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ABSTRACT

Flat rotation curves in disk galaxies provide the main observational support to the hy-
pothesis of surrounding dark matter. Despite of the difficulty in identifying the dark matter
contribution to the total mass density in our Galaxy, stellar kinematics, as tracer of gravita-
tional potential, is the most reliable observable for gauging different matter components. From
the Gaia DR2 catalog, we extracted parallaxes, proper motions and line-of-sight velocities of
unprecedented accuracy for a carefully selected sample of disk stars. This is the angular mo-
mentum supported population of the Milky Way that better traces its observed rotation curve.
We fitted such data to both a classical, i.e. including a dark matter halo, velocity profile model
and a general relativistic one derived from a stationary axisymmetric galaxy-scale metric.
The general relativistic Milky Way rotation curve results statistically indistinguishable from
its state-of-the-art dark matter analogue. This supports the ansatz that a weak gravitational
contribution due to the off-diagonal term of the metric, by explaining the observed flatness of
MilkyWay’s rotation curve, could fill the gap in a baryons-only MilkyWay, thus rendering the
Newtonian-origin darkmatter a GR-like effect. In the context of Local Cosmology, our findings
are suggestive of the Galaxy’s phase-space as the exterior gravitational field in equilibrium far
from a Kerr-like inner source, possibly with no need for extra-matter to account for the disk
kinematics.
Key words: gravitation – Galaxy: kinematics and dynamics – Galaxy: disk – dark matter–
astrometry – catalogues

1 INTRODUCTION

The few-micro-arcsecond level (µas) of the Gaia measurements
(Gaia Collaboration 2016, 2018) requires a fully general-relativistic
analysis of the inverse ray-tracing problem, from the observational
data (e.g., stellar images on a digital detector) back to the positions
of light-emitting stars (Crosta et al. 2017, and references therein).
This is because the Gaia-observer is embedded in the ever present
and ever changing overlapping weak local gravitational fields of the
Solar System. Once the observer is properly defined, null geodesics
represent the real physical link through space-time up to the stars.
This is the framework of modern Relativistic Astrometry. In this
respect, the weak gravitational regime is playing a pivotal role in
providing a complementary observational perspective for under-
standing gravity. Moreover, once a relativistic model for the data
reduction is in place, any subsequent scientific exploitation should
be consistent with that model.

By routinely scanning individual sources throughout the whole
sky, Gaia directly measures the kinematics of the stellar component
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of the Milky Way (MW). Gaia’s second data release (DR2, Gaia
Collaboration 2018) is the first of its deliveries providing parallaxes
and annual proper motions, to ∼ 100 µas (for the brighter stars),
for about 1.3 billion of the objects surveyed. It also includes Gaia-
measured radial velocities (RVs), although for "only" 7 million
stars with estimated effective temperatures between 3550 and 6900
K (Katz et al. 2019).

Our work is the first attempt to apply the relativistic kinematics
delivered by Gaia to trace the flat Galactic rotation curve (RC) at
large radii from its center.

This flatness has been explained as a deviation from theNewto-
nian velocity profile because of the presence of dark matter (Zwicky
1937; Rubin, Thonnard & Ford 1978) or of modified gravity (Mil-
grom 1983). For a more recent reviews on dark matter (DM) issues
the reader can refer to Bertone & Tait (2018) and Amendola et al.
(2018).

Basically, the absence of evidence of extra matter to justify
the observed RC was the driving idea to state the need of DM also
in the standard picture of structure formation in the early universe
and in gravitational lensing due to the mass of galaxies (both model
dependent and based on the chosen spacetime geometry). Given the
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purely gravitational nature of DM, recent search strategies look also
for clues in strong-gravity regions or in gravitational wave signals
generated by dynamically compact objects (Cardoso & Pani 2019).

Other alternatives focus on modifying the standard gravity the-
ory, in particular the "geometric" part of the Einstein Equation, like
f (R) gravity (Buchdahl 1970; Starobinsky 1980; DeFelice & Tsu-
jikawa 2010), where "dark" components can be avoided by varying
the Ricci scalar. A wider class of theories, with higher-order cur-
vature invariants and non-minimal couplings, extends the Einstein-
Hilbert action of gravitational field to more actions (Fuji & Maeda
2004; Capozziello & De Laurentis 2011).

Recently, the non-extensive q-statistics1 of the Boltzmann-
Gibbs approach (Tsallis 1988; Tsallis & Arena 2014) has been
applied in astronomy to describe the velocity distribution function
of self gravitating collisionless particles on galactic scales. The RC
flatness is considered in the context of Newtonian regime assuming
a DM halo. Such a non-extensive distribution provides a way to
describe DM cored haloes from first principles. For example, a set
of polytropic, non-Gaussian, Lane–Emden spheres with the central
value q = 0.85 yielded a successful fitting for all the observed RCs
of some nearby spiral galaxies (Frigerio, Lima & Chimenti 2015,
and references therein).

Most of these attempts are, however, based on unproved or
ad hoc physical assumptions. Moreover, a common procedure is
to consider the Newtonian limit of Einstein’s equation, thus solv-
ing Poisson’s equation in order to derive the velocities tracing the
observed RC. Then the dynamics of galaxies is usually considered
to be dominated by the Newtonian regime, and general relativis-
tic effects included as corrections. In the linearized theory (i.e.,
an approximate version of Einstein’s theory) and when the energy-
momentum conservation reduces to ∂βTαβ = 0, the matter fields
that produce Tαβ are allowed to exchange energy and momentum
between themselves but not with the gravitational field. As a conse-
quence, the dynamics cannot include gravity and cannot be applied
to gravitationally bound systems like stars, being dominated by non-
gravitational forces (Poisson & Will 2014).

A few authors (Cooperstock&Tieu 2007; Balasin&Grumiller
2008) explored the weak relativistic regime of Einstein’s equation
for the galactic dynamics beyond the g00 term (and its corrections)
or the spherical mass distribution. Almeida et al. (2016) compared
both models to fit the rotation curves of some external galaxies.

Since our quest is pursuing a coherent general relativistic
phase-space picture of theMW, it is worth reconsidering the level of
"smallness" and, therefore, "negligibility" usually applied to Galac-
tic dynamics, where the concept of small velocity is usually used
since vGal/c ≈ 10−3 for typical Galactocentric rotational veloc-
ities of disk stars. According to the virial theorem, all forms of
energy density within the gravitational bound system must not
exceed the maximum value of its Newtonian potential. Regard-
ing the measurements performed from within the weak relativis-
tic regime of the Solar System (SS), the lowest order of contri-
bution to the metric (e.g. the approximation of the term g00) is
(vSS/c)2 ≈ 2 milli-arcsecond (mas), requiring the micro-arcsecond
ray-tracing modeling for Gaia to include the non-diagonal term
g0i ≈ (vSS/c)3 ≈ 0.2µas. By applying the same reasoning to a
conjectural metric for the Galaxy weak gravitational fields, the non-
diagonal contribution is ∼ (vGal/c)3 ≈ 100 µas, already within the
error level of Gaia’s DR2.

1 q stands for the entropic-index quantifying the degree of non-extensivity
in the entropic functional.

The small curvature limit in General Relativity (GR) may not
coincide with the Newtonian regime, as it is the case of the Lense-
Thirring effect (Lense & Thirring 1918). The situation appears sim-
ilar to what was needed to explain the advancement of Mercury’s
perihelion: instead of correcting the dynamics by adding a "dark
planet" (Vulcano), GR cured the anomalous precession by account-
ing for the weak non-linear gravitational fields overlapping nearby
the Sun. Despite it amounts to only 43"/century, because of the
small curvature, the effect was ”strong” enough to justify a mod-
ification of the Newtonian theory. On the other hand, in the past
it was fruitful to formulate new epistemological interpretations of
accurate measurements, presenting new inexplicable features, pos-
sibly within the theory underlying them. The aether, for example,
was removed by defining a new kinematics (i.e. the ansatz of spe-
cial relativity, Einstein, 1905) that satisfied the Michelson-Morley
experiment and Maxwell’s equations, instead of adding a new dy-
namics, i.e. the "extra molecular force" from the Lorentz-FitzGerald
contraction effect ( Fitz Gerald 1889), to Newton’s theory.

Currently, GR is the confirmed standard theory that explains
gravity over a range of sixty orders of magnitude. We may cer-
tainly assert that the evolution of the MW, and its constituents, is
the product of the action of gravity. This reason alone suggests to
evaluate to what extent the Newtonian approximation of Einstein’s
field equation, i.e. the term g00, should be the only one considered in
describing the Galaxy dynamics or if other metric terms can concur
to it. Nevertheless, only a few exact solutions of Einstein’s equation
exist, making it even the more difficult to detail a metric for the
whole Galaxy, especially if it is made of different structures.

2 THEORETICAL MODELS FOR THE ROTATIONAL
VELOCITY PROFILE

Given the premises above, our first attempt is to consider a simple
relativistic model suitable to represent the Galactic disk as dust in
equilibrium at a sufficiently large distance from a (rotating) central
body2 via stationary and axially-symmetric solutions for the disk
metric. Also, the GR model is put in comparison with a classical
MW rotation curve (MWC), comprising a bulge, a disk and a halo
mostly made of DM.

2.1 Classical model for the MW rotation curve

For the bulge component of the MWC model, we consider Plum-
mer’s density profile (Pouliasis, Di Matte & Haywood 2017):

ρb(r) =
3b2

b
Mb

4π(r2 + b2
b
)5/2

, (1)

where, in cylindrical coordinates, the bulge spherical radius is r =√
R2 + z2, with bb = 0.3 kpc the Plummer radius (Pouliasis, Di

Matte & Haywood 2017) and Mb the total bulge mass. As for the
thin and thick MW disks, we use a double-component stellar disk
modeled as two Miyamoto-Nagai potentials. This function is also
approximated with a double exponential disk as inMcMillan (2017)
and Korol, Rossi & Barausse (2019). The most general description
of a double-component MW disk (Bovy 2015; Barros, Lepine &

2 This is the region above ∼ 5 kpc populated by the Gaia stellar tracers (see
section 3 below).
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Dias 2016; Pouliasis, Di Matte & Haywood 2017) is expressed in
the form

ρd(R, z) =
Mdb2

d

4π

[
adR2 +

(
ad + 3

√
z2 + b2

d

) (
ad +

√
z2 + b2

d

)2]
[
R2

(
ad +

√
z2 + b2

d

)2]5/2 (
z2 + b2

d

)3/2 ,

(2)

where Md is the total (thin or thick) disk mass, and ad and bd
are scale–length and scale–height respectively. We set btd = 0.25
kpc and bTd = 0.8 kpc as the thin and thick disk scale-heights,
following the work of Pouliasis, Di Matte & Haywood (2017) cited
above.

Finally, for the MWC, we use a standard Navarro-Frank-White
(NFW) model to describe the DM halo (Navarro et al. 1996; Bovy
2015; McMillan 2017) :

ρh(r) = ρ
halo
0

1
(r/Ah)(1 + r/Ah)

2 , (3)

where ρhalo0 is the DM halo density scale and Ah its (spherical)
scale radius.

The MW total potential is computed by solving the Poisson
equation ∇2Φtot = 4πG(ρbulge + ρtd + ρTd + ρhalo); then, the
circular velocity follows by solving the differential equationV2

c (R) =
R (dΦtot/dR) (see subsection 3.3 for the actual derivation of the
unknown parameters).

2.2 The general relativistic model

The same assumptions of the classical approach, namely that the
masses inside a large portion of the Galaxy interact only gravitation-
ally and reside far from the central bulge regions, can bemade in GR
assuming a pressure-less perfect fluid, i.e. GR dust, shear-free and
expansion-free (Stephani et al. 2009), defined to be a continuous
distribution of matter with stress-energy tensor Tαβ = ρuαuβ (in
geometrized units). Here, the time-like vector field uα represents
the 4-velocity of the fluid proportional to a Killing vector kα ∝ ∂α0

3,
while ρ is the mass density. Although a pressure-less fluid is not
pure vacuum, it may be considered as a very close approxima-
tion to a low energy density regime (Wald 1984)4. Moreover the
conservation equation implies geodesicity of the four-velocity and
conservation of the mass-energy distribution.

As reported in Neugebauer & Meinel (1995) and Neugebauer,
Kleinwächter & Meinel (1996), a rigidly rotating disk of dust is
the universal limit of rigidly rotating perfect fluid configurations,
where the ratio of pressure to energy density vanishes. Such a disk
represents the simplest model of a self-gravitating rotating system
with no interaction except gravitation, and it may serve as a crude
model for galaxies with the stars considered as dust grains. The
rigidly rotating disk of dust could generate an ergosphere similar to
that around a Kerr black hole. At 5 kpc or more from the Galactic
center, our stellar orbits are then far enough from such a central
region, whose dimension are much less than 1 kpc (see Gravity col-
laboration 2018, for example), where very perturbed stellar motions
(velocity of about of 104 km/s) should be considered instead.

3 Greek indices run from 0 to 3.
4 It is worth underlining here that standard ΛCDM Cosmology is based on
the Friedman-Lemaître-Robertson-Walker metric, namely a model valid for
perfect fluid particles in a homogeneous and isotropic universe.

As a matter of fact, in hydrodynamics, dust represents a many-
particle system interacting via gravitational forces alone. In cosmol-
ogy this exact solution is commonly used, i.e. FRLW metric for a
dust fluid (Wald 1984). On the other hand, no similar global rela-
tivistic solution is known so far for the internal galactic dynamics,
considering the Galaxy a rotating isolated matter distribution. This
is due to the mathematical complexity of coupling the Vlasov equa-
tion, also called collisionless Boltzmann equations, with the Ein-
stein field equation. Recently, some numerical schema has been pro-
posed by Ames, Andréasson & Logg (2016, and references therein
for further details).

If stars populating the disk can be retained isolated (stellar en-
counters become effective well below the parsec scale), the Galaxy
can be considered globally isolated up to around 25 kpc, where
flaring effects emerge, indicating the onset of external gravitational
perturbations. At that scale the dust solution still represents a uni-
versal limit for the global dynamics, large enough to consider the
rotation curve only due to the angular-momentum sustained stel-
lar population, neglecting at first any possible intrinsic streaming
motions or tidal forces.

The aforementioned considerations justify the following line
element chosen by Balasin & Grumiller (2008, BG) to trace the
velocity profiles of disk galaxies in a weakly relativistic scenario

ds2 = −dt2 + 2Ndφdt + (r2 − N2)dφ2 + eν(dr2 + dz2), (4)

i.e. away from the central regions. As argued by these authors,
the assumption of pressure-less perfect fluid simplifies the dynamics
to be solved as compared to that in vacuum (Wald 1984).

In virtue of line element (A1) and conditions (A3), the unit tan-
gent vector field of a general spatially circular orbit can be expressed
as

uα = Γ
(
kα + βmα

)
, (5)

where β is the constant angular velocity (with respect to infinity)
and Γ the normalization factor. Equation (5) represents a class of
observers that includes static ones (β = 0), and can be parametrized
either by β or equivalently by the linear velocity, say ζ , with respect
to the ZAMOs (Zα, Zero Angular Momentum Observers) as:

uα = γ
(
eα
0̂
+ ζ φ̂eα

φ̂

)
, (6)

where γ = − (u|Z)5 is the Lorentz factor, eα
0̂

is the unit normal
to the t=constant hypersurfaces, and eα

φ̂
the φ unit direction of the

orthonormal frame adapted to the ZAMO.
ZAMO frames are, indeed, locally non-rotating observers,

which have no angular momentum with respect to flat infinity and
move on worldlines orthogonal to the hypersurfaces t=constant. The
associated tetrad is: eα

0̂
≡ Zα, eα

φ̂
≡ 1/√gφφ∂αφ , and eα

â
≡ e−ν∂αa .

Then, the line element (4) can be rewritten in terms of the lapse
M = r/

√
(r2 − N2) and the shift factor Mφ = N/(r2 − N2) as

ds2 = −M2dt2 + (r2 − N2)
(
dφ + Mφdt

)2
+ eν(dr2 + dz2), (7)

where Zα = (1/M)(∂t −Mφ∂φ) and the relationship between β and
ζ φ̂ is given by equating equations (5) and (6)

ζ φ̂ =

√
gφφ

M
(β + Mφ), (8)

5 Symbol ( | ) stands for the scalar product relative to the chosen metric.
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which, in the case of a static observer, reduces to

ζ φ̂ =
N(r, z)

r
. (9)

Equation (9), then, represents the velocity of the co-rotating
"dust particle" as measured by an asymptotic observer at rest with
respect to the rotation axis and turns out to be proportional to
the off-diagonal term g0φ of the metric (4), i.e. the background
geometry; therefore, it can be related to the relativistic gravitational
dragging (de Felice&Clarke 1990). The same applies for aKerr-like
metric6 where, with respect to a suitable tetrad, a static observer
has a non-zero angular momentum with respect to infinity, i.e.,
(∂φ |u) = g0φ/

√
−g00 (de Felice & Clarke). On the other hand,

ZAMOs have zero azimuthal angular momentum, i.e. (∂φ |Z) = 0,
but a non-zero angular velocity due to the gravitational dragging.
Bear in mind also that the Gaia observables are developed with
respect to the static observer uα = (1/√−g00)∂

α
0 locally at rest

relative to the BCRS (in the gravitational fields of the Solar System),
which reduces to be ∝ ∂α0 far away from it (Crosta et al. 2017). In
general, any particle moving in a metric independent from t and φ
coordinates has two conserved quantities, say, p0 and pφ . Consider
to drop a particle "radially" from infinity with angular momentum
pφ = 0; then, pφ = gφ0p0 and p0 = g00p0. By taking p0 ∝ dt/dλ
and pφ ∝ dφ/dλ (being λ an affine parameter) it results:

pφ

p0 =
gφ0

g00 =
dφ
dt
, (10)

namely, the particle acquires an angular velocity in the same direc-
tion of the rotating gravity sourcewhile approaching it (Padmanahan
2010).

The function N(r, z) was constrained by Balasin & Grumiller
(BG) to the separation anstaz N(r, z) = R(r)F(z) and the reflection
symmetry assumption. Their final expression is (eq. 25, Balasin &
Grumiller 2008):

N(r, z) = V0(Rout − rin) + (11)
V0
2

∑
±

(√
(z ± rin)2 + r2 −

√
(z ± Rout )

2 + r2)

)
,

where the three parameters V0,Rout ,rin were chosen, respectively,
as the flat regime velocity, the extension of the MW disk and the
bulge radius. Note that Balasin & Grumiller solve N(r, z) by avoid-
ing values that could prevent a physical solution, such as the lo-
calized exotic energy-momentum tensor attributed to Cooperstock
& Tieu (2007, CT), or violate the weak energy condition and the
assumption of vanishing pressure (see appendix B of Balasin &
Grumiller, 2008 and references therein, for example Zingg, Aste &
Trautmann, 2007). Such flaws still persist in the recent publications
of Carrick & Cooperstock (2012) and Magalhaes & Cooperstock
(2017), where the application of the CT model is extended to other
galaxies including the Milky Way, and in addition the mass density
profiles is estimated (see section 4 for further details). Cooperstock
and Tieu also define the velocity as an approximation valid for
r � N .

Both BG and CT models assume that N(r, z) is separable and
has reflection symmetry, which implies four solutions for F(z).
Cooperstock and Tieu use F(z) = e−k |z | (not smooth at z=0) and
write the velocity as a linear superposition of Bessel functions of
the first kind to get a good fit to the data. BG’s model, instead,

6 The vacuum solution of the Einstein field equation for stationary, axisym-
metric, asymptotically flat space-time.

adopts F(z) = cos kz, which leads to solutions involving modified
Bessel functions and integrates over all possible modes to obtain
expression (11).

Moreover, themetric of the BGmodel approaches themetric of
flat space far from the centre of the Galaxy, whereas CT’s solution
for the metric approaches the flat space metric far from the galaxy in
the azimuthal direction but not in the radial direction (Neill 2011).
The BG model still lacks of an appropriate physical boundary for
r � N (Grumiller, Balasin & Preis 2008), the region where the
metric is not defined in both models. In fact, as underlined also by
the authors, the BG model has some limitations at r = 0 (where the
motion becomes superluminal, the same in the classical Newtonian
model) and |z | > rin (arbitrarily set to 1 kpc by BG). However,
the rotation curve describes the velocity profile as a function of the
radial coordinate only and the limitation on the z coordinate derives
from the separability ansatz applied by BG to solve the metric
function N = N(r, z). This means that from RC data only, it is not
possible to obtain a complete 3D description of the disk structure.
In this context, if |z | increases, the separability may be reconsidered
taking into account the tilt of Local Velocity Ellipsoid (Everall
et al 2019). Moreover, as the model implements a dust solution,
the BG ansatz can affect the following aspects: i) the pressure-less
condition can be broken in the central region, and ii) the older stellar
populations, which mainly populate the MW thick disk, acquire a
higher intrinsic scatter in the three velocity components. A more
complex scenario should be considered in order to take into account
perfect fluid solutions with non-vanishing pressure (Andreasson et
al. 2011).

The considerations above might suggest a Galactic structure
dominated, in the innermost part, by a Kerr-like source that, far
away from it, turns into a perturbed Schwarzschild-like metric or
a co-rotating "dust" (for example see Lynden-Bell, Katz & Bic̆ák
1995).7 All of the limitations might be overtaken by considering a
global solution with appropriate metric conformal factors as well
as suitable boundary conditions, which lead to a smooth transition
from a Kerr-like metric to a stationary axially-symmetric solution
for the disk-dominated regions. The spatial velocity profile can be
defined via equation (8), and a valid mathematical solution should
be found accordingly.

Equation (11), even though based on tailored assumptions,
represents one of the first attempts at deriving a possibleGRvelocity
profile, that is worth testing as an approximate case, before pushing
for more reliable and complex solutions.

3 FIT OF GAIA-DR2 DATA TO CLASSICAL AND
RELATIVISTIC MW ROTATION CURVES

In the following, we confront the models presented in the previous
section for the MW rotation curves to the best data - that are inde-
pendent from any model - we obtain only from the Gaia DR2. The
model that would not fit these data should then be rejected.

3.1 Sample Selection

To study the RC profile of our Galaxy we selected stars tracing the
MW disk from the recently released Gaia DR2 archive according

7 According to Stephani et al. (2009) there exists a one-to-one correspon-
dence between static vacuum solution and (rigidly rotating) dust stationary
solution (theorem 21.1).

MNRAS 000, 1–14 (2019)
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to the following strict criteria: (i) availability of the complete astro-
metric set, and of its corresponding error (covariance) matrix (right
ascension α and declination δ, the proper motions µα cos δ and
µδ , and parallax $); (ii) availability of the Gaia-measured velocity
along the line of sight, RV , and its error; (iii) parallaxes good to
20%, i.e., $/σ$ ≥ 5; (iv) availability of a cross-matched entry in
the 2MASS catalog (Skrutskie et al. 2006). Requirements (i) and
(ii) are necessary for a proper 6-dimensional reconstruction of the
phase-space location occupied by each individual star as derived by
the same observer. As for the third criteria, parallaxes to better than
20% allow us to deal with similar (quasi–gaussian) statistics when
transforming them into actual distances, as discussed in Smith &
Eichhorn (2012) and references therein. Selection criteria (iv) is
essential for the actual materialization of the sample of early type
stars. In fact, it provides us with the 2MASS near-infrared magni-
tudes J, H, and K (Skrutskie et al. 2006) that, in combination with
the G-bandmagnitude from the DR2, allow us to build the following
photometric filter:

(J − H) < 0.14(G − K) + 0.02 and (J − K) < 0.23(G − K)

Following Poggio et al. (2018), that needed a stellar sample
tracing theMWdisk for studying presence and possibly nature of its
warp, this filter is then used in combination with their probabilistic
method that uses Gaia’s astrometry and photometry together to
select stars whose colors and absolute magnitudes are consistent
with them being upper main sequence stars, including OB stars (see
also Re Fiorentin, Lattanzi & Spagna 2019). On the other hand,
as mentioned above, Gaia-measured RV’s made the DR2 catalogue
only when the estimated stellar effective temperatures are between
3550 and 6900 K (Katz et al. 2019) for a total of ∼ 7.2 million
objects. This implies that a large fraction, if not all, of the OB stars
initially in the 2MASS cross-matched sample drops out of it because
of the RV requirement (ii), leaving us with mainly A, and some F,
early type stars. This contingent RV-induced bias will be greatly
mitigated with the forthcoming Gaia deliveries.

Then, DR2 directly provided all of the data, i.e. astrometry
(parallaxes and annual proper motions) and RVs, necessary for a
proper 6-dimensional reconstruction of the phase-space location
occupied by each individual star as derived by the same observer.

At the end of our selection process we are left with a very
homogenous sample of 5277 early type stars and 325 classical type
I Cepheides as classified by the Gaia pipelines (Clementini et al.
2019), the largest stellar sample of this kind ever.

3.2 Spatial and kinematical analysis

Both spatial and kinematical tests were conducted to ensure that
the selected data set fairly traces the MW disk and its kinematics.
A close look at the radial and vertical distributions of our sample
shows that 99.4 % , (i.e. 5566) of its stars, are within 4.9 ≤ r ≤ 15.8
kpc (a range of ∼ 11 kpc) and below 1 kpc from the galactic plane,
that represents the characteristic scale height for the validity of the
BG model.

The quantities extracted from the Gaia DR2 archive are trans-
formed from their natural ICRS reference frame (Mignard et al.
2018) to its galactocentric cylindrical counterpart, i.e., into the
quantities R, φ, and z for the galactocentric spatial coordinates and
their corresponding velocities VR , Vφ (i.e., the azimuthal velocity
at any galactic longitude), and Vz .

The procedure followed is that described in the Gaia Data
Release 1 (2017), and includes proper error propagation thanks to

the availability of the correlation matrix (requirement (i)). For its
actual application, we specified the values of the Sun’s radial dis-
tance R� in the Galactic frame and the Sun’s velocity (U�,V�,W�)
directly in the Galacto-centric reference frame, as derived from
the proper motion of Sgr A* (adopted as the Galactic center).
In this way, we are independent from the local standard of rest.
The following values were adopted after reviewing the recent lit-
erature: R� = 8.122 ± 0.031kpc (Gravity collaboration 2018) and
(U�,V�,W�) = (12.9,245.6,7.78) km/s (Drimmel& Poggio 2018).

We then bin the data in cylindrical rings [R-∆R, R+∆R] as a
function of R as described in the caption of Table 1.

Finally, we adopt RSE (from Robust Scatter Estimate) as a
robust measure of the dispersion of a distribution. It is defined as
(2
√

2er f −1(4/5))−1 ∼ 0.390152 times the difference between the
90th and 10th percentiles; RSE is the same as standard deviation
in the case of a normal distribution. The values for |zmedian | and
the median Vφ’s are quite compatible with those expected for a
population belonging to the MW young disk and confirm, in turn,
the effectiveness of the procedure we adopted for extracting stars
from the upper main sequence.

Moreover, the measured velocity dispersion in each radial bin,
i.e. the intrinsic scatter that measures the "warmth" of a stellar pop-
ulation, is always below 41.4 km/s, with a typical (mean) value of
22.1 km/s, as expected for a young thin disk stellar sample. As a
final robust and consistency check of our analysis, we calculate the
circular(ized) velocity (Jeans 1915; Binney & Tremaine 2008) solv-
ing the cylindrical form of the Jeans equation for an axisymmetric
disk, namely

∂(ρ < V2
R >)

∂R
+
∂(ρ < VRVz >)

∂z
+ ρ

(
< V2

R > − < V2
φ > +V2

c

R

)
= 0,

(12)

to circularize ourVφ . This equation links themoments of the velocity
distribution < ViVj > and the density ρ of a given stellar sample to
the circularized velocity Vc . The circular(ized) velocity is then

V2
c (R) =< V2

φ > − < V2
R >

(
1 +

∂ ln ρ
∂ ln R

+
∂ ln< V2

R >

∂ ln R

)
, (13)

where we neglected the contributions of the vertical gradients, and
< V2

i > represents the averaged squared velocity of the velocity
matrix in each bin. Following Eilers et al. (2019), we utilized the
exponential radial density profile ρ(R) ∝ exp(−R/hr ) with hr =
3 kpc. Besides, we notice that in the radial range covered by our
data (∼ 5-16 kpc), the radial gradient of < V2

R > (last term in the
parenthesis of equation (13)) is close to zero. With equation (13)
providing the measured values of Vc’s in each radial bin, the cor-
responding uncertainties are computed via bootstrapping with 100
re-samples on the individual values of the azimuthal velocities. The
total error takes also into account possible systematic errors (esti-
mated within 5%) that the approximations mentioned above could
introduce. There is a slight positive gradient towards larger radial
distances, as naturally expected by Jeans’ analysis. We verify that
the corrections (due to the circularization procedure) to the observed
azimuthal velocities are always well below 10% throughout the ra-
dial range we have probed (up to ∼ 10 km/s, i.e. below the intrinsic
scatter of the population) and fairly consistent with the increasing
uncertainties computed via the bootstrapping method.

Therefore, we decided to use the observed and model-
independent azimuthal velocity profile to test the two models. This
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binsize Rmean starcount zmedian Vφ,median σVφ RSEVφ

(kpc) (kpc) (kpc) (km/s) (km/s) (km/s)

0.2 5.0 3 -0.234 230 12 10.9
5.2 7 -0.077 233 8 14.9
5.4 13 -0.162 223 12 34.2
5.6 14 -0.069 203 8 21.4
5.8 30 -0.122 220 8 41.4
6.0 40 -0.112 229 3 37.4
6.2 71 -0.125 229 3 23.3
6.4 102 -0.124 234 3 19.8
6.6 156 -0.078 229 2 19.3
6.8 244 -0.036 231 2 19.8
7.0 273 -0.014 228 1 19.2
7.2 364 0.007 229 1 20.2
7.4 392 0.016 232 1 20.1
7.6 428 0.023 233 1 18.7
7.8 366 0.007 231 2 20.4
8.0 368 0.010 234 1 19.7
8.2 342 -0.010 231 2 20.9
8.4 380 0.009 232 1 22.4
8.6 368 -0.011 229 1 23.0
8.8 343 -0.055 226 1 17.2
9.0 296 -0.054 224 2 17.8
9.2 219 -0.044 224 1 18.1
9.4 202 -0.019 224 1 19.6
9.6 155 -0.039 222 2 21.0
9.8 105 -0.049 225 2 20.3
10.0 77 -0.012 228 4 23.1
10.2 51 0.007 219 6 32.9
10.4 27 -0.067 230 2 21.1
10.6 25 -0.032 234 5 22.5
10.8 20 -0.031 230 6 32.3
11.0 13 -0.103 232 8 15.0

0.4 11.3 19 -0.030 227 9 27.8

0.5 11.75 18 0.031 226 6 23.5
12.25 20 0.061 229 14 21.3
12.75 11 -0.039 227 5 18.8
13.25 7 0.001 234 10 8.2

1 13.8 4 0.496 208 24 32.9
1.5 15.8 2 0.043 220 12 9.2

Table 1. Properties of the binned data for the stellar sample extracted from the Gaia DR2 archive. The data are grouped in cylindrical rings [R − ∆R, R + ∆R]
as a function of the cylindrical coordinate r ≡ R. Each radial bin is centered at the value shown in the second column. The bin size, ∆R, is 0.2 kpc except for
the last bins that have been changed to cope with both increasing position errors with distance and the natural decrease in numbers of the Galaxy disk tracers.
As robust estimates of the values representing each bin, medians and RSE’s are used. The average of the median distances from the plane is < zmedian >= -
0.027 kpc in the range between Max(zmedian)= 0.496 kpc and Min(zmedian)=-0.234 kpc; moreover, the average value for the vertical dispersion is 0.206
kpc. As for the azimuthal velocityVφ , the weighted average (across the bins) of the medianVφ is ∼ 224 km/s, while the measured intrinsic velocity dispersions
are always below 41.4 km/s, with a typical (mean) value of 21.1 km/s, and always larger than the uncertainties on the median value σVφ .

preserves the internal consistency of our work, since the Jeans anal-
ysis assumes Newtonian gravity and not a complete relativistic de-
scription. To our knowledge, a possible relativistic Jeans’ analysis
could be done numerically (Ames, Andréasson & Logg 2016) or
with a post-Newtonian approximation (Nazari et al. 2017). Never-
theless, the implementation of the Jeans correction has no significant
effect as all of the results are compatible in the statistically credible
interval of the posteriors (as reported in appendix C, tables C1, C2,
C3, and C4).

As already mentioned, we selected the most suitable stellar
sample to ensure the effective applicability of a pressure-less perfect
fluid model to the Galaxy. As further proof of this hypothesis, note

that in Table 1 the intrinsic velocity dispersion, equivalent to a
pressure term in the Jeans equation, is on average less than 10%
compared to the azimuthal speed in each bin.

3.3 The fits to relativistic and classical MW rotation curves

In the equatorial plane, after setting r ≡ R and VBG(R) ≡ ζφ(r) in
equations (9) and (11), the relativistic velocity profile writes:

VBG(R) =
V0
R

(
Rout − rin +

√
r2
in
+ R2 −

√
R2
out + R2

)
, (14)

where the unknown parameters V0, Rout ,rin will result from fitting
to the data of Table 1 after transforming from geometrized back to
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BG model θ σ−θ σ+θ

rin [kpc] 0.39 -0.25 +0.36
Rout [kpc] 47.87 -14.80 +23.96
V0 [km/s] 263.10 -16.44 +25.93

eν0 0.083 - 0.014 +0.014

Table 2. rin , Rout and V0 are the parameters of BG’s model that cor-
respond, respectively, to the lower and upper radial limits, i.e. the bulge
radial size and the Galaxy radius, and the normalization of the velocity in
the flat regime. eν0 is the estimated dimensionless value characterizing the
conformal factor function, assumed constant, in line element (4). θ, σ−θ and
σ+θ are the mean and the 1σ credible interval limits from the posteriors of
the parameters (see also the values in Table C1 of appendix C, to which this
table is fully compliant).

regular units. In other words, these quantities identify the range for
which the 4D spacetime metric used can describe the MW disk as
an axisymmetric stationary rotating dust.

This relativistic velocity profile is then compared to the well-
studied classical models for the MW described in section 2. Each
contribution to the azimuthal (circular) velocity in the classical
model is calculated by utilizing the GALPY python package (Bovy
2015).

We fit both the BG and MWC models to the DR2 azimuthal
velocity data Vφ(Ri), and the corresponding uncertainties, from
Table 1, utilizing the log likelihood function

logL = −
1
2

∑
i

(
[Vφ(Ri) − Vexp

φ (Ri |θ)]
2

σ2
Vφ

+ log
(
σ2
Vφ

))
−

1
2

(
[ρ(R�) − ρexp(R� |θ)]2

σ2
ρ�

+ log
(
σ2
ρ�

))
, (15)

where Vexp
φ (Ri |θ) are the expected velocity values evaluated

with the two theoretical models at each Ri for any trial set of their
corresponding parameter vector θ.

For the "observed" (local) baryonic matter density at the Sun
and its corresponding error, i.e. ρ(R�) and σ� , in the likelihood
function above, we adopted the most recent values, respectively
0.084 and 0.012 M�pc−3, given in McKee, Parravano & Hollen-
bach (2015).

For the BG model (Balasin & Grumiller 2008), ρexp(R� |θ) at
z=0 is calculated via the 00-term of Einstein’s equation (see section
4), while for the MWC model ρexp(R� |θ) = ρb(R = R�, z =
0) + ρtd(R = R�, z = 0) + ρTd(R = R�, z = 0) from equations (1)
and (2).

In summary, we decided for 7 free parameters when fitting
with the MWC model, i.e. Mb , Mtd , MTd , atd , aTd ρhalo0 and
Ah . Instead, when dealing with the BG model, we have a total of 4
free parameters, V0, Rout , rin and eν0 (see section 4), and contrary
to the MWC case, the use of the BG density function ρBG in the
likelihood expression above is mandatory, as eν0 is not present in
VBG(R).

We finally used the Markov-Chain Monte-Carlo (MCMC)
method to fit to the data (see appendix B); Tables 2 and 3 report the
best fit estimates as the median of the posteriors and their 1σ level
credible interval. For both models, the errors due to the Bayesian
analyses are at least one order of magnitude lower than the result-
ing uncertainties of the parameters. This shows that the analysis is
intrinsically consistent and the simulation errors are negligible.

In Figure 1, the star-like symbols show median Vφ versus R

MWC model θ σ−θ σ+θ

Mb [1010M�] 1.0 -0.4 +0.4
Mt d [1010M�] 3.9 -0.4 +0.4
MT d [1010M�] 4.0 -0.5 +0.5

at d [kpc] 5.2 -0.5 +0.5
aT d [kpc] 2.7 -0.4 +0.4

ρhalo
0 [M�pc−3] 0.009 -0.003 +0.004

Ah [kpc] 17 -3 +4

Table 3.Mb ,Mt d ,MT d , at d , aT d ,ρhalo
0 and Ah are the free parameters

of the MWC model: the bulge mass, the masses and the scale lengths of the
two disks, the halo scale density, and the halo radial scale, respectively.
θ, σ−θ and σ+θ are the mean and the 1σ credible interval limits from the
posteriors of the parameters (see also the values in Table C3 of appendix C,
to which this table is fully compliant).

as derived with the Gaia DR2 data in Table 1. The two MCMC
estimated velocity profiles, drawn as the coloured solid lines in Fig.
1, are both good representations of the data , i.e., they are statistically
equivalent (see appendix C).

The least constrained parameter in the BG model is the "up-
per" radial limit, i.e., Rout . As already discussed, this was actually
expected due to a relatively limited radial coverage of the Gaia-only
velocity data we have used. Besides, we obtain an interesting result
on the lower limit parameter rin. According to Balasin & Grumiller
(2008, after their Eq. 26), as rin “determines the transition between
the linear (r � rin) and the flat (rin � r � Rout ) regime of the
velocity profile”, the size of the bulge “ may be predicted from the
velocity profile”. Remarkably, the fitted value rin = 0.39 kpc in Ta-
ble 2 is quite close to the value of bb = 0.3 kpc we adopted from
Pouliasis et al. (2017; see also Eilers et al, 2019) for the Plummer’s
radius of the bulge contribution to the MW density in our MWC
model (see Eq. 1 in sec. 2.1). It is also important to highlight here
the back-compatibility of this experimental result with the z distri-
bution of our selected disk population (see Table 1 and its caption):
to ensure a consistent application of the BG velocity model, the
selected stars resulted in a population spatially constrained to small
distances from the plane (average median height < zmedian >≈

-0.03 kpc and a corresponding average dispersion of 0.2 kpc), and,
in turn,< zmedian >≤ rin virtually everywhere across the radial
range spanned by the Gaia rotational velocity data. Despite this abil-
ity of providing an independent measurements of the radial size of
the MW bulge directly from the velocity data, the existence of the
critical regions at |z | > 0.39 kpc limits the physical validity of the
BG model and prevents it from describing large parts of the actual
Galaxy.

It is worth mentioning that Almeida et al. (2016) converted
the observational RC’s for some external galaxies into a data set
of an effective analogue (called the "effective Newtonian" velocity
profileVeN ) in order to define a method to compare non-Newtonian
gravity models with or without some dark matter. From the fit of
the Newtonian velocity profile to the effective Newtonian curve
the authors derive some baryonic parameters (basically by solving
Poisson-like equations). With the application of such a method, it
appears that both CT and BG approaches have strong problems
fitting galaxy rotation curves without dark matter. On the other
end, the statistical technique used for the fit, i.e. a χ2 minimization
procedure, could be insufficient for exploring the parameter space
(see appendix B) and some parameters appear not suitable for a
consistent representation of the BG model. For example, the galaxy
radius R ∼ 107 kpc is out of the range given by the BG solution and
galaxies cannot be considered isolated at such distances. Despite
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Figure 1. The azimuthal velocity profile of the MW as derived from the sample of disk tracers selected from the Gaia DR2. The black starred symbols represent
the median values within each of the radial bins in Table 1. The corresponding error bars are computed via bootstrapping (see text). The red and blue curves
show the best fit to the BG and MWC models, respectively. The other grey curves represent the kinematical substructures that contribute to the MWC model:
the dotted line is for the bulge, dashed and dot-dashed lines are for thin and thick disk, respectively. Finally, the grey solid line illustrates the contribution of
the NFW halo. The coloured areas represent the reliability intervals of the fitted curves; note that for R < 5 kpc both the classical and the relativistic curves
are very uncertain because of the lack of data in that region. The grey vertical band represents twice the value of rin estimated with the BG model.

that, the fact that BG or CT densities do not fit VeN in the absence
of DM indicates that off-diagonal terms, not analyzed in Almeida
et al. (2016), might account for the contribution that flattens the
observed rotation curves.

4 THE MASS DENSITY

In the case of the metric function adopted for the BG model, the
00-term of Einstein’s field equation results (for its derivation see
appendix D):

ρBG(R, z) =
(∂RN(R, z))2 + (∂zN(R, z))2

8GπR2eν(R,z)
, (16)

where ρBG(R, z) is the mass density at (R, z) and eν(R,z) is
the dimensionless conformal metric factor defined in equation (7).
It is suggestive to note that for R → ∞ and z → ∞ the density
approaches zero (Neill 2011), however we warned in the previous
section on the inadequacy of the BG model to represent our Galaxy
for regions above |z | = rin = 0.39 kpc. Finally, with R and z in kpc,
the estimated model parameters as in Table 2, and G = 4.3 · 10−6

kpc km2sec−2M−1
� , Eq.(16) yields the density in M�pc−3.

4.1 The relativistic mass density at R�

With the values in Table 2 inserted in Eq. (16), we obtain, for
the local baryonic matter density, ρ(R = R�, z = 0) ≡ ρ� =

0.083±0.006 M�pc−3 that is in agreementwith independent current
estimates, like, e.g., the estimate of 0.098+0.006

−0.014 M�pc−3 in Garbari
et al. (2012), the 0.077 ± 0.007 M�pc−3 value of Bienayme et al.
(2014), and the most recent determination of 0.084±0.012 M�pc−3

by McKee, Parravano & Hollenbach (2015), the local mass density
used as the observed datum in the likelihood function of Eq.(15).

Notice that the value of the local baryonic matter density just
derived with the BG model is truly the result of a fitting proce-
dure with the (crude) assumption that the conformal metric factor
is constant with R, i.e., eν(R,z=0) ≈ eν0 . This procedure is different
from that of Balasin & Grumiller (2008). Instead of a priori ap-
proximating eν (see sections 3.2 and 3.3 of Balasin and Grumiller)
to compare the mass density (16) to the Newtonian regime, we as-
sume a functional behaviour for the conformal factor and use this in
the expression of ρexp utilized in the likelihood function (15). Of
course, with just one reliable observed density value at our disposal,
i.e. that at R = R� , we are somewhat “forced” to consider a constant
eν 8 leading to the dimensionless estimation of eν0= 0.083 in Table

8 A similar approach was used by Magalhaes & Cooperstock (2017) in
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2. Then, it is worth recalling here that, as explained in appendix B,
the MCMC fitting procedure allowed eν0 to vary freely (i.e. uni-
formly distributed, as for the rest of the BG model parameters) in
the interval [0.001, 10], a four orders-of-magnitude range.

This situation is much different from Newtonian dynamics
(see McMillan 2017; Pouliasis, Di Matte & Haywood 2017; Eilers
et al. 2019), where the rotational velocity data alone suffice to fit
all of the parameters needed to define the different contributions
to the Galaxy density functions via the relations (1), (2) and (3).
Instead, the density in the BG relativistic model can be estimated
only through its direct use in the likelihood function (15). Therefore,
if more direct baryonic mass density measurements were available
throughout the plane, our method could be used to determine amore
general function for the density, i.e. for the conformal metric factor
near the plane, eν(R,z∼0), and verify, in turn, the overall consistency
of theGRmodel or test more general ones, as they become available.
So far, despite the tremendous improvement brought about by the
Gaia DR2, we still do not have a suitable survey with the appropriate
completeness due to systematic biases and observational limitations
(Gaia Collaboration 2018; McKee, Parravano &Hollenbach 2015).
The evaluation of the observed density profile from independent
data, for example mass luminosity ratios, is beyond the scope of
this work, but future implementations with the forthcoming new
deliveries of the Gaia data might help in extending our results,
especially from R ∼ 5 kpc inward.

4.2 The mass density in the galactic plane

When evaluated at z = 0, the term ∂zN(r, z) in Eq. (16) goes to
zero everywhere; then, Figure 2 compares the density profiles in the
galactic plane of both the BG and MWC models once the best-fit
values in Table 2 and Table 3 are utilized, respectively.

Looking at the results on our MWC model, comprising bary-
onic and DM density profiles, these are quite compatible with what
shown inMcMillan (2017), Pouliasis, DiMatte &Haywood (2017),
and Eilers et al. (2019). This confirms the goodness of the “clas-
sical” part of our analysis and provides a baryonic mass density
profile via the usual kinematic approach. In more detail, as ex-
pected in the disk region (z ∼ 0), the dominant matter is baryonic,
ρbar ∼ 0.08 − 0.10 M�pc−3 at R� , while DM is a minor com-
ponent there, i.e. ρDM ∼ 0.01M�pc−3, because of their different
spatial distribution. Indeed, while stars and gas (as baryonic matter)
are mainly concentrated close to the galactic disk, DM is distributed
in a far larger spherical volume surrounding the Galaxy, i.e. the DM
halo. Consequently, DM is much more “diluted” near the plane.
Nonetheless, the total amount of DM is higher than ordinary matter
also in our MWC model, as our analysis estimates that within a
spherical volume of R = 30 kpc the baryonic mass (bulge, thin and
thick disk) totals Mbar = 6.8 · 1010 M� , while the DM halo has a
virial mass of MDM = 1.09 · 1012 M� . Similarly, McMillan (2017)
found a total stellar mass of (5.43±0.57) ·1010 M� and a total virial
mass (composed mainly of DM) of (1.30 ± 0.30) · 1012 M� . Note
also that the value obtained by Magalhaes & Cooperstock (2017)
for the MW is 9.3 · 1010 M� .

Given the above, Figure 2 shows that the baryonicMWCprofile
and its BG analogue (the two solid lines) are almost coincident in the
radial range above ∼ 4 kpc. The two models predict a very similar
baryonic mass distribution in the Galactic disk (at z = 0 kpc) in

choosing the best fit for the Galaxy RC with the CT model, although eν = 1
in their model.

Figure 2. The density profile of the MW at z = 0 derived from 100 random
draws from the posterior distribution of the fit. As in Figure 1, the red solid
line is the BG model, while the blue dashed line represents the total matter
contribution for the MWC model (i.e. the sum of the bulge and the two
disks as the baryonic counterpart, plus the dark matter halo). The blue solid
line shows the contribution of the sole baryonic matter. The vertical black
solid lines limit the range of our data, while the vertical black dashed line
indicates the Sun position in the Galaxy. Finally, the grey vertical band
represents twice the value of rin estimated with the BG model.

the radial range, 5 kpc ≤ R ≤ 16 kpc, explored by the Gaia data.
Furthermore, our fit procedure confirms that in that same distance
range the assumption of a constant value for eν holds.

Figure 2 also shows that, differently from before, for R ≤ 4
kpc (inside the MW bulge regions) the BG mass density profile in
the plane, assumed of baryonic nature, demands more mass than
what provided by the density components, dark halo included, of
the MWC model (e.g., 10 times more at R ∼ 0.8 kpc). Therefore,
the question arises if the amount of actual baryonic mass within
4 kpc predicted by the two models is compatible or not. For our
MWC model, we integrated the three baryonic components of our
best fit densities in the region [R ≤ 4 kpc; |z | ≤10 kpc] for the
two disks (10 kpc is more than 10 times the scale-height adopted
for the thick disk), and within the spherical region r ≤ 4 kpc of
our Plummer bulge (4 kpc is more than 10 times the bb value
used for the bulge radius). The integration yields a MWC baryonic
mass of 3.5 · 1010 M� , value that compares quite favorably with the
4.8 · 1010 M� derived from integrating the BG mass density in the
region ε � R ≤ 4 kpc, with ε � 1 kpc 9, and |z | ≤ |z |e f f = 0.215
kpc. Here, |z |e f f represents the effective half-thickness of the BG
MW disk, and its value is, as it should (see the previous section and
the beginning of this), below rin; as for its derivation, we defer it to
the following section.

9 TheMathematica (2012) script we have written to deal with these calcula-
tions provides an extremely small estimate for ε when |z | ≤ rin , confirming
that the radial extent of the region where the BG model is not defined is
very close to the z-axis. It is only when |z | increases above 0.39 kpc that
the radial upper limit of the forbidden region, i.e. where R < N (R, z) (see
sec. 2.2), starts deviating significantly from R=0.
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5 GRAVITATIONAL DRAGGING AND DARK HALO
CONTRIBUTIONS TO THE MILKYWAY ROTATION
CURVE

Following Almeida et al. (2016), we used the relativistic density
ρBG (Eq. 16), for calculating the effective Newtonian circular ve-
locity profile VBG

eN
at any given point along R from the relation of

Binney & Tremaine (2008, see equation (16), sec. 3.2 of Almeida et
al.). Of course, the extension of the integration along the direction
perpendicular to the Galactic plane in the formula for (VBG

eN
)2 must

be restricted to the region |z | ≤ rin= 0.39 kpc. With this definition
of VBG

eN
, we are able to evaluate the amount of rotational velocity

at z = 0,VBG
drag

, due to gravitational dragging, which has no New-
tonian counterpart, and then compare it with the DM contribution
to VMWC .

The method adopted unfolds as follows. Let us define the
square differences (VBG

eN
(Ri ; k) − VMWC

eN
(Ri))

2 between the rela-
tivistic effective Newtonian rotational velocity at Ri and its pure
Newtonian analogue, VMWC

eN
(Ri); this is readily calculated as

VMWC
eN

=
√

V2
bulge

+ V2
td
+ V2

Td
, where Vbulge, Vtd and VTd are

the circular velocities due to the MW bulge, thin and thick disk,
respectively (the broken line curves depicted in Figure 1). Next, we
build the quadratic form (Σi(VBG

eN
(Ri ; k)−VMWC

eN
(Ri))

2)/N , where
N is the total number of Ri’s we decide to utilize in the radial domain
of our experimental velocity data (i.e., R ≥ 5 kpc), having placed
them ∆Rstep kpc apart from R1= 5 kpc to RN = ((N − 1) · ∆Rstep

+ 5) kpc (up to 20 kpc). The second index k identifies the half-
thickness |z |k ≤ rin, of the k-th BG disk we use in the vertical
integral of the formula for the effective Newtonian circular velocity
to compute numerically each VBG

eN
(Ri ; k) value, as the index i runs

from 1 to N. The intention is now clear, we try to make the two effec-
tive Newtonian velocity profiles as similar as possible, in the radial
range explored by Gaia, by minimizing the quadratic form above
as function of the relativistic disk half-thickness |z |k = k · zstep ,
with k = 1, ..., M and |z |M ≤ rin. For the effective BG disk half-
thickness |z |e f f , theminimization process yields |z |e f f =0.215 kpc,
for ∆Rstep = 0.1 kpc and zstep = 0.005 kpc. Smaller radial and/or
vertical steps changes only the non-significant digits of the |z |e f f
value. Also, notice that, as |z |k increases to the physical limit of 0.39
kpc, the BG effective Newtonian circular velocities grow to unreal-
istic rotational velocities, well above the VBG(R) profile itself, for
ever larger portions of the Galactic plane. Actually, for |z |=0.39 kpc
VBG
drag
(R) is already unrealistically higher than the VBG(R) curve

throughout thewhole radial interval shown in Figure 3. The red solid
curve in Figure 3 illustrates the VBG

eN
(R; |z |e f f ) that the minimiza-

tion finds closest to VMWC
eN

(R), the blue solid line in the picture.
Then, we are finally able to calculate the amount of rotational ve-
locity across the MW plane due to gravitational dragging: this is
done by simply taking the square root of the quadratic difference
between the BG velocity profile, Eq. (14), and the effective Newto-
nian circular velocity, as computed above, for the disk half-thickness
|z |e f f , i.e., VBG

drag
(R; |z |e f f ) =

√
(VBG(R))2 − (VBG

eN
(R; |z |e f f ))2.

The VBG
drag
(R; |z |e f f ) profile is shown in Figure 3 by the red dashed

line and is compared to the blue dashed curve VMWC
DM , the con-

tribution of the DM halo to VMWC (R) (this is the same as the
grey continuous line in Fig. 1 ). The gravitational dragging curve
nears zero at R ∼4.5 kpc, where VBG

eN
(R; |z |e f f ) ∼ VBG(R), then

grows sharply within 2.5 kpc outwards to resemble the DM curve
for most of the range to R = 20 kpc. This shows quantitatively that
gravitational dragging can plausibly compensate for the need of a

dark halo to sustain the flat velocity profile at large radii from the
Galactic center as long as |z |e f f = 0.215 kpc is used in the context
of the BG model.

For R ≤ 5 kpc (the region we cannot constrain with the Gaia
data at the moment), the two effective Newtonian velocities differ
sharply, to the point that, for R below ∼ 4.5 kpc, VBG

eN
(R) grows

unrealistically above VBG(R) itself. Possibly, this is signaling the
limit of the applicability of the effective Newtonian velocity in
combination with a density model, ρBG , unsuited, with just a disk
component, to represent the complex structure of theMWespecially
toward its central regions.

This could be the breaking point for the direct applicability
of the BG model to the Milky Way, as it calls for a more suitable
relativistic description of its central regions. This would require to
abandon the separability ansatz, as well as to find a more general
solution for eν(R, z). Despite these limitations, the consequence of
the application of an axisymmetric stationary metric, i.e. the ansatz
solution for N(R, z), to Einstein’s equations (red line in Figures 2 and
3) is already rather significant. This points to the possibility that a
gravitational dragging-like effect could sustain a flat RC. Obviously,
more data and much improved mathematical models are necessary
before such a scenario can be confirmed.

6 FINAL REMARKS

What we wish to emphasize first in this final section is that, for
the classical DM model form adopted, we obtain results really in
line with the most recent derivations from fits to data and samples
different from the Gaia material used in this work.

Here, utilizing the same highly accurate Gaia data, we report
also on our analysis with a simple GR model - a first order ap-
proximations to the Galaxy dynamics - as it has received much
less attention over the recent years, thus providing a first test of its
applicability to the MW rotation curve along the line pursued by
(Almeida et al. 2016) with data on external galaxies.

The totality of observational clues of DM point to the existence
of a material that: first, does not absorb or emit light but it exerts and
responds only to the gravity force; second, enters the calculations as
extra mass required to justify the flat galactic rotational curves. The
proved relativistic ansatz, by accounting for a gravitational dragging
effect driving the Galactic RC, could imply that geometry - unseen
but perceived as manifestation of gravity according to Einstein’s
equation -might be responsible of the flatness at large Galactic radii.
Then, there would be nothing new in saying that GR is the standard
theory of gravity: our results seem to confirm this manifestation by
accounting, via the Einstein field equations, for a "DM-like" effect.
These equations link the source to the geometry of spacetime, and
the proved ansatz suggests that their application to more physically
appropriate metrics, along with adequate solutions, may yield an
explanation to the RC flatness problem in our Galaxy.

Pursuing a GR picture of the MW can ensure a coherent Local
Cosmology laboratory, i.e. at zero redshift, against which anymodel
of the Galaxy can be tested; then the Galaxy can play a reference
role, much like the Sun for stellar models. While Gaia offers a
unique opportunity to trace star by star the Galactic potential from
within the Solar System gravitational fields, by setting a coherent
GR framework, one can effectively establish to what extent can GR
account for DM. Our outcomes seem to suggest that global MW
dynamics could be dominated by spacetime, whereas Newtonian
approximation is valid only locally. Future developments of the
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Figure 3. Red and blue colors refer to the BG andMWCmodel, respectively. Solid lines represent the relativistic effective Newtonian rotation curve,VBG
eN , and

its analogue for the MWC model, as contributed by the total of baryonic mass. The dashed lines show the MWC halo component alone, and the gravitational
dragging contribution toVBG ,VBG

drag
, obtained by subtractingVBG

eN fromVBG itself (see sec. 5 for details).

present work, theoretical and observational (with Gaia DR3 for
example), might confirm this scenario.

As far as our ansatz is concerned, it appears that GR dust,
namely pure matter made only of the non-collisional baryonic ma-
terial in the disk, recovers the local energy-mass density, without
further hypothesis (as per Occam’s razor rule), within the 11-kpc
range covered by our selection of disk stars from Gaia’s DR2.

Although these are initial results based on a tailored physical
solution of the Einstein field equation, they indicate a possible GR
approach to the RC flatness problem in the spirit of the Newtonian
Hypotheses non fingo, suggesting at the same time to push on the
use of General Relativity, regardless of how difficult this might be,
to detail a more complex Galaxy structure, mostly shaped by the
bulky central rotating mass-source, where dragging effects could be
further enhanced by similar sources distributed along the disk (see,
for example, Liu J. et al. 2019).
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APPENDIX A: THEORETICAL BACKGROUND

It is known that, in a stationary and axisymmetric space-time there
exist two commuting Killing vector fields, kα (time-like) and mα

(always zero on the axis of symmetry), and a coordinate system
{t, φ,r, z} adapted to the symmetries (de Felice & Clarke 1990;
Stephani et al. 2009; Stockum 1937), whose line element for a
rotating perfect fluid takes the form:

ds2 = −e2U (dt + Adφ)2 + e2U
(
e2γ(dr2 + dz2) +Wdφ2

)
, (A1)

where e2U , e2γ are conformal factors and U, A,W depend only
one the coordinates {r, z}. The time coordinate t (time-like far
enough from the metric source) spans the range [−∞,+∞] and φ is
the azimuthal angular coordinate in the interval [0,2π] (de Felice
& Clarke 1990). For the general dust solution (Stephani et al. 2009,
eq. (21.50)) we have:

−e2U = (k |k), −Ae2U = (k |m), e−2UW2− A2e2U = (m|m). (A2)

In addition

mα = ∂αφ , kα = ∂αt , ∂tgi j = ∂φgi j = 0, gφa = gta = 0, (A3)

where a = r, z. Because of the two dimensional Laplace equation
one can choose W = r2.

For rigidly rotating dust (i.e. shear-free and expansion-free),
one can chooseU = 0 and there exist a time-like Killing vector (lin-
ear combination of kα and mα with a constant coefficient) parallel
to the four-velocity of the fluid uα, i.e. the co-rotating one chosen
by Balasin & Grumiller (2008), proportional to ∂αt (Stephani et al.
2009). Then, by setting e2γ ≡ eν , N = −A and e2U = 1, eq. (A1)
becomes the line element adopted by Balasin & Grumiller (2008).

APPENDIX B: DETAILS ON THE PARAMETERS AND
PRIORS OF THE FIT

The parameter space is too large to explore with a simple nonlinear
fit. We therefore decided to use the Markov Chain Monte Carlo
(MCMC) method to determine the unknown parameters and their
uncertainties (see sec. 3.3). Actual computations made use of the
MCMC python package PyMC3 (Salvatie et al. 2016) with the
NUTS algorithms chosen for the step selection. To explore the full
pdf we implement the following priors:

• BG model : (i) Uniform for V0 ∈ [150,300] km/s; (ii) Uniform
for Rout ∈ [10,100] kpc; (iii) Uniform for rin ∈ [0,2] kpc; (iv)
Uniform for eν0 ∈ [0.001,10]10 ;

10 This is the value characterizing our approximation of a constant metric
conformal factor, i.e., eν(R ,z) ≈ eν0 .
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• MWC model : (i) Normal for Mb = N(µ = 1.067, σ =
0.5) 1010M�; (ii) Normal for Mtd = N(µ = 3.944, σ =

0.5)1010 M�; (iii) Normal for MTd = N(µ = 3.944, σ =

0.5)1010 M�; (iv) Normal for atd = N(µ = 5.3, σ = 0.5) kpc;
(v) Normal for aTd = N(µ = 2.6, σ = 0.5) kpc; (vi) Normal
for ρhalo0 = N(µ = 0.01, σ = 0.005)M�pc−3; (v) Normal for
Ah = N(µ = 19.6, σ = 4.9) kpc.

In addition, in the MWC model, we fix bb = 0.3 kpc (Pou-
liasis, Di Matte & Haywood 2017), as our data do not explore the
galactic central region where the bulge dominates. In this way, we
eliminate any possible correlations with the free parameters. We
stress that we use normal pdf priors for the MWCmodel, so that we
can compare our bayesian analysis to the most recent observational
estimates (see second bullet above). On the other hand, for the BG
free parameters we adopted uniform prior distributions as there is
no previous knowledge for such parameters, being this the first time
of a fit to a general relativistic model with data for the Milky Way.
We also fix btd = 0.25 kpc and btd = 0.8 kpc (Pouliasis, Di Matte
&Haywood 2017), as in our work we neglect the vertical data distri-
bution, and consider only binned radial rings. For the MWCmodel,
the estimated parameters are, within the errors, compatible with
literature values (Iocco et al. 2011; Bovy 2015; McMillan 2017;
Pouliasis, Di Matte & Haywood 2017; Korol, Rossi & Barausse
2019). The largest contributions to the 1σ confidence interval come
from Mb and Ah uncertainties, which are the most difficult to con-
strain because of the relatively narrow range covered by the DR2
data.

APPENDIX C: THE GOODNESS OF THE ANALYSIS AND
POSTERIOR CORRELATIONS

Figure 1 shows the two estimated velocity profiles that are both
good representations of the observed (binned) data. To quantitatively
asses this, we compare the two models via the Widely Applicable
Information Criterion (WAIC, Watanabe, 2010), which is a fully
Bayesian criterion for estimating the out-of-sample expectation.

By definition, lower values of the WAIC indicate a better fit,
i.e, the WAIC measures the poorness of the fit. Our MCMC runs
result in the values 288.8 and 282.6 for the BG and MWC models,
respectively. Therefore, for our likelihood analysis the two models
appear almost identically consistent with the data.

Furthermore, Figures C1 and C2 show the posterior distri-
butions of the parameters for the MWC and BG model, respec-
tively. For the MWCmodel, the strongest correlation is between the
DM halo scale density ρhalo0 and its radial scale Ah , similarly to
(McMillan 2017). There are smoother correlations between all the
other parameters. Moreover, means and medians are always practi-
cally coincident (compare with the mean values reported in Table 3
of sec. 3.3); therefore, they can both be used in the distribution of
their respective posterior.

On the other hand, for theBGmodel the results suggest stronger
correlations or anticorrelations between the radial (rin, Rout ) pa-
rameters and the velocity normalizationV0. This is reasonable based
on their definitions (see sec. 3.3). The conformal factor constant eν0

appears to be less correlatedwith the other parameters. This is some-
what expected, as this parameter does not enter in the expression for
the BG rotational velocity, and can only be estimated thanks to the
direct use of the BG density function (16) in the likelihood expres-
sion (15) (again see sec. 3.3). Analogously to the MWCmodel case,
for the BG model as well means and medians are fairly comparable
(see Table 2 in sec. 3.3). Finally, we report in tables C1, C2, C3,

BGVφ V0 Rout rin eν0

hpd 0.16 246.67 33.07 0.13 0.07
median 262.35 45.27 0.39 f 0.08
hpd 0.84 289.04 71.84 0.74 0.10

Table C1. Posterior estimates for the BG model using Vφ data. hpd stands
for "highest posterior density" and is the minimum width Bayesian credible
interval.

BGVcir c V0 Rout rin eν0

hpd 0.16 250.48 38.33 0.27 0.07
median 269.22 53.28 0.55 0.08
hpd 0.84 289.21 92.83 0.81 0.10

Table C2. Same as in Table C1 but for Vcir c computed with the imple-
mentation of the Jeans correction.

MCWVφ Mb Mt d MT d at d aT d ρhalo
0 Ah

hpd 0.16 0.65 3.49 3.56 4.70 2.30 0.61 13.61
median 1.01 3.89 4.01 5.16 2.68 0.87 16.75
hpd 0.84 1.37 4.28 4.47 5.63 3.08 1.23 20.74

Table C3. Same as in Table C1 but for the MWC model. Note that ρhalo
0

is in unit of 102 M� pc−3.

MCWVcir c Mb Mt d MT d at d aT d ρhalo
0 Ah

hpd 0.16 0.54 3.49 3.52 4.79 2.40 0.69 14.05
median 0.90 3.88 3.98 5.25 2.79 0.95 17.02
hpd 0.84 1.25 4.27 4.43 5.71 3.19 1.32 20.75

Table C4. Same as in Table C2 but for the MWC model. Note that ρhalo
0

is in unit of 102 M� pc−3.

and C4 numerical evidence that the implementation of the Jeans
correction, i.e. the use of Vcirc instead of Vφ data, has not much
influence on the posteriors estimates in both models.

APPENDIX D: THE EINSTEIN FIELD EQUATIONS

Solving Einstein’s equation translates into a system of coupled non-
linear partial differential equations, and for that there exist no general
method to obtain all of the solutions.

Namely, considering line element (4) and tensor Tαβ =
ρgαµgβτuµuτ (in virtue of the definition of Tαβ , and in the limit
of small density, uα results geodetic), one obtains the following
expression for the Einstein field equations:

r∂zν + ∂r N∂zN = 0 (D1)
2r∂r ν + (∂r N)2 − (∂zN)2 = 0 (D2)

2r2(∂r∂r ν + ∂z∂zν) + (∂r N)2 + (∂zN)2 = 0 (D3)
r(∂r∂r N + ∂z∂zN) − ∂r N = 0 (D4)

(∂r N)2 + (∂zN)2 = kr2ρeν (D5)

By solving this system of PDE’s one recovers the functions
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Figure C1.MWC parameters corner plot. The one-dimensional (histogram) posterior distributions of each parameter are shown on the diagonal of the drawing,
while the other panels represent the two-dimensional (contours) correlations. The black thick contours indicate the 1 and 2 σ credible levels, while the blue
squares represent the mean value of each posterior distribution. The black dashed vertical lines mark the 16th, 50th (i.e. median) and 84th percentiles of the
posterior. Finally, the average values and their corresponding 16th and 84th percentiles are shown on top of the histograms. Note that ρhalo

0 is in unit of
102 M� pc−3.

N(r, z), ν(r, z) (see sections 2.3 and 2.4 in Balasin & Grumiller,
2008), and via equation (D5) we compute the local mass density.
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Figure C2. BG parameters corner plot. Same as in Figure C1.
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