to highlight that this
module is not a WebSocket implementation, since it adds additional metadata to each
packet when using WebSocket as a transport;

* uWebSockets[9] is a simple to use yet thoroughly optimized, standards compliant
and secure implementation of WebSockets (and HTTP) for C++11 and Node.js. It
comes with built-in pub/sub support, URL routing, TLS 1.3, SNI, IPv6, permessage-
deflate and is battle tested as one of the most popular implementations, reaching
many millions of end-users daily;

* Ratchet[10] a loosely coupled PHP library providing developers with tools to create
real time, bi-directional applications between clients and servers over WebSockets;

* Django Channels[11] wraps Django’s native asynchronous view support, allowing
Django projects to handle not only HTTP, but protocols that require long-running
connections too - WebSockets, MQTT, chatbots, amateur radio, and more;

* Flask-SocketlO[12] gives Flask applications access to low latency bi-directional
communications between the clients and the server. The client-side application can
use any of the SocketlO client libraries in Javascript, Python, C++, Java and Swift,
or any other compatible client to establish a permanent connection to the server;

* Gorilla WebSocket[13] is a Go implementation of the WebSocket protocol.

4. WebSocket Integrations in Django

According to the state-of-the-art tools, Django Channels might seem the obvious choice
for an integration of the WebSocket protocol within Django[14], as it is fully supported by
the framework. However, in some cases the adoption of this module requires switching to
a new deployment architecture and such modifications may involve in further issues, e.g.,
a project replan, code changes, and so forth. Below we describe an alternative to Channels
in order to deploy a separate WebSocket server along with a Django project without rev-
olutionising its structure. This technique is well suited when you need to add a small set
of real-time features, such as a notification service, to an HTTP application. In either case,
it is convenient to also use a helpful Django library, namely Signals[15], which facilitates
”decoupled applications get notified when actions occur elsewhere in the framework. In a
nutshell, signals allow certain senders to notify a set of receivers that some action has taken
place”. This simplifies the events handling and enforces the loose coupling between the
different applications or, even more, between different parts of the code.

There are several WebSocket implementations in Python and this approach can be applied
independently, upon the appropriate changes. To facilitate our explanation we adopt the
SimpleWebSocketServer[16] module, which implements the WebSocket protocol in a sim-
ple and direct way without the need of any interfaces such as ASGI, WSGI or others.

4.1 Software Architecture

In order to implement a WebSocket service within Django, we firstly need a Django appli-
cation. Since the procedure of creating such application is out of scope here, we assume a
Django project has already been created and set up properly according to the default and
standard Django architecture. The WebSocket-related code can be gathered into a single
file — in our case “"websocket.py” — and it is composed of two classes: WebSocketHandler
and WSServerWrapper. The aim of the former is, as suggested by its name, to manage
the WebSocket interations with the clients (i.e., send messages, handle received messages,
etc.), whilst the wrapper class is used just to wrap and run a SimpleWebSocketServer specif-
ically configured for the handler class. At this point, the integration is completed by starting
the WebSocket service in a new thread. This will ensure the WebSocket server to have the
proper Django context and its own execution life within the Django application.

4.2 TImplementation Details

A simple and working proof-of-concept is included in the Github repository WebSocket-
in-Django[17], demonstrating a scenario where the clients receive a WebSocket message
whenever a specific signal is triggered. For the sake of simplicity, such signal is sent when
the index view is accessed and the message that comes within the signal itself is replicated
and broadcasted via WebSocket protocol to all the connected clients.

Below we discuss the details of such implementation.

4.2.1 UpdateSignal

The implementation of the custom signal, in the “’signals.py” file, and its use in the index
view is quite simple, as Fig. 2 illustrates. The update_signal is an instance of the Signal
class and its send method is invoked, with a custom message, from the index view whenever
the latter is requested. Such message can be retrieved from a @receiver decorated function
listening to update_signal.

4.2.2 WebSocketHandler

The class WebSocketHandler, as depicted in Fig. 3, extends the WebSocket class imple-
mentend by the module and overrides its three handling methods, respectively, for the
message reception, incoming connection and closing. To keep the handler as simple as
possible, it just results in an echo server which returns the message received from a client
back and logs the IP address of the clients on connection/disconnection. The core part rel-
evant for the integration with Django is exemplified by the onUpdateSignal method: it is
a @receiver decorated method which listens for the update_signal which, in turn, triggers
the execution of the method itself, resulting in calling the sendBroadcast method that, as
suggested by its name, broadcasts a message to all the connected WebSocket clients.

4.2.3 WSServerWrapper

The class WSServerWrapper defines a WebSocket server instance and a run method which
is invoked to be executed into a separated thread. As shown in Fig. 4, also an instance of
the Event[18] class is defined and set whenever the run method is called. Note that if you
want to switch to the WSS protocol, it suffices to switch from the SimpleWebSocketServer
instance to the SimpleSSLWebSocketServer class and specify the path of the TLS certificate
and private key by using the os.path.join[19] method (e.g., certfile=os.path.join(BASE_DIR,
‘cert.pem’) assuming the files are in the base directory of the Django project), otherwise an
exception is triggered from Django.

4.2.4 WebsocketIntegrationConfig

The class WebsocketIntegrationConfig extends the default Django AppConfig[20] class and
specifies the run of the WebSocket server into a separated thread, as illustrated in Fig. 5.
The application configurations represents a good choice to achieve this goal, in particular its
ready method which can be used to perform initialisation tasks — including the registering
of signals — and it is called once from Django as soon as the registry is fully populated.
A check is performed by using an Event instance that is set when the WebSocket server
is actually started — if this does not happen within 10 seconds, then an exception is raised
from the ready overridden method.

update signal = Signal()

index(request):
update_signal.send('', msg='I was wondering if after all these years you\'d like to meet')
HttpResponse("Hello, it\'s me...")

Fig. 2. Update Signal Snippet

WebSocketHandler(WebSocket):

sendBroadcast(msg):

wSs WSServerWrapper.ws_server.connections.values():
ws.sendMessage(msg)

(update_signal)
onUpdateSignal(**kwargs):
logger.info('Received a signal')

msg = kwargs.get('msg', '')

WebSocketHandler.sendBroadcast(msg)

handleMessage(self):
logger.info('Received msg "%s" from %s' % (self.data, self.address[0]))
self.sendMessage(self.data)

handleConnected(self):
logger.info('New client connected %s' % self.address[0])

handleClose(self):
logger.info('Client disconnected %s' % self.address[0])

Fig. 3. WebSocket Handler Snippet

WSServerWrapper():
ws_started_event = Event()
ws_server = SimpleWebSocketServer('', DEFAULT_WS_PORT, WebSocketHandler)

run():
logger. info('Starting WebSocket server')

WSServerWrapper.ws_started_event.set()
WSServerWrapper.ws_server.serveforever()

Fig. 4. WebSocket Server Snippet

WebsocketIntegrationConfig(AppConfig):
name = 'websocketIntegration'

ready(self):
websocketIntegration signals

WSServerWrapper
)

websocketIntegration.websocket
self.t = Thread(target=WSServerWrapper.run, daemon=

self.t.start()
WSServerWrapper.ws_started_event.wait(10):
RuntimeError("Could not start websocket server on port %s"SDEFAULT_WS_PORT)

Fig. 5. WebSocket Service Thread Snippet

10

5. Use Case: TMSS

E (1] 3Haur <@ >

Fig. 6. TMSS WebSocket Timeline View

LOFAR (Low Frequency Array)[21] is an international telescope, designed and built by
ASTRON (Netherlands Institute for Radio Astronomy), which is devoted to the global
astronomical community and managed by the International LOFAR Telescope (ILT)[22]
foundation. The project LOFAR 2.0 has involved, among new changes and challenges, in
the design and implementation of the TMSS (Telescope Manager Specification System)[23]
project, namely a new platform for specifying, managing and planning LOFAR observa-
tions. Essentially, TMSS provides a dynamic scheduling system, other specification and
data flow enhancements that improve the efficiency and automation of LOFAR operations.
Without going into detail, the software system is mainly composed of a frontend and a
backend that are developed, respectively, using the Prime React framework and the Django
framework — also various microservices communicating each other and with the Django
application are included in the midst of the backend components.

Among all the goals and features expected in TMSS, users need the possibility to observe a
real-time panel — the timeline view is shown in Fig. 6 — where different pieces of informa-
tion are shown, i.e., scheduled observations, ongoing tasks, reservations, and so forth. The
time This scenario, characterised by multiple elements and associated events, suited well
for the application of the WebSocket protocol, even though the communication is de facto
one-side — the client is not required to send any data to the server — as the server broadcasts
the messages to the clients.

In Fig. 7 a summary of the code from the official TMSS repository[24] is depicted. Basi-
cally, a WebSocket server has been implemented as a microservice to broadcast real-time
notifications about some models state changes to the connected clients. This data is then
displayed in a timeline that gives a real-time overview of what is happening on the system.
The state changes are listened from the LOFAR RabbitMQ message bus by the TMSSBus-
listener that, similarly to Signals, reacts to relevant events and sends such data via a Web-

11

Socket broadcast method. In this use case note that, despite the implementation is slightly
different from the approach proposed in Sec. 4 — the behaviour of Django Signals has been
replaced by the LOFAR RabbitMQ message bus and the WebSocket service has been in-
cluded as a microservice outside the context of the Django AppConfig.ready method — the
principle still remains unvaried. Even more so, this results illustrated in Fig. 7 within the
main details: the server is started on a separated thread and comes with a simple broadcast
method that forwards a message to each of the connected clients. Eventually, there are sev-
eral event listeners that reacts by calling the _post_update_on_websocket method whenever
the event they are subscribed to is triggered.

ventMessageHandlerForWebsocket (TMSSEventMessageHandler) :

__init (self, websocket port: int=DEFAULT WEBSOCKET_ PORT) :
super (). init (log_event messages=)
self.websocket port = websocket_ port

self. run ws =

start_handling(self):
socket_started_event = Event()

start _server():
self. ws_server = SimpleWebSocketServer('', self.websocket port, WebSocket)
socket_started event.set()

self. run ws:

self. ws_server.serveonce()

self.t = Thread(target=start ws_server)
self.t.start()
socket_started_event.wait(10):
RuntimeError ("Could not start websocket server on port %s"%self.websocket port)
super().start_handling()

stop_handling(self):
super ().stop_handling()
self. run ws =
self.t.join()

_broadcast _notify w ocket (self, msg):

ws self. ws_server.connections.values():
ws.sendMessage (JSONdumps (msg))

_post_update c ebsocket (self, id, object_type, action):

json_blob = {'object details': {'id': id}, 'object type': object type.value, 'action': action.value}

self. broadcast notify websocket(json_blob)

onSubTaskCreated(self, id: int):
self. post_update_on_websocket(id, self.ObjTypes.SUBTASK, self.ObjActions.CREATE)

Fig. 7. WebSocket Service Implementation in TMSS

12

6. Conclusions

Real-time applications are very useful in Astronomy and Astrophysics, among all the other
fields, and the WebSocket protocol remains the best option to manage real-time data, but
it is not supported by Django natively. This report provides an overview of the WebSocket
protocol and describes a simple and non-invasive technique, within a proof-of-concept us-
ing open source software, for the integration of a WebSocket service within a Django ap-
plication with the aim of supporting generic scenarios which can be exemplified in most
astronomical and astrophysics applications. This is also demonstrated by the proposed case
study from the TMSS project which eventually illustrates a real-world implementation of
the methodology proposed in this report.

References

[1] Nielsen H, Mogul J, Masinter LM, Fielding RT, Gettys J, Leach PJ, Berners-Lee T
(1999) Hypertext Transfer Protocol - HTTP/1.1, RFC 2616. https://doi.org/10.17487/
RFC2616. Available at https://www.rfc-editor.org/info/rfc2616

[2] Melnikov A, Fette I (2011) The WebSocket Protocol, RFC 6455. https://doi.org/10.
17487/RFC6455. Available at https://www.rfc-editor.org/info/rfc6455

[3] Yergeau F (2003) UTF-8, a transformation format of ISO 10646, RFC
3629. https://doi.org/10.17487/RFC3629. Available at https://www.rfc-editor.org/
info/rfc3629

[4] Json (javascript object notation). Available at https://www.json.org/json-en.html.

[5] Portswigger - testing for websockets security vulnerabilities. Available at https:
/Iportswigger.net/web-security/websockets.

[6] Websocket web apis. Available at https://developer.mozilla.org/en-US/docs/Web/
API/WebSocket.

[7] ws. Available at https://www.npmjs.com/package/ws.

[8] Socket.io. Available at https://socket.io/.

[9] uwebsockets. Available at https://github.com/uNetworking/uWebSockets.

[10] Ratchet. Available at http://socketo.me/.

[11] Django channels. Available at https://channels.readthedocs.io/en/stable/.

[12] Flask-socket.io. Available at https://flask-socketio.readthedocs.io/en/stable/.

[13] Gorilla websocket. Available at https://github.com/gorilla/websocket.

[14] Django framework. Available at https://www.djangoproject.com/.

[15] Django signals. Available at https://docs.djangoproject.com/en/4.0/topics/signals/.

[16] Simplewebsocketserver. Available at https://github.com/dpallot/
simple-websocket-server.

[17] Raciti M WebSocket Integration in Django. Available at https://github.com/tsumarios/
WebSocket-in-Django.

[18] Python threading event objects. Available at https://docs.python.org/3/library/
threading.html#event-objects.

13

https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.17487/RFC6455
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/info/rfc6455
https://doi.org/10.17487/RFC3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.json.org/json-en.html
https://portswigger.net/web-security/websockets
https://portswigger.net/web-security/websockets
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.npmjs.com/package/ws
https://socket.io/
https://github.com/uNetworking/uWebSockets
http://socketo.me/
https://channels.readthedocs.io/en/stable/
https://flask-socketio.readthedocs.io/en/stable/
https://github.com/gorilla/websocket
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.0/topics/signals/
https://github.com/dpallot/simple-websocket-server
https://github.com/dpallot/simple-websocket-server
https://github.com/tsumarios/WebSocket-in-Django
https://github.com/tsumarios/WebSocket-in-Django
https://docs.python.org/3/library/threading.html#event-objects
https://docs.python.org/3/library/threading.html#event-objects

[19] Python os path. Available at https://docs.python.org/3/library/os.path.html.

[20] Django applications. Available at https://docs.djangoproject.com/en/4.0/ret/
applications/.

[21] Lofar (low frequency array). Available at https://www.astron.nl/telescopes/lofar/.

[22] Vermeulen RC, van Haarlem M (2011) The international lofar telescope (ilt). 2011
XXXth URSI General Assembly and Scientific Symposium, , pp 1-1. https://doi.org/
10.1109/URSIGASS.2011.6051244

[23] Tmss (telescope manager specification system). Available at https://tinyurl.com/
tmssproject.

[24] Tmss websocket gitlab repository. Available at https://git.astron.nl/ro/lofar/-/blob/
master/SAS/TMSS/backend/services/websocket/lib/websocket_service.py.

14

https://docs.python.org/3/library/os.path.html
https://docs.djangoproject.com/en/4.0/ref/applications/
https://docs.djangoproject.com/en/4.0/ref/applications/
https://www.astron.nl/telescopes/lofar/
https://doi.org/10.1109/URSIGASS.2011.6051244
https://doi.org/10.1109/URSIGASS.2011.6051244
https://tinyurl.com/tmssproject
https://tinyurl.com/tmssproject
https://git.astron.nl/ro/lofar/-/blob/master/SAS/TMSS/backend/services/websocket/lib/websocket_service.py
https://git.astron.nl/ro/lofar/-/blob/master/SAS/TMSS/backend/services/websocket/lib/websocket_service.py

