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ABSTRACT

We study the accuracy of several approximate methods for gravitational dynamics in terms of
halo power spectrum multipoles and their estimated covariance matrix. We propagate the
differences in covariances into parameter constraints related to growth rate of structure,
Alcock—Paczynski distortions, and biasing. We consider seven methods in three broad
categories: algorithms that solve for halo density evolution deterministically using Lagrangian
trajectories (ICE-COLA, PINOCCHIO, and PEAKPATCH), methods that rely on halo assignment
schemes on to dark matter overdensities calibrated with a target N-body run (HALOGEN,
PATCHY), and two standard assumptions about the full density probability distribution function
(Gaussian and lognormal). We benchmark their performance against a set of three hundred
N-body simulations, running similar sets of approximate simulations with matched initial
conditions, for each method. We find that most methods reproduce the monopole to within
5 per cent, while residuals for the quadrupole are sometimes larger and scale dependent.
The variance of the multipoles is typically reproduced within 10 per cent. Overall, we find
that covariances built from approximate simulations yield errors on model parameters within
10 per cent of those from the N-body-based covariance.

Key words: methods: data analysis — methods: numerical — cosmological parameters — large-
scale structure of Universe.

1 INTRODUCTION

The study of the large-scale structure of the Universe has seen a
major step up with the completion of the cosmological analysis
of large galaxy redshift surveys such as SDSS (Tegmark et al.
2004; Eisenstein et al. 2005), 2dFGRS (Percival et al. 2001; Cole
et al. 2005), and more recently BOSS (Alam et al. 2017) and
VIPERS (Pezzotta et al. 2017). We have entered an era in which
the accuracy on cosmological parameters from the analysis of low-
redshift tracers becomes comparable to the one reached by cosmic
microwave background experiments, allowing tight constraints
on parameters related to the late-time cosmic acceleration. This
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observational effort continues nowadays with the analysis of state-
of-the-art imaging surveys for weak lensing measurements: DES
(Troxel et al. 2017), KiDS (Hildebrandt et al. 2017), and HSC
(Mandelbaum et al. 2018), as well as campaigns reaching high-
redshift tracers such as the Lyman « forest and Quasars in eBOSS
(Dawson et al. 2016; Ata et al. 2018). Even more excitingly, the
near future will see larger observational campaigns such as Euclid
(Laureijs et al. 2011), DESI (DESI Collaboration 2016), or LSST
(Ivezic et al. 2008; LSST Science Collaboration 2009) that will
enable a better understanding of several open questions, in addition
to the nature of cosmic acceleration, such as the physics of the
primordial Universe and the neutrino mass scale. In parallel, the
requirements on the accuracy in the evaluation of systematics and
statistical errors have grown to become an important component of
the error budget. In that sense, ensembles of galaxy mock catalogues
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are a vital component for the analysis of galaxy surveys, not only for
their internal use but also for assessing the level of agreement among
different data sets. Mock catalogues are useful in at least three
ways: (1) to study the impact of observational systematic effects,
(2) to test science pipelines and analysis methodologies (including
the recovery of the input cosmology of the mocks), and (3) to
provide covariance matrices among observables (e.g. accounting
for cosmic variance, noise, masking, and correlated survey property
fluctuations).

N-body simulations coupled with semi-analytical models or halo
occupation distribution (HOD) schemes for galaxy assignment are
perhaps the best possible route nowadays to construct realistic
galaxy catalogues (Carretero et al. 2015; Smith et al. 2017; Taka-
hashi et al. 2017). However, running ensembles of high-resolution
N-body simulations of cosmological size is computationally very
expensive (Angulo et al. 2012; Fosalba et al. 2015; Heitmann et al.
2015; Potter, Stadel & Teyssier 2017), in particular for future
surveys such as Euclid or DESI, which will cover large volumes
and will need high particle mass resolution to reach the expected
galaxy number density in the observations.

One alternative route is to run fast algorithms (also known as
‘approximate methods’, see Monaco 2016 for an overview) that
reproduce, to a variable extent, the large-scale statistics of N-body
simulations. This is done at the expense of losing accuracy in the
small-scale physics since these methods are not able to resolve halo
substructures. These approximate methods have been widely used
over the past few years to help bring forward galaxy clustering
analysis in a more comprehensive way (Manera et al. 2013, 2015;
Howlett et al. 2015; Kitaura et al. 2016; Koda et al. 2016; Avila
etal. 2017). None the less, an assessment of how those fast methods
reproduce the covariance from N-body simulations, or their impact
on derived cosmology, is still missing in the literature. Generally
speaking, the requirements for future missions, such as Euclid,
are that systematic errors in the estimation of covariance matrices
should not bias the estimation of errors in cosmological parameters
by more than ~10 per cent.

Hence, in this article we perform a robust and thorough compar-
ison of clustering measurements in ensembles of mock catalogues
produced from several state-of-the-art algorithms, which span basi-
cally all the various types of approaches available in the literature.
We use as benchmark an ensemble of 300 large N-body simulations,
short named Minerva (Grieb et al. 2016). As noted previously, it
is the first time this kind of study is performed. On the one hand,
we concentrate on how well the observables are reproduced with
high precision because of the large number of realizations (see a
previous comparison work by Chuang et al. 2015b using one N-body
simulation). On the other hand, because we extend the comparison
to how well these methods reproduce the full covariance matrix of
power spectrum multipoles, and how those inaccuracies propagate
into constraints on the parameters of interest for galaxy redshift
surveys. Two companion articles present similar studies in terms of
two-point correlation function (Lippich et al. 2019) and bispectrum
(Colavincenzo et al. 2019).

We span different types of approaches: one representing the
combination of multistep second-order Lagrangian perturbation
theory (2LPT) to solve the large-scale displacements with a fast
particle mesh (PM) solver to speed up the intermediate-scale force
computation, ICE-COLA (Izard, Crocce & Fosalba 2016; Izard,
Fosalba & Crocce 2018). We then consider one group of methods
based on halo finding in Lagrangian space coupled with LPT for the
evolution equations of the collapsed regions. In this category, we
consider PINOCCHIO (Monaco et al. 2002) and PEAKPATCH (Bond &
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Myers 1996a,b,c; Stein, Alvarez & Bond 2018). Another group
of methods uses LPT to evolve the matter field and then applies
a biasing scheme to produce a halo sample. For this class, we
consider HALOGEN (Avila et al. 2015) and PATCHY (Kitaura, Yepes &
Prada 2014). The latter methods need to be calibrated on one N-
body simulation before running the desired set of mocks.! Finally,
we consider approaches that make assumptions on the probability
distribution function (PDF) of the density field: a Gaussian model
for the covariance (Grieb et al. 2016) and a set of 1000 lognormal
mocks (Agrawal et al. 2017). Both of them use as input the actual
clustering signal and number density of haloes as measured in the
benchmark N-body simulation. There are several other methods in
the literature (e.g. QUICKPM by White, Tinker & McBride 2014,
FASTPM by Feng et al. 2016, EZMOCKS by Chuang et al. 2015a), but
they can all roughly fit into one of the above categories. Hence,
we expect our study to lead to conclusions that are of general
applicability in the field.

This article is organized as follows: in Section 2, we describe all
the approximate methods that we consider and how they compare
in terms of computational cost. In Section 3, we introduce the halo
samples over which we do the comparison. Section 4 describes our
methodology. Section 5 contains and discusses our results, which
are summarized in Section 6. Lastly, we include two appendices,
one describing an alternative way of defining the halo samples, and
another discussing the statistical uncertainty in the comparison of
cosmological parameter errors as shown in our results.

2 COMPARED METHODS

We now briefly summarize the main features of the methods and
mocks used in this work. For a comprehensive description, we refer
the reader to the first article of this series (Lippich et al. 2019), while
for a general review we refer to Monaco (2016). For the purpose
of presenting results, we will classify the compared methods in
three categories: predictive methods, which do not require re-
calibration against a parent N-body for each specific sample or
cosmological model (ICE-COLA, PINOCCHIO, and PEAKPATCH);
calibrated methods, which need prior information about the sample
to simulate (HALOGEN and PATCHY); and analytical methods, which
predict the covariance by making assumptions on the shape of the
PDF of the density field (lognormal and Gaussian). A summary is
provided in Table 1, where we report the computing requirements
(per single mock) for each of the methods used in this work, together
with some general considerations and references. The methods are
presented in decreasing computing time order.

Our comparison will focus on halo samples defined in comoving
outputs at redshift z = 1.

2.1 Reference N-body: Minerva

Our benchmark for the comparison is the set of N-body simulations
called Minerva, first described in Grieb et al. (2016). For this project,
200 additional realizations were run, for a total of 300 realizations.
These are performed using the code GADGET-3 (Springel 2005), with
N, = 10003 particles in a box of linear size Lyo, = 1500 2~ Mpc
and a starting redshift of z;,; = 63. The mass resolution is therefore
2.67 x 10" =1 Mg,. The initial conditions are given by the 2LPTIC

I Typically, they require the halo abundance and bias as a function of mass
as measured in the parent simulation.
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Table 1. Name of the methods, type of algorithm, halo definition, computing requirements, and references for the compared methods. All computing times
are given in cpu-hours per run and memory requirements are per run. We do not include the generation of initial conditions. The computational resources
for halo finding in the N-body and ICE-COLA mocks are included in the requirements. The computing time refers to runs down to redshift 1 except for the
N-body where we report the time down to redshift 0 (we estimate an overhead of ~50 per cent between z = 1 and z = 0). Since every code was run in a
different machine, the computing times reported here are only indicative. We include the information needed for calibration/prediction of the covariance where
relevant. (x) In order to resolve the lower mass haloes of the first sample, a higher resolution version of PEAKPATCH should be run, requiring more computational

resources than quoted here.

Method Algorithm Computational requirements Reference
Minerva N-body CPU Time: 4500 h Grieb et al. (2016)
Gadget-2 Memory allocation: 660 Gb https://wwwmpa.mpa-garching.mpg.de/
Haloes : SUBFIND - gadget/
ICE-COLA Predictive CPU Time: 33h Izard et al. (2016)
2LPT + PM solver Memory allocation: 340 Gb Modified version of
Haloes : FOF(0.2) - ttps:// github.com/junkoda/cola_halo
PINOCCHIO Predictive CPU Time: 6.4h Monaco et al. (2013); Munari et al. (2017b)
3LPT + ellipsoidal collapse Memory allocation: 265 Gb https:// github.com/pigimonaco/ Pinocchio
Haloes : ellipsoidal collapse - -
PEAKPATCH Predictive CPU Time: 1.72 hx* Bond & Myers (1996a,b,c)
2LPT + ellipsoidal collapse Memory allocation: 75 Gbx Not public
Haloes : Spherical patches - -
over initial overdensities - -
HALOGEN Calibrated CPU Time: 0.6 h Avila et al. (2015).
2LPT + biasing scheme Memory allocation: 44 Gb https:// github.com/savila/halogen
Haloes : exponential bias Input: 72, 2-pt correlation function, -
— halo masses, and velocity field -
PATCHY Calibrated CPU Time: 0.2h Kitaura et al. (2014)
ALPT + biasing scheme Memory allocation: 15 Gb Not public
Haloes : non-linear, stochastic, Input: 72, halo masses, and -
and scale-dependent bias environment -
Lognormal Calibrated CPU Time: 0.1h Agrawal et al. (2017)
lognormal density field Memory allocation: 5.6 Gb https://bitbucket.org/komatsu5147/
Haloes : Poisson sampled points Input: 72, 2-pt correlation function lognormal_galaxies
Gaussian Theoretical CPU Time: n/a Grieb et al. (2016)

Gaussian density field
Haloes : n/a

Memory allocation: n/a
Input: P(k) and 71

code,? and the cosmological parameters are fixed to their best-
fitting value from the WMAP + BOSS DRO analysis (Sanchez
et al. 2013). The halo catalogues are obtained with the SUBFIND
algorithm (Springel et al. 2001).

2.2 ICE-COLA

COLA is afast N-body method, which solves for particle trajectories
using a combination of 2LPT and a PM algorithm, where 2LPT is used
for integrating the large-scale dynamics, while the PM part solves for
the small-scale dynamics (Tassev, Zaldarriaga & Eisenstein 2013).
This allows to drastically reduce the number of time-steps needed
by the solver to recover the large-scale clustering of a full N-body
method within a few per cent. In this article, we use the ICE-COLA
version of the code, as optimized in Izard et al. (2016). Thus, the
mocks used in this work use 30 time-steps linearly spaced in the
expansion factor a from the starting redshift at zj,; = 19 to z = 0°
and a PM grid-size of 3 x N,"/? in each spatial dimension. They
share the same particle load and box size as Minerva. Note that this
configuration is optimized for reproducing dark matter clustering
and weak lensing observables (Izard et al. 2018), and it is somewhat
overdemanding in terms of computational cost for halo clustering

2http://cosmo.nyu.edu/roman/2LPT/
30nly half of these steps are completed by z = 1.
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alone (Izard et al. 2016), as seen in Table 1. Haloes are found on-the-
fly using a Friends-of-Friends (FOF) algorithm with a linking length
of b = 0.2 times the mean interparticle distance. This method does
not require calibration, so we consider it a predictive method in the
following.

2.3 PINOCCHIO

In this work, we use the latest version of PINOCCHIO, presented in
Munari et al. (2017a). The algorithm can be summarized as follows:
first, a linear density field is generated, using 1000 particles, and it
is smoothed on different scales. For each particle, the collapse time
at all smoothing scales is computed using the ellipsoidal collapse
in the 3LPT approximation and the earliest is assigned as collapse
time of the particle. The process of halo formation is implemented
through an algorithm that mimics the hierarchical assembly of dark
matter haloes through accretion of matter and merging with other
haloes. Finally, haloes are displaced to their final position using
3LPT. This method only needs to be calibrated once and no re-
calibration was required for this work, so we consider it predictive
in what follows.

2.4 PEAKPATCH

In this work, we use a new massively parallel version of the PEAK-
PATCH algorithm (Stein et al. 2018; Alvarez et al., in preparation),
originally developed by Bond & Myers (1996a,b,c). This approach
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is a Lagrangian space halo finder that associates haloes with regions
that have just collapsed by a given time. The algorithm used in this
work features four main steps: First, a density field is generated
with 1000° particles using the 2LPTIC code. Collapsed regions
are then identified using the homogeneous ellipsoidal collapse
approximation and once exclusion and merging are imposed in
Lagrangian space the regions are displaced to their final position
using 2LPT. This method does not require calibration, so we will
consider it a predictive method in the following.

2.5 HALOGEN

The HALOGEN method relies on the generation of a 2LPT matter
density field at the redshift of interest and a subsequent assign-
ment of haloes according to an exponential bias prescription. The
algorithm used in this work can be summarized as follows: First, a
2LPT matter density field is generated at z = 1 using 768° particles,
downsampling the initial conditions of the Minerva simulations.
The particles are then assigned to a 300° grid. Haloes are assigned
to grid cells with a probability proportional to p;*;l%), where M),
is a halo mass sampled from the average mass function of the
Minerva simulations. The position of the halo is drawn randomly
from particle positions within the grid cell, while the velocity is
given by the particle velocity multiplied by a velocity bias factor
Jfret(Mp). The function oo(M},) is calibrated using the average Minerva
two-point correlation function, while the velocity bias one, fye1(My),
is calibrated using the variance of halo velocities in Minerva, for
several bins in halo mass. Therefore, we consider HALOGEN as a
calibrated method in the following.

2.6 PATCHY

In this work, we employ the PATCHY version described in Kitaura
et al. (2015), which uses augmented LPT (ALPT) to evolve the
initial density field to the redshift of interest and then assigns
haloes using a non-linear, scale-dependent, and stochastic biasing
prescription. The algorithm used in this work can be summarized
as follows: First, a linear matter density field is generated using
500° particles in a 500° grid, downsampling the initial conditions
of the Minerva simulations, and then evolved to z = 1 using ALPT.
The number density of haloes is determined using a deterministic
bias prescription and haloes are assigned to grid cells by sampling
anegative binomial distribution, with a stochastic bias parametriza-
tion to model deviations from Poissonianity. Halo velocities are
given by modelling the coherent flow with ALPT and adding a
Gaussian dispersion, while masses are drawn from the Minerva
simulations and assigned according to halo environment properties
(local density and cosmic web type) as determined by the HADRON
code (Zhao et al. 2015). Two separate sets of mocks were produced
for this work in order to reproduce the two samples considered (see
Section 3). PATCHY will be considered a calibrated method in the
following.

2.7 Lognormal

The lognormal mocks used in this work are produced with the
code described in Agrawal et al. (2017). The algorithm used in
this work can be summarized as follows: a Gaussian field G(x)
is generated on a 256* grid for matter and haloes. For haloes, we
first measure the average real-space two-point correlation function
& in Minerva, which is ‘gaussianized’ through the relation &g =
In(1 + &(r)). We then get the power spectrum Pg such that its
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Fourier transform matches £g. This Pg is used to generate the
Gaussian density field in each point of the Fourier Space grid
(where modes are independent). This field is then transformed
back to configuration space as G(X). In turn, the matter density
field is generated directly in Fourier space using the average power
spectrum of Minerva and is only used to estimate the matter velocity
field (needed to account for redshift space distortions) by solving
the linear continuity equation. Both fields are then transformed into
lognormal fields using the measured variance of the Gaussian fields,
as 8y(¥) = exp [—(1/2)0d + G(X)] — 1, and added. The number of
haloes in a given cell is sampled from a Poisson distribution with
mean 71y [1 + 8,(X)] Veer, Where iy, is the mean number density of
haloes in the Minerva simulations, 8,(X) is the halo density field,
and Vi is the volume of the cell. Finally, haloes are randomly
positioned within the cell and their velocity is given by the velocity
of the cell as computed by solving the linear continuity equation
for matter. We will consider the lognormal mocks as an analytical
prediction and use 1000 mocks to reduce the noise. Note that none
of these are matched to the Minerva initial conditions.

2.8 Gaussian covariance

Here, we use the Gaussian covariance model described in Grieb
et al. (2016). In this model, the contribution of the trispectrum and
of the supersample covariance is neglected, so that the covariance is
diagonal. The binned power spectrum multipole covariance in the
thin shell approximation is given by

(26, + D26 + 1)
Co (ki kj) = 8ij——F———
01,02 J J 2Nk,-

1 2
x / | {P(k,-, W+ ﬂ Lo (WL,Gudu, (1)
where §; is the Kroneker delta function, N, is the number of
independent Fourier modes in the bin, P(k, u) is the anisotropic
halo power spectrum, © = cos§ where 0 is the angle between the
line of sight (LOS) and the separation vector of a galaxy pair, and £,
denotes the Legendre polynomial of order £. In this work, P(k, 1) is
obtained by fitting the average halo power spectrum of the N-body
simulations with the model given in Section 4.2. The evaluation of
the covariance takes around 2 s on a regular computer.

3 HALO SAMPLES

We define two samples in the N-body simulations by cutting in
mass at two thresholds: 1.1 x 10'* and 2.7 x 10" M h~! that
correspond to 42 and 100 particles, respectively. This yields samples
with number densities of 2.13 x 10~* and 5.44 x 10~ k> Mpc 2,
respectively. We only consider redshift z = 1.

Results for the higher mass limit are more robust because the
haloes are sampled with a larger number of particles making the
estimation of their mass and position more reliable. Nevertheless,
future surveys will observe galaxies that reside in lower mass haloes
and that have a higher number density, thus probing a different shot-
noise regime. That is why we consider a sample at lower mass that
is closer to the target population of such surveys (e.g. for Euclid
we expect a number density of 9 x 10~* 13 Mpc ™ at this redshift).
In Fig. 1, we show the shot-noise subtracted average halo power
spectrum in real space, with the corresponding level of shot noise
indicated with a dashed line. While Sample 1 is always signal
dominated in the range of scales that we consider, Sample 2 is

shot-noise dominated for k > 0.14 h Mpc™'.

MNRAS 485, 28062824 (2019)
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Sample 1

< 10

Sample 2

1 1 1
0.05 0.10 0.15 0.20
k (h/Mpc)

Figure 1. Average real space halo power spectrum from the 300 N-body
simulations (continuous line) and the corresponding Poisson shot-noise level
(dashed line), for sample 1 (top) and sample 2 (bottom) as defined in the top
entries of Table 2, at redshift 1.

Table 2. Characteristics of the halo samples considered. For Sample 1 (top),
we define in each approximate method an equivalent sample matched by
abundance to the density of haloes more massive than 1.12 x 103 A~ M,
in the N-body simulation. For Sample 2 we do equivalently, but matching
abundance for haloes with Mj, > 2.67 x 10'3> h~! M, in the N-body. The
second column displays the resulting abundance of those samples, which
are not exactly equal to the N-body due to mass function discretization in
steps equivalent to the particle mass. Samples are defined at z = 1. The
significant difference in the mass cut of PEAKPATCH is due to the different
mass definition criterium, as explained in Appendix A.

Method Ainaloes (1* Mpc™) Muin (h™' Mg)
Sample 1
N-body 2.130 x 104 1.121 x 1013
ICE-COLA 2.123 x 1074 1.086 x 103
PINOCCHIO 2.148 x 1074 1.044 x 1013
HALOGEN 2.138 x 107* 1.121 x 1013
Lognormal 2.131 x 1074 1.121 x 1013
PATCHY 2.129 x 10~* 1.121 x 1013
Sample 2
N-body 5.441 x 1073 2.670 x 103
ICE-COLA 5.455 x 1077 2.767 x 1013
PINOCCHIO 5.478 x 1077 2.631 x 1013
HALOGEN 5.393 x 1077 2.670 x 1013
Lognormal 5.441 x 1073 2.670 x 1013
PATCHY 5.440 x 1073 2.670 x 1013
PEAKPATCH 5.439 x 1073 2.355 x 1013

We define equivalent samples in the approximate mocks by
matching the abundance of haloes to the average abundance in the N-
body simulations. The calibrated methods have the same abundance
of haloes at these thresholds by construction, while in the case of
the predictive methods we match the abundance by changing the
mass threshold. The resulting samples are listed in Table 2. The
abundance-matching procedure does not yield exactly the same
number of haloes because the mass function is discretized in steps
corresponding to the particle mass, nevertheless the recovered

MNRAS 485, 28062824 (2019)

1.02 |

1.01
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ICE-COLA 2
Pinocchio 1 |
Pinocchio 2 |
Halogen 1 |-
Halogen 2 |
lognormal 1 [
lognormal 2 |
Patchy 1 F
Patchy 2 |
PeakPatch 2

Figure 2. Square root of the average clustering amplitude of the approxi-
mate mocks divided by the average of the N-body simulations in the range
0.008 < k(hMpc™!) < 0.096 for the two samples, as indicated in the
labels.

abundances agree within 1 per cent. In the case of PINOCCHIO,
since the abundance could not be matched to high precision,
halo masses were made continuous by randomly distributing the
masses of N-particle haloes between N x M, and (N + 1) x
M, where M, is the particle mass of the Minerva simulations.
The PEAKPATCH mocks, as implemented here, do not resolve the
lower mass haloes, hence results are presented only for the second
sample. In Fig. 2, we show the average clustering amplitude in the
range 0.008 < k(hMpc™') < 0.096 for the approximate mocks
divided by the average of the N-body simulations in the same range,
from which we can infer that the linear bias is recovered within a
few per cent in all the samples.

This procedure to define samples resembles what is done in the
analysis of real data, where mocks are produced by matching the
number density and bias of the observed sample. Moreover, since we
expect shot noise to have an important role in the covariance of these
samples, matching the abundance will yield similar shot-noise levels
in the compared covariances and will enhance discrepancies arising
from other factors, notably from the approximations introduced
by the different methods. Finally, since every approximate method
defines haloes differently it is not expected that cutting at the same
mass threshold as the N-body simulations would yield the same halo
samples, we therefore believe that samples matched by abundance
will result in a fairer comparison. In Appendix A, we compare
results for the predictive methods for sample defined by cutting
at the same mass threshold and samples matched by abundance.
The abundance-matching procedure is especially helpful for the
PEAKPATCH mocks in which haloes are identified as Lagrangian
spherical overdensities, contrary to the other methods that use FOF
or are calibrated to reproduce FOF mass functions.

4 METHODOLOGY

We compare 300 realizations for each approximate method with
initial conditions matching the Minerva N-body simulations, so
that the comparison is not affected by sample variance.
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4.1 Clustering measurements

We compute the redshift space power spectrum multipoles in the
distant-observer approximation. We choose the direction of the LOS
parallel to the three axes of the simulation box and average the
results for the three directions to further reduce the noise in the
measurements. We compare results at redshift z = 1 and in the range
of scales 0.008 < k(h Mpc") < 0.197, unless otherwise stated.
We measure the power spectrum multipoles P, (£ = 0, 2, 4) using
the public code POWERI4,* which employs the interlacing technique
to reduce aliasing contribution (Sefusatti et al. 2016). We use the
fourth-order mass interpolation scheme (piecewise cubic spline) on
a 256> grid. We bin the power spectrum multipoles in intervals of
Ak = 3kg, where kg = 27 /Ly, is the fundamental frequency of the
box, for a total of 16 bins per multipole.

4.2 Theory modelling and parameter space

We compare the performance of different covariance matrices in
terms of the errors and contours in a series of model parameters that
are generally standard in galaxy clustering analysis. In particular,
we adopt a model very close to the one in the anisotropic clustering
study of BOSS DR12 data presented in Grieb et al. (2017) and
Sanchez et al. (2017). Such a model includes (1) non-linear matter
clustering through the matter and velocity divergence correlations
(gRPT, Crocce et al. in preparation), (2) a biasing scheme to one-
loop in the initial power spectra, and (3) the non-linear equivalent
of the Kaiser effect for redshift space distortions through the
correlations between densities and large-scale velocities. The main
difference with respect to a galaxy analysis is that we do not consider
parameters related to small-scale pair-wise velocity dispersion (the
so-called Fingers-of-God effect) because we are considering haloes
and these are not affected by this effect. Broadly speaking, the
theory model is given by

Pk, ) = Pan(k) + 2 f > Poo (k) + f211* Pog (k)
+ P2 (k. )+ POk, ), 2)

where Py, Phg, and Pyy stand for halo density h and velocity
divergence 0 auto and cross-power spectra, and f is the growth
rate of structure (where § = Vu = —Vv/aHf). The first three
terms are the non-linear ‘Kaiser’ effect, with Py, and Py written to
one loop in the biasing scheme. Explicit expressions can be found
in Sanchez et al. (2017) and they depend on b; (linear bias), b,
(non-linear, second order in density fluctuations), y, (non-local,
second order), and y; (non-local, third order in perturbations),
following the notation and bias basis of Chan, Scoccimarro & Sheth
(2012). Higher order terms, such as b3, are ‘renormalized’ into the
above parameters (at one-loop), see McDonald (2006). The last
two terms in equation (2) also arise from the transformation of
real to redshift space coordinates. Defining Dy = 8, + fV.u;, we
have

Pk, ) = / %[BQDSDS(Q’ k—gq,-k
+ Bop,n.(q, —k, k — ¢)1d*q, 3)

which depends on the cross-bispectrum B between the velocity
divergence 6 and D;, which can be evaluated at tree-order (thus,

“https://github.com/sefusatti/Powerl4
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depends only on by, b, and y,), while

q: (kz B qz)
POt = [ EGEE bt f) (0 + k)

x Pyo(k — q)Pso(q)dq, )

which is already second order in P(k) and hence only depends on
linear bias b;. Equations (3) and (4) are basically the equivalent
of the A(k, n) and B(k, ) terms, respectively, in equation (18)
of Taruya, Nishimichi & Saito (2010) extended to biased tracers
(see also Nishimichi & Taruya 2011). We have checked that the
sensitivity of our halo samples clustering to y, is minor, hence we
keep terms proportional to y,, but we fix y, to its local Lagrangian
relation to the linear bias, i.e. y, = —(2/7)(by — 1).

The final component of the model is the Alcock—Paczynski
(AP) eftect. Anisotropic clustering analysis needs to assume a
‘fiducial’ cosmological model in order to transform observables
(redshifts and angular positions) into co-moving coordinates. A
mismatch between this ‘fiducial’ model and the ‘true’ cosmology
(i.e. the one being assumed in the likelihood evaluation) leads to
distortions, known as AP effect (Alcock & Paczynski 1979), which
can be used to place cosmological constraints (e.g. Samushia,
Percival & Raccanelli 2012). Such distortions are characterized
by two parameters that transform comoving coordinates in the
‘true’ cosmology, denoted (k, k,),> to coordinates in the ‘fiducial’
cosmology, denoted (k' , k|), as

kl =(XJ_kJ_ kl/\ =Ot”k”, (5)
with
Da(2)r H'(2)r)
1L = I,A d Q) = d, (6)
D (2)rq H(z2)rq

where D, is the angular diameter distance to the sample redshift,
H(z) the Hubble parameter, and ry is the sound horizon at the drag
redshift. In terms of wave-vector amplitude and angle to the LOS,
this transformation is (Ballinger, Peacock & Heavens 1996)

172
K k) = K [a 2 + a2 - )] )

—1/2
) = o o a2 -] (®)
Therefore, after evaluating the power spectrum model at the cos-
mology being assumed by the likelihood step, i.e. P(k, i), we need
to transform back to the basis of the ‘fiducial’ cosmology, together
with the multipole decomposition, as

2041
PU) =2 / Lo PR, 1), i )y ©)
Caedl

In summary, our parameter space has six free parameters: by, by,
y; for galaxy physics, the growth rate of structure fog, and the two
AP parameters o , «,,.

4.3 Covariance matrix estimation

The covariances are computed using the sample covariance estima-
tor:
N

1 _ _
Colki, kj) = A Z(Pé’(ki) — Py(k))(P/ (k) — Pe(k;)), (10)

n=1

SHere, L and i1 refer to wave-vectors parallel and perpendicular to the LOS,
respectively.

MNRAS 485, 28062824 (2019)

2202 UoIBIN /| UO Jasn Jeul Aq 980ZE€SG/9082/2/SG8Y/91o1HE/SeIU/WOD" dNo"dlWapEdE//:Sd)y Wolj papeojumoq


https://github.com/sefusatti/PowerI4

2812 L. Blot et al.

Table 3. Best-fitting parameter values to the N-
body power spectrum multipoles for the two

samples.

Sample by by 2y
1 2.637 —1.660 0.693
2 3.434 —1.067 1.601

where Ny = 300 is the number of simulations, £ = 0, 2, 4 is the
multipole considered, and P, = 1/N; Z,I,V;l P} is the average power
spectrum. Analogously, the cross-covariances between different
multipoles are computed as

Ny

1 _
Cerealhi k) = — > (P (ki) — P, (k)

n=1
x (Pg (k) = Ppy(kj)). (11)

In what follows, we compute covariance matrices in each of the
three LOS directions independently and then average them.

4.4 Fitting procedure

The main use for covariances in the context of galaxy survey data
analysis is to perform a fit to the measured observable given a
model in the likelihood analysis framework. In order to understand
if the approximations in the methods presented here systematically
increase/decrease the errors on the recovered parameters, we run
MCMC chains based on the assumption of a Gaussian likelihood:

—2logL = ZZ (P, (ki) — Pm.Zl(ki))T

Ly ij
X W0, (kis k) (Poy (k) — Proey (k) (12)
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where ¥ = C~! is the precision matrix and P, is a model of the
power spectrum multipoles that depends on the cosmological and
nuisance parameters.

Since we are only interested in the performance of the covariance,
we use as P a fit to the N-body average power spectrum multipoles
with the model described in Section 4.2. To do this fit, we fix the
cosmological parameters to their true values and only vary the bias
parameters by, by, and y; . The best-fitting parameter values that
we obtain for the two samples are given in Table 3.

We then run MCMC chains by changing the covariance with
the ones estimated with the approximate mocks. We vary the
AP parameters (o, o ) and fog together with the nuisance bias
parameters by, by, and y; . This matches what is done in article I
for the configuration space analysis. For each method, we first run
a short chain to have an estimate of the parameter covariance and
then run a full chain that uses that parameter covariance as input.
All the full chains have 2 x 10° points.

5 RESULTS

5.1 Mean of the power spectrum multipoles

Fig. 3 shows the relative difference of the average power spectrum
multipoles as measured from the approximate mocks with respect
to the corresponding N-body measurements, except for the case of
the hexadecapole where we use the theoretical estimate as reference
because the large noise makes the N-body measurements cross 0 and
can lead to diverging ratios. The shaded regions show the standard
deviation of the 300 N-body simulations. In general, the monopole
is better reproduced than the higher order multipoles by all methods
and the agreement with the N-body results is better in the first
sample than in the second.

Sample 2
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Figure 3. Relative difference of the power spectrum monopole and quadrupole (hexadecapole) with respect to the N-body (model) ones for sample 1 (left-hand
plot) and sample 2 (right-hand plot). In each plot, we show the monopole (top panel), quadrupole (middle panel), and hexadecapole (bottom panel). The grey

shaded region shows the standard deviation of the N-body measurements.
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Figure 4. Relative difference of the variance of the power spectrum multipoles with respect to the N-body ones for sample 1 (top plot) and sample 2 (bottom
plot). In each plot, we show the monopole (top panel), quadrupole (middle panel), and hexadecapole (bottom panel). Notice that the Gaussian is a noiseless
estimate so that differences are dominated by the noise in the N-body variance estimate.

The monopole is reproduced to within ~5 per cent by all methods
at large scales in both samples, with the exception of PATCHY in
the second sample. ICE-COLA and PINOCCHIO perform the best
in terms of scale dependence showing a very flat difference, as
well as PATCHY in the first sample. In the second sample, the
calibrated methods show a scale dependence and oscillations in
the ratio, indicating that the BAO features are not completely
reproduced by these methods in this high-bias sample. PATCHY
in the first sample and ICE-COLA in the second have the best
performances; they reproduce the monopole to within 1 per cent on
the entire range of scales considered here. Notice that flat residuals
in the monopole indicate that there is a mismatch in the linear
bias, which is considered a nuisance parameter in cosmological
analysis.

All methods show some degree of scale-dependent difference in
the quadrupole, with HALOGEN performing notably bad even at large
scales. The other methods show a good agreement at large scales that
deteriorates at small scales. ICE-COLA and PINOCCHIO have very
good performances in the first sample, reproducing the quadrupole
to within 1 per cent in the whole range of scales considered. The
same is true for PEAKPATCH in the second sample, where ICE-COLA
has a residual deviation of ~35 per cent by k = 0.2/4~! Mpc and
PINOCCHIO ~14 per cent. PATCHY shows 5—10 per cent deviations
in the quadrupole. This performance can be potentially improved
with an explicit fit to the velocity dispersion, modelling virialized
motions, in the N-body. Lastly, we note that lognormal shows
residual oscillations at BAO scales also in the quadrupole for both
samples.

In the case of the hexadecapole, it is more difficult to evaluate
per cent differences because of noise amplification due to the very
small values of the denominator when taking the ratio, but these

are on average of the order of 10-15 percent for ICE-COLA,
PINOCCHIO, PEAKPATCH, and PATCHY, while they are > 40 per cent
for HALOGEN and lognormal.

5.2 Variance of the power spectrum multipoles

InFig. 4, we show the relative difference of the variance of the power
spectrum multipoles with respect to the N-body variance. We also
include the Gaussian prediction described in Section 2.8. Note that
the variance of the power spectrum in the Gaussian model is by
construction noiseless hence the scatter in the plotted points is due
to noise in the reference N-body variance (the denominator of the
ratio). We notice that the variance of Sample 2 has a larger scatter,
pointing to a larger contribution of shot noise in the covariance error
for this sample.

In Sample 1, all the methods agree with the N-body variance
within 10 per cent on large scales, with the exception of lognormal
for reasons that we address next. HALOGEN reaches a 20 per cent
difference beyond k ~ 0.1 h~! Mpc. In Sample 2, ICE-COLA and
PEAKPATCH do particularly well with an average of ~3 per cent
deviations from the N-body results in all multipoles, while the
other methods show a more diverse behaviour. In the monopole
variance, PINOCCHIO has an average deviation of ~9 per cent and
HALOGEN of 30 per cent. The quadrupole variance is reproduced
at the level of 5-10 percent, while the hexadecapole variance is
within 5 per cent for all methods, with the exception of PINOCCHIO
and PATCHY (9 per cent). Overall, the Gaussian model performs well
at the level of the mock-based variances.

One noteworthy result is that lognormal mocks show a sig-
nificantly larger variance than the N-body in the monopole and
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Figure 5. Cut through the correlation coefficient of the monopole (left-hand plot), quadrupole (middle plot), and hexadecapole (right-hand plot) for sample 1
at four different values of k as indicated in the panels. We show the results for N-body (black), ICE-COLA (blue), PINOCCHIO (red), HALOGEN (green), PATCHY

(cyan), lognormal (orange), and Gaussian (grey).
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Figure 6. Cut through the correlation coefficient of the monopole (left-hand plot), quadrupole (middle plot), and hexadecapole (right-hand plot) for sample
2 at four different values of k as indicated in the panels. We show the results for N-body (black), ICE-COLA (blue), PINOCCHIO (red), PEAKPATCH (brown),
HALOGEN (green), PATCHY (cyan), lognormal (orange), and Gaussian (grey) (color online).

that the discrepancy has a strong dependence on binning, showing
increasing deviations with larger bins. We attribute this behaviour
to the fact that these mocks show larger non-Gaussian contributions
than the N-body simulations. In fact, the Gaussian part of the
variance decreases with increasing bin widths, while the non-
Gaussian part does not depend on the binning (see e.g. Scoccimarro,
Zaldarriaga & Hui 1999). Since here we are showing the relative
difference, the relative magnitude of the non-Gaussian part increases
with larger binning, inducing larger deviations from the N-body
result. In addition, we found a trend of increasing deviations
from the N-body with increasing bias that will be investigated in
future work. All the other methods do not show this pronounced
behaviour with binning, indicating that the relative contributions of
the Gaussian and non-Gaussian parts to the covariance are better
reproduced.

MNRAS 485, 28062824 (2019)

5.3 Correlation coefficient of the power spectrum multipoles

To show the off-diagonal elements of the covariance matrix, we
compute the correlation coefficient for each method as

r; = Celhi, ;) : (13)
V/Celki, ki)Ce(k;, k)
In Figs 5 and 6, we show a cut through the correlation coefficient
r for the power spectrum multipoles for four different k; values, as
indicated in the plot panels. The colour coding is the same as the
previous plots with the addition of the N-body in black. The first
consideration to make is that the level of correlation for the power
spectrum multipoles at these scales and with the chosen binning is
very low. The monopole covariance shows the largest correlations,
on average ~7 per cent with a maximum of ~20 per cent, while
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Figure 7. Marginalized 20 contours for cosmological and nuisance parameters for sample 1.

for the quadrupole they are on average of the order of ~4 per cent
and for the hexadecapole ~1 per cent. The second consideration is
that because of the matching Initial conditions all the approximate
methods show noise properties that are highly correlated to the
noise in the N-body covariance. Finally, all methods seem to
qualitatively reproduce the level of correlations of the N-body
spectra with the exception of the monopole for HALOGEN, which
predicts correlations two to three times higher than the N-body, and
lognormal for the reason explained in the previous section.

5.4 Cosmological parameter constraints

To gauge the accuracy of the approximate methods in a realistic
context, we propagate errors on the covariance all the way to
cosmological parameter errors using a likelihood analysis, as
described in Section 4.4. In Figs 7 and 8, we show the resulting 2o
parameter contours for the cosmological and nuisance parameters.
Overall, the position and direction of degeneracies of the contours
is well reproduced by the approximate mocks. Recovered best-

fitting parameter values,® for both samples, agree with the input
ones to <1 per cent for all cosmological parameters and b, but
show larger deviations for the higher order halo bias ones even
when using the N-body covariance. We attribute this to the fact that
the latter parameters are poorly constrained and sometimes show
asymmetric posterior distributions (see Figs 7 and 8). Similar results
are obtained if the best-fitting values are defined as the mean of the
marginalized posterior distribution. In any case, these best-fitting
parameter biases are always marginally negligible if defined with
respect to their corresponding lo error.

To quantify differences between the recovered parameter errors,
we plot the ratio of the marginalized error on cosmological and
nuisance parameters with respect to the N-body results in Fig. 9.
Before further discussion, we point out that despite matching the
Initial conditions there is a residual scatter on parameter error ratios

Defined as the maximum of the posterior distribution for each parameter
after all others have been marginalized over.
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Figure 8. Marginalized 20 contours for cosmological and nuisance parameters for sample 2.

that we quantify in Appendix B to be at the level of 4-5 per cent,
(indicated in Fig. 9 as a grey shaded region). One should bear this in
mind when evaluating differences found. Moreover, for lognormal
and Gaussian the error exceeds this value because they do not
match the initial conditions to the N-body simulations and thus
have a different realization of noise in the covariance. This gets
propagated to the cosmological parameter errors. This means that
we expect results for these two methods to be more strongly affected
by the noise in the N-body covariance. We estimate uncertainties
for these two methods to be at the level of 10 per cent.

Overall, all the methods reproduce the N-body errors within
the statistical uncertainty, with few exceptions. PINOCCHIO slightly
exceeds the 5 per cent limit in the nuisance parameters b, and y;
in Sample 1 and in the cosmological parameters and b, in Sample
2, while ICE-COLA has similar issues for the nuisance parameters
b, and y; only in Sample 1. HALOGEN shows deviations larger than
the uncertainty in one of the AP parameters in both samples, while
PATCHY only shows a slight underestimation of the error on b; in
Sample 2. In Sample 2, lognormal shows deviations for the nuisance
parameters that are larger than the expected 10 per cent statistical
uncertainty.
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As a further test, we compute the volume of the 3D ellipsoid for
the cosmological parameters as

V = \/detCOV(O[H, o, fO'g), (14)

where cov(o, oy, foy)is the parameter covariance that we recover
from the full MCMC chains. We show the ratio of V to the N-body
result in Fig. 10. Deviations larger than 10 per cent are found for
ICE-COLA and lognormal in Sample 1, and for PINOCCHIO in
Sample 2. The single parameter errors shown in Fig. 9 for these
cases have smaller deviations from the N-body result but the oft-
diagonal elements of the parameter covariance drive the deviations
in terms of volume to higher values.

5.4.1 Dimensionality of parameter space and Ky,

We finish by studying the stability of our results against changes
of the dimensionality of our parameter space and of the non-
linear scale cut-off. This is motivated in part because, despite
the bad performance of lognormal on the monopole covariance,
the cosmological parameter errors are reproduced quite well. At
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Figure 9. Ratio of the error on cosmological and nuisance parameters with
respect to N-body for sample 1 (left) and sample 2 (right). The grey shaded
area indicates 5 per cent differences. We show the results for [ICE-COLA
(blue), PINOCCHIO (red), PEAKPATCH (brown), HALOGEN (green), PATCHY
(cyan), lognormal (orange), and Gaussian (grey) (color online).
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Figure 10. Ratio of the volume of the 3D ellipsoid of cosmological
parameters with respect to N-body for sample 1 (left) and sample 2 (right).
The grey shaded area indicates 10 per cent differences.

the same time, the nuisance parameters b, and y; are poorly
constrained, especially in Sample 2, so that some of the differences
between methods can be concealed. In order to test this, we run
chains by fixing y; to its true value reported in Table 3 for two
different values of k., (one of them our baseline). The results are
shown in Fig. 11 where we can see that in fact the discrepancy of the
error obtained with the lognormal method increases to 10 per cent
for fog and can be as large as 50 per cent for the nuisance parameter
b and b,, with a clear trend of increasing discrepancy with higher
kmax. We also notice that the performances of the other methods

are not affected by fixing y;~ or increasing the k. t0 0.3 7 Mpc!,

Power spectrum covariance comparison ~ 2817

Sample 2

kmaz = 0.2 h Mpc™?! Emae = 0.3h Mpc™?!

1.5F -

14 -

1.2 -

U/UN—body

1.1 — F

1.0 — —

09, 1 1 1 1 C 1 1 1 1 1
o O(H ng b1 b2 (e 2N Oé|| fJg b1 b2

Figure 11. Dependence with dimensionality of parameter space and kmax:
Ratio of the error on cosmological for a reduced set of nuisance parameters
(y3 fixed), with respect to the N-body ones, for sample 2. Left-hand
panel corresponds to fits with kpax = 0.2/ Mpc™! (our baseline value)
and right-hand panel with kpax = 0.3/ Mpc~!. The grey shaded area
indicates 5 per cent differences. We show the results for [ICE-COLA (blue),
PINOCCHIO (red), PEAKPATCH (brown), HALOGEN (green), PATCHY (cyan),
lognormal (orange), and Gaussian (grey). Our results are stable against
these changes, except for lognormal, whose performance decreases rapidly,
and, to a less extent, Halogen (color online).

with the exception of Halogen that shows increased ratios on all the
parameters and exceeds the 10 per cent level for «; and b, when
kmax 18 increased.

6 DISCUSSION AND CONCLUSIONS

The cosmological analysis of galaxy redshift surveys requires an
estimation of the covariance of the observables to be able to put
constraints on cosmological parameters in a Gaussian likelihood
analysis framework. One way of doing this is to simulate the galaxy
sample of interest a large number of times and computing the
covariance using the sample covariance estimator. Since full N-
body simulations are computationally very expensive, galaxy mock
catalogues used for covariance estimation are produced using so-
called ‘approximate methods’, which speed up the calculation by
introducing approximations in the dynamics or the statistics of the
galaxy density field.

In this work, we studied for the first time the accuracy of
these methods in reproducing the N-body halo power spec-
trum multipoles, their covariances, and the recovered parame-
ter errors on the set of cosmological and biasing parameters
{ay, a1, fog, bi, by, y3 }. We did this at z = 1 by comparing en-
sembles of simulations from approximate methods with a reference
set of 300 N-body simulations. To minimize the impact of sample
variance errors and noise due to the limited number of simulations,
we used the same initial conditions as the N-body runs for the
approximate mocks.

For completeness, we considered codes that introduce different
types of approximations, trying to span the broad range of algo-
rithms proposed so far in the literature. These can be summarized
as follows: fast PM methods, which introduce approximations in
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the force computation in a PM code, represented by ICE-COLA;
Lagrangian methods, which identify haloes in Lagrangian space
and displace them to the final redshift using LPT, represented by
PINOCCHIO and PEAKPATCH; bias-based methods, which use LPT to
generate a matter field at the redshift of interest and apply a biasing
scheme to define haloes, represented by PATCHY and HALOGEN;
and methods that rely on assumptions on the shape of the PDF of
the density field, represented by lognormal mocks and Gaussian
covariances. In this order, the grouping transitions from higher
resolution and complexity, and hence computational cost, to simpler
and faster methods. The methods used in this article, spanning the
algorithms above, are presented in Table 1.

We then compared performances for two halo samples: The
first has a linear bias of ~2.6 and a number density of ~2 x
10~* 13> Mpc™>, while the second has a linear bias of ~3.4 and
a number density of ~5.5 x 107> 23> Mpc~>. Provided with this, we
defined halo samples in each approximate method by abundance
matching to those two samples above. This was mainly motivated
by the fact that different methods define haloes in different ways.

Our conclusions can be summarized as follows:

(i) Power spectrum multipole covariance: The variance of
the power spectrum multipoles is in general reproduced within
10 per cent by all methods in both samples, with the exception
of the monopole for HALOGEN and lognormal. In this regard, a
special mention is due to lognormal, and to a less extent HALOGEN,
which shows very large variance and covariance for the monopole
power spectrum that only reaches the Gaussian expectation on very
large scales. For lognormal, this might be due to the fact that our
samples are highly biased, in a regime where the lognormal and
Gaussian fields are not a good approximation to each other. Further
work is needed to explain this behaviour, which translates into an
overestimation of error bars in the bias parameters.

(ii) Recovered model parameters: We use the covariance ob-
tained from each method to run a likelihood analysis using a known
theory data vector. From the MCMC chains, we recover best-
fitting model parameters related to biasing, AP, and growth rate of
structure and their errors. Although not shown, we find that different
covariances do not bias the recovery of cosmological parameters,
which are always within 1 per cent of their input values, while we
find larger (few percent) biases for poorly constrained nuisance
parameters.

(iii) Errors on model parameters: Reaching conclusions from
the translation of differences in the covariances into differences
at the level of errors in model parameter o is not trivial because
of the finite number of mocks available, which is none the less
300 mocks for each method in this work. To partially overcome
this limitation, we match the initial conditions of the approximated
mocks with those of the N-body runs. This reduces the expected
error on the ‘error ratio’ (o/oNpoay) by a factor of < 2 to about
4-5 per cent. Although a rough estimate, this should be regarded as
an indication of the statistical limit of our analysis. Bearing this in
mind, we find that all the methods recover the error on cosmological
parameters for both samples at the 5 per cent level or better, with
the exception of HALOGEN, which has larger deviations for one of
the AP parameters in both samples, and PINOCCHIO in the second
sample. The errors on nuisance parameters are within the statistical
uncertainty only for PATCHY in the first sample and PEAKPATCH,
ICE-COLA, HALOGEN, and Gaussian in the second sample. In turn,
the volume of the 3D ellipsoid defined by the 1o contours in the
parameter space {c, &, f og} is reproduced within 10 per cent by
all methods with the exception of ICE-COLA and lognormal in
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Sample 1 and PINOCCHIO in Sample 2. Remarkably, the Gaussian
prediction (albeit using a non-linear power spectrum) performs well
presumably because it matches the large-scale bias and the shot
noise independently. In our set-up of periodic co-moving boxes,
the two-point Gaussian term seems dominant against the missing
contribution from a four-point connected term. Further exploration
of analytical prescriptions is well motivated, e.g. to understand
whether the same is true for more realistic situations (see next). In
summary, if the requirement for approximate method covariances
is to reproduce N-body derived parameter errors at the 5 per cent
level, then this is already achieved by several methods on the most
important parameters, but not all. A lesser requirement of 10 per cent
is reached by all methods on all parameters, with the only exception
of lognormal.

(iv) Lastly, we find that in general approximate mocks have
slightly better performances in the less massive sample (Sample 1)
than in Sample 2, especially when looking at the multipoles and their
variance. This might be due to a larger non-linear contributions in the
higher mass sample since we observe a similar behaviour in the two-
point correlation function and bispectrum analysis (Colavincenzo
et al. 2019; Lippich et al. 2019). There may also be a component of
non-Poissonian shot noise from halo exclusion affecting the Fourier
space analyses. A detailed analysis of this is beyond the scope of
these articles, and we leave it for further work.

The analysis presented in this series of articles can be regarded as
of general applicability for the next generation of galaxy surveys,
but it has been developed with particular attention to scientific
requirements of the Euclid mission. Despite the simplified setting
used in this first analysis, these results confirm that usage of
approximate methods for estimating the covariance matrix of power
spectra is allowed at the cost of a small systematic error on the
recovered parameter uncertainty (generally within 10 per cent, i.e.
complying with Euclid requirements). Even though great care was
put into minimizing the impact of noise in the comparison, the
strength of our conclusions is somewhat limited by the number
of mocks that we are using. We thus plan to perform follow-up
studies with larger number of approximate mocks and to study
more interesting regimes of mass resolution, which would allow us
to reach number densities that are closer to those in future galaxy
surveys. In addition, we have considered a rather simplistic scenario
of halo snapshots in co-moving outputs with periodic boundary
conditions. Further work will incorporate masking effects, addition
of galaxies into haloes (e.g. in particular haloes populated using an
HOD prescription for galaxies matching the H,, emitters that Euclid
will observe), and inclusion of supersurvey modes. We expect that
the inclusion of these effects will enhance covariances through
the coupling between long and short modes, possibly making
differences among methods more evident. Moreover, the modelling
of such effects is not trivial in an analytical framework, such as
the Gaussian approximation presented in this article, thus it will be
interesting to test the performance of this method in more realistic
scenarios.
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APPENDIX A: SAMPLE DEFINITION
MATCHING HALO MASS OR HALO
ABUNDANCE

Here, we show the difference in the results for samples defined by
cutting at the same halo mass threshold as opposed to matching
the abundance of N-body haloes, as done in the main body of
the article. We do this only for those methods that produce halo
samples independently of the N-body (‘predictive’) as the remaining
methods work by reproducing abundance and mass distribution of
the N-body samples, so selecting by mass thresholds or abundance
matching is equivalent. In Table A1, we list the minimum halo mass
and the average number of haloes for these samples, for ICE-COLA,
PINOCCHIO, and PEAKPATCH.

In Figs Al and A2, we show the average power spectrum
multipoles and their variance, respectively. In Fig. A3, we show
how these differences translate into parameter errors, depicting with

Table Al. Characteristics of the mass threshold samples used in Ap-
pendix A, together with the abundance matched ones (marked with ) used
in the main body of the article.
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Method Selection type M in Mhaloes
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Sample 1
N-body Mass threshold ~ 1.121 x 10'3 2.130 x 1074
ICE-COLA Mass threshold ~ 1.121 x 103 2.057 x 1074
PINOCCHIO Mass threshold ~ 1.121 x 103 1.948 x 107+
ICE-COLA abund. matchx  1.086 x 1013 2.122 x 1074
PINOCCHIO abund. matchx  1.044 x 103 2.147 x 104
Sample 2
N-body Mass threshold ~ 2.670 x 1013 5.441 x 107>
ICE-COLA Mass threshold ~ 2.670 x 103 5.719 x 1073
PINOCCHIO Mass threshold ~ 2.670 x 103 5.258 x 1073
PEAKPATCH Mass threshold ~ 2.670 x 103 4450 x 1073
ICE-COLA abund. matchx  2.766 x 103 5.455 x 1073
PINOCCHIO abund. matchx  2.631 x 1013 5478 x 107>
PEAKPATCH abund. matchx  2.355 x 1013 5439 x 107>
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Figure Al. Relative difference of the power spectrum monopole and
quadrupole (hexadecapole) with respect to N-body (model) for the sample
1 (top plot) and sample 2 (bottom plot). Each plot shows the monopole
(top panel), quadrupole (middle panel), and hexadecapole (bottom panel)
for mass samples (dashed lines) and density samples (solid lines).
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Figure A2. Relative difference of the variance of power spectrum mul-
tipoles with respect to N-body for the sample 1 (top plot) and sample 2
(bottom plot). Each plot shows monopole (top panel), quadrupole (middle
panel), and hexadecapole (bottom panel) for mass samples (dashed lines)
and density samples (solid lines).
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Figure A3. Ratio of the error on cosmological and nuisance parameters
with respect to N-body for sample 1 (left) and sample 2 (right) for mass
samples (dots) and density samples (lines). The grey shaded area indicates
5 per cent differences (color online).

bars the results from abundance matching (as shown previously in
Fig. 9) and with dots the ones using mass thresholds.

In the case of ICE-COLA, the abundance matching works
noticeably better in the most massive sample, while it is only
marginally worse than the direct selection by mass at the low-
mass sample. This is compatible with the findings of Izard et al.
(2016), where the following trends were identified: (i) halo masses
are underestimated by ~2-3 per cent, and (ii) at low masses the
halo catalogues are incomplete (and the size of this effect will
depend, for example, on the PM grid size or the number of time-
steps). At high masses (Sample 2), one can simply correct halo
masses by doing abundance matching (or clustering matching).
This effectively selects more massive haloes, thus increasing the
clustering amplitude and bringing the shot-noise level closer to its
right value. Otherwise, shot noise is underestimated and so are
the errors on parameters (since in this regime shot noise is not
negligible in the covariance). This is the behaviour seen in the right-
hand panel of Fig. A3. In turn, closer to the halo mass resolution
of the catalogues (Sample 1), the effect is the opposite. Selecting
haloes by the same mass threshold as the N-body already shows
slightly less clustering and abundance than the N-body. Imposing
abundance matching shifts the mass scale and lowers the clustering
amplitude even more (see top panel of Fig. A1). None the less, in this
mass regime the effect is small and the impact on parameter error
is negligible. Both mass and abundance matching yield equivalent
results in parameter errors for Sample 1, see left-hand panel of
Fig. A3.

For PINOCCHIO, doing abundance matching always implies se-
lecting effectively less massive haloes and lowering the clustering
amplitude. Since the raw clustering amplitudes are overpredicted at
both Samples 1 and 2, the abundance matched helps in both cases.
The performance of the abundance-matched selection is better in
Sample 2 only in terms of parameter errors, see Fig. A3.

PEAKPATCH shows a similar behaviour in Sample 2 but this
is much more expected. Haloes in PEAKPATCH resemble by con-
struction a more spherical structure closer perhaps to spherical
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overdensity samples, it is not calibrated to reproduce an FOF mass
function. Hence, in this case, mass thresholds yield lower abundance
than the N-body SUBFIND / FOF haloes, and hence higher clustering.
The low abundance translates into higher shot noise, and very
overestimated error bars (see second panel of Fig. A3). This is
solved by abundance matching that brings o and o N.poqy t0 Within
few per cent.

Overall, we find that abundance matching improves the agree-
ment between samples in the approximate methods and the ones in
N-body, at least in terms of parameter error bars. In article I of this
series (Lippich et al. 2019), this comparison is extended to include
samples defined by matching clustering amplitudes.

APPENDIX B: ERRORS ASSOCIATED WITH
VARIANCE CANCELLATION

In this appendix, we estimate the error in our results due to the
finite number of N-body simulations that we are using. To do this,
we use a larger set of 10000 PINOCCHIO realizations with the same
simulation and cosmological parameters.

We expect our results to depend to some extent on the number of
the N-body realizations we are using as benchmark for the approx-
imate methods (Hartlap, Simon & Schneider 2007; Dodelson &
Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival et al.
2014). The central figure in our comparison is the ratio between the
parameter uncertainties obtained from the approximate mocks and
from the N-body, so in this appendix we will attempt to estimate
the error on such quantity as well as the advantages provided by
matching the seeds of the 300 realizations. We will also consider
more extensively how our results vary as a function of the largest
wavenumber included in the analysis, kp,x.

In order to do this, we will consider a simpler model depending
on just two parameters that allows a fully analytical analysis of the
likelihood function. We write the halo power spectrum as

Prodei(k) = b} PL(k) + Psx (B1)

where b; is the linear bias parameter and Pgy iS a constant
accounting for the shot-noise component, while we assume the
linear matter power spectrum Py (k) to be known. The likelihood
function is therefore given by

kmax

nLp=—> Zap(k,-) [c};' sPk;). (B2)
ij

where 8P = Pyy — Puodel, While C is the covariance matrix. Such
model can be rewritten as

2
Prodel = Z Pa Pou (B3)
a=I

where {po} = {b1, Psy} and {P,} = {P.(k), 1}. Adding py = —1
and Py = Pyaa, W can also write

2
— 6P = Prodel — Paaa = Z Pa Pa (B4)

a=0

and therefore it is easy to see that we can rewrite the likelihood as

2
1
InLp=—> Z; Pa Pp Dag » (BS)
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Figure B1. Comparison between the ratio of marginalized uncertainties
0/0 N-body obtained from the 300 PINOCCHIO and N-body realizations with
matching seeds (blue curve) and the same quantity obtained from 32 distinct
sets of 300 PINOCCHIO realizations and the same 300 N-body runs (red curve).
The shaded area corresponds to the scatter across the 32 sets. The power
spectrum model here depends on only two parameters, bf and PgN. See
the text for an explanation of the assumed likelihood function and power
spectrum model (color online).

where

Kmax

Dup =Y Pulki) [C],, Ppiky). (B6)
i.j

In this way, Lp is explicitly written as an exact, multivariate
Gaussian distribution in the parameters p,. Clearly, once the
quantities D,y are computed, we can evaluate any marginalization
analytically. This allows us to easily derive results for any value of
kmax and present them as a function of such quantity.

As a first test, we compare the ratio of marginalized uncertainties
0/0 N-body for 300 PINOCCHIO runs with matching seeds to the same
quantity derived from 32 distinct sets of 300 PINOCCHIO runs with
independent initial conditions. We should notice that this will not
provide a full estimate of the error on the ratio 0/0 N.pody since the
32 sets are compared always with the same, single set of N-body
realizations. Still, we can naively expect the actual relative error
on 0/0 N.body tO be V2 larger than the one we derive in this way.
The results are shown in Fig. B1. The blue curve shows the result
for matching seeds as a function of k., top and bottom panels
corresponding to the ratio of the marginalized uncertainties on,
respectively, bf and Pgy. The red curve shows the mean across the
32 estimates of uncertainties ratio with non-matching seeds, while
the shaded area shows its scatter.

In the first place, we notice how the ratio can vary significantly as
afunction of kp,, even when we assume matching initial conditions.
One should bear this in mind when discussing the recovered values
of 0/0Npody presented in the main text. For non-matching seeds,
the scatter across different values of kn,, is larger, as we can
expect. None the less, in both cases the scatter is within the overall
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Figure B2. The top panels show the mean and standard deviation (shaded
area) of the ratios of the marginalized errors on the two parameters bf and
PsN obtained from the PINOCCHIO covariance to the same errors obtained
from the Minerva covariance. The blue line corresponds to the case of six
sets of 50 realizations, where we match the seed of the two methods. The
red line is obtained from the same sets but permuted in order to illustrate the
case of non-matching seeds. The bottom panels show the same results for
the matching seeds case, while the other case considers an independent set
of PINOCCHIO runs (color online).

uncertainty on the ratio that we estimate to be ~4-5 per cent (see
next).

The comparison of the mean over the independent sets and the
matching seeds results shows in some cases quite large differences,
but we should keep in mind that the former assumes always the
same N-body set and therefore can be affected by large fluctuations
in these realizations. Such fluctuations, on the other hand, can be
compensated in the matching seed case. From this figure, we see that
the scatter in the recovered value of o is ~4—5 per cent. Remarkably,
a direct application of the formulae in Taylor et al. (2013; their
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equations 55 and 56) results in an estimate for this error, assuming
Ns =300 runs and Np = 3 x 16 data points, of ~4.5 per cent, which
is in very good agreement. Lastly, if we estimate the full error on the
ratio to be ~/2 times the error estimated here from the scatter in the
numerator of the ratio alone we recover a 7-8 per cent uncertainty.
Differences between the solid blue and red lines in Fig. B1 are well
within these values.

As an additional test, we subdivide the 300 mocks in six sets of
50 realizations. This number should ensure a marginally reliable
estimation of the power spectrum covariance matrix, at least for
small values of kp.x. In this way, we can evaluate the mean and
the scatter of the ratio o/0'N.pody between PINOCCHIO and the N-
body results across six pairs, and these can be computed for six
matching pairs as well as six non-matching pairs obtained by
permutations of the subsets. The results are shown in the upper
panels of Fig. B2. This exercise shows that matching the initial
conditions reduces the scatter on the uncertainties ratio by roughly
a factor of 2 at large scales (k < 0.1/ Mpc™') with respect to the
case of independent runs. Clearly, such reduction is less significant
at smaller scales, as one can expect. In the lower panels of Fig. B2,
for the comparison among non-matching realizations shown by
the red curve, we replace the six subsets of PINOCCHIO runs with
other six, independent runs in order to avoid the permutation.
Clearly, the blue curve showing the mean ratio from matching
seeds is the same as before. It may appear that in this more general
comparison between non-matching realizations the mean value of
the independent set is closer to one, indicating, apparently, a better
performance of PINOCCHIO with respect to our main results. In fact,
this is simply reflecting an overall fluctuation of the first 300 N-
body runs. Such fluctuation is captured to a large extent by the
PINOCCHIO realizations with matching seeds allowing to trust the
few per cent overestimate of the parameters uncertainties provided
by the approximate method.

To summarize, we estimate an uncertainty of about 7-8 per cent
coming from the fact that our comparisons are limited to 300 N-
body and approximate method runs, which is, however, reduced to
about 4-5 per cent from adopting the same initial conditions in both
cases.
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