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ABSTRACT

Context. Studies of cluster mass and velocity anisotropy profiles are useful tests of dark matter models, and of the assembly history
of clusters of galaxies. These studies might be affected by unknown systematics caused by projection effects.
Aims. We aim at testing observational methods for the determination of mass and velocity anisotropy profiles of clusters of galaxies.
Particularly, we focus on the MAMPOSSt technique (Mamon et al. 2013).
Methods. We use results from two semi-analytic models of galaxy formation, coupled with high-resolution N-body cosmological
simulations, the catalog of De Lucia & Blaizot (2007) and the FIRE catalog based on the new GAlaxy Evolution and Assembly
model. We test the reliability of the Jeans equation in recovering the true mass profile when full projected phase-space information is
available. We examine the reliability of the MAMPOSSt method in estimating the true mass and velocity anisotropy profiles of the
simulated halos, when only projected phase-space information is available, as in observations.
Results. The spherical Jeans equation provides a reliable tool for the determination of cluster mass profiles, also when considering
subsamples of tracers separated by galaxy color, except for the central region where deviations may be attributed to dynamical friction
effects or galaxy mergers. Results are equally good for prolate and oblate clusters. Using only projected phase-space information,
MAMPOSSt provides estimates of the mass profile with a standard deviation of 35 − 69 %, and a negative bias of 7 − 17%, nearly
independent of radius, and that we attribute to the presence of interlopers in the projected samples. The bias changes sign, that is, the
mass is over-estimated, for prolate clusters with their major axis aligned along the line-of-sight. MAMPOSSt measures the velocity
anisotropy profiles accurately in the inner cluster regions, with a slight overestimate in the outer regions, both for the whole sample
of observationally-identified cluster members, and, separately, for red and blue galaxies.

Key words. galaxies: clusters: simulations - galaxies: kinematics and dynamics.

1. Introduction

Clusters of galaxies, the most massive virialized objects in the
Universe, are excellent natural laboratories to study the structure,
formation, and evolution of cosmological halos and subhalos. It
has been known since a long time that galaxy clusters are domi-
nated by dark matter (DM hereafter, Zwicky 1933). Combined
gravitational lensing and X-ray observations of the so-called
’Bullet’ cluster provide the strongest evidence that cold, nearly
collisionless, dark matter dominates cluster dynamics (Clowe
et al. 2006).

Accurate and precise determination of cluster mass profiles
can provide important clues on the properties of dark matter and
on astrophysical processes that affect the mass distribution, such
as dynamical friction, AGN feedback from the central dominant
galaxy, adiabatic contraction, etc. (see, e.g., Biviano 2020, for a
review). In addition, the determination of cluster mass profiles
at large distances from the cluster center can provide a direct
estimate of the mass accretion rate (Diemer & Kravtsov 2014).

One way to determine a cluster mass profile is from the pro-
jected phase-space distribution of member galaxies (e.g. Carl-
berg et al. 1997), under the assumption of dynamical equilib-
rium. Other methods are based on the gravitational lensing dis-
tortions from background galaxies and the assumption of hydro-
static equilibrium of the intracluster gas (e.g. Allen 1998; Et-

tori et al. 2002; Hoekstra et al. 2004; Pratt et al. 2019). Given
the cluster mass distribution, it is possible to determine the or-
bital distribution of cluster members (e.g. Natarajan & Kneib
1996). As galaxies enter into clusters through hierarchical ac-
cretion, their orbits keep important information on the processes
that lead to the cluster mass assembly and internal dynamical
relaxation (e.g. Biviano & Katgert 2004). Moreover, knowledge
of the orbits of cluster galaxies is crucial to understand envi-
ronmental effects that differentiate galaxy evolution in clusters
relative to the field (e.g. Lotz et al. 2019; Tonnesen 2019; Joshi
et al. 2020).

To test the reliability of the methods of cluster mass pro-
file determination, one can rely on the analysis of halos ex-
tracted from cosmological numerical simulations of a ΛCDM
model. Simple analytical models cannot capture the full com-
plexity of highly non-linear dynamics and the astrophysical ef-
fects of the intra-cluster medium. Semi-analytical models (Cole
1991; White & Frenk 1991) allow us to combine our understand-
ing of the astrophysical processes at work in clusters of galax-
ies with numerical simulations, thus presenting a successful ap-
proach to the study of the dynamical and astrophysical processes
that shape cluster mass distributions and the orbits of cluster
galaxies.
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An example of the use of cosmological simulations to test
cluster mass determination came from Biviano et al. (2006). By
simulating the observational procedure, in particular taking into
account projection effects, Biviano et al. (2006) found that the
line-of-sight velocity dispersion (σlos) provides more accurate
cluster mass estimates than the virial theorem. Munari et al.
(2013) analysed the relation between the masses of cluster- and
group-sized halos, extracted from ΛCDM cosmological N-body
and hydrodynamic simulations, and their halos velocity disper-
sions at different redshifts. They found that using DM parti-
cles as tracers of the gravitational potential leads to a relation
between the 3D velocity dispersion σv and the halo mass M,
σv ∝ Mα with α ' 1/3, as expected theoretically, from the virial
scaling (Evrard et al. 2008). Munari et al. (2013) also found that
the M − σv relation is steeper when using subhalos and galaxies
as tracers, α > 1/3, possibly because of dynamical friction and
tidal disruption processes. Saro et al. (2013) investigated the Mil-
lennium numerical simulation coupled with the semi-analytical
model of De Lucia & Blaizot (2007, DLB07 hereafter), to pre-
dict the scatter in the M − σlos relation, and identified the main
source of this scatter in the triaxiality of the velocity ellipsoid.
The presence of interlopers (misidentified non-cluster members)
is the main source of scatter in the M − σlos relation, and the
scatter increases dramatically for samples of less than 30 galax-
ies. Restricting the selection of cluster members to red galaxies
reduces the fraction of interlopers and therefore the scatter in
M − σlos relation. However, dynamical friction decelerates the
brightest (red) galaxies, producing a biased estimate of σlos.

Old et al. (2015) used mock clusters from numerical simula-
tions to compare the relative performance of 25 different meth-
ods for cluster mass determinations, based on the spatial and/or
velocity distributions of galaxies or on the cluster richness. They
found a wide range of rms errors in the estimate of log M200

1

from the 25 different methods, ranging from 0.2 to 1.1 dex.
Their study was then extended by Old et al. (2018) to assess
the importance of dynamical substructure on cluster mass esti-
mates based on the projected phase-space distribution of galax-
ies. They found that cluster masses tend to be systematically
over-estimated for clusters of low masses.

Using simulated galaxies in halos extracted from cosmo-
logical simulations, in this paper we extend the scope of pre-
vious investigations, and test not only the accuracy of clus-
ter mass estimates, but also the accuracy of mass profile esti-
mates. Using cluster-size halos extracted from numerical simu-
lations coupled with semi-analytical models, we consider both
estimates based on full 6D phase-space distribution of tracers
of the gravitational potential, as well as estimates obtained from
projected phase-space distributions. In particular, we test the ca-
pability of the Modeling Anisotropy and Mass Profiles of Ob-
served Spherical Systems algorithm (MAMPOSSt, Mamon et al.
2013, MBB13 hereafter) to recover the mass profile from pro-
jected phase-space information. In addition, we also investigate
the velocity-anisotropy profiles of cluster-size halos, and how
well can MAMPOSSt reconstruct these profiles from the limited
projected phase-space information.

This paper is structured as follows. In Sect. 2, we describe
the semi-analytic models used for this work and define the sam-
ples used in our analysis. In Sect. 3, we determine the mass pro-
files using the full 6D phase-space information (Sect. 3.1) and
the 3D projected phase-space information only (Sect. 3.2). In

1 M200 is the mass contained within a sphere of radius r200, that en-
closes a mean overdensity 200 times the critical density of the Universe
at the redshift of the halo.

Sect. 4, we determine the velocity anisotropy profiles, using the
full 6D phase-space information (Sect. 4.1) and the 3D projected
phase-space information only (Sect. 4.2). We discuss our results
in Sect. 5 and draw our conclusions in Sect. 6.

2. The samples of galaxy clusters

2.1. Dark matter particle simulation

We use the dark matter cosmological N-body Millennium Sim-
ulation (MI hereafter, Springel et al. 2005). This traces the evo-
lution of 21603 DM particles of mass 8.6 × 108h−1M� within
a comoving box of size 500 h−1 Mpc on a side, from redshift
z = 127 to z = 0. The cosmological parameters of the sim-
ulation are: Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, h = 0.73,
n = 1, and σ8 = 0.9, with the Hubble constant parametrized
as H0 = 100 h km s−1Mpc−1. The resolution of the simulation
allows galaxies down to a stellar mass of ∼ 109 h−1 M� to be re-
solved. The large volume of the simulation allows us to identify
a statistical sample of galaxy clusters for the analysis presented
below.

2.2. Semi-analytic models of galaxy formation

In the currently accepted paradigm for structure formation,
galaxies form through the condensation of gas at the center of
DM halos, that evolve hierarchically: small halos form first and
later merge to form more and more massive systems. Galaxy
evolution is driven by several astrophysical processes including
gas cooling, star formation, stellar and AGN feedback, and dy-
namical processes such as dynamical friction and tidal interac-
tions. Semi-analytic models (SAMs) represent a powerful tool to
include in numerical simulations the relevant astrophysical pro-
cesses. The approach consists in modelling these processes us-
ing analytical or numerical prescriptions based on observational
and/or theoretical results. In this way, the process of galaxy for-
mation and evolution is expressed using a set of coupled differen-
tial equations that allow the user to compute the flow of baryons
between the different components of model galaxies (e.g. hot
gas, cold gas, ejected reservoir, and stars). Since the computa-
tional costs of the method are rather limited, it allows an effi-
cient investigation of the parameter space and of the influence of
different specific assumptions.

In this paper, we analyze the z = 0 outputs from two dif-
ferent SAMs both based on the MI. Specifically, we use outputs
from the original model described in DLB07 and from the new
GAlaxy Evolution and Assembly (GAEA, hereafter) model pub-
lished in Hirschmann et al. (2016). The latter is an evolution of
the former model including several major updates. In particular,
the version of GAEA used in this work includes (i) a scheme to
account for the non-instantaneous recycling of gas, metals and
energy (De Lucia et al. 2014), that allows individual metal abun-
dances to be traced in detail, and (ii) a stellar feedback prescrip-
tion that is partly based on results from numerical simulations
and that, in the framework of GAEA, allows the evolution of
the galaxy stellar mass function to be reproduced up to z ∼ 3
(Hirschmann et al. 2016). With respect to the DLB07 model,
GAEA provides a better overall agreement with observational
data. In particular, it solves the excess of low-to-intermediate
mass galaxies that has been discussed in several previous stud-
ies (see, e.g., Fontanot et al. 2009, and references therein); it
provides a better agreement with the observed fractions of pas-
sive galaxies as a function of galaxy stellar mass (Hirschmann
et al. 2016; De Lucia et al. 2019); and it reproduces relatively
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well the observed evolution of the relation between galaxy stel-
lar mass and gaseous metallicity (Hirschmann et al. 2016; Xie
et al. 2017). We refer to the original papers for full details on the
modelling adopted. The updated model is not without problems:
in previous work, we have shown that the most massive galaxies
are characterized by levels of activity that are larger than typi-
cally observed, and that the colour bimodality is not as well pro-
nounced as in observational data for intermediate mass galaxies.
We consider that working with two different SAMs that are both
based on the MI can provide information about how results may
(or may not) depend on the physical prescriptions adopted.

For the analysis below, we have selected 100 halos with
M200 > 1014M� at z = 0 from the simulation box. The halos
were selected randomly with a uniform distribution in different
mass bins. The DLB07 and GAEA galaxy clusters catalogs are
contained in cubic boxes 5 r200 on a side.

2.3. Projected phase-space samples

Observers have only access to projected phase-space distribu-
tions of galaxies in clusters, namely projected distances from the
cluster center and rest-frame line-of-sight velocities. To mimic
the observational data, we project the DLB07 and GAEA clus-
ters along three orthogonal planes. We restrict the projected sam-
ples to galaxies within 3 Mpc from the cluster center in projec-
tion. We adopt the cluster centers as given in the simulation. We
do not try to mimic the observational uncertainty in the cluster
center definition. This uncertainty is typically ∼ 50 kpc (Adami
et al. 1998), so it does not affect our dynamical analysis that ex-
cludes the central 50 kpc. Also, we adopt the cluster mean veloc-
ities as given in the simulation to define the rest-frame velocities
of its galaxies. The typical observational error on the mean clus-
ter velocity is < 50 km s−1 when > 100 cluster members are
available (Biviano et al. 2013; Munari et al. 2014), so we can
neglect it since it is small enough not to affect the present dy-
namical analysis.

The projected data-sets do not contain only cluster members,
but also galaxies located in the 3 Mpc circular projected region
around the cluster center, but outside the 3D virial sphere. We
call these galaxies ’interlopers’. To mimic the observational ap-
proach, we use the Clean method (Mamon et al. 2013) to try re-
moving these interlopers from the sample of cluster members.
The Clean method uses a robust estimate of the cluster line-
of-sight velocity dispersion, σlos, to guess the cluster mass us-
ing a scaling relation. It then adopts a NFW profile (Navarro
et al. 1997), the theoretical concentration-mass relation of Mac-
ciò et al. (2008) and the velocity anisotropy profile model of
Mamon & Boué (2010), to predict σlos(R) and to remove from
the sample of cluster members all galaxies with projected rest
frame absolute velocities > 2.7σlos at any radius R, in an itera-
tive fashion. In Fig. 1 we show an example of Clean membership
selection in the projected phase-space diagram of a cluster of the
DLB07 sample.

We call ’C’ the sample composed by members identified by
the Clean algorithm, and ’RM’ (for ’real members’) the sample
composed by galaxies contained in the 3D virial sphere. In addi-
tion, to simulate the observational case of poor sampling statis-
tics, we also consider an analog of the ’C’ sample in which the
Clean algorithm is run on a subset of 100 galaxies extracted at
random from each 3 Mpc projected cluster region. We call this
sample ’C100’.

Fig. 1. Projected phase-space diagram (line-of-sight velocities vs.
cluster-centric distances) of a simulated cluster from the DLB07 sam-
ple. Dots (triangles) are galaxies selected (respectively, not selected) by
CLEAN as cluster members. Red dots are real members, located within
the r200 sphere, while green dots are interlopers, galaxies identified as
members but outside the r200 sphere. Blue triangles are real members
(within the r200 sphere) incorrectly rejected as interlopers by CLEAN,
while black triangles are galaxies beyond the 3 Mpc limiting distance
of our projected-phase space dynamical analysis.

3. Mass profiles

3.1. Full phase-space

The collisionless Boltzmann equation describes the density of
tracers of the gravitational potential as a function of position,
velocity and time, that is, the phase-space density f (r, v, t). One
generally assumes that a cluster of galaxies is stationary, so that
the phase-space density f does not depend on time. Further as-
sumptions are spherically symmetry, and equality of the two
components of the velocity dispersion in the tangential direc-
tions of the galaxies motion, σθ ≡ σφ. With these assumption
the spherical Jeans equation follows from the Boltzmann equa-
tion,

MJ(r) = −
rσ2

r

G

[dlnν
dlnr

+
dlnσ2

r

dlnr
+ 2β(r)

]
(1)

where MJ(r) is the mass within a radius r, G is the gravitational
constant, ν(r) is the number density profile of the tracers of the
gravitational potential, and β(r) is the velocity anisotropy profile,

β ≡ 1 − (σθ/σr)2, (2)

where σr is the radial component of the velocity dispersion.
Purely radial orbits of the tracers of the gravitational potential
correspond to β(r) = 1, while purely tangential orbits correspond
to β→ −∞.

Using full phase-space information for true cluster members
we estimate MJ(r) through the Jeans equation (Eq. 1) for each
cluster of the DLB07 and GAEA data-sets. We also estimate the
true mass profile Mtrue, evaluated by direct sum of the masses of
the particles within each given radius r. Fig. 2 shows the ratio
of the median MJ(r) for the 100 DLB07 clusters (upper panel)
and for the 100 GAEA clusters (lower panel) and the median
Mtrue. The confidence interval on the mass profile ratio is given
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by σ/
√

N where σ is the rms of all the N = 100 MJ(r). To
compute the terms showed in Eq. 1 we use binning. The number
of bins we choose, 15, is a compromise between the require-
ments of good spatial resolution and sufficient number statistics.
Perfect agreement between Mtrue and MJ is expected if all the
above mentioned assumptions that validate the Jeans equation
are verified. MJ ≈ Mtrue at all radii r & 0.2r200. MJ . Mtrue at
smaller radii; this difference, albeit not very significant, can be
due to dynamical friction, invalidating the assumption of a colli-
sionless fluid and thereby the applicability of the Jeans equation.

Overall this analysis indicates that the dynamics of clusters
in the DLB07 and GAEA samples satisfies the Jeans equation
eq. (1). Our finding supports and extends the results of Biviano
et al. (2016) who found that the internal dynamics of cluster-
size halos extracted from a cosmological simulation satisfies the
virial theorem, that is derived from the Jeans equation via inte-
gration (Binney & Tremaine 1987).

Fig. 2. Median of MJ(r)/Mtrue for 100 clusters (blue solid line) and its
uncertainty σ/

√
N. Top panel: clusters from the DLB07 sample. Bot-

tom panel: clusters from the GAEA sample.

3.1.1. Red and blue galaxies

The good agreement between Mtrue(r) and MJ(r) (see Sect. 3.1)
indicates that clusters in the DLB07 and GAEA samples are
close to dynamical equilibrium at z = 0. While this might be
the case when all galaxies are considered, different samples of
galaxies that entered the cluster at different times might show
deviations from dynamical equilibrium.

Using the g−r color-magnitude diagram, we split the clusters
samples into two different populations: red and blue galaxies.
We show an example for one DLB07 cluster in Fig. 3, where red
and blue dots correspond to the selected red and blue galaxies re-
spectively. In Fig. 4 we show the median of 100 cluster MJ(r) ob-
tained using only blue (blue lines) and only red (red lines) galax-
ies as tracers of the gravitational potential. These median mass
profiles are compared to the median Mtrue(r) (black line). The
top and bottom panel correspond to the DLB07 and GAEA sam-
ples, respectively. The different radial range spanned by MJ(r)
when using the red and blue galaxies as tracers, is related to the
spatial segregation of cluster galaxies with color, red galaxies
residing closer to the cluster center than blue galaxies. This dif-
ferent spatial distribution of red and blue galaxies does not seem

Fig. 3. Color-magnitude diagram for one cluster from the DLB07 sam-
ple. Red and blue dots correspond to selected red and blue galaxies.

to hamper the determination of MJ(r) that remains pretty close
to Mtrue(r) independently of the population chosen. This find-
ing is consistent with the observational results of Carlberg et al.
(1997) who were the first to recognize that applying the Jeans
equation to the red and blue galaxy subsamples separately gives
statistically consistent cluster mass profiles.

Fig. 4. Median of 100 cluster MJ and its uncertainty obtained using
red galaxies (red points with error bars and line) or blue galaxies (blue
points with error bars and line) as tracers of the gravitational poten-
tial, compared to to Mtrue(r) (black line). Top panel: clusters from the
DLB07 sample. Bottom panel: clusters from the GAEA sample.

3.1.2. Prolate and oblate clusters

The good agreement between Mtrue(r) and MJ(r) suggests that
the spherical assumption adopted for the Jeans equation eq. (1) is
acceptable. However, clusters and groups of galaxies are known
to be aspherical (Limousin et al. 2013) and mostly prolate (Wo-
jtak 2013). Numerical simulations indicate that more massive
dark matter halos tend to be more prolate and aspherical than less
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massive halos (Kasun & Evrard 2005; Paz et al. 2006), probably
as a result of the accretion process.

For each cluster we evaluate the inertia tensor (Paz et al.
2006),

Ii j = (1/Nh) Σ
Nh
α=1XαiXα j, (3)

where Xαi is the i-th component of the displacement vector of
a particle α relative to center of mass, and Nh is the number of
particles in the halo. The matrix eigenvalues correspond to the
square of the semi-axis (a, b, c where a > b > c) of the char-
acteristic ellipsoid that best describes the spatial distribution of
the halo members. We calculate for each cluster the inertia ten-
sor using the positions of the halo members with r < 1.5 r200.
We then evaluate the triaxiality parameter P = ln(ca/b2). For an
oblate ellipsoid P < 0 while for a prolate ellipsoid P > 0. In
Fig. 5 we show the distribution of P values for clusters of the
DLB07 and GAEA samples (left and right panels, respectively).
Slightly more than 2/3 of the clusters (74% for the DLB07 sam-
ple, 67% for the GAEA sample) have a prolate shape. The ex-
cess of prolate clusters we find is much larger than found by Saro
et al. (2013) on the same DLB07 data-set, but their definition of
prolateness is based on the ratio of different components of the
cluster velocity dispersion, while our definition is based to the
spatial distribution of galaxies.

Fig. 5. P value distribution of the clusters in our samples. The vertical
red line indicate P = 0. Oblate (resp. prolate) shape have P < 0 (resp.
P > 0). Left panel: DLB07 sample. Right panel: GAEA sample.

To test the reliability of the Jeans equation in systems that de-
viate from spherical symmetry we compute MJ(r) separately for
prolate and oblate clusters. Results for both samples are shown in
Fig. 6 (top panel: clusters in the DLB07 sample, bottom panel:
clusters in the GAEA sample). Black solid lines represent the
median Mtrue(r) for all clusters. Red dashed lines represent the
median MJ(r) for prolate clusters while green dashed lines rep-
resent the median MJ(r) for oblate clusters. Outside the central
regions, the agreement between Mtrue(r) and MJ(r) is equally
good for prolate and oblate clusters.

We conclude that cluster asphericity does not hamper the
applicability of the Jeans equation if all relevant terms in the
Jeans equation are calculated in spherical shells. Our conclusion
is valid on an average sense, and as such it confirms the result
obtained by van der Marel et al. (2000) for a stack of real clus-
ters. Our result is also consistent with the conclusion by Saro
et al. (2013) that the mild excess of prolate with respect to oblate
clusters has little effect on dynamical mass estimates, in a statis-
tical sense.

Fig. 6. Mass profiles for prolate and oblate clusters. The median Mtrue(r)
of all clusters is represented by the black solid curve, the median MJ(r)
for prolate clusters is represented by the dashed red curve and the me-
dian MJ(r) for oblate clusters by dashed green curve. Shaded regions
represent error bars σ/

√
N. Top panel: DLB07 sample. Bottom panel:

GAEA sample.

3.2. Projected phase-space

So far we have considered the full phase-space information
for cluster mass profile determination (Sect. 3.1). However, ob-
servers only have access to projected phase-space information in
the case of clusters of galaxies, that is, projected distances from
the cluster center, and line-of-sight velocities. Here we consider
how well can we reproduce Mtrue(r) from the limited information
available from projected phase-space.

3.2.1. The MAMPOSSt method

To solve the Jeans eq. (1) for MJ(r), knowledge of the 3D profiles
ν(r), σr(r) and β(r) is required. The 3D number density profile
ν(r), can be derived from the projected number density profile,
N(R), an observable, using the Abel inversion equation (Binney
& Tremaine 1987). Unfortunately, σr cannot be derived from the
other observable, σlos, without knowledge of β(r), and as a result
the solution for MJ(r) is degenerate with the solution for β(r).

MAMPOSSt (MBB13) attempts to solve this degeneracy by
using the full available information in projected phase-space,
following an early suggestion by Merritt (1987). MAMPOSSt
adopts models for MJ(r), ν(r), and β(r) with any chosen num-
ber of free parameters, to assess the probability of observing
a galaxy member of a cluster, at a given position in projected
phase-space. The best-fit parameters of the adopted models are
determined by maximizing the product of the probabilities of all
cluster members. Since ν(r) can be directly determined from the
projected number density profile of the tracer, N(R), using Abel’s
inversion equation, MAMPOSSt is generally used in its so-called
Split mode, where ν(r) is determined independently from a max-
imum likelihood fit of suitable models to N(R), and MAMPOSSt
is left the task of determining the best-fit parameters of the MJ(r)
and β(r) models only.

MAMPOSSt has been applied to several galaxy cluster sam-
ples (e.g. Biviano et al. 2013, 2016, 2017; Capasso et al. 2019;
Mamon et al. 2019). It has also been tested on cluster-size halos
from cosmological simulations. Using a set of 11 halos MBB13
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estimated the bias and inefficiency of MAMPOSSt in the recov-
ery of the virial radius, tracer scale radius, dark matter scale ra-
dius and velocity anisotropy. Old et al. (2015) run a challenge to
determine the mass of 1000 mock clusters and MAMPOSSt was
the second most efficient among the 23 algorithms that took part
to the challenge. In our analysis we extend the testing of MAM-
POSSt to measure its efficiency in recovering the whole mass
and velocity anisotropy profiles of simulated clusters.

We choose to model MJ(r) using the NFW profile (Navarro
et al. 1997):

MNFW (r) = M200
ln(1 + r/r−2) − r/r−2(1 + r/r−2)−1

ln(1 + c) − c/(1 + c)
, (4)

where r−2 is the scale radius where the logarithmic derivative of
the mass density profile equals −2 and c ≡ r200/r−2 is the mass
profile concentration.

We choose to adopt a simplified version of the Tiret et al.
(2007) profile to model β(r) (Tiret model hereafter),

β(r) = β∞
r

r + r−2
(5)

where β∞ is the value of velocity anisotropy value at very large
radii. In the Tiret model the velocity distribution is isotropic at
the center, and becomes increasingly more radial outside. This
model provides a good fit to the velocity anisotropy profiles for
cosmological cluster-mass halos (Mamon et al. 2013). We dis-
cuss the effects of generalizing this profile in Sect. 4.2.

3.2.2. Results

We run MAMPOSSt in Split mode, as described in Sect. 3.2.1,
and we fit each cluster N(R) with a projected NFW profile
(Bartelmann 1996). In Fig. 7 we show two examples of such fits.
The fit is performed with a maximum likelihood technique, and
the only free parameter of the model is the scale radius of the
NFW profile, rν, since the normalization of the NFW model is
fixed by the requirement that the integral of the probability distri-
bution of the model is equal to the number of observed galaxies.

Using the best-fit parameter of the fit to N(R) we then run
MAMPOSSt to find the maximum-likelihood fit to the radially-
dependent distribution of galaxy velocities in each cluster of
the DLB07 and GAEA samples. The free parameters in the
MAMPOSSt analysis are, for MNFW (r), r200, r−2, or, equiva-
lently, M200, c200, and for β(r), β∞. We consider the three data-
sets described in Sect. 2.3, namely C, C100, and RM.

Fig. 7. Example of the projected NFW profile fit (solid red line) and to
the N(R) (points with 1 σ error bars) for a cluster from the DLB07 (left
panel) and GAEA (right panel) sample.

In Table 1 we list the average of the 300 (3 projections ×100
clusters) ratios of the MAMPOSSt estimates and true values of
M200, for the three data-sets, C, C100, and RM. MAMPOSSt ap-
pears to slightly underestimate the true M200 values when mem-
bers are identified with the Clean procedure (see Sect. 2.3, and to
slightly overestimate the true M200 values when only true mem-
bers (i.e. galaxies within the r200 sphere) are considered. We
measure a bias in the estimate of M200 of 7–15 per cent and a
standard deviation of 35–69 per cent for the C sample. For com-
parison, MBB13 measured a bias of 6 (4) per cent and a stan-
dard deviation of 42 (respectively, 30) per cent for their run with
Clean membership selection, the NFW and Tiret models, and
100 (respectively 500) tracers per cluster. Presumably their re-
sults were too optimistic due to the very limited number of halos
analysed (11 in total).

Interestingly, the results we find are not much worse for the
C100 sample than for the C sample, suggesting that the bias and
inefficiency of MAMPOSSt estimates are not so much related to
statistical errors but to systematic or intrinsic uncertainties. The
bias seems to be due to a systematic error related to the selection
of cluster members. In fact, the mass bias changes sign when the
RM sample is considered. On the other hand, the standard devia-
tion of the RM sample is very similar to that of the C sample, and
this suggests that the origin of the standard deviation is intrinsic,
perhaps related to the unrelaxed dynamical state of a fraction of
clusters, as suggested by the previous analyses of Biviano et al.
(2016) and Old et al. (2018).

In Fig. 8 we show two NFW median mass profiles, evaluated
using the MAMPOSSt maximum likelihood fit values of r200 and
r−2 for the DLB07 and GAEA samples, and compare them with
both MJ(r) and Mtrue(r) (see Sect. 3.1). We notice that the mass
bias we have observed is not specific to r = r200, but is present at
all radii. The mass bias is similar for MNFW/MJ and MNFW/Mtrue
but more significant for the latter. Given that MAMPOSSt uses
the Jeans equation, it is not surprising that MNFW (r) is closer to
MJ(r) than to Mtrue.

We showed in Sect. 3.1 that the Jeans equation provides an
unbiased mass estimate when using 6D phase-space information,
so it is surprising that MAMPOSSt over-estimates the true mass
when using the true cluster members. We think this is related to
the fact we adopted the most commonly accepted definition of
"true cluster members", that is galaxies within the virial sphere
(other definitions are possible, see, e.g. Wojtak et al. 2007). Re-
stricting the sample of true members to the virial sphere arti-
ficially forces MAMPOSSt integrals of the 3D radius to zero
beyond r200. As a consequence, the mass normalization has to
increase to compensate for the lost contributions to the integral
outside r200 (see eq. (27) in Mamon et al. 2013). In other terms,
the maximum line-of-sight distance of RM galaxies is r200 and it
differs from that adopted in MAMPOSSt (∞, see eq.(27) in Ma-
mon et al. 2013). To confirm the origin of the mass profile bias
for the RM sample, we changed the integration limit of MAM-
POSSt from ∞ to r200. After this change, the mass estimation
bias for the RM sample disappears (see Table 1, "RM (r200)"
line, and Fig. 8, solid green curve).

The underestimate of M200 for the C and C100 samples is
probably related to remaining interlopers in the cluster sample
after the Clean procedure has been applied. These interlopers
are for the most part galaxies far away from the cluster center
(Mamon et al. 2010) with relatively small velocities relative to
the cluster members that are at the same projected distance, but
much closer to the cluster center in real space. The small veloc-
ities of these interlopers make it impossible for Clean to reject
them as non-members (see Fig. 1), and, at the same time, de-
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Table 1. MAMPOSSt vs. true M200 ratio

Data-set M200MAM/M200
DLB07 GAEA

C 0.85 ± 0.04 0.93 ± 0.02
C100 0.84 ± 0.04 0.83 ± 0.03
RM 1.10 ± 0.03 1.12 ± 0.03
RM (r200) 1.01 ± 0.02 1.03 ± 0.03

Notes. M200MAM /M200 is the average of the ratios (300 values = 3 projec-
tions ×100 clusters per sample) between the MAMPOSSt determined
value of M200 and the corresponding true value. Errors are σ/

√
N.

crease the amplitude of the observed velocity distribution of the
cluster (see Cen 1997; Biviano et al. 2006), ultimately leading
to a decrease in the estimate of M200. The mass bias appears to
be somewhat larger for the C100 data-set than for the C data-set,
suggesting that smaller data-sets are more likely to be contami-
nated by non-members in the Clean procedure.

Fig. 8. Ratio of different mass profile determinations. Top panels: ratio
between the median NFW mass profile determined with MAMPOSSt,
MNFW (r) and based on projected phase-space information, and the mass
profile determined by direct application of the Jeans equation using full
phase-space information, MJeans. Red, blue and green symbols refer to
the C, C100, and RM samples, respectively. The solid line represents
the result for the RM sample obtained by adopting r200 as the maxi-
mum integration distance in MAMPOSSt. Bottom panels: ratio between
MNFW (r) and the true mass profile, Mtrue. Left, respectively right, panels
display results obtained on the DLB07, respectively GAEA, samples.

3.2.3. Line-of-sight alignment

We showed in Sect. 3.1.2 that the spherical Jeans equation can
be successfully used to estimate a cluster mass profile even if
the cluster is not spherically symmetric. However, cluster shapes
have an impact on mass estimates because of projection effects.
Mass estimates obtained from X-ray data or gravitational lens-
ing are known to be biased high when a cluster is observed with
its major axis aligned along the line-of-sight (Rasia et al. 2013;
Meneghetti et al. 2014). The same is also true when masses are
estimated from the kinematics of cluster galaxies (MBB13), be-
cause velocity ellipsoids are aligned with the halo major axis
(Wojtak et al. 2013). For this reason we here consider the effect
of line-of-alignment of a cluster major axis.

Table 2. MAMPOSSt vs. true M200 ratio for aligned/not-aligned clusters
(C sample)

Data-set M200MAM/M200
DLB07 GAEA

aligned 1.02 ± 0.02 1.11 ± 0.03
not-aligned 0.71 ± 0.01 0.79 ± 0.01

Notes. M200MAM /M200 is the average of the ratios (= 3 projections
× Naligned/Nnot−aligned clusters clusters per sample) between the MAM-
POSSt determined value of M200 and the corresponding true value. Er-
rors are σ/

√
N.

The effect of major axis line-of-sight alignment on a clus-
ter mass estimate is expected to be stronger for prolate clusters.
We therefore consider only the 74 DLB07 and 67 GAEA pro-
late clusters for this analysis. We split each of these samples into
two subsamples of clusters that have their major axis preferen-
tially aligned with or orthogonal to the line-of-sight. We classify
a cluster as aligned with the line-of-sight when it complies

M∑
i

(xlos,i − x0los,i)
2 >

M∑
i

(x1,i − x01,i)
2 + (x2,i − x02,i)

2

2
(6)

where xlos is the line-of-sight direction, x1,i and x2,i are the direc-
tions of the projected plane and x0los , x01 , x02 are the coordinates
of the cluster center in each direction and M is the total cluster
members. We use three different line-of-sight directions given
by x, y, z axes, and we only consider the C sample.

In Table 2 we list the average of the ratios of the MAMPOSSt
estimates and true values of M200, separately for the aligned and
not-aligned subsamples. As expected, MAMPOSSt tend to over-
estimate the true value of M200 for aligned halos, and to under-
estimate it for not-aligned halos. When a sample of clusters is
considered irrespective of the major-axis orientation with respect
to the line-of-sight, a bias intermediate between the values listed
in Table 2 is expected, slightly closer to the vase of not-aligned
clusters, since this is the most likely observing situation. This is
indeed what we was found in Sect. 3.2, Table 1.

3.2.4. Red and blue galaxies

As in Sect. 3.1.1 we examine here the effect of using different
tracers of the gravitational potential, this time in projected phase-
space. We compare the MAMPOSSt MNFW (r) obtained using
red and blue galaxies as tracers, with MJ(r) and Mtrue(r) in Fig.
9 for the C sample, and in Fig. 10 for the RM sample. When
using red galaxies as tracers, MNFW (r) is similar to Mtrue(r) and
MJeans(r). However, when using blue galaxies as tracers, the true
mass profile is strongly underestimated by MAMPOSSt at all
radii.

In Sect. 3.1.1 we showed Mtrue(r) ≈ MJeans both for red and
for blue galaxies, separately. Therefore, the failure of MAM-
POSSt when using the blue population cannot be attributed to
this population being outside of virial equilibrium. It cannot be
attributed to the lack of blue galaxies near the cluster center ei-
ther. In fact, the result for red galaxies hardly changes if we only
consider red galaxies outside the inner 0.5r200 region. The failure
of MAMPOSSt is instead due to interlopers. As we commented
in Sect. 3.2.2, remaining interlopers after running the Clean pro-
cedure, tend to, counter-intuitively, narrow the velocity distribu-
tion of the sample. Due to color segregation, most interlopers are
blue, so the effect of interlopers is most severe for the blue galaxy
population. When we repeat the analysis for the RM sample we
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find that MNFW/MJ is indeed similar for red and blue galaxies
(see Fig. 10).

Fig. 9. Ratio of different mass profile determinations obtained using red
and blue galaxies as tracers, separately, for the C sample. Top panels:
ratio between the median MNFW (r) obtained using red and blue galaxies
(red and blue symbols, respectively) and MJeans(r). Bottom panels: same
as top panel but with Mtrue in lieu of MJeans. Left, respectively right, pan-
els display results obtained on the DLB07, respectively GAEA, sam-
ples.

Fig. 10. Ratio of different mass profile determinations obtained using
red and blue galaxies as tracers, separately, for the RM sample. Symbols
and colors as in Fig. 9

4. Velocity anisotropy profiles

In this section we present the results for the velocity anisotropy
profiles β(r) of DLB07 and GAEA clusters. We first present the
true β(r) obtained using full 6D phase-space information, then
we consider how well can we reproduce these profiles using only
the information from projected phase-space.

4.1. Full phase-space

In Fig. 11 we show the median of 100 cluster β(r), directly mea-
sured from full phase-space information, both for the DLB07
and the GAEA samples. The velocity anisotropy is close to
zero near the cluster center, corresponding to isotropic orbits,
and rapidly increases outside, reaching an asymptotic value of
β ' 0.3 at r ' 0.3 r200, corresponding to orbits with a mild radial
elongation.

For each cluster we define its deviation from the median β(r)
shown in Fig. 11 as follows,

χ2 =

N∑
i=1

(βi − βmed,i)2

σ2
i

, (7)

where βmed,i is the value of the median velocity anisotropy
profile of the 100 galaxy clusters in the i-th radial bin, βi is the
value of velocity anisotropy profile of the given cluster in the
same radial bin, σi is its standard deviation, and N = 15 is the
number of radial bins. In the DLB07 (GAEA) sample, 59 (re-
spectively 62) clusters have χ2 ≤ 15, that is their β(r) do not
deviate significantly from the median.

The median β(r) of low- and high-χ2 β(r) are shown in blue
and red, respectively, in Fig. 11. As expected, the low-χ2 median
β(r) is closer to the overall median β(r), but in addition, there
is a systematically different behaviour of the low- and high-χ2

β(r). Low-χ2 β(r) display an increasing radial anisotropy from
the center outside, while high-χ2 β(r) display the opposite be-
haviour, and a more constant β across the 0 − r200 radial range.

Fig. 11. Median β(r) (black solid line) for 100 clusters of the DLB07
sample (upper panel) and of the GAEA sample (lower panel). Shaded
regions represent error bars σ/

√
N. Blue and red dashed lines show the

median β(r) for clusters with χ2 ≤ 15 and, respectively, > 15, where χ2

is a value indicating the deviation of the individual cluster β(r) from the
median one.

What causes some clusters to display a different β(r) from
the median? In Fig. 12 we show the MJ(r)/Mtrue(r) mass profile
ratios for clusters with low- and high-χ2 β(r) values, separately.
Clusters with high-χ2 β(r) have a larger deviation from the me-
dian value of MJ(r)/Mtrue(r), that is, for these clusters the Jeans
equation-based mass estimate is less accurate. This partial failure
of the Jeans equation could result if the cluster dynamics deviates
from dynamical equilibrium, a possible consequence of cluster-
cluster mergers. Deviation from dynamical equilibrium therefore
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Fig. 12. Median MJ(r)/Mtrue(r) ratio for clusters for clusters with high-
χ2 β(r) (red-dashed line) and for clusters with low-χ2 β(r) (blue-dashed
line). The black solid line indicates the median MJ(r)/Mtrue(r) for all
the 100 clusters. Upper and lower panel are DLB07 and GAEA samples
respectively.

seems to be accompanied with a change in the orbital distribu-
tion of cluster galaxies, from the nearly monotonic increase of β
with r (median profile shown by the black curve in Fig. 11) to
a flatter β(r). This change might be caused by the collision of a
cluster with its infalling subclusters, generating disorder in the
orbital distribution. A more detailed analysis of the orbital evo-
lution of galaxies in simulated clusters is required to verify this
scenario.

4.1.1. Red and blue galaxies

Most observational studies found late-type/blue cluster galaxies
to move on slightly more radial orbits than early-type/red galax-
ies (see, e.g., Mahdavi et al. 1999; Biviano & Katgert 2004; Bi-
viano & Poggianti 2009; Biviano et al. 2013; Munari et al. 2014;
Mamon et al. 2019), but Aguerri et al. (2017) found the opposite
in Abell 85, and Hwang & Lee (2008) did not find any differ-
ence in the orbits of different galaxy types. Here we examine
whether galaxy orbits depend on galaxy colors in the DLB07
and GAEA clusters. We adopt the red/blue color separation de-
scribed in Sect. 3.1.1.

The median β(r) of the red and blue cluster galaxy popula-
tions are different, for both the DLB07 and the GAEA sample
(see Fig. 13). We have shown in Sect. 3.1.1 that red and blue
galaxies define consistent MJ(r). In fact, the difference in the
red and blue galaxies β(r) is compensated in Jeans’ eq. (1) by
the difference in dlnν/dlnr, red galaxies having a steeper num-
ber density profile.

Red galaxies move on more radial orbits than blue galaxies in
the simulated clusters, in agreement with the results of Iannuzzi
& Dolag (2012), based on a SAM built on the MI, but at odds
with the observational results, as well as with the results of Lotz
et al. (2019), based on hydrodynamical simulations. According
to Iannuzzi & Dolag (2012), galaxies on radial orbits are more
subject to environmental effects and evolve from blue to red
color on a shorter timescale than galaxies on more tangential (or
isotropic) orbits. This would explain the prevalence of isotropic
orbits among blue galaxies. On the other hand, Lotz et al. (2019)
argue that we observe more radial orbits for blue galaxies be-

cause we observe them at their first passage in the cluster. After
first pericentric passage these galaxies are quenched and turn to
red. As these red galaxies continue orbiting the cluster they tend
to be tidally disrupted at each new pericenter passage, and only
galaxies on more tangential (or isotropic) orbits survive. The dif-
ference between the orbital distribution of red and blue galaxies
in Iannuzzi & Dolag (2012) and Lotz et al. (2019) is therefore to
be ascribed to the different survival time of blue galaxies in clus-
ters in the two simulations, longer for Iannuzzi & Dolag (2012)
for than for Lotz et al. (2019).

Fig. 13. Median β(r) for blue and red galaxies (blue and red dashed
lines, respectively, with σ/

√
N confidence regions). Top panel: DLB07

sample. Bottom panel: GAEA sample

4.1.2. Prolate and oblate clusters

We determine the median β(r) separately for clusters with prolate
and oblate shapes (see Sect. 3.1.2). In the DLB07 sample we
find marginal evidence that galaxies in oblate clusters move on
more radial orbits than galaxies in prolate clusters, but we find
no difference in the GAEA sample (see Fig. 14). The difference
between the two samples must be traced back to the difference in
the shape distribution of clusters in DLB07 and GAEA, as seen
in Fig. 5, the P distribution being wider in the DLB07 sample
than in the GAEA sample.

The difference we observe in the DLB07 might be inter-
preted as a manifestation of the effect of different β(r) along
different halo axes. In oblate clusters, one dimension is sub-
dominant with respect the other two, while the opposite is true
for prolate clusters. When sphericity is imposed, β(r) will result
from a combination of two major-axis and one minor-axis veloc-
ity anisotropy profiles in the case of oblate clusters, and of one
major-axis and two minor-axis velocity anisotropy profiles int he
case of prolate clusters. Since the velocity anisotropy along the
major halo axis tends to be larger than the velocity anisotropy
calculated in spherical shells (Wojtak et al. 2013), the median
spherical-symmetric β(r) of oblate clusters will tend to be larger
than the corresponding quantity evaluated for prolate clusters.

4.2. Projected phase-space

As described in Sect. 3.2.1, the MAMPOSSt analysis provides
the best-fit parameters not only of M(r), but also of β(r), that we
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Fig. 14. Median β(r) for all clusters (solid line and σ/
√

N uncertainty in
shade), oblate clusters (dashed green lines), and prolate clusters (dashed
red line). Top panel: DLB07 sample. Bottom panel: GAEA sample.

model with the Tiret profile (eq. 5). Here we compare the results
of the MAMPOSSt analysis with the true β(r).

In Fig. 15 we show the median MAMPOSSt β(r) for the
100 clusters along three orthogonal projections, in the C (red
dashed line), RM (green dot-dashed line), and C100 sample
(blue dashed line). Upper and bottom panel correspond to the
DLB07 and GAEA sample, respectively. The MAMPOSSt β(r)
are compared to the true median β(r) evaluated from full phase-
space information (see Sect. 4.1).

To quantify the comparison of the MAMPOSSt β(r) with the
true β(r) we evaluate the χ2 statistics

χ2
β =

N∑
i=1

(βMAM,i − βmed,i)2

σ2
MAM,i/100 + σ2

med,i

, (8)

where βMAM,i and βmed,i are, respectively, the value of β esti-
mated by MAMPOSSt, and the true value of β, for the i-th radial
bin, with N = 15 bins, σmed,i is the error on βmed,i, and σMAM,i/10
is the error on the mean of the 100 cluster values of βMAM,i. The
results are given in Table 3. The large values of χ2 indicates that
the true β(r) is not accurately reproduced. This is probably due
to the uniqueness of the model adopted in the MAMPOSSt anal-
ysis, and to the fact that we allow for a single free model parame-
ter. Moreover, the formal uncertainty in the median MAMPOSSt
profile, σMAM,i/10, is rather small, 0.07 on average. Typical un-
certainties in the individual cluster MAMPOSSt β∞ values are
∼ 0.2 (see Table 2 in Mamon et al. 2013), so that in real obser-
vations of single clusters, adopting simplified models for β(r) is
statistically acceptable.

The best agreement is obtained for the RM sample, even if
the MAMPOSSt solution tends to over-estimate the true β(r) at
r & 0.5 r200. For the C and C100 samples, incomplete knowledge
of cluster membership, that is, inclusion of interlopers among se-
lected members, leads to a larger over-estimation of β(r), already
at r & 0.3 r200. The issue appears to be slightly more severe for
the C100 than the C sample, suggesting that poor statistics might
worsen the correct estimate of β(r).

The agreement between the true β(r) and the MAMPOSSt
solution is good at small radii, where βmed → 0. However, such
an agreement could be enforced by our choice of the β(r) model,

Table 3. MAMPOSSt vs. true β

Data-set χ2
β

DLB07 GAEA
C 65 71
C100 85 118
RM 21 37

Notes. χ2
β that we use to compare the MAMPOSSt determined value of

β and the corresponding true value for the different samples.

Table 4. MAMPOSSt with different β0 (C sample)

β0 ∆BIC
DLB07 GAEA

-5.25 -2.0 -5.6
-1.0 -0.2 -0.9
0.4 -0.6 -1.1
0.6 -1.0 -2.1

Notes. ∆BIC = −2(lnLTiret − lnLβ0 ), with β0 values listed in Col. 1.

that has β(0) = 0. To investigate this point, we run MAMPOSSt
with four other β(r) models,

β(r) = β0 + (β∞ − β0)
r

r + r−2
, (9)

with β0 = −5.25,−1, 0.4, 0.6, corresponding to σr/σθ =
0.4, 0.7, 1.3, 1.6, respectively, that is, we allow for a 30 to 60%
difference in the radial and tangential components of the velocity
dispersion at the center. The Tiret model of eq. (5) is a special
case of eq. (9), with β0 = 0.

We adopt the Bayes Information Criterion (BIC, Schwarz
1978) to compare the maximum likelihood valuesL obtained by
MAMPOSSt using the Tiret model, with those obtained using
the four models with non-zero central anisotropy. The median
values of ∆BIC = −2∆ lnL are listed in Table 4 for the C sam-
ple. The MAMPOSSt L are larger for the Tiret model than for
β0 , 0 models, and the ∆BIC values are statistically significant
(Kass & Rafferty 1995; Mamon et al. 2019) for the most extreme
values of central anisotropy, in particular for the GAEA sample.
This analysis shows that MAMPOSSt favors β0 ≈ 0 solutions,
so the agreement between the MAMPOSSt and the true β(r) near
the center is not due to the choice of the Tiret model.

4.2.1. Line-of-sight aligned clusters

Using the classification of Sect. 3.2.3, we analyze the MAM-
POSSt results for β(r) of prolate clusters with their major axis
more or less aligned with the line-of-sight direction. In Fig. 16
we show the median β(r) for the aligned (dashed lines) and not-
aligned (solid lines) clusters of the C sample, black and red color
for the true and MAMPOSSt profiles, respectively (upper and
bottom panels correspond to DLB07 and GAEA samples, re-
spectively). Aligned and not-aligned clusters have almost iden-
tical true β(r) profiles as expected given that the line-of-sight
only depends on the observer. The alignment along the line-of-
sight has an effect on the MAMPOSSt estimates of β(r) that are
based on projected phase-space. For aligned clusters, there is a
slightly better agreement of the MAMPOSSt and true β(r) near
the center, but a stronger disagreement at r & 0.3 r200, than for
not-aligned clusters. More precisely, MAMPOSSt tend to over-
estimate β at large radii for both aligned and not-aligned clusters,
but the over-estimate is more severe for aligned clusters.
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Fig. 15. Median β(r) for three orthogonal projections of 100 clus-
ters, as obtained by the MAMPOSSt analysis, for the C (red dashed
line), RM (green line), and C100 (blue line) samples. The black solid
line and shaded region indicate the β(r) and shaded region the uncer-
tainty σ/

√
N, obtained from full phase-space information. Upper panel:

DLB07 sample. Lower panel: GAEA sample.

Fig. 16. Median β(r) for three lines-of-sight of aligned (dashed lines)
and not-aligned (solid line) clusters for the C sample obtained by the
MAMPOSSt analysis (red dashed lines). The black lines indicate the
β(r) obtained from full phase-space information for aligned (dashed)
with the of the sight and not-aligned (solid) with the of the sight, shaded
region represent the uncertainty σ/

√
N. Upper panel: DLB07 sample.

Lower panel: GAEA sample.

4.2.2. Red and blue galaxies

In Sect. 4.1.1 we showed that in both the DLB07 and GAEA
clusters red galaxies β(r) are larger than blue galaxies β(r) (see
Fig. 13), at variance with what is observed in most real clusters.
Here we investigate whether this difference can be attributed to
projection effects in the real clusters, by examining the MAM-
POSSt solutions for the β(r) of red and blue galaxies obtained
using projected phase-space information only.

We show in Fig. 17 the median β(r) for red and blue galaxies
as estimated by MAMPOSSt, for the 100 clusters along three
orthogonal projections of the DLB07 (top panel) and GAEA

(lower panel) samples. In this analysis, following common prac-
tice used in observational samples, we fix the parameters of the
mass profile to the best-fit values obtained using the whole clus-
ter galaxy population. We then fit separately the number density
profiles of red and blue galaxies and use the two rν best-fit pa-
rameters in two separate Split-mode runs of MAMPOSSt to de-
termine the best-fit parameters of the red and blue galaxies β(r).

We find that MAMPOSSt recovers the true β(r) of both red
and blue galaxies pretty well, albeit with some overestimate of
the red galaxies β at large radii. This result rules out the possibil-
ity that the discrepancy between the simulated and the observed
β(r) of red and blue galaxies (Sect. 4.1.1) is due to projection
effects affecting the observational estimates in real clusters.

Fig. 17. MAMPOSSt β(r) estimates for red (red dashed curve and
σ/
√

N confidence level) and blue (blue dashed curve and σ/
√

N confi-
dence level) galaxies in the C sample
, compared to the true β(r), median of 100 clusters along three

orthogonal projections (solid curves with corresponding colors).
Top panel: DLB07 sample. Bottom panel: GAEA sample.

5. Discussion

We analyzed the dynamics of two samples of 100 simulated
clusters extracted from the DLB07 and GAEA data sets. The
results we obtain are very similar for the two data sets. This sug-
gests that cluster dynamics is rather insensitive to the physics of
galaxy evolution.

5.1. Mass profiles

When using full phase-space information we find that the Jeans
equation for dynamical equilibrium of collisionless spherically
symmetric systems allows an accurate estimate of the cluster
mass profiles outside the central 0.2 r200 region. This result is
in agreement with the finding by Armitage et al. (2018) that the
velocity bias of the whole cluster population relative to the to-
tal matter is small. We find agreement between the mass profile
derived from the Jeans-equation and the true mass profile also
when using separately red and blue galaxies to trace the gravita-
tional potential. This result implies that clusters are in dynamical
equilibrium, on average, and that this is not only the case for the
population of red galaxies, but also for the population of blue
galaxies. The time needed for blue galaxies to reach dynamical
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equilibrium must be shorter than the time of color evolution in
DLB07 and GAEA data-sets.

The fact that blue galaxies are on dynamical equilibrium in
the cluster gravitational potential is consistent with the obser-
vational finding by Carlberg et al. (1997), who applied the Jeans
equation separately to red and blue galaxies from the CNOC sur-
vey, and obtained similar mass profiles. Our result is also consis-
tent with Saro et al. (2013) who found little difference in the
mass estimates of simulated clusters when changing color selec-
tion.

At radii r < 0.2 r200 we find that application of the Jeans
equation leads to an under-estimate of the true mass profile. We
attribute this under-estimate to the effect of dynamical friction, a
process that can invalidate the assumption of collisionless tracers
of the Jeans equation. It is not the purpose of this paper to test
how closely the dynamical friction process implemented in the
DLB07 and GAEA simulations resembles the physical process
at work in real clusters of galaxies. In any case, other simulations
have found evidence that dynamical friction affects the dynamics
of massive cluster galaxies (e.g. Springel et al. 2001). Saro et al.
(2013) found that dynamical friction can introduce a significant
velocity bias when only the 30 brightest galaxies of a simulated
cluster are selected as a tracer of the gravitational potential. Ev-
idence of this same effect has been found in observations of real
clusters (Biviano et al. 1992; Old et al. 2013).

While the collisionless assumption appears to be a prob-
lem for the application of the Jeans equation, the assumption of
spherical symmetry is not, as we checked by considering prolate
and oblate clusters separately. Our conclusion is in agreement
with previous results (Piffaretti et al. 2003; Saro et al. 2013).

In projected phase space, the combination of the Clean se-
lection of cluster members and MAMPOSSt dynamical analysis
provides slightly biased result for the mass profile, with an un-
derestimate of the true mass profile by 7-17% and a standard
deviation of 35-69%. These results are not as good as those in-
dicated by Mamon et al. (2013). We also characterize the mass
bias as a function of radius, and find it to be nearly constant at
all radii. We attribute the negative mass bias to the presence of
interlopers, as initially suggested by Cen (1997). Our conclusion
is supported by the fact that considering only red galaxies, the
mass bias is less significant. This has been already suggested by
other studies (Biviano et al. 2006; Mamon et al. 2010), but here
we have determined the mass bias as a function of radius, for the
first time for an estimator based on projected phase-space dis-
tribution of galaxies (see Rasia et al. 2012, for the mass profile
bias from lensing and X-ray data), and found this mass bias to
be independent of radius.

While we found that the effect of cluster asphericity is not
important, deviation from spherical symmetry can be important
for individual clusters when observed in projection, if, for in-
stance, the line-of-sight is aligned with the main axis of a pro-
late cluster (Wojtak 2013). Indeed we find that the bias in the
cluster mass estimate depends on the orientation of the cluster
major axis with respect to the line-of-sight. The mass of aligned
clusters is over-estimated in projection, while that of not-aligned
clusters is under-estimated.

5.2. Velocity anisotropy profiles

The velocity anisotropy profiles of simulated clusters from the
DLB07 and GAEA data-sets are very similar, slightly radial at all
radii, increasing from the center outside and reaching a plateau
of β ∼ 0.3 at r & 0.3r200, in substantial agreement with several
previous investigations of both simulated (Diaferio 1999; Ma-

mon et al. 2010, 2013; Munari et al. 2013) and real (Natarajan
& Kneib 1996; Lemze et al. 2009; Biviano et al. 2013; Capasso
et al. 2019) clusters. We do not find a significant difference in
the β(r) of oblate and prolate clusters, so we argue that cluster
asphericity is not a major problem for the determination of clus-
ter galaxies orbits using the spherical Jeans equation.

We find that clusters for which the Jeans equation provides
a less accurate estimate of the true mass profile have a flatter
velocity anisotropy profile. Galaxies in clusters that are less dy-
namically relaxed move on more radial orbits near the cluster
center, and more isotropic orbits in the cluster outskirts, com-
pared to galaxies in dynamically relaxed clusters.

Clusters are expected to reach dynamical equilibrium
through a phase of violent relaxation that leads to erasure of
any velocity anisotropy acquired during the initial collapse phase
(Lynden-Bell 1967). The cluster then grows in mass during the
subsequent phase of smooth accretion, that preserves the orbital
anisotropy of the infalling material (Lapi & Cavaliere 2011). The
resulting β(r) ≈ 0 (isotropic orbits) near the center, and β(r) > 0
(radial orbits) outside (see Fig. 14 in Lapi & Cavaliere 2011),
is similar to the profile we find for dynamically relaxed clus-
ters (blue dashed line in Fig. 11). When a major merger occur
between the cluster and an accreting subcluster, chaotic mixing
(Kandrup & Siopis 2003) is likely to erase any pre-existing order
in the radial orbital distribution. This could lead to a flattening
of β(r), as observed in our dynamically unrelaxed clusters (red
dashed line in Fig. 11). We plan to test this scenario in the future,
by analysing the evolution of the orbital distribution of galaxies
in simulated halos.

When we examine the orbits of red and blue galaxies in sim-
ulated clusters from DLB07 and GAEA we find a different result
than in the observational studies of (e.g., Mahdavi et al. 1999; Bi-
viano & Katgert 2004; Biviano & Poggianti 2009; Biviano et al.
2013; Munari et al. 2014; Mamon et al. 2019), although in agree-
ment with Aguerri et al. (2017) for the cluster Abell 85. Red
galaxies have more radial orbits than the blue ones, consistent
with the results obtained in the simulations by Iannuzzi & Dolag
(2012). According to these authors the different orbits can be
explained by the environmentally-driven color evolution of clus-
ter galaxies. Environmental effects are expected to be stronger
close to the cluster center, so that galaxies on more radial or-
bits, with a smaller pericentric radius, are more strongly affected
by environmental effects than galaxies on more isotropic orbits.
Only galaxies that avoid the central cluster regions, by moving
on less radial orbits, can avoid the fate of becoming red. Iannuzzi
& Dolag (2012) do not consider orphan galaxies in their analy-
sis, while we do. If we exclude orphans from our analysis, the
results on the orbits of red and blue galaxies remain consistent
with Iannuzzi & Dolag (2012).

Using hydrodynamical simulations, Lotz et al. (2019) find
a more radial orbital distribution of blue galaxies than we find,
in better agreement with observations. These authors argue that
we only observe blue galaxies on their first infall, as they are
quenched at first pericentric passage and turn red, a scenario sup-
ported by observations (Mamon et al. 2019). Subsequent peri-
centric passages can destroy these red galaxies, the more so the
more radial are their orbits. As a consequence, we only observe
radial orbits for galaxies on first infall, when they are blue. Red
galaxies that survive are those on more isotropic orbits.

In projected phase-space MAMPOSSt is able to recover the
true velocity anisotropy profiles with a slight over-estimate at
r & 0.3 r200 when the C and C100 samples are considered. This
over-estimate can be attributed to the presence of interlopers.
The agreement is somewhat better for the RM sample, and some-
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what worse for prolate clusters with their major axis aligned with
the line-of-sight direction.

MAMPOSSt is also capable of reproducing the true velocity
anisotropy profiles of red and blue galaxies separately. Note that
this result is obtained by first determining the mass profile with
MAMPOSSt using all galaxies, and then by using this mass pro-
file determination to find the velocity anisotropy profiles of red
and blue galaxies, separately. Given that MAMPOSSt can cor-
rectly reproduce the velocity anisotropy profiles of two galaxy
populations separately, the mismatch between the simulated ve-
locity anisotropy profiles of red and blue galaxies and several
observational studies is not likely due to a problem in the anal-
ysis of observational sample. This mismatch suggests that some
evolutionary process of cluster galaxies is not correctly imple-
mented in the simulations we investigate. However, what is more
relevant here is not how close are the simulated clusters to the
real ones, but how close are the MAMPOSSt profiles, based on
projected phase-space data, to the simulated ones.

6. Conclusions

Using the DLB07 and GAEA data sets of 100 galaxy clusters
from the MI, we investigate the mass and the velocity anisotropy
profiles of galaxy clusters, using the spatial and velocity distribu-
tions of cluster galaxies both in full and projected phase-space.
The results obtained for the two data sets are similar.

For the mass profiles, considering full phase-space informa-
tion, we find that outside the central 0.2 r200 region, there is an
agreement between the mass profile obtained from the Jeans
equation for dynamical equilibrium of collisionless spherically
symmetric systems and the real mass profiles. This indicates
that the simulated clusters have reached dynamical equilibrium.
This agreement remains also for mass profiles obtained from the
Jeans-equation using red and blue galaxies separately as trac-
ers, indicating that both populations of galaxies are in dynami-
cal equilibrium in the cluster potential. For the central regions,
r < 0.2 r200, the profile obtained from the Jeans equation under-
estimates the true mass profile, and we attribute this discrepancy
to dynamical friction invalidating the collisionless fluid assump-
tion in the Jeans equation. On the other hand, the spherical as-
sumption of does not seem to be a problem, despite cluster as-
phericity, neither for prolate, nor for oblate clusters.

In projected phase-space, we simulate observational proce-
dures, by combining the Clean algorithm of members selection
and the MAMPOSSt dynamical analysis. We find a bias in the
derived mass profiles of 7-17%, similar at all radii, except very
near the center. This bias does not depend on the number of clus-
ter members, when at least 100 members are considered. We ar-
gue that the bias is due to the imperfect removal of interlopers,
and we find that the bias is reduced when we only consider red
galaxies as tracers of the gravitational potential, and it disappears
when considering true cluster members.

The velocity anisotropy profiles are slightly radial and in-
crease from the center outside, reaching a plateau β ∼ 0.3 at
r & 0.3r200. The anisotropy profile of less dynamically relaxed
clusters is flatter. We argue that this could be the effect of or-
bital re-distribution following cluster-subcluster major mergers.
Red galaxies move on more radially elongated orbits than blue
galaxies, at variance with what is found in most real clusters.

Using projected phase-space information, and adopting a
rather simple model for β(r), MAMPOSSt estimates the true ve-
locity anisotropy profiles rather accurately, albeit with a slight
over-estimate of the radial anisotropy at radii r & 0.3 r200. Such
over-estimate is more severe for prolate clusters observed with

their major axis aligned along the line-of-sight. The MAMPOSSt
estimates are similarly accurate for the β(r) of red and blue
galaxies considered separately. This indicates that the β(r) es-
timated for red and blue galaxies in real clusters are not biased.
The fact that they are different from the intrinsic β(r) of DLB07
and GAEA simulated clusters then suggests that some evolu-
tionary processes of galaxies in clusters are not correctly imple-
mented in the simulations.

Our study indicates that state of the art modelling of the inter-
nal dynamics of clusters is a robust and viable tool to determine
the cluster mass and velocity anisotropy profiles. Future studies
with different modelling of galaxy astrophysics, including com-
parison to observations, may be used to deepen our understand-
ing of the interplay between galaxy orbits and their evolution in
clusters, as well as to develop more accurate and precise methods
of mass profile determinations.
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