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ABSTRACT

Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may

be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets

that form at late times in a gas-depleted environment. This scenario is at odds with the picture that

close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by

some thermally-driven mass loss process. These two physical scenarios make unique predictions of the

rocky/enveloped transition’s dependence on orbital separation such that studying the compositions of

planets within the M dwarf radius valley may be able to establish the dominant physics. Here, we

present the discovery of one such keystone planet: the ultra-short period planet TOI-1634 b (P = 0.989

days, F = 121F⊕, rp = 1.790+0.080
−0.081 R⊕) orbiting a nearby M2 dwarf (Ks = 8.7, Rs = 0.450 R�,

Ms = 0.502 M�) and whose size and orbital period sit within the M dwarf radius valley. We confirm

the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including

a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of

4.91+0.68
−0.70 M⊕, which makes TOI-1634 b inconsistent with an Earth-like composition at 5.9σ and thus

requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky composition that

is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk

composition of TOI-1634 b is inconsistent with that of the Earth supports the gas-depleted formation

mechanism to explain the emergence of the radius valley around M dwarfs with Ms . 0.5 M�.

Keywords: planetary systems: composition, detection – stars: low-mass – techniques: photometric,

radial velocities

1. INTRODUCTION

Early-to-mid M dwarfs experience extended pre-main

sequence lifetimes in which they remain XUV active for

hundreds of Myr up to about a Gyr (Shkolnik & Bar-

man 2014; France et al. 2016). This does not bode well

for the survival of primordial H/He envelopes around
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close-in planets due to the envelope’s susceptibility to

hydrodynamic escape driven by photoevaporation (e.g.

Owen & Wu 2013; Jin et al. 2014; Lopez & Fortney

2014; Chen & Rogers 2016; Jin & Mordasini 2018) or by

internal heating (i.e. core-powered mass loss Ginzburg

et al. 2018; Gupta & Schlichting 2019). In such sce-

narios, the largest rocky planets without envelopes in-

creases toward greater insolation since planets need to

be more massive to retain their envelopes. However, oc-

currence rate studies of close-in M dwarf planets have re-

vealed evidence that thermally-driven mass loss does not
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sculpt the close-in M dwarf planet population (Cloutier

& Menou 2020) and instead, close-in gas-enveloped ter-

restrials and rocky planets formed on distinct timescales

with the latter forming at late times in a nearly gas-

depleted environment (Lopez & Rice 2018). In this sce-

nario, a natural outcome of terrestrial planet formation

posits that the maximum radius of rocky planets in-

creases toward lower insolation, in opposition to pre-

dictions from thermally-driven mass loss. Because the

thermally-driven mass loss and gas-depleted formation

models make unique predictions regarding the location

of the M dwarf radius valley as a function of insola-

tion or period, studying the bulk compositions of plan-

ets within the radius valley may be able to establish the

dominant physics that sculpts the close-in planet popu-

lation around M dwarfs.

Since its science operations began in July 2018,

NASA’s Transiting Exoplanet Survey Satellite (TESS;

Ricker et al. 2015) has uncovered a wealth of transit-

ing planet candidates whose orbital periods and radii lie

within the radius valley, including three planets transit-

ing early M dwarfs (TOI-1235 b; Cloutier et al. 2020b;

Bluhm et al. 2020, TOI-776 b; Luque et al. 2021, TOI-

1685 b; Bluhm et al. 2021). Radius valley planets whose

periods P and radii rp satisfy

0.11 log10

(
P

days

)
+ 1.52 ≤ rp

R⊕
(1)

≤ −0.48 log10

(
P

days

)
+ 2.32, (2)

(Cloutier & Menou 2020), we refer to as keystone planets

and are valuable targets to conduct tests of the compet-

ing radius valley emergence models across a range of stel-

lar masses. Doing so requires that we characterize the
bulk compositions of a sample of keystone planets using

precise radial velocity measurements. Here we present

the confirmation and characterization of one such key-

stone planet from TESS: TOI-1634 b. Our study focuses

on planet validation, including the recovery of its mass,

and the implications that our results have on the emer-

gence of the radius valley around early M dwarfs.

In Section 2 we present the properties of the host star

TOI-1634. In Section 3 we present the TESS light curve

and our suite of follow-up observations, which we use to

validate the planetary nature of the planet candidate.

In Section 4 we present our global data analysis and its

results. We conclude with a discussion and a summary

of our findings in Sects. 5 and 6.

2. STELLAR CHARACTERIZATION

Table 1 reports our adopted stellar parameters.

Table 1. TOI-1634 stellar parameters.

Parameter Value Refs

TOI-1634, TIC 201186294, 2MASS J03453363+3706438,

Gaia DR3 223158499179138432

Astrometry

Right ascension (J2015.5), α 03:45:33.75 1,2

Declination (J2015.5), δ +37:06:44.21 1,2

RA proper motion, µα [mas yr−1] 81.35± 0.02 1,2

Dec proper motion, µδ [mas yr−1] 13.55± 0.02 1,2

Parallax, π [mas] 28.512± 0.018 1,2

Distance, d [pc] 35.274± 0.053 3

(Uncontaminated) Photometry

V 13.24± 0.04 4

GBP 13.5039± 0.0011 1,6

G 12.1863± 0.0003 1,6

GRP 11.0447± 0.0005 1,6

T 11.0136± 0.0073 7

J 9.564± 0.021 4

H 8.940± 0.021 4

Ks 8.699± 0.014 4

W1 8.429± 0.022 5

W2 8.325± 0.020 5

W3 8.250± 0.023 5

W4 8.266± 0.300 5

Stellar parameters

Spectral type M2 4

MKs 5.88± 0.01 4

Effective temperature, Teff [K] 3550± 69 4

Surface gravity, log g [dex] 4.833± 0.028 4

Metallicity, [Fe/H] [dex] 0.23+0.07
−0.08 4

Stellar radius, Rs [R�] 0.450± 0.013 4

Stellar mass, Ms [M�] 0.502± 0.014 4

Stellar density, ρs [g cm−3] 7.77+0.72
−0.62 4

Stellar luminosity, Ls [L�] 0.0289+0.0028
−0.0026 4

Projected rotation velocity,
< 1.3a 4

v sin i [km s−1]

logR′HK −5.39± 0.19 4

Rotation period, Prot [days]b 77+26
−20 4

Note—References: 1) Gaia Collaboration et al. 2020 2) Lin-
degren et al. 2020 3) Bailer-Jones et al. 2018 4) this work 5)
Cutri 2014 6) Riello et al. 2020 7) Stassun et al. 2019.

aBased on the upper limits on rotational broadening from the
cross-correlation function of our HARPS-N spectra.

bWe do not measure the stellar rotation period. Rather, Prot

is estimated from the rotation-activity relation of Astudillo-
Defru et al. (2017).
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TOI-1634 (TIC 201186294, 2MASS J03453363+3706438,

Gaia DR3 223158499179138432) is an M2 dwarf (Pecaut

& Mamajek 2013) at a distance of 35.274 ± 0.053 pc

(Bailer-Jones et al. 2018; Gaia Collaboration et al. 2020;

Lindegren et al. 2020). The value of the Gaia EDR3

RUWE (re-normalized unit weight error) astrometric

quality indicator reveals that TOI-1634’s astrometric

solution shows a large excess of 0.121 mas.1 This may

be indicative of a long-period companion to TOI-1634,

which we will revisit with our follow-up observations

in Sections 3.5 and 3.6. Gaia EDR3 also revealed a

faint (∆G = 3.40 mag) comoving companion at 2.′′69

west of TOI-1634 at a projected separation of 94.1 au

(i.e. TIC 641991121, Gaia DR3 223158499176634112).

This source is clearly resolved by Gaia such that it can-

not be responsible for the excess noise in TOI-1634’s

astrometric solution. The companion does not ap-

pear in the 2MASS Point Source Catalog (Cutri et al.

2003). Consequently, the 2MASS blend and contami-

nation/confusion flags for TOI-1634 (bb flg, cc flg)

indicate that its photometry was fit by a single source

as it was assumed to be uncontaminated. Similar issues

of uncorrected contamination persist for TOI-1634 in all

but the Gaia passbands. For inferring stellar parameters

from empirical relations, we correct TOI-1634’s V -band

and 2MASS photometry using each source’s Gaia pho-

tometry and computing their magnitude differences in

V JHKS using appropriate Gaia color relations (Evans

et al. 2018). We derive ∆mag correction factors of 0.021,

0.080, 0.093, 0.099 in the V JHKS-bands, respectively.

The refined 2MASS photometry for TOI-1634 has crit-

ical consequences for the derivation of its global stellar

properties from empirical relations. Using the M dwarf

KS-band mass-luminosity relation from Benedict et al.

(2016), we find that Ms = 0.502 ± 0.014 M�. This

value is 1.3σ discrepant from the result obtained with-

out correcting the KS-band magnitude. Similarly, we

measure a stellar radius of Rs = 0.450 ± 0.013 R� us-

ing the M dwarf radius-luminosity relation from Mann

et al. (2015). Together these yield log g = 4.833±0.028.

We derive the stellar effective temperature of Teff =

3550 ± 69 K using the uncontaminated Gaia photom-

etry and the Teff-(GBP−GRP) relation from Mann et al.

(2015). We also estimate the stellar metallicity using the

empirical (V − KS)-MKS
-[Fe/H] relation for M dwarfs

from Johnson & Apps (2009). We find a somewhat

metal-rich value of [Fe/H] = 0.23+0.07
−0.08 dex, consistent

with suggested correlations for low mass stars between

1 RUWE=1.23 where RUWE=1 is assigned to well-behaved single
star solutions and RUWE> 1.4 likely indicates a non-single star.

Figure 1. The spectral energy distributions of the target
star TOI-1634 and its faint companion. The black curves
depict the stellar atmosphere models for each star with ef-
fective temperatures of 3500 K and 3025 K, respectively. The
red markers depict the photometric measurements and their
uncertainties. The horizontal errorbars depict the effective
width of each passband. The blue markers depict the model
flux in each passband for TOI-1634.

metallicity and the presence of small planets (e.g. John-

son & Apps 2009; Schlaufman & Laughlin 2011).

The companion star is in version 8 of the TESS In-

put Catalog (TIC; Stassun et al. 2019), with its TESS

magnitude (T = 14.37 mag) estimated solely from Gaia

photometry. We analyzed the spectral energy distri-

butions (SEDs) of both stars to refine the dilution of

TOI-1634 in the TESS-band. Due to the flux contami-

nation, we performed a two-component fit following the

procedures outlined in Stassun & Torres (2016); Stas-

sun et al. (2017); Stassun & Torres (2018). For TOI-

1634, we use the JHKS magnitudes from 2MASS, W1–

W4 from WISE, and Gaia GGBPGRP magnitudes. For

the companion we use the ui-bands from SDSS, the

y-band from Pan-STARRS, and Gaia GGBPGRP mag-

nitudes (see Figure 1). We fit for Teff and [Fe/H] in

each SED using a NextGen stellar atmosphere model

(Hauschildt et al. 1999) with zero extinction (AV = 0).

After correcting TOI-1634’s SED for the flux of the com-

panion, we measure Teff = 3500 ± 85 K and [Fe/H]

= 0.0 ± 0.5 dex, both of which are consistent with the

values derived from empirical relations. Similarly for the

companion star, we measure Teff,comp = 3025 ± 100 K

and [Fe/H]comp = 0.0 ± 0.5 dex. Integrating the SED

at a distance of 35.274 pc yields a bolometric flux at

Earth of Fbol = 7.05 ± 0.27 × 10−10 ergs s−1 cm−2,

which corresponds to Rs = 0.452± 0.023 R� and again

is consistent with the value derived from the empiri-

cal radius-luminosity relation. Given the total fluxes
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from our SED analysis, we recover a dilution factor of

F1634/(F1634 + Fcompanion) = 0.946, which is consistent

with the original value of 0.943 used by the NASA Ames

Science Processing Operations Center when producing

the TESS light curve (see Section 3.1). Our derived di-

lution factor neglects the two remaining sources that sit

within the TESS aperture due to their negligible flux

contributions (see Figure 2).

The photometric stellar rotation period is presently

unknown (see Section 3.2). We establish a prior on Prot

using the empirical M dwarf rotation-activity relation

from Astudillo-Defru et al. (2017). From our HARPS-N

spectra presented in Section 3.6, we measure logR′HK

= −5.39 ± 0.19, which places TOI-1634 within the un-

saturated regime of magnetic activity (e.g. Reiners et al.

2009). Using the rotation-activity relation for inactive

M dwarfs, we estimate Prot = 77+26
−20 days. Such a long

rotation period would place TOI-1634 in the long-period

tail of the Prot distribution among M dwarfs with masses

between 0.4−0.6 M� (10−70 days; Newton et al. 2017).

3. OBSERVATIONS

3.1. TESS Photometry

TOI-1634 was observed by TESS for 24.38 days from

UT 2019 November 3-27 in Sector 18. The observations

were taken with CCD 4 on camera 1. TOI-1634 is not

slated for further observations with TESS2. TOI-1634 is

listed in v8 of the TESS Input Catalog, the Candidate

Target List (CTL), and as a target in the Guest Investi-

gator program G0221983 such that it was observed with

2-minute cadence. A total of 20 transits were observed

with three transit events being missed during the data

transfer event near perigee passage.

A sample image from the TESS target pixel files

(TPFs) is shown in the upper panel of Figure 2 overlaid

by a subset of the 78 Gaia sources within 2.′5. All image

data were processed by the NASA Ames Science Pro-

cessing Operations Center (SPOC; Jenkins et al. 2016),

who then proceeded to produce the Presearch Data Con-

ditioning Simple Aperture Photometry (PDCSAP; Smith

et al. 2012; Stumpe et al. 2012, 2014) light curve using

the twelve-pixel photometric aperture overlaid in Fig-

ure 2. The aperture clearly contains contributions from

TOI-1634, its nearby stellar companion, and at least two

faint background sources from Gaia. TOI-1634 domi-

nates the flux within the aperture and contributes 0.943

of the flux to the PDCSAP light curve on average.

2 Based on the TESS Web Viewing Tool.
3 “Probing the Landscape of Cool Dwarf Planet Occurrence”. PI:

Dressing.

Figure 2. Images of the field surrounding TOI-1634. Upper
panel: a sample TESS target pixel file image of TOI-1634
with a pixel scale of 21.′′ pixel−1. The yellow circle high-
lights TOI-1634 while the blue markers highlight its nearby
stellar companion and other neighboring sources from Gaia
EDR3. The pixels outlined in black demarcate the TESS
photometric aperture used to produce the PDCSAP light curve
of TOI-1634. Lower panel: a zoom in on the highlighted red
region taken with the LCOGT 1m telescope at McDonald
Observatory with a pixel scale of 0.39.′′. The small angu-
lar separation between TOI-1634 and its companion prevent
the source from being spatially resolved in our seeing-limited
images.

Late in the primary mission, the SPOC identified a

bias in the background sky correction that shifts the

PDCSAP light curve to lower flux values. Following the

instructions outlined in the Sector 27 release notes4, we

correct this effect by determining the background bias

bgbias = 9.35 e−/s/pixel from the difference between the

4 https://archive.stsci.edu/missions/tess/doc/tess drn/
tess sector 27 drn38 v02.pdf. The sky background algo-
rithm was updated to mitigate the background bias starting
with Sector 27.

https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py
https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_27_drn38_v02.pdf
https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_27_drn38_v02.pdf
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Figure 3. TESS PDCSAP light curve of TOI-1634 from Sector 18. Top panel: the dilution and background-corrected PDCSAP

light curve overlaid with the mean GP model of residual correlated noise (blue curve). In-transit measurements are highlighted
in green. Middle panel: the PDCSAP light curve detrended by the mean GP model. Bottom panel: the phase-folded transit light
curve of TOI-1634 b. The maximum a-posteriori transit model is overlaid in green while the white markers depict the binned
light curve.

background-corrected pixel fluxes and zero. We then

correct the PDCSAP flux according to

f ′PDCSAP = fPDCSAP + bgbias Npix
CROWDSAP

FLFRCSAP
, (3)

where Npix = 12 is the number of pixels in the optimal

aperture and CROWDSAP/FLFRCSAP = 1.14 is the

ratio of the crowding metric to the flux fraction correc-

tion, which are provided in SPOC light curve fits head-

ers. This correction adjusts the baseline flux, and hence

decreases the inferred transit depth, by 2.2%.

The dilution and background-corrected PDCSAP light

curve for TOI-1634 is shown in the upper panel of Fig-

ure 3 with the 20 transits of TOI-1634.01 highlighted in

green. Note that no obvious signature of stellar rotation

is apparent in the light curve. It is on these data that

the SPOC conducted its transit search using the Transit-

ing Planet Search Pipeline Module (TPS; Jenkins 2002;

Jenkins et al. 2010). After passing a set of internal data

validation tests (Twicken et al. 2018; Li et al. 2019),

the TPS returned the new transiting planet candidate

TOI-1634.01 with an orbital period of 0.989 days and a

transit depth of 1.52±0.13 ppt. Using the stellar radius

from Table 1, this initial transit depth corresponds to a

planet radius of 1.90 ± 0.10 R⊕. The public release of

the candidate TOI-1634.01 in December 2019 prompted

our follow-up observations described in the subsequent

Sections 3.3-3.6.

3.2. Archival photometric monitoring

Recall that the TESS light curve does not show any

signs of rotation (Figure 3). This is consistent with

TOI-1634 being relatively inactive given its low value

of logR′HK = −5.39±0.19 and the expectation of a long

rotation period Prot= 77+26
−20 days. Furthermore, we can-

not hope to obtain a precise Prot measurement with just

one TESS sector if indeed Prot is as long as we expect

(Lu et al. 2020).

We attempt to recover Prot by investigating the

long-baseline archival photometric monitoring from the

ASAS-SN survey (Jayasinghe et al. 2019). The ASAS-

SN survey monitored TOI-1634 from November 2012 to

October 2020 in the V and g-bands. Figure 4 shows

the light curves and their generalized Lomb-Scargle pe-

riodograms (GLS; Zechmeister & Kürster 2009). We

compute the false alarm probability (FAP) for each GLS

periodogram via bootstrapping with replacement. We

inspected the periodogram of each light curve and found

no coherent periodic signal that is present in both light

curves. Most notably, there is no persistent signal over

the domain between 50 − 105 days where we expect to

measure Prot for TOI-1634 based on its logR′HK value.
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Figure 4. Photometric monitoring of TOI-1634 with ASAS-SN in the V -band (upper row) and g-band (lower row). Left
column: differential light curves. Right column: the GLS periodograms of each light curve. The blue histogram depicts the
expected stellar rotation period based on the star’s logR′HK and the rotation-activity relation from Astudillo-Defru et al. (2017).
The horizontal dashed lines depict FAPs of 0.1%, 1%, and 10%. No coherent periodic signal is detected.

3.3. Reconnaissance spectroscopy with TRES

Through the TESS Follow-up Observing Program

(TFOP), we began to pursue the confirmation of the

planet candidate TOI-1634.01 by obtaining a pair of re-

connaissance spectra. We observed TOI-1634 on UT

2020 February 2 and 2020 September 5 using the Till-

inghast Reflector Échelle Spectrograph (TRES). TRES

is a fiber-fed optical échelle spectrograph (310-910 nm)

with a resolution of R = 44, 000 and is mounted on

the 1.5 m Tillinghast Reflector telescope at the Fred

Lawrence Whipple Observatory on Mount Hopkins, Ari-

zona. The exposure time was set to 3000 s. We reduced

and extracted the spectra using the standard procedure

(Buchhave et al. 2010) before cross-correlating the spec-

tra with a custom spectral template of Barnard’s star

that was rotationally broadened over a range of v sin i

values(Winters et al. 2018). We selected the échelle

aperture 41 between 7065 − 7165Å for RV extraction

as it contains the information-rich TiO bands. We esti-

mate the corresponding RV precision at each epoch to

be 65 and 38 m s−1.

We find TOI-1634 to be single-lined with no signif-

icant rotational broadening (v sin i< 3.4 m s−1), and

with the Hα feature in absorption (Figure A1). Our

two TRES observations were also scheduled at opposing

quadrature phases and revealed no large RV variation

beyond the level of our RV uncertainties. These data

confirm that TOI-1634 is a chromospherically-inactive

and slowly-rotating star. These data also likely rule out

the possibility of a spectroscopic binary such that TOI-

1634.01 continues to be a viable planet candidate and

we can proceed with further attempts at planet confir-

mation.

3.4. Seeing-limited photometry

TESS pixels are large (21′′), which results in blending

of the TOI-1634 light curve with nearby sources. We

therefore obtained seeing-limited photometry to confirm

the transit on-target and to spatially resolve the light

curves of nearby sources to rule out the nearby eclips-

ing binaries (NEBs) as the source of the TESS transit

events. We obtained a total of 16 light curves of seven

distinct transit events with a variety of observing fa-

cilities. Table 2 summarizes the observations with the

individual facilities described in the following sections.

The light curves are shown in Figure A2.

In summary, we successfully confirm the transit time

of TOI-1634.01 and are able to rule out 38 of 39 sources

within 2.′5 as NEBs. However, the comoving companion

to TOI-1634 at 2.′′69 is unresolved in all of our observa-

tions (see lower panel of Figure 2). Even in our highest

quality ground-based light curves, at most 50% of the

companion’s flux can be excluded from the photometric

aperture. As such, these data cannot uniquely identify

TOI-1634 as the host of the TESS transit events, al-

though they do limit the possibilities to either TOI-1634

or its companion.

3.4.1. LCOGT

We observed a full transit of TOI-1634.01 on UT

2020 September 30 in Pan-STARRS zs band from the
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Table 2. Summary of seeing-limited photometric follow-up of TOI-1634.

Obs. Date Filter Telescope PSF FWHM Photometric Photometric

[YYYY-MM-DD] Aperture [m] [′′] Aperture [′′] Precision [ppt]a

LCO McDonald

2020-09-30 zs 1.0 4.2 2.5 0.5

MuSCAT2

2020-02-07 g, r, i, zs 1.52 1.9,1.8,1.8,1.7 4.0 2.6,0.9,1.0,0.8

2020-02-10 g, r, i, zs 1.52 1.9,1.5,1.7,1.6 4.3 2.0,1.2,1.2,0.9

2020-02-11 g, r, i, zs 1.52 1.8,1.5,1.6,1.2 4.3 1.6,1.1,0.8,0.8

OAA

2020-02-13 Ic 0.40 5.5 10.0 1.3

2020-02-21 Ic 0.40 7.6 10.0 1.4

RCO

2020-02-20 i′ 0.40 4.8 8.0 1.4

aPhotometric precision is calculated as the rms of the detrended light curve in approximately
5-minute bins.

Las Cumbres Observatory Global Telescope (LCOGT;

Brown et al. 2013) 1 m network node at McDonald Ob-

servatory. We used the TESS Transit Finder, which

is a customized version of the Tapir software package

(Jensen 2013), to schedule our transit observations. The

4096 × 4096 LCOGT SINISTRO cameras have an im-

age scale of 0.′′39 per pixel, resulting in a 26′ × 26′ field

of view. The images were calibrated by the standard

LCOGT BANZAI pipeline (McCully et al. 2018), and pho-

tometric data were extracted with AstroImageJ (Collins

et al. 2017). The TOI-1634.01 observation used 40 sec-

ond exposures and a photometric aperture radius of 2.′′5

to extract the differential photometry.

3.4.2. MuSCAT2

MuSCAT2 (Narita et al. 2019) is a multi-color cam-

era that is able to obtain simultaneous observations in

four bands: Sloan-g, Sloan-r, Sloan-i, and Sloan-zs. The

instrument is mounted on the 1.52m Telescopio Carlos

Sánchez (TCS) at Teide Observatory, Tenerife, Spain.

The field of view of MuSCAT2 is 7.4′ × 7.4′ with a

pixel scale of 0.′′44 per pixel. All the cameras have a

short read out time between 1-4 seconds, which makes

MuSCAT2 an ideal instrument for transit follow-up and

time-series observations in general. We observed three

primary transits of TOI-1634b in all four bands on the

nights of UT 2020 February 7, 10, and 11. For each

night, we set the exposure times to avoid the saturation

of the target star. We reduced the data using standard

procedures: the photometry and transit model fit (in-

cluding systematic effects) was done by the MuSCAT2

pipeline (Parviainen et al. 2019, 2020).

3.4.3. OAA

We observed two full transits of TOI-1634.01 on UT

2020 February 13 and 21 using the main 0.4 m in-

strument ensemble at Observatori Astronòmic Albanyà

(OAA) with stable observation conditions in the valley.

We performed differential photometry in a 36′×36′ star

field centered on TOI-1634 using the Ic filter with 10.′′0

photometric apertures (in 7.′′4 FWHM conditions) using

the AstroImageJ pipeline. The sequences consisted of

88 and 148 frames of 120 s and 100 s exposure times,

respectively. A small number of outlying points dur-

ing transit due to instrumental inconveniences (>10σ)

were removed before the transit fit. No significant NEB

signals were detected within 2.′5 of the target after per-

forming a thorough NEB check with different apertures
from 4.′′5− 10.′′0.

3.4.4. RCO

A full transit observation of TOI-1634.01 was obtained

on UT 2020 February 20 using the RCO 40 cm telescope

located at the Grand-Pra Observatory, Switzerland. We

observed a full transit in the Sloan i’ passband with an

exposure time of 90 seconds. We produced the light

curve of TOI-1634.01 using the AstroImageJ pipeline

with 8.′′0 apertures and by detrending against airmass

and FWHM. We confirmed that no NEB signals ap-

peared at the expected time within 2.′5 of TOI-1634.

3.5. High-resolution imaging

The smallest PSF of our seeing-limited photometric

observations has a full width at half maximum (FWHM)

of 1.′′2. Thus, with seeing-limited photometry alone we
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are insensitive to sources more closely separated from

TOI-1634 than approximately this limit. To check for

blended sources within 1.′′0, we obtained four sets of

high-resolution imaging sequences (Figure A3), which

are described in the following subsections. Other than

the known stellar companion at 2.′′69 separation, we

do not find evidence for any additional contaminating

sources down to 0.′′2 given the sensitivity of our observa-

tions and thus do not find any supporting evidence for

a massive long-period companion that may have been

able to account for TOI-1634’s excess astrometric noise

in Gaia EDR3. As such, TOI-1634.01 remains a viable

planet candidate.

3.5.1. ′Alopeke

We obtained speckle interferometric images of TOI-

1634 on UT 2020 February 16 using the ′Alopeke in-

strument5 mounted on the 8 m Gemini North telescope

on the summit of Maunakea in Hawai’i. ′Alopeke si-

multaneously collects diffraction-limited images at 562

and 832 nm. Our data set consists of 7 minutes of total

integration time taken as sets of 1000 × 0.06 s images.

Following Howell et al. (2011), we combined all images,

subjected them to Fourier analysis, and produced recon-

structed images from which the 5σ contrast curves are

derived in each passband. Figure A3 presents the two

contrast curves as well as the 832 nm reconstructed im-

age. Our measurements reveal TOI-1634 to be a single

star down to ∆mag 5− 7, eliminating all main sequence

stellar companions earlier than M6 within the spatial

limits of 0.6-1.0 au at the inner working angle, and out

to 42 au at 1.′′2.

3.5.2. ShARCS

We observed TOI-1634 on UT 2020 December 1 us-

ing the ShARCS camera on the Shane 3m telescope at

Lick Observatory. Our observations were taken using

the Shane adaptive optics (AO) system in natural guide

star mode. We collected our observations using a 4-

point dither pattern with a separation of 4.′′0 between

each dither position. We obtained a pair of sequences;

in the J and KS bands with exposure times of 7.5 s and

15 s, respectively. See Savel et al. (2020) for a detailed

description of the observing strategy and reduction pro-

cedure. Our AO images and contrast curves for each

imaging sequence are shown in Figure A3. We detect

the known companion but find no other nearby compan-

ions within 1.′′0 down to ∆J = 3.6 mag and ∆KS = 4

mag.

5 https://www.gemini.edu/instrumentation/alopeke-zorro

3.6. Precise radial velocity measurements

We obtained 32 spectra of TOI-1634 using the

HARPS-N spectrograph located at the 3.6 m Telesco-

pio Nazionale Galileo (TNG) on La Palma, Canary Is-

lands. HARPS-N is a high resolution (R = 115, 000)

optical échelle spectrograph whose long-term pressure

and temperature stability enable it to reach sub-meter-

per-second stability (Cosentino et al. 2012). The expo-

sure time was fixed to 1800 s. We follow the standard

procedure for M dwarf observations with HARPS-N and

focus solely on the échelle orders redward of aperture 18

(i.e. 440-687 nm; Anglada-Escudé & Butler 2012). The

median total S/N of our spectra is 107.

We obtained our observations over a 210-day span be-

tween UT 2020 August 7 and 2021 March 4 as part of

the HARPS-N collaboration Guaranteed Time Observa-

tions. Due to the proximity of TOI-1634.01’s orbital pe-

riod to one day (P = 0.989 days), we were unable to ob-

tain uniform sampling of the planet’s orbital phase. For-

tunately, the combination of the planet’s ephemeris and

the longitude of the TNG observatory resulted in prefer-

ential sampling of the planet’s orbit near its quadrature

phases (i.e. φ ∼ ±0.25). The information content of

our time series with respect to the RV semiamplitude is

much richer than if only orbital phases close to 0 and

0.5 could be sampled. However, although this restricted

sampling had only a small effect on the inference of the

planet’s RV semiamplitude from preliminary analyses,

we found that the constraints on the orbital eccentric-

ity were very weak when left unconstrained. Note that

given the planet’s ultra-short period (USP), it is rea-

sonable to expect a circularized orbit with little to no

eccentricity (see Section 5.1). To remedy the lack of

observational constraints on orbital eccentricity, the six

most recent RV measurements were intentionally sched-
uled to fill in the gaps in our orbital phase sampling in

an effort to distinguish between circular and eccentric

orbital solutions.

We extracted the RVs via template-matching using

the TERRA pipeline (Anglada-Escudé & Butler 2012).

Template-matching is a commonly used tool for the

RV extraction from M dwarf spectra as it is known to

achieve improved RV precision over the more traditional

cross-correlation function techniques (e.g. Astudillo-

Defru et al. 2015). TERRA works by constructing a mas-

ter template spectrum by coadding all of the individual

spectra after shifting each spectrum to the barycentric

frame. The barycentric corrections are retrieved from

the HARPS-N Data Reduction Software (DRS; Lovis &

Pepe 2007). We ignore spectral regions in which the

telluric absorption exceeds 1%. The RV of each spec-

trum is then calculated via least-squares matching of
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the spectrum to the master template in velocity space.

Due to the poor S/N of the bluest orders, we only focus

on échelle orders redward of aperture 18. We obtain a

median RV uncertainty of 1.73 m s−1.

Figure 5 shows the GLS periodograms of the RVs,

the window function, and the following activity indi-

cators produced by the DRS: CCF FWHM, CCF BIS,

Hα (6563Å), and both sodium doublet features Na D1

(5890Å) and Na D2 (5896Å). We do not observe any

significant periodic signals in any of the activity indica-

tors, thus we do not recover the stellar rotation period

from these spectroscopic indicators. The only significant

(FAP < 1%) persistent signal that emerges in multiple

time series is close to 1-day, which we expect in the RVs

due to the transiting planet candidate with P = 0.989

days (also shown zoomed-in in Figure 6). The 1-day

signal is also apparent in the window function due to

effect of the one day alias: a phenomenon that often in-

hibits the detection of periodic RV signals close to one

day (Dawson & Fabrycky 2010) but is not a major issue

in our analysis due to the strong prior on the planet’s

orbital period from the transit data. The time series

depicted in Figure 5 are provided in Table 3.

One remaining low FAP signal is seen solely in the

RVs at a frequency of 1/113 = 0.00885 days−1. The

origin of the 113-day signal is unlikely to be due to stel-

lar rotation as the signal is not visible in any of the

activity indicators, and it would represent an uncharac-

teristically long rotation period for an inactive M dwarf

with the mass of TOI-1634. The signal may also po-

tentially be due to the long-period companion that was

posited based on the excess noise in the Gaia EDR3 as-

trometry (Section 2). However, Figure 6 reveals that

the 113-day signal (i.e. fL = 1/113 = 0.00885 days−1)

is an alias as it can explain the forest of peaks alias-

ing the planet candidate at the frequencies fp + nfL,

where fp = 1/0.98934 = 1.01077 days−1 is the orbital

frequency of TOI-1634.01 and n takes on integer values.

In Section 4.2 we will confirm that the 113-day signal

is a spurious aliased signal that disappears upon the re-

moval of the signal at fp.

4. TRANSIT PLUS RV ANALYSIS AND RESULTS

We proceed with measuring the accessible planetary

parameters following a two-step process. We first model

the TESS transit light curve alone to remove any resid-

ual low-order systematics and to derive initial estimates

of the transit parameters (Section 4.1). We then use

those initializations to produce a global transit plus RV

model from which we measure the physical and orbital

properties of TOI-1634 b (Section 4.2).

Figure 5. GLS periodograms of the HARPS-N RVs, window
function (WF), and spectroscopic indicators of TOI-1634.
Left column: the GLS periodogram of the time series labeled
on the y-axis. The horizontal dashed lines report the FAP
levels of 0.1%, 1%, and 10%. Right column: the FAP as a
function of normalized power.

4.1. TESS Transit Analysis

Standard systematics detrending has already been ap-

plied to the TESS PDCSAP photometry by the SPOC.

However, some low-amplitude variability is seen to per-

sist which we attribute to residual systematics (top

panel of Figure 3). Here we model the PDCSAP light curve
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Table 3. HARPS-N time series of TOI-1634

Time RV σRV FWHM BIS Hα Na D1 Na D2

[BJD - 2,457,000] [m s−1] [m s−1] [km s−1] [km s−1]

2068.720217 -0.246 1.753 3.064 -12.248 0.911 0.486 0.613

2069.716163 -6.512 2.427 2.974 -6.289 0.892 0.472 0.627

2070.717423 -6.615 1.572 2.989 4.337 0.879 0.441 0.585

Note—For conciseness, only a subset of three rows are depicted here to illustrate the
table’s contents. The entirety of this table is provided in the arXiv source code and
will ultimately be available as a machine readable table in the journal.

Figure 6. The GLS periodogram of the TOI-1634 RVs in
the vicinity of the planet candidate’s orbital frequency fp =
1/0.98932 days−1. The forest of peaks can be well-explained
as aliasing by the long period frequency fL = 1/113 days−1

seen in the RVs. The horizontal dashed lines report the FAP
levels of 0.1%, 1%, and 10%.

with a transiting planet model plus systematics model in

the form of an untrained Gaussian process (GP). The co-

variance of the GP is parameterized as a stochastically-

driven simple harmonic oscillator in Fourier space, which

enables efficient computations of the GP’s marginalized

likelihood when operating on large datasets (i.e. when

number of data points� number of model parameters).

The spectral density of the covariance kernel is

S(ω) =

√
2

π

S0ω
4
0

(ω2 − ω2
0)2 + (

√
2ω0ω)2

, (4)

where ω0 is the frequency of the undamped oscillator

and S0 describes the spectral power at ω0. We also

include an additive scalar jitter term to account for

any excess uncorrelated noise in the TESS photometry:

sTESS. The simultaneous Mandel & Agol (2002) transit

model has the following free parameters: stellar mass

Ms, stellar radius Rs, quadratic limb-darkening coeffi-

cients u1,T , u2,T , orbital period P , time of mid-transit

T0, planet radius rp, impact parameter b, eccentric-

ity e, argument of periastron ωp, and flux baseline f0.

We include samples of Ms and Rs as, together with

P , they uniquely constrain the scaled semimajor axis

a/Rs and the stellar density, which in turn constrains

permissible values of e and ωp (Moorhead et al. 2011;

Dawson & Johnson 2012). Our full model features 14

model parameters with the following parameterizations:

{lnω0, lnS0ω
4
0 , ln s

2
TESS,Ms, Rs, u1,T , u2,T , lnP, T0, ln rp,

b, e, ωp, f0}. The respective priors are listed in Table 4.

We use PyMC3 (Salvatier et al. 2016) within the

exoplanet package (Foreman-Mackey et al. 2019) to

evaluate the model’s joint posterior via Markov Chain

Monte Carlo (MCMC). Within exoplanet, the separate

software packages celerite (Foreman-Mackey et al.

2017) and STARRY (Luger et al. 2019) are used to cal-

culate the GP and transit models, respectively. We run

four simultaneous chains with 4000 tuning steps to de-

rive the model’s joint posterior. We use the maximum

a-posteriori (MAP) point estimates of the GP hyperpa-

rameters to construct the GP posterior (i.e. predictive)

distribution whose mean function we use to detrend the

TESS photometry (middle panel of Figure 3). We then

adopt the MAP transit model parameters to initialize

the MCMC of our global model in the next section.

4.2. Global Modeling

We proceed with constructing our global model, which

jointly considers the transit and RV datasets. The

primary purpose of our seeing-limited photometric ob-

servations (Section 3.4) were to rule out neighboring

sources as the origin of the TESS transit events (i.e.

NEBs). This purpose has been successfully served so

there is no need to include all of those observations in

our global model. Instead, here we only include the

most recent high S/N observation from LCOGT in the

zs-band. This choice provides the longest time base-

line and thus provides the strongest constraints on the

planet’s ephemeris.
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Table 4. TESS light curve and RV model param-
eter priors

Parameter Fiducial Model Priors

Stellar parameters

Ms [M�] N (0.502, 0.014)

Rs [R�] N (0.450, 0.013)

Light curve hyperparameters

f0,T U(− inf, inf)

lnω0 [days−1] N (0, 10)

lnS0ω
4
0 N (ln var(f ′PDCSAP), 10)

ln s2
TESS N (ln var(f ′PDCSAP), 10)a

u1,T U(0, 1)

u2,T U(0, 1)

RV parameters

ln sRV [m s−1] U(−5, 5)

γRV [m s−1] U(−10, 10)

TOI-1634 b parameters

P [days] U(− inf, inf)

T0 [BJD-2,457,000] U(− inf, inf)

ln rp [R⊕] N (0.5 · ln(Z) + lnRs, 1)b

rp/Rs U(− inf, inf)

b U(0, 1 + rp/Rs)

lnK [m s−1] U(−4, 4)

e B(0.867, 3.03)c

ω [rad] U(−π, π)c
√
e cosω U(−1, 1)
√
e sinω U(−1, 1)

Note—Gaussian distributions are denoted by N
and are parameterized by mean and standard
deviation values. Uniform distributions are de-
noted by U and bounded by the specified lower
and upper limits. Beta distributions are denoted
by B and are parameterized by the shape param-
eters α and β.

af ′PDCSAP is the flux time series representing the
dilution and background-corrected PDCSAP light
curve from TESS.
bThe transit depth of TOI-1634.01 reported by the

SPOC: Z = 1520 ppm.

cFor use in the TESS analysis only Kipping 2013.

Even inactive M dwarfs rotate and exhibit some level

of magnetic activity. However, our photometric and

spectroscopic analyses have indicated that TOI-1634

shows no evidence for coherent and temporally sus-

tained signals from stellar activity. As such, in our

fiducial model, we do not attempt to model any tempo-

ral correlations from stellar activity and simply model

excess jitter with an additive scalar term sRV. Our fidu-

cial transit plus RV model therefore features a total of

16 parameters. Among these are the same transit model

parameters described in Section 4.1, with the exception

of the GP hyperparameters as here we consider the

detrended TESS light curve. However, we modify the

parameterization of rp, e, and ωp as follows. The planet

radius rp becomes the planet-to-star ratio (rp/Rs)i,

which has a unique index i for each passband ∈ [T, zs].

Similarly, each passband has a unique flux baseline

f0,i. The zs limb-darkening coefficients were fixed to

u1,LCO = 0.17 and u2,LCO = 0.42 (Claret & Bloemen

2011). To avoid the Lucy-Sweeney bias against e = 0,

we elect to sample the parameters h =
√
e cosωp and

k =
√
e sinωp (Lucy & Sweeney 1971; Eastman et al.

2013)6. The RV component of our model then consists of

three additional parameters: the RV semiamplitude K,

the velocity offset γRV, and the aforementioned additive

scalar jitter sRV. Our complete set of model parameters

is {Ms, Rs, f0,T , f0,LCO, u1,T , u2,T , P, T0, b, (rp/Rs)T ,

(rp/Rs)LCO, h, k, lnK, γRV, ln sRV}. Their respective

priors are also listed in Table 4.

Given that the Gaia EDR3 astrometric solution may

be consistent with the existence of a long-period com-

panion, we also considered an RV model that includes

a linear trend term. We determine that the slope of

the linear trend is consistent with zero, thus indicating

that our RV data are able to strongly rule out a long-

period companion out to approximately the baseline of

our observations (i.e. 210 days).

We fit the TESS, LCO, and HARPS-N RV data with

our fiducial model and sample the joint posterior us-

ing the affine-invariant ensemble MCMC sampler emcee

(Foreman-Mackey et al. 2013). We initialize 200 walkers

and evaluate the convergence of each walker’s chain by

insisting that ≥ 10 autocorrelation times are sampled.

MAP point estimates of the model parameters are de-

rived from their respective marginalized posteriors and

are reported in Table 5 along with uncertainties derived

from the 16th and 84th percentiles. The resulting transit

model is shown in the lower panel of Figure 3 while the

RV results are shown in Figure 7. The Keplerian RV

signal from TOI-1634 b is clearly detected with a semi-

amplitude of K = 5.04+0.70
−0.72 m s−1 and on an orbit that

is consistent with circular (i.e. e < 0.16 at 95% confi-

dence). The 113-day signal in the RVs disappears with

6 Due to the high probability of TOI-1634 b being tidally circular-
ized, we also tested a model with a fixed circular orbit and found
that the resulting RV semiamplitude and its measurement pre-
cision are effectively insensitive to the assumption of a circular
orbit.
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Figure 7. The TOI-1634 RVs and model from our fiducial global analysis. Top row: the raw HARPS-N RVs overlaid with
the best-fit Keplerian solution for TOI-1634 b. The GLS periodogram of the RVs is shown on the left. The vertical green
band highlights the orbital period of TOI-1634 b. The horizontal dashed lines depict the 0.1%, 1%, and 10% FAPs. Middle
row: the RV residuals along with the corresponding GLS periodogram. Bottom panel: the planetary signal phase-folded to the
orbital period of TOI-1634 b. The marker colors indicate the individual observation times, which illustrates our effort to obtain
more complete sampling of the orbital phase. The RV measurement uncertainties throughout include the contribution from the
additive scalar RV parameter sRV.

the subtraction of the planet model, which supports the

notion that the signal was merely an alias rather than

physical.

Notably, we find the MAP scalar jitter to be com-

parable to the median RV measurement uncertainty

(sRV = 2.2 ± 0.5 m s−1). This indicates that there is

a significant dispersion in the RVs that is unrelated to

the known planet and does not exhibit a coherent pe-

riodicity. We note that we consider the possibilities of

stellar activity and additional planets in Sections 4.3

and 5.4. With the quadrature addition of sRV to the RV

uncertainties, our RV residuals exhibit an rms of 3.10 m

s−1 with χ2 = 1.21.
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Table 5. Point estimates of the TOI-1634 model parameters

Parameter Fiducial Model Values

Transit parameters

Baseline flux, f0,T 1.000035± 0.000020

Baseline flux, f0,LCO 1.0015± 0.0026

lnω0 0.85± 0.10

lnS0ω4
0 1.54+0.51

−0.56

ln s2TESS 0.0014± 0.006

TESS limb darkening 0.28+0.19
−0.15

coefficient, u1

TESS limb darkening 0.09+0.22
−0.20

coefficient, u2

RV parameters

Log Jitter, ln sRV 0.81± 0.17

Velocity offset, γRV [m s−1] 0.32+0.56
−0.58

TOI-1634 b parameters

Orbital period, P [days] 0.989343± 0.000015

Time of mid-transit, 1791.51473± 0.00061

T0 [BJD - 2,457,000]

Transit duration D [hrs] 1.027± 0.028

Transit depth, Z [ppt] 1.323+0.095
−0.092

Scaled semimajor axis, a/Rs 7.38± 0.20

Planet-to-star radius ratio, rp/Rs 0.0364± 0.0013

Impact parameter, b 0.24± 0.13

Inclination, i [deg] 88.2± 1.1

Eccentricity, e < 0.16a

Planet radius, rp [R⊕] 1.790+0.080
−0.081

Log RV semiamplitude, lnK 1.62+0.13
−0.15

RV semiamplitude, K [m s−1] 5.04+0.70
−0.72

Planet mass, mp [M⊕] 4.91+0.68
−0.70

Bulk density, ρp [g cm−3] 4.7+1.0
−0.9

Surface gravity, gp [m s−2] 15.0+2.6
−2.5

Escape velocity, vesc [km s−1] 18.5+1.3
−1.4

Semimajor axis, a [au] 0.01545± 0.00014

Insolation, F [F⊕] 121+12
−11

Equilibrium dayside temperature, 1307± 30

Teq,day [K]b

Equilibrium temperature, Teq [K]c 924± 22

Envelope mass fraction, Xenv [%]d 0.30+0.19
−0.17

a95% upper limit.

bAssuming a tidally locked dayside and zero albedo.

cAssuming uniform heat redistribution and zero albedo.

dAssuming an Earth-like solid core with a 33% iron core mass frac-
tion (i.e. a 33% iron inner core plus a 67% silicate mantle).

4.3. Attempts at more sophisticated treatments of

stellar activity

We note that we did make additional attempts at

more complete RV models that included a treatment

of evolving stellar activity. Our first attempt to assess

the impact of stellar activity was to use the SCALPELS

methodology of Collier Cameron et al. (2020). In sum-

mary, SCALPELS attempts to distinguish dynamically-

produced RV variations from activity-induced distor-

tions on each spectrum’s CCF by projecting the RV

time series onto the ten highest variance principle com-

ponents of the autocorrelation function of each CCF.

The shape changes showed no discernible trends or pe-

riodicity on timescales from 3 days to the duration of

the HARPS-N campaign (i.e. 210 days). We concluded

that the effects of stellar activity on the measured RVs

are unmeasurable with our data.

In defiance of the outcome from SCALPELS, we also

attempted to model the weakly correlated RV residuals

using an untrained quasi-period GP. The quasi-periodic

covariance kernel is parameterized by the covariance

amplitude aGP, the exponential decay timescale of ac-

tive regions λGP, the coherence ΓGP, and the periodic

timescale PGP, often related to Prot or one of its low-

order harmonics. These four GP hyperparameters are

appended to the set of model parameters, thus resulting

in a total of 20 model parameters. Our GP implemen-

tation methodology is standard and has been outlined

in detail in previous work (Cloutier et al. 2019a, 2020a).

We have no prior constraints on the GP hyperparam-

eters from a training set because no available activity-

sensitive time series shows evidence for stellar activity.

We attempted two flavors of GP modeling: firstly with

no prior on any of the GP hyperparameters and sec-

ondly with a prior on PGP based on the estimated Prot

= 77+26
−20 days for M dwarf rotation-activity relations.

The results from both MCMCs yielded no constraints

on the remaining GP hyperparameters and more impor-

tantly, resulted in measurements of the planet’s semi-

amplitude that were consistent with zero. We conclude

that the non-deterministic nature of the untrained GP

has too much flexibility and effectively absorbs the plan-

etary signal. We therefore default to the results from our

fiducial model for the remainder of this study.

5. DISCUSSION

5.1. Fundamental Planetary Parameters

From our global light curve plus RV analysis, we

find that TOI-1634 b has an orbital period of P =

0.989343 ± 0.000015 days. Using the stellar parame-

ters from Table 1, this corresponds to a semimajor axis

of a = 0.01545 ± 0.00014 au and an insolation flux of

F = 121+12
−11F⊕. Although the tidal quality factors Q

for Super-Earths and sub-Neptunes are largely unknown
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(Morley et al. 2017a; Puranam & Batygin 2018), for

a range of plausible Q factors encompassing the Earth

(Q⊕ ∼ 10; Murray & Dermott 1999), to Uranus and

Neptune (Q ∼ 104; Tittemore & Wisdom 1990; Zhang

& Hamilton 2008), TOI-1634 b’s ultra-short period re-

sults in a tidal circularization timescale of < 3 Myrs.

Such a short circularization timescale strongly suggests

that the orbit of TOI-1634 b is circularized. The corre-

sponding equilibrium dayside temperature of TOI-1634

b is Teq,day = 1307 ± 30 K assuming zero albedo. If we

assume efficient heat redistribution around to the night-

side, then the zero-albedo equilibrium temperature be-

comes Teq = 924± 22 K.

We also measure the radius and mass of TOI-1634 b to

be rp = 1.790+0.080
−0.081 R⊕ and mp = 4.91+0.68

−0.70 M⊕. These

values correspond to 22σ and 7σ detections, respectively.

Combining these values gives a 4.7σ bulk density mea-

surement of ρp = 4.7+1.0
−0.9 g cm−3. Figure 8 compares

the mass and radius of TOI-1634 b to the current pop-

ulation of small M dwarf planets with masses measured

to better than 3σ. TOI-1634 b is under-dense compared

to an Earth-like composition planet of the same mass

and is inconsistent with an Earth-like composition at

5.9σ. As such, TOI-1634 b could belong to the popula-

tion of enveloped terrestrials whose cores resemble that

of the Earth but also require an extended gaseous en-

velope to explain their masses and radii. Assuming an

Earth-like planetary core surrounded by a H/He enve-

lope with solar-metallicity (µ = 2.35), whose envelope

structure is described by the semi-analytic radiative-

convective model from Owen & Wu (2017), we find that

TOI-1634 b would only require an envelope mass frac-

tion ofXenv = 0.30+0.19
−0.17% to explain its mass and radius.

Here the uncertainties on Xenv arise from sampling the

marginalized posteriors of mp, rp, and Teq. However,

such an extended H/He envelope at 121 times Earth in-

solation is highly susceptible to thermally-driven hydro-

dynamic escape (Lopez 2017), which makes TOI-1634

unlikely to be an enveloped terrestrial. Another possi-

bility is that TOI-1634 b formed beyond the ice line and

has retained a volatile-rich composition (Raymond et al.

2008) with a high mean molecular weight atmosphere

that may be resistant to hydrodynamic escape (Lopez

2017). Although we cannot rule out this possibility with

our data, a volatile-rich composition is generally disfa-

vored at the population level as forward modeling of the

radius valley has revealed that the location of the ra-

dius valley strongly favors a smoothly-varying (i.e. not

bimodal) distribution of underlying core masses, whose

compositions are Earth-like rather than iron or water-

rich (Owen & Wu 2017; Wu 2019; Gupta & Schlichting

2019; Rogers & Owen 2021).

Figure 8. Mass-radius diagram for small planets transit-
ing M dwarfs and with precisely measured masses of ≥ 3σ.
TOI-1634 b is depicted by the lone triangle marker. The solid
curves are illustrative interior structure models of 100% wa-
ter, 100% magnesium silicate rock, 33% iron plus 67% rock
(i.e. Earth-like), and 100% iron (Zeng & Sasselov 2013).
The dashed curves depict models of enveloped terrestrials
consisting of an Earth-like core enveloped in H2 gas with a
1% envelope mass fraction over a range of equilibrium tem-
peratures. The dashed curve bounds the forbidden shaded
region according to models of maximum collisional mantle
stripping by giant impacts (Marcus et al. 2010).

Alternatively, the fact that TOI-1634 b appears to

be under-dense relative to an Earth-like composition

may be explained by a rocky composition that is en-

hanced in Ca and Al-rich minerals rather than the typ-

ical Earth-like rocky compounds of magnesium silicates

and iron (Dorn et al. 2019). At temperatures exceeding

1200 K within the mid-plane of the protoplanetary disk,

the condensation fraction of Ca and Al is greater than

that of Mg, Si, and Fe, which would provide more solid

Ca and Al-rich material from which rocky planets could

form. As such, if TOI-1634 b formed in situ, it could be-

long to an alternative class of Super-Earths whose rocky

interior compositions differ significantly from the Earth

and the majority of Super-Earths.

Among the M dwarf planets depicted in Figure 8 that

are under-dense relative to an Earth-like composition

(denoted sub-Neptunes for simplicity), all of which are

larger than 1.7 R⊕, TOI-1634 b is fairly unique in that

the insolation it receives is uncharacteristically high.

With an insolation flux of F = 121+12
−11F⊕, TOI-1634 b

is the second most highly irradiated sub-Neptune orbit-

ing an M dwarf (TOI-1685 b receives an insolation flux
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of 217 F⊕; Bluhm et al. 2021). This fact makes TOI-

1634 b a somewhat uniquely accessible sub-Neptune

for atmospheric characterization. The physical impli-

cations of a high equilibrium temperature on a sub-

Neptune will have to wait for such observations (see

Section 5.3). Other examples of well-studied USP sub-

Neptunes around FGK stars include 55 Cnc e (Bourrier

et al. 2018) and WASP-47 e (Vanderburg et al. 2017).

The exact cause of these peculiar under-dense planets is

unknown but it has been noted that 55 Cnc and WASP-

47 are the most metal-rich stars among small USP planet

hosts ([Fe/H]55 Cnc = 0.35 dex, [Fe/H]WASP-47 = 0.38

dex; Dai et al. 2019) and they are the only known sys-

tems to contain both a small USP planet and a close-

in giant planet, the presence of which can influence icy

pebble drift and thus the water inventory of the inner

disk (Bitsch et al. 2021). For comparison, TOI-1634 also

appears to be somewhat metal-rich ([Fe/H]= 0.23+0.07
−0.08

dex) but our RV analysis does not provide any evidence

for an outer giant planet. Further investigations of these

features, and the possiblity that these USP planets are

representative of a new class of Ca and Al-rich Super-

Earths, may provide clues of possible evolutionary path-

ways that are able to produce sub-Neptune USP planets.

5.2. Implications for the emergence of the radius valley

around early M dwarfs

A variety of physical mechanisms have been proposed

to explain the emergence of the radius valley. These

include models of thermally-driven atmospheric mass

loss such as photoevaporation: hydrodynamic escape

driven by stellar XUV heating (Owen & Wu 2013; Jin

et al. 2014; Lopez & Fortney 2014; Chen & Rogers 2016;

Owen & Wu 2017; Jin & Mordasini 2018; Lopez & Rice

2018), and core-powered mass loss: atmospheric heating

and escape driven by the planet’s own cooling luminos-

ity (Ginzburg et al. 2018; Gupta & Schlichting 2019,

2020). Conversely, the radius valley has also been pro-

posed as a natural outcome of the formation of rocky

Super-Earths and enveloped terrestrials from a gas-poor

(but not gas-depleted) environment, without the need

to invoke any subsequent atmospheric escape (Lee &

Connors 2021). When parameterizing the slope of the

radius valley via rp,valley ∝ P β , each of the photoevapo-

ration, core-powered mass loss, and gas-poor formation

models predict that β ∈ [−0.15,−0.09] (Lopez & Rice

2018; Gupta & Schlichting 2020; Lee & Connors 2021).

Whereas, if enveloped terrestrials form within the first

few Myrs when the gaseous disk is still present, and ter-

restrial planet formation proceeds at late times after the

dissipation of the gaseous disk in a gas-depleted environ-

ment, then the period-dependence of the radius valley is

expected to exhibit the opposite sign (β = 0.11; Lopez

& Rice 2018).

The radius valley around Sun-like stars with Teff

> 4700 K has been well-characterized with both Ke-

pler and K2 (e.g. Fulton et al. 2017; Van Eylen et al.

2018; Fulton & Petigura 2018; Martinez et al. 2019;

Zink et al. 2020) and measurements of β take on values

∈ [−0.11,−0.09] (Van Eylen et al. 2018; Martinez et al.

2019). Thus, a thermally-driven mass loss or gas-poor

formation model is favored in this stellar mass regime.

However, around lower mass mid-K to mid-M dwarfs,

there is tentative evidence that β flattens and becomes

consistent with predictions from gas-depleted formation

(β = 0.06 ± 0.02; Cloutier & Menou 2020). This sug-

gests that gas-depleted formation, similar to the sus-

pected formation of the inner solar system, might begin

to dominate the close-in planet population around M

dwarfs. The distinct slopes of the radius valley’s period

dependence naturally carve out a region of the orbital

period-planet radius parameter space within which the

models make opposing predictions as to whether any

planets located therein should have a rocky Earth-like

composition or instead be enveloped in H/He gas (Fig-

ure 9). We refer to these radius valley planets around

M dwarfs as keystone planets as they can be used to

directly rule out certain models from precise mass and

radius measurements. We note however that not all key-

stone planets are equally useful for constraining model

applicability as, for example, keystone planets with or-

bital periods between 10-40 days can be consistent with

both models given typical uncertainties on their plane-

tary radii.

With its orbital period of 0.989 days and its size of

1.790+0.080
−0.081 R⊕, TOI-1634 b sits inside of the M dwarf

radius valley between the model predicted slopes (Fig-

ure 9). Figure 9 also features the subset of M dwarf plan-

ets from Figure 8 with precise RV masses. Planets are

classified based on their bulk compositions inferred from

their masses and radii. Earth-like planets are defined as

those consistent with an Earth-like compositional curve,

gas-rich planets cannot be explained by even 100% wa-

ter composition and require an extended H/He enve-

lope, and the intermediate planets we broadly classify

as “ambiguous” given that they may be explained by

a variety of compositions including a H/He envelope, a

volatile-rich composition, or a rocky composition that is

enhanced in Ca and Al. Our analysis revealed that TOI-

1634 b is inconsistent with an Earth-like composition at
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Figure 9. Period-radius diagram for small planets transiting M dwarfs and with precisely measured RV masses of ≥ 3σ. The
gray contours depict the planetary occurrence rates around low mass stars from Kepler and K2 (Cloutier & Menou 2020). The
dashed and solid lines depict model predictions of the location of the M dwarf radius valley from thermally-driven mass loss and
from gas-depleted formation, respectively. The intermediate shaded regions host the so-called keystone planets like the newly
discovered TOI-1634 b. The marker shapes depict planets whose bulk compositions have been determined to be Earth-like
(circles), gas-rich (triangles), or ambiguous (see text for possible explanations; squares). The colorbar highlights each planet’s
bulk density. The dots depict keystone TOIs that have yet to be vetted as validated planets or false positives.

5.9σ7 and requires an alternative physical interpretation

to explain its mass and radius. As such, we assign TOI-

1634 b to the “ambiguous” category.

Regardless of the true composition of TOI-1634 b, the

inconsistency of TOI-1634 b’s mass and radius with an

Earth-like composition indicates that it is not compati-

ble with models of thermally-driven mass loss of Earth-

like cores and may support the gas-depleted formation

model. However, this picture may not be so clear be-

cause models of thermally-driven mass loss have focused
on rocky planets that have Earth-like compositions (e.g.

Owen & Wu 2017; Gupta & Schlichting 2019) and have

not considered the possiblity of other types of rocky

planets that are Ca and Al-enriched. But if the gas-

depleted formation scenario was operating in the TOI-

1634 system then TOI-1634 b would have formed early

on within the gaseous disk’s lifetime and subsequently

accreted a primordial H/He envelope that was not en-

tirely lost to space. However, this presents a clear ambi-

guity in that if TOI-1634 b had accumulated a primor-

dial H/He envelope at its current location, then such

an envelope should have been rapidly lost to thermal

7 Similarly, the mass of TOI-1634 b is inconsistent with a 100%
MgSiO3 composition at 2.6σ.

escape. The curious case of TOI-1634 b may be recon-

ciled if it migrated inward to its current location after

the extended XUV active phase (0.5−1 Gyr; Shkolnik &

Barman 2014; France et al. 2016) and due to its hosting

of a high mean molecular weight atmosphere. Alterna-

tively, TOI-1634 b may indeed be a rocky planet that

is enhanced in Ca and Al and hence is under-dense rel-

ative to an Earth-like rocky planet (Dorn et al. 2019).

However, each of these scenarios are speculative as they

are presently indistinguishable with the data available.

The compositions of the keystone planets classified as

“ambiguous” make it difficult to robustly establish gas-

depleted formation as the mechanism responsible. If we

wish to establish the importance of the gas-depleted

formation scenario around M dwarfs, we recommend

that RV follow-up campaigns of transiting planets focus

on small, potentially-rocky planets with orbital periods

& 20 days and very precise radii (e.g. the Super-Earth

LHS 1140 b with P = 24.7 days; Dittmann et al. 2017).

The thermally-driven hydrodynamic escape timescales

for such planets are typically longer than the age of the

system such that if they turn out to be rocky, such com-

positions cannot be explained by atmospheric mass loss

and those planets are likely to have formed rocky. TESS
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has already revealed five such planet candidates8 that we

recommend be targeted for detailed follow-up.

The fact still remains that the composition of TOI-

1634 b does not resemble an Earth-like composition at

5.9σ, a result which supports the notion that thermally-

driven mass loss may not dominate the sculpting of

the close-in planet population around M dwarfs with

masses less than or similar to TOI-1634 (. 0.5 M�).

This proposition is further supported by the compo-

sition of the other keystone USP planet in Figure 9:

the sub-Neptune TOI-1685 b whose host stellar mass is

nearly identical to that of TOI-1634 (Ms,1685 = 0.495

M�; Bluhm et al. 2021). However, because models of

thermally-driven mass loss have assumed that the under-

lying cores of the close-in planet population are Earth-

like, if TOI-1634 b is rocky but not Earth-like (i.e. Ca

and Al-enriched), then its mass and radius may still be

consistent with models of thermally-driven mass loss.

5.3. Prospects for atmospheric characterization

The mass and radius of TOI-1634 b strongly suggest

the presence of a gaseous envelope, which may be ac-

cessible with JWST. Given the unusual combination of

TOI-1634 b’s location in mass-radius space and its close

orbital separation, TOI-1634 b occupies a unique re-

gion of the parameter space wherein it would be par-

ticularly interesting to distinguish between different at-

mospheric compositions. For example, a H2O-rich at-

mosphere would likely be indicative of a substantial ini-

tial water reservoir (Schaefer et al. 2016; Kite & Bar-

nett 2020) whereas a CO2-rich atmosphere may be pro-

duced by a runaway greenhouse if a significant portion

of the planet’s water inventory was photolyzed and lost

to space. Given its ultra-short period, TOI-1634 b is

an attractive candidate to distinguish between these at-

mosphere models via thermal emission observations as

atmospheric signatures are likely to be more easily acces-

sible than in transmission (Morley et al. 2017b). Emis-

sion versus transmission spectroscopy is also less suscep-

tible to signal attenuation by either clouds/hazes or high

mean molecular atmospheres (Miller-Ricci et al. 2009),

and it can also be used to probe the atmospheric tem-

perature profile.

Assuming a dayside temperature of Teq,day = 1307

K, the analytical emission spectroscopy metric (ESM;

Kempton et al. 2018) for TOI-1634 is approximately 23.

This value illustrates TOI-1634 b’s favorability for emis-

sion spectroscopy observations when compared to the

ESM values of the flagship M dwarf planets LHS 3844 b

(Vanderspek et al. 2019), GJ 1132 b (Berta-Thompson

8 TOIs 198.01, 203.01, 256.01, 1266.02, 2094.01, & 2095.02.

et al. 2015), and TRAPPIST-1 b (Gillon et al. 2017),

whose ESM values are 30, 10, and 4, respectively. How-

ever, we note that unlike TOI-1634 b, each of these plan-

ets is consistent with a rocky bulk composition. Malik

et al. (2019) calculated the number of eclipse observa-

tions needed to distinguish between either of the afore-

mentioned atmospheric scenarios and a clear solar com-

position atmosphere for the flagship M dwarf planets

LHS 3844 b, GJ 1132 b, TRAPPIST-1 b. By scaling the

Malik et al. (2019) results for GJ 1132 b to the expected

emission S/N of TOI-1634 b, we estimate that the H2O

and CO2-rich atmospheres could be distinguishable for

one another with 2-4 JWST/MIRI eclipses in its slitless

LRS mode. Similarly, we expect 5 eclipses are required

in order to distinguish between the H2O and solar com-

position models using NIRSpec/G395M.

For the sake of completeness, we also estimate the

number of transit observations needed to detect trans-

mission features. Assuming an isothermal tempera-

ture profile at the zero-albedo equilibrium temperature

Teq = 924 K, the expected depths of transmission fea-

tures at two scale heights (Stevenson 2016; Fu et al.

2017) in a solar composition, H2O-dominated, or CO2-

dominated atmosphere are 102, 13, and 5 ppm, re-

spectively. We simulate NIRISS/SOSS (0.8 − 2.8µm)

and NIRSpec/G395M (2.8− 5.2µm) observations using

PandExo (Batalha et al. 2017) and find that only fea-

tures in a clear solar composition atmosphere would be

detectable at ≥ 3σ with fewer than 10 transits. How-

ever, a clear H/He-dominated atmosphere for TOI-1634

b is highly unlikely given that such an atmosphere is un-

stable at 121 times Earth’s insolation flux (Lopez 2017).

High altitude clouds would also be increasingly detri-

mental to feature detection in transmission, whereas

the presence of clouds may be more easily inferred with

secondary eclipse observations as a high dayside albedo

would distinguish clouds from a bare rocky surface with

fewer than 10 visits (Mansfield et al. 2019).

5.4. Constraints on additional planets

5.4.1. RV sensitivity

M dwarfs hosting multi-planet systems are ubiquitous.

Focusing on Kepler stars with Teff < 4000 K and log g

> 3, Dressing & Charbonneau (2015) found that late K

to early M dwarf stars host 2.5±0.2 planets smaller than

4 R⊕ and out to 200 days per star. Similarly, Gaidos

et al. (2016) confirmed these results over a similar range

of planetary radii (1-4 R⊕) and orbital periods (1.5-

180 days): 2.2 ± 0.3 planets per early M dwarf. Com-

plimentary studies of M dwarf planet occurrence rates

from RV studies have yielded similar results to those

obtained from the Kepler transit survey (Bonfils et al.



18 Cloutier et al.

2013; Tuomi et al. 2014). Although largely limited by

poor counting statistics from the Kepler mission, prelim-

inary occurrence rate calculations around mid-M dwarfs

from Muirhead et al. (2015) and Hardegree-Ullman et al.

(2019) have posited that compact systems (P < 10 days)

of multiple planets are common, and perhaps increas-

ingly so as the host stars become less massive. Indeed,

there have been a number of apparently single transiting

M dwarf systems which later revealed additional planets

following one or both of photometric and RV follow-up

(e.g. GJ 357c,d; Luque et al. 2019, GJ 1132c; Bon-

fils et al. 2018, GJ 3473c; Kemmer et al. 2020, K2-18c;

Cloutier et al. 2019b, LHS 1140c; Ment et al. 2019).

With the existence of one known planet orbiting TOI-

1634, it is reasonable to think that a second planet may

exist but as yet remains undetected because of its small

size, long orbital period, or because its orbit is not in

a transiting configuration. Here we place limits on hy-

pothetical planets around TOI-1634 given our RV time

series. Specifically, we compute the RV sensitivity to

planets around TOI-1634 as a function of planet mass

and orbital period via a set of injection-recovery tests.

We run a Monte Carlo simulation of 104 realizations

by injecting synthetic Keplerian signals into the resid-

uals of the HARPS-N RV time series after the removal

of the MAP solution for TOI-1634 b. In each realiza-

tion, we simulate a single planet. Planet masses and

orbital periods are sampled uniformly in log-space with

the following bounds: 0.1-20 M⊕ and 1-200 days. Or-

bital phases are sampled uniformly from U(0, 2π). We

sample the orbital inclination from the Gaussian distri-

bution N (ib, σi), where ib = 88.2◦ and the dispersion

in mutual inclinations of σi = 2◦ follows from studies

of multi-planet M dwarf systems (Ballard & Johnson

2016). The stellar mass is also sampled from its poste-

rior and is used to calculate the corresponding RV semi-

amplitude assuming a circular orbit. We then inject the

synthetic Keplerian signal into the RV residuals, thus

preserving any residual noise from systematics or un-

corrected stellar activity. The individual measurement

uncertainties and timestamps are left unchanged.

We attempt to recover injected planets following a

two-step process. The search for non-transiting planets

in RV time series does not have the benefit of a-priori

knowledge of the planet’s period and phase. Instead,

probable signals must show a prominent periodic signal

in the GLS periodogram with a FAP ≤ 1%9. Secondly,

the six-parameter Keplerian model must be strongly fa-

9 However, we note that this need not be the case for massive
outer companions, which can induce detectable long-term trends
without a prominent signal in the GLS at its orbital frequency.

Figure 10. RV detection sensitivity to planets orbiting
TOI-1634 as a function of planet mass and orbital period.
The solid line contours highlight the 10% and 90% sensitiv-
ity levels. The thin dashed lines represent lines of constant
semiamplitude with illustrative values equal to 1 m s−1, the
median dispersion in our HARPS-N time series (2.8 m s−1),
and 10 m s−1. The circle marker highlights TOI-1634 b. The
vertical shaded region spans the habitable zone of TOI-1634
whose inner and outer edges are defined by the recent Venus
and early Mars boundaries (Kopparapu et al. 2013).

vored over the null hypothesis (i.e. a flat line). For the

purpose of model comparison, we adopt the Bayesian

Information Criterion BIC = 2 lnL+ ν lnN , where L is

the likelihood of the RV data given the assumed model,

ν is the number of model parameters, and N = 32 is the

number of RV measurements. Taken together, we claim

the successful recovery of an injected planet if and only

if the GLS periodogram power of the largest periodic

signal within 10% of the injected period has FAP ≤ 1%

and the BIC value of the Keplerian model is greater than

ten times the BIC of the null hypothesis. The sensitiv-

ity of our RV dataset is defined as the ratio of number

of recovered planets over the number of injected planets

and is depicted in Figure 10.

Unsurprisingly, we find that the mass and orbital pe-

riod of TOI-1634 b lie within the region where our RV

sensitivity is high (i.e. 90%). Figure 10 also reveals that

at an orbital period of 1 day, we are sensitive to approx-

imately 50% of planets at 3 M⊕ and to all planets & 5

M⊕. Within 10 days, we are sensitive to all planets

≥ 10 M⊕. Our sensitivity to the majority of terrestrial

planets (mp . 5 M⊕) at orbital periods > 3 days is rela-

tively poor due to the large RV dispersion and the mod-

est number of measurements (N = 32). If we adopt the
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empirical recent Venus and early Mars habitable zone

(HZ) limits from Kopparapu et al. (2013) (i.e. 30-125

days), we find that we are only sensitive to very massive

HZ planets (> 15 M⊕). Unfortunately, any such planet

would be an improbable candidate for habitable condi-

tions given that the most massive M dwarf planets with

Earth-like bulk compositions are less massive than 7-8

M⊕ (mp,LHS 1140 b = 7.0 ± 0.9 M⊕; Ment et al. 2019,

mp,TOI-1235 b = 6.9 ± 0.8 M⊕; Cloutier et al. 2020b)

such that any planet whose mass exceeds 15 M⊕ would

have to host a massive H/He envelope, thus rendering

its surface uninhabitable.

5.4.2. Search for transit timing variations

We also conduct a search for transit timing variations

(TTVs) by fitting the individual TESS transits in the

detrended PDCSAP light curve and then select high S/N

seeing-limited transits from Figure A2. We apply a tran-

sit model with all model parameters fixed other than the

time of mid-transit. We fit the 20 TESS and 11 seeing-

limited transits separately and achieve typical photo-

metric precisions on the individual transit times of 4.4

and 7.5 minutes, respectively. We find that the deviation

of the individual transit times from a linear ephemeris

is consistent with a flat line and shows a low rms of

approximately 30 seconds in the TESS transits, which

are of comparatively higher quality. We conclude that

TOI-1634 b shows no evidence for TTVs.

5.5. An Independent Analysis of the TOI-1634 System

Through the international TFOP collaboration, mul-

tiple RV teams began independent follow-up campaigns

to characterize the mass of the planet candidate TOI-

1634.01. Our work based on HARPS-N data presented

herein represents one such effort but we acknowledge a

second RV analysis of this system, which was conducted

independently of our own (Hirano et al. 2021). The

submissions of these works were coordinated between

the two groups but their respective data, analyses, and

manuscripts were kept intentionally separate.

Hirano et al. (2021) presented the mass characterza-

tion of two USP planets, including TOI-1634 b, using

infrared RV measurements taken with the IRD spectro-

graph at Suburu (Tamura et al. 2012). Their resulting

RV semiamplitude is discrepant from ours at 5σ as they

measure a larger RV semiamplitude of K = 10.8±1.0 m

s−1 and show that TOI-1634 b is likely consistent with

an Earth-like composition. Similarly, the second USP

planet presented in Hirano et al. (2021) (TOI-1685 b)

was also found to be consistent with an Earth-like com-

position whereas this planet was previously shown to

be under-dense relative to an Earth-like composition us-

ing CARMENES RV measurements (Bluhm et al. 2021).

The similar analyses conducted in this work, in Hirano

et al. (2021), and in Bluhm et al. (2021) suggest that

the differences in the IRD results compared to HARPS-

N for TOI-1634 b and compared to CARMENES for

TOI-1685 b, are derived from the IRD data and not

from issues with any one group’s analysis. The exact

cause of these discrepancies is currently unknown and

their resolution is left as a future exercise.

6. SUMMARY AND CONCLUSIONS

We presented the discovery of TOI-1634 b, an ultra-

short period keystone planet orbiting an M2 dwarf,

which sits within radius valley. Keystone planets are

useful because knowledge of their bulk composition may

be used to distinguish between radius valley emergence

models of thermally-driven mass loss and gas-depleted

formation. Our work has produced the following main

findings:

1. TOI-1634 b is a sub-Neptune USP planet with P =

0.989343 ± 0.000015 days, rp = 1.790+0.080
−0.081 R⊕,

and mp = 4.91+0.68
−0.70 M⊕. The mass and radius

of TOI-1634 b are inconsistent with an Earth-like

composition at 5.9σ.

2. The composition of TOI-1634 b deviates from ex-

pections from the close-in planet population and

may be explained by either a volatile-rich layer

with a high mean molecular weight atmosphere

that is resistant to atmospheric loss, or by a rocky

composition that is Ca and Al-enriched and con-

sequently under-dense relative to the Earth.

3. The bulk composition of TOI-1634 b is inconsis-

tent with models of thermally-driven mass loss

(i.e. photoevaporation and core-powered mass

loss) and with gas-poor formation. Instead, TOI-

1634 b appears to support the gas-depleted for-

mation model and would suggest that this forma-

tion mechanism may start to dominate the close-in

planet population around M dwarfs with masses

. 0.5 M� if indeed TOI-1634 b is not rocky.

4. Emission spectroscopy observations will help to

establish the chemical and physical properties

that make the atmosphere of TOI-1634 b re-

sistant to hydrodynamic escape. Atmospheric

models of solar composition, H2O-dominated,

and CO2-dominated may be distinguished with

2-5 eclipse observations with JWST/MIRI or

JWST/NIRSpec.

5. Upon evaluating our RV sensitivity to additional

planets, we are able to rule out terrestrial-mass
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planets more massive than 5 M⊕ within 2-3 days

and planets > 15 M⊕ within the star’s habitable

zone between 30-125 days.

The inconsistency of the mass and radius of TOI-1634

b with an Earth-like composition suggests that the gas-

depleted formation scenario is favored over thermally-

driven mass loss to explain its mass and radius. How-

ever, the unknown underlying composition of TOI-1634

b makes this statement nonrobust. To determine the ap-

plicability of gas-depleted formation around M dwarfs,

we advocate for the mass characterization of small plan-

ets with periods & 20 days. If these planets are deter-

mined to be predominantly rocky, that would support

the gas-depleted formation interpretation because the

mass loss timescales for these planets are too long for

thermally-driven mass loss to explain their rocky com-

positions.
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