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A B S T R A C T 

Because many of our X-ray telescopes are optimized towards observing faint sources, observations of bright sources like X-ray 

binaries in outburst are often affected by instrumental biases. These effects include dead time and photon pile-up, which can 

dramatically change the statistical inference of physical parameters from these observations. While dead time is difficult to take 
into account in a statistically consistent manner, simulating dead-time-affected data is often straightforward. This structure makes 
the issue of inferring physical properties from dead-time-af fected observ ations fall into a class of problems common across many 

scientific disciplines. There is a growing number of methods to address them under the name of simulation-based inference 
(SBI), aided by new developments in density estimation and statistical machine learning. In this paper, we introduce SBI as a 
principled way to infer variability properties from dead-time-affected light curves. We use sequential neural posterior estimation 

to estimate the posterior probability for variability properties. We show that this method can reco v er variability parameters on 

simulated data even when dead time is variable, and present results of an application of this approach to NuSTAR observations 
of the galactic black hole X-ray binary GRS 1915 + 105. 

Key words: methods: data analysis – methods: statistical – X-rays: general. 
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 I N T RO D U C T I O N  

s X-ray telescopes become more sensitive and detect even faint 
ources at a high signal-to-noise ratio, systematic biases become 
ncreasingly rele v ant o v er statistical fluctuations. Because man y
nstruments are also optimized for faint sources, bright sources 
specially are targets where instrumental effects such as dead time 
nd photon pile-up can significantly bias astrophysical inferences. 

Dead time is an instrumental effect whereby after arri v al of a
hoton, a photon counting detector cannot record the arri v al of
 subsequent photon within a certain time interval. Dead time 
an be paralyzable or non-paralyzable. For paralyzable dead time, 
ubsequent photons, while not measured, impose their own dead 
ime on the detector, ef fecti vely prolonging the interval the detector
annot record events. In non-paralyzable dead time, photons arriving 
uring this interval will be lost, but no longer affect the detector. 
For bright sources where a significant fraction of photons are lost,

 paralyzable detector might be unable to record for a significant 
raction of the time. Similarly, at high fluxes, a non-paralyzable 
etector may ef fecti vely record photons at a relatively regular 
nterval set by the dead time. In both cases, the effect imposes a
egular structure on to the resulting data set, which becomes readily 
pparent in Fourier representations of the light curve, and thus affects 
easurements of variability properties (Zhang et al. 1995 ). 
The effect of dead time on the periodogram can be easily modelled

nder two key assumptions that (1) the variability of the observed 
strophysical source is low, and (2) that the dead time for a given
 E-mail: d.huppenkothen@sron.nl 
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etector is constant (Vikhlinin, Churazov & Gilfanov 1994 ; Zhang 
t al. 1995 ). The latter implies that the dead time must be independent
f photon energy and event grade, i.e. the number and morphology of
ix els involv ed in the detection of a single e vent. Ho we ver, usually
either of the two abo v e conditions is fulfilled in practice. 
Many of the sources we study using X-ray timing exhibit very

trong stochastic or even flare-like variability (e.g. Fender, Belloni & 

allo 2004 ; Walton et al. 2017 ). Moreo v er, the time a detector stops
o process a given event is often driven by the number of pixels
ffected by the event, which is, in turn, related to the event grade
nd energy. This can be a problem in missions where the dead
ime is comparable to the time-scale of the physically interesting 
ariability, like the Nuclear Spectroscopic Telescope Array ( NuSTAR ; 
arrison et al. 2013 ; see Bachetti et al. 2015 ), and will be a problem

n future missions like the Imaging X-ray Polarimetry Explorer 
 IXPE , Soffitta et al. 2021 ; non-paralyzable dead time, 1.2 ms,
ri v ate communication), the enhanced X-ray Timing and Polarimetry 
ission’s Large Area Detector ( eXTP /LAD, Zhang et al. 2016 ; non-

aralyzable dead time, 83 μs, pri v ate communication), and Athena’s
-ray Integral Field Unit (X-IFU, Barret et al. 2018 ; paralyzable 
ead time, 1.2 ms, see Peille 2016 ). 

Bachetti et al. ( 2015 ) take advantage of the independence of
uSTAR ’s two identical detectors and proposes to use the cospec-

rum as an alternative representation to traditional periodogram 

1 
The X-ray astronomy literature often uses the expression ‘power density 
pectrum’ (PDS) or ‘power spectral density’ (PSD) to refer to what is 
f fecti vely a single realization of the PDS itself. Throughout this paper, we 
ill use the more proper term ‘periodogram’ instead. 

http://orcid.org/0000-0002-1169-7486
mailto:d.huppenkothen@sron.nl
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epresentations. Because dead time is a within-detector effect, its
ffects, unlike the intrinsic source variability in the light curve,
re uncorrelated for identical detectors. The cospectrum ef fecti vely
emo v es the amplitude variations imposed by dead time, though
n imprint of the effect remains in that the noise variance of the
ospectrum depends on frequency. 

In Huppenkothen & Bachetti ( 2018 ), we formally derived the
tatistical distribution of the cospectrum for the limiting case of white
oise, and found that the cospectrum is well represented by a Laplace
istribution. While this result is useful particularly for hypothesis
esting against white noise (e.g. to search for a strictly periodic signal
rom a pulsar or similar source), the presence of variability across a
ide range of frequencies, as is commonly seen in accreting sources,

everely distorts the statistical distribution of cospectral powers. As a
esult, the distributions derived in Huppenkothen & Bachetti ( 2018 )
re inappropriate for use as a likelihood when modelling broad-band
tochastic processes. 

Bachetti & Huppenkothen ( 2018 ) ef fecti vely aim to circumvent
hat problem entirely, by yet again making use of independent,
dentical photon counting detectors present in telescopes like NuS-
AR and Fermi ’s Gamma-Ray Burst Monitor (GBM; Meegan et al.
009 ) in their Fourier Amplitude Differences (FAD) method. It uses
he differences between Fourier amplitudes to effectively build an
mpirical model for the way dead time affects the periodogram,
nd makes it possible to divide out most of the effect in both
eriodograms and cospectra. If the duration of the light curve
s long compared to the time-scales of the variability of inter-
st, such that it is possible to generate Fourier representations
veraged of ∼30 or more individual segments, the problem can
lso be circumvented. In this limit, Gaussian distributions pro-
ide a reasonable approximation to periodograms, cospectra and
elated Fourier-based data representations like cross-spectra, phase
ags and the coherence (Huppenkothen & Bachetti 2018 ; Ingram
019 ). 
In this paper, we introduce a new formalism based on simulation-

ased inference (SBI; for a recent re vie w, see Cranmer, Brehmer &
ouppe 2020 ) that allows us to model the periodograms from

nstruments with complicated dead time distributions but lacking
ultiple detectors. The formalism is introduced – after a brief

escription of the data used in this paper (Section 2 ) – in Section 3 .
his approach takes advantage of the specific structure of the problem
e aim to solve: While it is difficult to build an accurate, general
odel for dead time, it is relatively straightforward to simulate from

he process in many instances. This allows us to take advantage
f recent advances in SBI to perform inference tasks as if we
ne w ho w to parametrize the dead time process as part of our
odel. 
In Section 4 , we e xtensiv ely test this formalism on simulated

ight curves designed to mimic real-world observations taken with
uSTAR , and also illustrate the generality of the approach laid
ut here to other problems with a similar structure, where instru-
ental effects impose biases on to the data that are difficult to
odel, but relatively straightforward to simulate. As an illustra-

ion, we show how the method can be used to accurately reco v er
iming properties of simulated data designed to mimic an active
alactic nucleus (AGN) in the presence of gaps in the observa-
ions (Section 4.7 ). In Section 5 , we demonstrate the method’s
 alidity on NuSTAR observ ations of the galactic black hole X-
ay binary GRS 1915 + 105. Finally, in Section 6 , we discuss
he results, the limitations of the approach, and point out future
pplications. 
NRAS 511, 5689–5708 (2022) 
 DATA  PROCESSING  

e selected a public NuSTAR observation of the galactic black hole
-ray binary GRS 1915 + 105 with known quasi-periodic oscilla-

ions (QPOs; Shreeram & Ingram 2020 ). The observation, ObsID
0401312002, was part of a target-of-opportunity joint NICER -
uSTAR program to study the QPOs from the source, and was
 x ecuted on UT 2018 June 8. We downloaded the data from the High
nergy Astrophysics Science Archive Research Center (HEASARC)
nd processed them with the nupipeline FTOOL shipped with
EASOFT 6.28, using the default options. We barycentred the data
sing the known optical position of the source (Cutri et al. 2003 ),
he International Celestial Reference System (ICRS) reference frame
nd the Planetary and Lunar Ephemeris DE 421. 

We e xtracted ev ents from a re gion of 70 arcsec centred on the
osition of the source on the detector. Due to small astrometric
ifferences between the two detectors, we adjusted and centred
he source position with the peak local max function in SCIKIT-
MAGE v. 0.18 (van der Walt et al. 2014 ) using images in detector
oordinates. 

 SIMULATION-BA SED  I N F E R E N C E  

he aim of statistical inference, particularly in a Bayesian context,
s to infer causal knowledge about physical processes from observed
ata. This process requires several components. First, it requires
 generative model : a function f ( x , θ ) that will generate values
 model, i = f ( x , θ ) that are assumed to be a reasonable approximation of
he real process presumed to have generated the data. This function
s specified by some parameters θ go v erning the shape of f , given
ome dependent variable x (e.g. time of observations, wavelength,
patial coordinates). The data vector y obs and model are compared
ia a likelihood function L ( θ ) = p( y obs | θ ), an analytical relationship
etermined by the measurement process: F or man y astronomical
nstruments measuring large incident fluxes (e.g. in optical
stronomy), a Gaussian likelihood is often assumed to be valid. In
-ray astronomy, where individual incident photons are recorded,
 Poisson distribution is generally appropriate for light curves,
hereas a χ2 likelihood is applicable to Fourier periodograms.

nference of the parameters θ then proceeds via Bayes’ rule: 

( θ | y obs , I ) ∝ p( y obs | θ, I ) p( θ | I ) , (1) 

here p ( θ | I ) describes the prior knowledge and constraints on param-
ters θ before inference, and I encapsulates all inherent assumptions
ecisions made in setting up the model (e.g. the shape of the prior
robability distribution, the form of the likelihood). The posterior
robability density p ( θ | y obs ) is generally not analytically tractable
xcept in simple problems, and thus is often numerically approxi-
ated through methods like Markov chain Monte Carlo (Metropolis

t al. 1953 ; Hastings 1970 ) or Nested Sampling (Skilling 2004 ). 
There are two inherent assumptions in this process that may not

e true in practice: (1) the function f ( x , θ ) giving rise to the emission
an be directly compared to the observed data points, and (2) it is
ossible to write down an analytical form of the likelihood. The
rst assumption might be challenged when the process in question

s inherently stochastic. Because the observed data are a single
ealization of a process with sometimes infinite possible realizations,
omparing data to the model directly is not possible. In X-ray
pectral timing, this problem is often circumvented by modelling
ummarizing representations of the data that approximate the process
rom which the realization was drawn (e.g. Fourier periodograms,
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2 In man y conte xts, the respectiv e terms ABC, LFI, and SBI can be and 
are used interchangeably. In the rest of this paper, we will follow recent 
convention and use the term SBI. 
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he rms-flux relation describing the relationship between root-mean- 
quare variability and brightness) rather than the raw data. The second 
ssumption might be broken for example when the measurement 
rocess is complicated and as a consequence the likelihood becomes 
ntractable. Spectral timing of bright accreting sources is complicated 
y both: the underlying process generating the X-ray flux we observe 
s stochastic, and for many instruments, dead time heavily censors 
he observed list of photon arri v als. Because dead time directly
epends on the incident flux, an analytical model is only available 
n the simplifying case where dead time is constant and does 
ot depend on energy or event grade. The cospectrum can be a
o werful alternati ve for problems that involve tests against white 
oise (e.g. searching for pulsars), but has an analytically intractable 
ikelihood when stochastic processes contribute to the variable 
ncident flux (Huppenkothen & Bachetti 2018 ; Huppenkothen & 

achetti, in preparation). For instruments without multiple detectors, 
he cospectrum may simply not be available. 

The intractability of the likelihood for cospectra remo v es one 
mportant avenue for parametric modelling of stochastic variability in 
ourier space in the presence of dead time. Without a likelihood, para- 
etric models of QPOs and other stochastic processes cannot be com- 

ared to the cospectrum. Even with a likelihood, the effects of dead
ime would not be completely remo v ed from the cospectrum: The
mprints of dead time are still observable in the variance of the noise
istributions, and might hence bias the resulting parameter inference 
or physical components inferred to be present in the light curve. 

Modelling the periodogram in the presence of dead time instead 
resents its own challenges: while the periodogram retains its 
undamental χ2 properties, dead time imprints its effects strongly 
n to the underlying power spectrum. Parametric models for dead 
ime exist, but dead time-scales strongly with the flux impinging on 
he instrument: Intervals of high source flux will be more strongly
ffected by dead time than intervals of low flux. Because the objects
e study tend to vary rapidly, sometimes o v er multiple orders of
agnitude, and variability tends to be driven by stochastic processes, 

uantifying the effect of dead time on a specific observation is
ifficult: In statistical terms, a precise estimate of the dead time would
nvolve an integral over all possible realizations of the underlying 
tochastic process: 

( y obs | θ ) = 

∫ 
d z p( y obs , z| θ ) , 

here y obs is the observed periodogram, θ are input parameters to 
he underlying variability model, and z are all possible realizations 
f the stochastic process that could have produced y obs . 
Ho we v er, for man y detectors, dead time is not difficult to simulate.

f the dead time of the detector is well known, one can draw
ndividual photons from a Poisson process given some underlying 
arying mean Poisson rate λ, and remo v e those photons that arrive
ithin the dead time interval of a previous photon (in the non-
aralyzable case, though equi v alent simulation routines exist for 
aralyzable dead time; e.g. Zhang et al. 1995 ). Both are implemented
n the software package STINGRAY ; Huppenkothen et al. 2019 ). 

hile in a traditional likelihood, one compares an underlying, 
oiseless function to an observed, noisy observation , one now faces 
he problem of comparing two noisy data sets: one observed, one 
imulated. Because both the underlying process that generated the 
ata and the measurement process itself are stochastic, a direct 
omparison of the observed and simulated data sets is difficult. 

The structure of this problem, where a likelihood does not exist or
s implicitly defined in a simulator, but simulations of the full process
re relatively easily accessible, is sometimes called likelihood-free 
nference (LFI) and is common in science. Early solutions were 
rst suggested by Diggle & Gratton ( 1984 ) and Rubin ( 1984 )
nd later formulated in the context of population ecology under 
he name Approximate Bayesian Computation (ABC; Beaumont, 
hang & Balding 2002 ). These early works show that it is possible

o accurately reco v er a Bayesian posterior probability distribution 
rom simulations, given a well-designed metric to measure the 
istance between the observed and simulated data. The traditional 
BC rejection sampling algorithm is remarkably straightforward 

Tavar ́e et al. 1997 ; Pritchard et al. 1999 ). First, draw parameter
ets from the prior. Then, for each parameter set, generate an
bservation incorporating all measurement effects and biases that the 
eal observed data are believed to be affected by . Generally , simulated
nd observed data sets may be too noisy and high-dimensional for
irect comparison, so they are often transformed into summary 
tatistics, designed to encode as much information rele v ant to the
nference process as possible. Each simulation is then compared 
o the observed data through a distance metric (e.g. the Euclidean
istance, though many other metrics exist): All parameter sets for 
hich the distance between simulations and the observed data are 
elow a specified threshold ε are kept, all others are discarded. This
pproach suffers from a natural trade-off between the desire to be
ccurate (i.e. making ε very small), and the computational feasibility 
f generating orders of magnitude more observations that are rejected 
han those that are kept. 

Subsequent work impro v ed on all aspects of this approach in
rder to make it computationally feasible, including more efficient 
ampling methods, better distance metrics and alternative, non- 
ayesian formulations. Recent work, often under the name SBI, 2 

ombines the ideas of ABC with advances in machine learning 
n order to circumvent some of the traditional ABC problems 
hrough the use of neural networks. The latter can learn to emulate
he simulation process, but can also be used to directly learn the
ikelihood (Lueckmann et al. 2019 ; Papamakarios, Sterratt & Murray 
019 ), likelihood ratios (Hermans, Begy & Louppe 2019 ; Durkan,
urray & Papamakarios 2020 ) or posterior density (Papamakarios & 

urray 2016 ; Lueckmann et al. 2018 ; Greenberg, Nonnenmacher &
acke 2019 ). For recent re vie ws, see Sisson, Fan & Beaumont

 2018 ) and Cranmer et al. ( 2020 ), and a benchmarking of recent
lgorithms can be found in Lueckmann et al. ( 2021 ). These methods
ake advantage of recent advances in using neural networks to specify
exible probability distributions. 
Neural posterior estimation (NPE; Jimenez Rezende & Mohamed 

015 ; Paige & Wood 2016 ; Tran, Ranganath & Blei 2017 ; Izbicki,
ee & Pospisil 2018 ; Lueckmann et al. 2018 ) uses this approach

o directly infer the target posterior. In its original version, NPE
ses a large set of simulated data sets drawn from the prior to learn
 mapping between simulator output ˆ y and (potentially complex, 
ultimodal) posteriors p( θ | ̂  y ). The posterior estimate is selected 

rom a family of densities q ψ , where ψ are distribution parameters
nd generally the output of a neural network F ( ̂  y , φ) with neural
etwork weights φ. These weights are learned by minimizing a 
orm of the ne gativ e log-likelihood, L = −∑ N 

j= 1 log q F ( ̂ y j ,φ) ( θ ) . The
rained proposal posterior probability density approximates the true 
osterior, q F ( ̂ y j ,φ) ( θ ) ≈ p( θ | ̂  y ). This might require a reasonably large
et of simulations in order to fully map out the posterior space. How-
ver, it has the advantage of amortization : once the network is trained,
MNRAS 511, 5689–5708 (2022) 
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3 Pre-run simulations to train the neural networks are available on Zenodo. 
All code related to the project, including notebooks detailing the simulation 
and inference procedure, as well as PYTHON scripts to run simulations, can 
be found in the GitHub repository. 
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rawing posterior samples is very fast, and can be done for multiple
ndependent observations using the same model without retraining.
he sequential version of this algorithm (sequential neural posterior
stimation, SNPE) is based on the insight that for inference on a given
ata set, the prior is an inefficient proposal distribution for generating
imulated data. In this version, a network is trained on a small set
f simulations, and the posterior constructed for the observed data.
his posterior is then used as the proposal distribution ˜ p ( θ ) for
imulations in the ne xt round. P apamakarios & Murray ( 2016 ) show
hat this drastically reduces the number of simulations required, but
oses its amortization. Because in SNPE the proposal distribution
or subsequent inference rounds is conditioned on a single set of
bserved data, the trained network can no longer be used to infer
he posterior for other data sets. In addition, it requires either post-
rocessing of the distribution (or its samples), or a reformulation of
he loss function (i.e. the function describing the distance between the
pproximate distribution and the true posterior) because minimizing
 no longer yields the target posterior, but rather a proposal posterior

˜  ( θ | ̂  y ). Greenberg et al. ( 2019 ) suggest two impro v ements: (1) a
ew parametrization of the loss function that enables automatic
ransformation between estimates of p( θ | ̂  y ) and ˜ p ( θ | ̂  y ), and (2)
atomic’ proposals. The former change enables the reco v ery of the
round truth posterior p( θ | ̂  y ) during inference. The latter allows an
rbitrary choice of density estimators, priors and posteriors. 

Problems of this type, where a simulator is accessible and
omputationally feasible, but a likelihood is not, are common in
stronomy, and have led to a recent rise in work implementing SBI
odels, in a wide range of areas including cosmology (Jennings,
olf & Sako 2016 ; Hahn et al. 2017 ; Herbel et al. 2017 ; Jennings &
adigan 2017 ; Alsing et al. 2019 ; Leclercq et al. 2019 ; Kacprzak

t al. 2020 ; List & Lewis 2020 ), solar physics (Weiss et al. 2021 ),
upermassive black holes (Witzel et al. 2021 ), exoplanets (Sandford,
ipping & Collins 2019 ; Bryson et al. 2020 ; Hsu, Ford & Terrien
020 ; Kunimoto & Bryson 2021 ), stellar astronomy (Cise wski-K ehe,
eller & Schafer 2019 ; Kunimoto & Matthews 2020 ; Morris 2020 ),

alactic astronomy (Mor et al. 2019 ; Cheng, Price-Jones & Bovy
020 ), dark matter studies (Hermans et al. 2020 ), and extragalactic
stronomy (Aufort et al. 2020 ; Enzi et al. 2020 ; He et al. 2020 ;
ortorelli et al. 2020 ). 
Our goal here is to implement an SBI model with SNPE for dead

ime in X-ray detectors. We first build a simulator for NuSTAR -
ike dead time, and generate periodograms with a quasi-periodic
scillation in order to study how well SNPE can reco v er the
arameters used to generate the data. NuSTAR presents a convenient
est case because alternative methods taking advantage of its two
ndependent detectors exist and can be used to compare performance.

e explore both amortized and sequential versions of the neural
osterior estimation algorithm with automatic posterior transforma-
ion as introduced by Greenberg et al. ( 2019 ) and implemented
n the PYTHON package SBI (Tejero-Cantero et al. 2020 ). As a
ensity estimator, we choose a masked autore gressiv e flow (MAF;
 apamakarios, P avlakou & Murray 2017 ). MAFs combine two recent

deas: autore gressiv e density estimation and normalizing flows.
utore gressiv e density estimation decomposes the joint density
( θ | ̂  y ) into the product of one-dimensional conditional densities:
( θ | ̂  y ) = 

∏ 

k p( θk | θ1: k−1 , ˆ y ) , where these conditional densities are
enerally simple one-dimensional distributions (e.g. a Gaussian) with
arameters estimated through a neural network conditioned on all
revious θ1: k − 1 . This ascribes intrinsic meaning to the ordering of
he parameters θ , which may or may not be realistic in practical
ituations. Normalizing flows, on the other hand, are based on the
dea of taking a base distribution, and applying a sequence of m
NRAS 511, 5689–5708 (2022) 
nvertible transforms (with learnable parameters) to generate a more
omple x target distribution. P apamakarios et al. ( 2017 ) suggested
o stack multiple subsequent autore gressiv e transformations, with
ach implementing a different ordering for θ in order to construct a
AF. Here, we use an MAF with 5 transformation and 50 hidden

nits each, and embed the MAF in both the sequential and amortized
ersions of the NPE algorithm as explained above. 

 SI MULATI ONS  WI TH  D E A D  TI ME  

e present results for SBI in the form of (S)NPE applied to simulated
ight curves and their resulting periodograms. We set up a realistic
oy problem where the goal is accurate inference of the centroid
requency, width, and fractional rms amplitude of a QPO in the
resence of dead time. We simulate both a low-frequency (LF) QPO
s well as a high-frequency (HF) QPO, and we explore both inference
n single periodograms as well as averaged periodograms. 3 For a ver -
ged periodograms, we compare our results to posterior distributions
ampled with a Markov chain Monte Carlo approach with a χ2 

ikelihood. In the latter case, periodograms were corrected for dead
ime using the Fourier Amplitude Differencing (FAD) method. 

.1 Single periodogram: LF QPO 

or simulating light curves with a single QPO, we assume an
nderlying power spectrum consisting of a single Lorentzian with a
entroid frequency of ν0 = 20 Hz , a quality factor q = 10 (resulting
n a narrow peak with a full width at half-maximum, FWHM, of
ν = 2 Hz ). We assume a fractional rms amplitude of 0.4 for the

ignal. Given these parameters, we simulate a single light curve of
ength T = 10 s with a high time resolution of d t = 10 −5 s based
n the underlying power spectrum using the method of Timmer &
oenig ( 1995 ). The high time resolution is chosen to be significantly
etter than the average dead time in NuSTAR , d t dead = 0 . 0025 s in
rder to allow for an ef fecti ve simulation of the dead time process.
e rescale the simulated light curve such that the mean incident count

ate is 1000 counts s −1 . The count rate is chosen to be high enough for
ead time to have an appreciable impact. In order to turn the simulated
ight curve into events, we first draw from a Poisson distribution for
ach bin in the light curve, using the simulated rate in that bin as
 Poisson parameter. We then take all time bins that contain more
han one count and randomly distribute n events within the time bin
ccording to a uniform distribution, where n is the number of counts
n that bin. We repeat this process to generate two light curves, which
re identical except for the Poisson noise. This ef fecti vely simulates
he behaviour of observing a single source with two independent
uSTAR detector modules, Focal Plane Module A (FPMA) and
ocal Plane Module B (FPMB). To the resulting event lists, we
pply NuSTAR -like, non-paralyzable dead time: All photons that
rrive within 0 . 0025 s of the previous photon are discarded as having
rrived while the detector was unresponsive. The resulting event lists
re treated as an observation. We generate light curves at a coarser
ime resolution of d t obs = 0.005 s, since we are primarily interested
n a QPO at 20 Hz and can ignore the higher frequencies, and sum the
wo light curves together. We present the simulated light curve – both
ith and without dead time–along with the associated periodograms
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Figure 1. Simulated light curve and Fourier products for a single QPO at 
20 Hz . Top panel: simulated light curves both with (orange) and without 
(purple) dead time applied. Bottom panel: periodograms corresponding to 
the light curves in the top panel. 
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Figure 2. Posterior distribution as derived through amortized SNPE: On 
the diagonal, we show one-dimensional marginalized posterior densities, 
and on the off-diagonal a heat map of parameter pairs. All distributions are 
normalized so that they integrate to one. In red, we mark the true parameters 
that generated the data. For all parameters, the posterior clusters tightly around 
the true value. 
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n Fig. 1 . Because this simulated light curve corresponds to an
bservation of an extraordinarily bright source, dead time has a 
ery strong effect on the measured counts. The average count rate 
n the dead-time-affected light curve is 550 counts s −1 compared to 
000 counts s −1 (for a sum of two light curves from independent 
etectors and an incident rate of 1000 counts s −1 ). This corresponds
o a loss of about 72 per cent of incident photons. 

The goal of the SBI procedure is to accurately infer the parameters
f the QPO present in the simulated data. We aim to infer four
arameters: the QPO centroid frequency, ν0 ; the quality factor of 
he QPO q , related to the FWHM, 
ν, through the equation q =
0 / 
ν; the fractional rms amplitude of the variability present in the
PO, rms f ; and the incident mean count rate without dead time,
cr . For simplicity, we set flat priors for all parameters in our toy

xperiments, with bounds defined in Table 1 . Because our data 
re very informative (the fractional rms amplitude of the QPO is
 ery high), we e xpect the prior choice to hav e little impact on the
esults for the toy problem set out here. Our initial experiments 
uggest that choosing very wide, uninformative priors for the QPO 

entroid frequency (allowing this frequency to range o v er multiple 
rders of magnitude) requires a higher number of simulations in 
rder to co v er enough of the available parameter space. How this
ncreased computational requirement manifests in practice depends 
Table 1. Priors used in the models. 

Model Paramete

SBI Models, shared parameters rms f 
q 

μcr 

SBI Models, LF QPO simulations ν0 

SBI Models, HF QPO simulations, single periodogram ν0 

SBI Models, HF QPO simulations, avera g ed periodo gram ν0 

Traditional Bayesian Models, Shared parameters A QPO 


ν

A wn 

Traditional Bayesian Models, LF simulations ν0 

Traditional Bayesian Models, HF simulations ν0 

Note . An o v erview o v er the model parameters with their respectiv e prior prob
n the other choices made in setting up the problem (e.g. number of
odel components, priors for other parameters). 
We then generate 50 000 parameter sets from the prior, and

enerate simulated periodograms assuming NuSTAR -like dead time, 
sing the same procedure we used to generate our ‘observation’. For
he first inference round, we use all 50 000 simulated periodograms
o build an MAF that approximates the posterior probability density, 
llowing for amortized inference. We use the raw periodogram 

s a feature vector. Because the periodogram is very noisy, and
BI procedures generally perform best on well-designed summary 
tatistics of the data, we would naively not expect good performance
hen comparing raw data sets. 
We sample from this posterior, and present the results in Figs 2

nd 3 . We find that even when dead time remo v es a large fraction
f the incident photons and we use the raw periodogram as features,
MNRAS 511, 5689–5708 (2022) 

r Meaning Probability distribution 

Fractional rms amplitude Uniform(0.1, 0.5) 
QPO quality factor Uniform(3, 30) 
Mean incident count rate Uniform(500, 1500) 

QPO centroid frequency [Hz] Uniform(5, 40) 

QPO centroid frequency [Hz] Uniform(100, 300) 

QPO centroid frequency [Hz] Uniform(100, 500) 

QPO amplitude Uniform(10 −10 , 100) 
QPO FWHM Uniform(0.01, 40) 
White noise amplitude Uniform(10 −20 , 10 5 ) 

QPO centroid frequency [Hz] Uniform(5, 50) 

QPO centroid frequency [Hz] Uniform(100, 500) 

ability distributions for the models in this section. 
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Figure 3. We show the simulated observation (dark purple), along with 100 
random draws from the posterior (light pink), as well as the posterior median 
derived from these 100 random dra ws (orange). The dra ws from the posterior 
clearly trace out the QPO. In addition, the posterior median makes frequency- 
dependent changes in the white noise level due to dead time evident. 
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he SBI procedure is capable of reco v ering all four parameters with
 high degree of accuracy: As the corner plot shows, the posterior
robability density clusters relatively tightly around the true input
arameters. 
Because the QPO is strong, accurate inferences for the centroid

requency and quality factor are not surprising. It is noteworthy,
o we ver, that the model accurately recovers both the fractional rms
mplitude as well as the incident mean count rate, because we limited
he periodogram here to a Nyquist frequency of 100 Hz for computa-
ional efficiency. This means that there is enough information about
he dead time present at low frequencies to accurately infer the true
ncident count rate, despite the model not having access to the full
mprint of dead time on to the periodogram at higher frequencies.
his is possibly caused by the dead time-dependent drop in the white
oise level at low frequencies. 
In a second experiment, we repeat the inference process with the

ame 50 000 simulations, but include a convolutional neural network
o generate summaries of the data. We train multiple such embedding
etworks with different architectures, though all contain at least
on volutional layer , a max-pooling operation and a fully connected
ayer. We use rectified linear unit (ReLU) acti v ation functions,
nd trained architectures with both one and two convolutional
ayers. The embedding net is trained concurrently with the density
stimator, using the same loss function. In all cases, we reco v er
t most comparable performance to using the raw periodogram.
ost embedding networks produce biased results, and lose precision

specially for the quality factor (Fig. 4 ). We settle on an architecture
ith a convolutional layer, a kernel size of 12, and a set of 12 output

ummary features for subsequent experiments. 
In a final experiment, we use the sequential learning process of

NPE: instead of learning an approximation to the posterior density
rom a single set of 50 000 simulations, we run r = 5 rounds of
nference with N = 1000 simulations each, and train an MAF in
ach round. We find that using SNPE, we can generate a posterior
robability density with comparable precision and accuracy as that
erived from the full 50 000 simulations using only the five rounds
f 1000 simulations each, or 5000 simulations total (Fig. 4 ). This
mounts to a speed-up of a factor of 10 compared to the amortized
nference process, which is especially helpful when the data set of
nterest consists of a single data set. As we will show in Section 5 ,
mortized inference, in comparison, can be very efficient when
nferences are to be made o v er a large series of periodograms.
NRAS 511, 5689–5708 (2022) 
e quantify the performance of the three models – the amortized
ersion, the sequential version, and the model with an embedding
et – by calculating the distance between the mean of the posterior
istribution and the known true parameter value. In general, all three
odels perform acceptably at reco v ering the true parameters. In

ll but two cases, the true value is within 1 standard deviation of
he mean of the posterior distribution. Exceptions are the posterior
or νQPO in the amortized model ( 
 νQPO = 1 . 48 σ ) and the posterior
or rms r in the model with the embedding net ( 
 rms r = 1 . 36 σ ).
o we ver, gi ven the large uncertainties inherent in the periodogram

stimator, and the additional loss of information due to the removal of
hotons because of dead time, these deviations are within acceptable
olerances. The sequential model outperforms the other two models
n all parameters except the fractional rms amplitude. The distances
or all three models are summarized in Table 2 . 

We compare the SBI process to an ordinary model using the
tandard χ2 likelihood for periodograms without taking dead time
nto account. Because the QPO has a relatively LF where dead time
ffects might be less pronounced, one might expect that this model
ould generate comparable or better results, which, in turn, would
ave advantages in terms of computationally efficiency. We build a
odel for the periodogram using a single Lorentzian to represent

he QPO, and, where possible, implement the same priors as for
he SBI model. Note, ho we ver, than instead of parameters for the
ractional rms amplitude and the mean count rate, the periodogram
odel here includes an amplitude for the Lorentzian function and
 white noise level in the periodogram (priors for these parameters
re also included in T able 1 ). W e then sample from the posterior
sing Markov chain Monte Carlo as implemented in the PYTHON

ackage EMCEE (F oreman-Macke y et al. 2013 ), and compare the
osterior distribution computed with SNPE to the version sampled
sing MCMC. 
In Fig. 5 , we compare posteriors for the fractional rms amplitude

erived with both approaches. We find that while the SNPE model
ccurately reco v ers the injected rms amplitude, the likelihood-based
odel without dead time leads to a highly biased posterior probability

ensity that underpredicts the fractional rms amplitude by a factor
f 4, with a high degree of confidence (the true value is excluded at
he 12 σ level). This can largely be explained by the flux-dependent
oss of photons due to dead time. More photons are lost to dead time
hen the incident flux is high. This, in effect, reduces the intrinsic
ariability in the light curve, and leads to a lower inferred fractional
ms amplitude (van der Klis 1989 ; Bachetti et al. 2015 ). 

.2 Single periodogram: HF QPO 

hile at low frequencies, the dead time effects are appreciable
nd strongly affect inferences, e.g. of the rms amplitude, arguably
he strongest effects due to the specific time-scale that dead time
mposes on the time-series are at high frequencies. In particular, the
eriodogram is known to be ‘wavy’ with saddle points at n /2 τ dead Hz.
hus, we also generate data that includes an HF QPO at ν0 = 200 Hz

the first saddle point) with a quality factor of q = 15 and a fractional
ms amplitude of rms f = 0.45. We again use the process from
 immer & K oenig ( 1995 ) to generate a light curve of T = 10-s
uration with a mean incident count rate of μcr = 1000, transform
t into a list of events by randomizing the arrival time inside a given
ight curve bin, and apply dead time to the resulting event lists.

e then sum the individual light curves generated to represent data
rom each of NuSTAR ’s individual detector modules, and calculate a
eriodogram with a Nyquist frequency of νNyquist = 750Hz. The
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Figure 4. Posterior probability distributions for three different SBI models: (1) amortized posterior inference with 50 000 simulations on the raw periodogram 

(purple), (2) amortized posterior inference with 50 000 simulations, with an embedding net generating summaries of the data (pink), and (3) sequential posterior 
estimation on the raw periodogram, for five rounds of 1000 simulations each (orange). 

Table 2. LF QPO: distance between true parameters and posterior 
mean. 

Parameter True value 
 am 


 EN 
 SE 

rms f 0 .4 0 .05 σ 1 .36 σ 0 .55 σ

ν0 20 .0 1 .48 σ 0 .46 σ 0 .20 σ
q QPO 10 .0 0 .38 σ 0 .85 σ 0 .17 σ
μcr 1000 .0 0 .18 σ 0 .85 σ 0 .16 σ

Note . We pro vide a rough quantification of how well the posterior 
distributions reco v er the true parameter values through calculating 
the distance between the true parameters and the posterior mean, 
in units of standard deviations from the mean σ , for the three 
models (AN: amortized model; EN: model with embedding net); 
SE: sequential model. 

Figure 5. We compare the fractional rms amplitude derived from the SBI 
model (pink) with the traditional Bayesian model sampled with MCMC 

(orange). While the SBI model directly sampled the fractional rms amplitude, 
we calculated the distribution of rms f for the Bayesian model by integrating 
under the white-noise corrected, rms-normalized model periodogram for 1000 
parameter sets drawn from the posterior. While the Bayesian model can 
approximate the centroid frequency and the width of the QPO well, it fails 
estimating the fractional rms amplitude correctly in the presence of dead time 
because the latter remo v es ev ents especially when the flux is high. This, in 
turn, leads to a lo wer v ariance in the light curve than without the effects of 
dead time. 

Figure 6. Simulated light curve and Fourier products for a single QPO at 
200 Hz . Top panel: simulated light curves both with (orange) and without 
(purple) dead time applied. Bottom panel: periodograms corresponding to 
the light curves in the top panel. The effects of dead time in the periodogram 

are apparent at high frequencies, where there is additional power in a very 
broad, wavy pattern. 
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esulting light curves and periodograms for both the dead-time- 
ffected data and the data without dead time are shown in Fig. 6 . 

The effect of dead time becomes much more apparent than in the
eriodogram for the LF QPO: At high frequencies, dead time imposes 
 strong oscillatory structure on to the periodogram, which, in turn,
educes the signal-to-noise ratio of the QPO intrinsic in the simulated
ata. We repeat the same inference process as for the LF QPO, but
djust the prior for the centroid frequency to reflect our change in
xpectation about the frequency of the QPO (see Table 1 ). We draw
0 000 parameter sets from the prior and generated an associated
ead-time-affected periodograms to use for training the MAF. We 
rst again train the model on the periodogram itself, but here choose
 logarithmically binned periodogram to reduce noise effects at high 
requencies. We present results in Figs 7 and 8 . As in the LF case, the
rained model successfully reco v ers the true parameters, though we
he distributions for the fractional rms amplitude and quality factor 
re wider than for the LF QPO. Fig. 8 shows once again posterior
raws along with a posterior median derived from 100 simulated data
ets. Ov erall, the SBI model reco v ers the shape of the QPO well, and
MNRAS 511, 5689–5708 (2022) 
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Figure 7. Posterior distribution as derived through amortized SNPE: On the 
diagonal, we show one-dimensional marginalized posterior densities, on the 
off-diagonal a heat map of parameter pairs. All distributions are normalized 
so that they integrate to 1. In red, we mark the true parameters that generated 
the data. For all parameters except the quality factor, the posterior clusters 
tightly around the true value. 

Figure 8. We show the simulated observation of a QPO at 200 Hz (dark 
purple), along with 100 random draws from the posterior (light pink), as well 
as the posterior median derived from these 100 random draws (orange). The 
draws from the posterior clearly trace out the QPO. In addition, the posterior 
median makes frequency-dependent changes in the white noise level due to 
dead time evident. 
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lso provides an adequate model for the dead time affecting the
bservations. 
Again, we build an embedding net with a convolutional layer, a
axpooling operation, a fully connected layer, and rectified linear

cti v ation units, but explore different architectures and hyperpa-
ameters (e.g. convolutional kernel sizes) within these bounds. As
ith the LF QPO, we reco v er at most comparable performance

o using the logarithmically-binned periodogram directly (see also
ig. 9 ). In fact, in all architectures, the embedding net fa v ours higher
uality factors compared to the model without embedding net. It is
orth noting, ho we ver, that models drawn from the posterior, and

he median of these draws, are virtually indistinguishable from the
revious model and reproduce the observed powers almost exactly
ithin the uncertainties. This could indicate that there is an intrinsic
NRAS 511, 5689–5708 (2022) 
ncertainty in the quality factor for this QPO. Given that dead time
roduces excess power at these frequencies, it is not unexpected that
nformation about the wings of the Lorentzian that produced the data
s lost, and that this loss of information directly translates into a loss
f precision in our inferences of the width of the QPO. 
We compare the two amortized models to posteriors produced by

NPE of five rounds of 1000 simulations each, set up in the same
ay as for the LF QPO. This approach produces well-constrained
osterior distributions that are narrower than for the amortized
ersions, with only 5000 simulations. A comparison of all three
pproaches is shown in Fig. 9 . Again, we use the distance between the
osterior mean and the true parameter value, expressed in standard
eviations of the posterior, as a rough measure of how well the
osterior captures the true underlying parameter value. As before,
he sequential algorithm produces posteriors with means nearest to
he true value. The largest distances between true parameter value
nd posterior mean are of the order of ∼1 σ , which we consider an
cceptable performance (see also Table 3 ). 

.3 Averaged periodogram: LF QPO 

uppenkothen & Bachetti ( 2018 ) showed that abo v e ∼30 av eraged
ospectra, the distribution of cospectral powers become approxi-
ately Gaussian. In this case, a standard Gaussian likelihood will

rovide a reasonably good approximation and a more traditional
ayesian modelling procedure should yield adequate results. For
bservations that are too short to admit averaging 30 or more
egments, ho we ver, the distribution of cospectral powers is not
nown, and SBI might provide a viable alternative. We test its use
n averaged periodograms of simulated observations analogously to
ections 4.1 and 4.2 for both an LF and an HF QPO. 
We used the same simulated data as in Section 4.1 with a single

PO at ν0 = 20Hz in an observation of duration T = 10 s. Instead
f Fourier-transforming the entire light curve, we subdivided the
ight curve into 10 segments of T seg = 1 s duration, constructed
he periodogram of each, and then averaged all 10 individual
eriodograms. The resulting periodogram for the observation, both
ith and without dead time applied to the photon arri v al times, is

hown in Fig. 10 . 
As in Section 4.1 , we build three models using SBI: (1) an

mortized model using 50 000 simulation generated using the same
rocess that generated the data, (2) a sequential version with five
ound of 5000 simulations each, and (3) a model that includes
n embedding net to generate informative summaries of the data.
n Figs 11 and 12 , we show the results for the amortized model
enerated from 50 000 simulations as an example. As with the
ingle periodogram, the model reco v ers the input parameters well.
he sequential model generates comparable results, except for the
entroid frequency, where it produces a narrower posterior around
he true value, but requires only a tenth of the simulations as the
mortized model. As with previous models, the embedding net
oes not impro v e the quality of the inferences, nor does it lead to
omputational gains. 

To understand the performance of an SBI-based model compared
o alternative treatments of dead time, we compare the model to a
ikelihood-based model using an FAD-corrected version of the a ver -
ged periodogram. Because our NuSTAR -like simulations generate
ight curves for two independent detectors, we followed Bachetti &
uppenkothen ( 2018 ) and the differences in Fourier amplitudes

o estimate the imprint of dead time on the periodogram. We
ubtracted a spline-fit model of the dead time as an approximation,
nd subsequently defined a model analogous to that in Section 4.1 ,
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Figure 9. Posterior probability distributions for three different SBI models: (1) amortized posterior inference with 50 000 simulations on the raw periodogram 

(purple), (2) amortized posterior inference with 50 000 simulations, with an embedding net generating summaries of the data (pink), and (3) sequential posterior 
estimation on the raw periodogram, for five rounds of 1000 simulations each (orange). 

Table 3. HF QPO: distance between true parameters and posterior 
mean. 

Parameter True value 
 am 


 SE 
 EN 

rms f 0 .45 1 .18 σ 0 .27 σ 1 .17 σ

ν0 200 .0 0 .09 σ 0 .06 σ 0 .51 σ
q QPO 15 .0 0 .23 σ 0 .03 σ 0 .85 σ
μcr 1000 .0 1 .13 σ 0 .85 σ 0 .91 σ

Note . We provide a rough quantification of how well the posterior 
distributions reco v er the true parameter values through calculating 
the distance between the true parameters and the posterior mean, 
in units of standard deviations from the mean σ , for the three 
models (AN: amortized model; SE: sequential model; EN: model 
with embedding net). 

Figure 10. Simulated light curve and Fourier products for a single QPO 

at 20 Hz . Top panel: simulated light curves both with (orange) and without 
(purple) dead time applied. Bottom panel: averaged periodograms out of 10 
1-s segments corresponding to the light curves in the top panel. 
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Figure 11. Posterior distribution as derived through amortized SNPE for 
the 20-Hz QPO in an averaged periodogram: on the diagonal, we show one- 
dimensional marginalized posterior densities, on the off-diagonal a heat map 
of parameter pairs. All distributions are normalized so that they integrate to 
one. In red, we mark the true parameters that generated the data. 
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sing the same model structure and priors. We sampled this model 
sing MCMC and present posterior draws and the FAD-corrected 
eriodogram in Fig. 13 . We find that o v erall, the model represents
he FAD-corrected periodogram well. Comparing the distributions 
erived from both SNPE and the likelihood-based model (Fig. 13 ), 
he latter o v erestimates the fractional rms amplitude (as already 
bserved by Bachetti & Huppenkothen 2018 ), but provides broadly 
imilar performance for the centroid frequency and the quality factor. 
he posterior derived from SNPE are somewhat wider for the latter

wo parameters; that is also e xpected, giv en that it is derived from
oisy simulations. 

.4 Averaged periodogram: HF QPO 

e repeat the process of the previous section, but with an HF QPO
t ν0 = 400Hz. This frequency is higher than the QPO simulated in
ection 4.2 , an intentional choice to allow us to pro v e the response
f the model to a QPO in a different part of the highly dead-time-
ffected part of the periodogram. We use SNPE on both the raw
MNRAS 511, 5689–5708 (2022) 
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Figure 12. For an LF QPO at 20 Hz in an averaged periodogram, we show 

the simulated observation (dark purple), along with 100 random draws from 

the posterior (light pink), as well as the posterior median derived from these 
100 random draws (orange). The draws from the posterior clearly trace out the 
QPO. In addition, the posterior median makes frequency-dependent changes 
in the white noise level due to dead time evident. 

Figure 13. Top panel: FAD-corrected periodogram with draws from the 
posterior probability density of a model with a χ2 likelihood and samples 
generated with MCMC. Bottom panel: comparisons between the SNPE model 
and the likelihood-based model of the FAD-corrected periodogram for the 
three most important QPO parameters: the fractional rms amplitude (left- 
hand panel), the QPO centroid frequency (middle panel), and the QPO quality 
factor (right-hand panel). 
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eriodogram powers, as well as a logarithmically binned version of
he periodogram, and find consistently better inferences for the latter.
his is not surprising, as the additional averaging dampens some of

he noise variance at high frequencies. 
As in the rest of this section, we run the same three SNPE models,

nd find o v erall good results with all models. We find that all
hree produce acceptable posteriors, with the amortized model once

ore producing the best-constrained distributions for the smallest
omputational cost. 

.5 Variable dead time 

ead time is related to the amount of time the flight software takes
o process a given event. This could be related to the properties of
he single e vent, e.g. ho w man y pix els are involv ed in the detection
event ‘grade’), but also on the subtleties of the flight software itself.
herefore, dead time can change considerably between different
NRAS 511, 5689–5708 (2022) 
vents, departing from the assumption of constant dead time we have
sed so far. Indeed, the dead time for NuSTAR is not constant: It varies
lightly around an assumed value of τdead = 0 . 0025 s. Ho we ver, most
ead time models – including the simulator we use abo v e as part of
he SNPE model – assume that a constant dead time of τ dead is a
easonable approximation. In principle, the SBI method introduced
ere can take variable dead time into account: as long as we have some
nderstanding of the underlying process that generated the dead time
nd can implement it in the simulator that generated the data, it can
e part of the model, at the potential loss of computational efficiency
ue to the additional operations introduced as part of letting τ dead 

ary. We implement a simulator with variable dead time to (1) test
hether a model that assumes constant dead time generates biased

esults when dead time is not, in fact constant, and (2) whether
aking variable dead time into account in the SBI model produces
ignificantly better inferences. 

We constructed an empirical distribution of dead times for NuS-
AR from the observation of GRS 1915 + 105 introduced in Section 2 .
e calculated the intervals between photon arri v al times for all N =

572 101 photons recorded in both detector modules, and corrected
hese intervals for the live time of the detector since the last event
ecorded in the column PRIOR . The remainder constitutes the dead
ime caused by the previous event. Because some non-scientific
vents like shield vetoes reset the live time, but the associated
vents are not recorded, we expect a small number of outliers in
he distribution. 

In Fig. 14 , we present a histogram of the dead time for this
bservation: it is apparent that the dead time values follow a complex,
ultimodal distribution around the generally accepted value of

dead = 0 . 0025 s. This distribution was corrected for outliers caused
y the aforementioned shield vetoes after an initial visual inspection.
o be conserv ati v e, we only remo v ed dead time intervals larger than
0 ms. Even so, NuSTAR dead time can vary from below 2 ms to
bo v e 3 ms . 

In order to explore the effect of the non-constant nature of
uSTAR dead time, we built a simulator that takes it into account:

nstead of applying a constant dead time to each photon, and
emoving photons falling within that dead time, for each simulated
hoton we draw from the real, empirical distribution of dead times
rom this observation of GRS 1915 + 105, and remo v e photons that
all within the specific value of dead time for a given photon. Because
tandard periodograms are noisy and therefore the subtle effects of
ariable dead time will be difficult to discern visually, we simulate a
ong light curve of 500 s and construct an averaged periodogram out
f 500 1-s segments, in order to reduce the noise in the periodogram
nough to illustrate the differences between variable and constant
ead time. We include the HF QPO from Section 4.4 , since dead
ime depends on total flux, and we expect the sources we observe to
e highly variable in practice. In Fig. 14 (right-hand panel), we show
he periodogram of a light curve affected with variable dead time,
s well as the periodogram corresponding to the same list of events,
ut filtered with a constant dead time of τdead = 0 . 0025 s. There
re appreciable deviations in the shape of the dead-time-affected
ower spectrum when dead time is not constant, though it is unclear
rom this plot alone ho w dif ferent the resulting posterior probability
istributions are. 
To test this, we simulated the same photon arri v al times as in

ection 4.4 , but used the procedure abo v e where the dead time is not
onstant, but randomly drawn from the empirical distribution derived
rom the observed NuSTAR data. We generated a 10-s light curve,
hich was used to produce an averaged periodogram out of 10 1-s

egments. 
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Figure 14. Left-hand panel: Histogram of dead time intervals derived from the NuSTAR observation 80401312002 reveals a highly structured distribution 
around the nominal constant value of 0 . 0025 s. Right-hand panel: The effect of variable dead time on the periodogram becomes apparent in an averaged 
periodogram consisting of 500 segments of 1-s duration: At high frequencies, the periodogram derived with variable dead time (pink) deviates significantly in 
shape from the periodogram generated from data assuming constant dead time (orange). 
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We then used SNPE to draw from the posterior, using the simulator
ith the constant dead time representation. This aims to reproduce 

he situation we expect to see in real applications: observations af-
ected by variable dead time, modelled with a simulator that assumes
ead time is constant. We use fiveunds of 1000 simulations each on
he raw periodogram powers to allow comparison with the SNPE 

odel from Section 4.4 . We find that the model produces posteriors
hat accurately reco v er the true input parameters (Fig. 15 , purple
istributions), except for the incident count rate, where the model 
roduces a posterior that centres on 900 counts s −1 and excludes the 
rue value of μcr = 1000 counts s −1 . This may be related to the fact
hat the mean dead time derived from the observation used to generate 
he empirical distribution is not exactly 2 . 5 ms , but rather 2 . 57 ms ; the
dditional dead time can, in the limit of observing a very high count
ate, account for the additional loss of photons. It appears, ho we ver,
hat the model efficiently compensates for this by assuming a lower 
ncident count rate. It may be possible, in the future, to infer a better
onstant dead time value together with the other model parameters. 
n order to test whether this effect is also relevant for single short
egments, we repeat the set-up abo v e, but generate a periodogram of
he full 10-s segment. Again, we use SNPE with a simulator assuming
onstant dead time, and disco v er that the same effect is also present
hen the periodogram is not averaged (i.e. uncertainties are large): 
arameter inferences are comparable to Section 4.4 except for the 

ncident count rate, which is underestimated. 
In order to confirm our interpretation of our posteriors, we also 

enerate posteriors based on the simulator that uses the empirical 
istribution. That is, the simulations used to generate the posterior 
istribution will also include variable dead time. For this model, 
e required an additional three rounds in the sequential inference 
rocess, for a total of 8000 simulations. The posterior probability 
ensities are comparable to those with the constant dead time model 
n all parameters except for the incident count rate, where this model
ccurately reco v ers the true incident count rate (Fig. 15 , orange
istributions). This indicates that indeed, assuming constant dead 
ime will lead to biased inferences in the incident count rate and,
hus, in the total flux. We repeat this analysis with simulated data
ets that include QPOs at multiple other frequencies: at 35, 168, 250,
nd 450 Hz. It is, in principle, plausible that the bias in the inference
or the incident count rate depends on the QPO frequency. Ho we ver,
e broadly find that not to be true. For all frequencies abo v e 100 Hz ,
he model produces accurate, well-bounded posteriors for the QPO 

arameters, and a biased posterior for the incident count rate around
μcr = ∼ 900 counts s −1 and a variance of σμcr ∼ 20 counts s −1 , 5

tandard deviations away from the true value. For the QPO at 35 Hz ,
he marginalized posterior for the incident count rate actually has a
ean of μμcr = 1081 counts s −1 , but the distribution is also close to
ve times wider, with a standard deviation of σμcr = 98 counts s −1 . 
This discrepancy can be explained by the information available 

o the model: For QPOs with centroid frequencies above 100 Hz,
e generally used periodograms that are sampled up to a Nyquist

requenc y of νNyquist = 500 Hz . F or an LF QPO like the one at 35 Hz ,
ampling that high would be computationally wasteful in practical 
pplications, thus we only sampled up to νNyquist = 100 Hz . Conse-
uently, the model has much less information available on the dead
ime affecting the light curve if the periodogram cuts off at 100 Hz .
s a result, the posterior distribution reflects the higher uncertainty 

n the incident count rate in the much larger standard deviation. 
If accurate inference of the incident count rate is required and the

nstrument’s time resolution allows for it, we recommend generating 
 periodogram that includes the frequency range where dead time 
ffects are prominent, and employing the variable dead time model. 
o we ver, the v ariable dead time model adds significant computa-

ional o v erhead on to the calculations by a factor of ∼2. In cases
here inferences do not rest critically on the incident flux, using a

onstant dead time model may be computationally more expedient. 
f the incident flux is important to the physical inferences to be made,
hen one may implement an empirical dead time model as suggested
bo v e in order to accurately treat variable dead time. 

.6 Computational r equir ements 

e run all simulations and models on a machine with two AMD
PYC 7401 processors (48 CPU cores or 92 threads total) and 1TB
AM. The simulator itself is not parallelized, and a single simulation

uns in about 0 . 24 s for all simulations in this section (simulations
ith variable dead time are slightly slower due to the additional

andom draws, but not substantially so). Thus, total time on a single
PU for 50 000 simulations is about 3 h, though this process is

rivially parallelizable. 
MNRAS 511, 5689–5708 (2022) 
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Figur e 15. Mar ginalized posterior probability distributions for simulated data with variable dead time, using a model with constant dead time (purple) and 
variable dead time (orange) to infer QPO and light-curve parameters. The constant dead time model compensates for the underestimation of the true dead time 
by inferring a lower incident count rate, whereas the variable dead time model accurately reco v ers all four parameters. 
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The amortized models in this section are trained (without embed-
ing nets) o v er 40 epochs in ∼20 min when all cores are available.
he addition of embedding nets (and consequently of parameters)
l w ays requires drastically more epochs for convergence (of the order
f 150), and consequently also more than triple the training time.
nce trained, inference with all models becomes v ery fast: dra wing
0 000 samples from the posterior takes only ∼ 1 . 5 s or less. 
When training the sequential version of the algorithm, we generate

000 simulations in each of the five training rounds, and alternate the
eneration of simulations with training a model. For the simulations
n this section, this inference process takes ∼30 min, though the
ingle-core generation of simulations is the clear computational
ottleneck of this procedure (about 24 of those 30 min are spent on
enerating simulations). Parallelizing the simulator would drastically
mpro v e efficienc y in practical circumstances. Similarly, training the
eural networks on a modern GPU would likely significantly reduce
omputation time for the amortized models. We find no significant
omputational differences between the different scenarios we test:
oth LF and HF QPO, as well as single PSD and averaged PSD cases
ave similar simulation/training requirements. We focus in this paper
n the generation of segments that are extremely short (10 s) com-
ared to the typical lengths of observations (1 ks–100 ks). Simulating
ull observations similar to those generated by modern, sensitive
nstruments like NICER with millions of photons might strain both
omputational and memory resources without further optimization. 

.7 LF variability in light curves with gaps 

ead time is not the only instrumental effect that imposes significant
iases on to the data. Most instruments cannot record continuous,
nbroken data streams: Ground-based instruments are constrained
y the sun, by weather and observing constraints. Space-based
nstruments are limited by the need to process and downlink data, and
atural effects interrupting data collection such as the South Atlantic
nomaly. As a result, long observations will contain gaps, in X-ray

stronomy often defined by good time intervals (GTIs) describing
he intervals during which the instrument yielded data appropriate
or scientific studies. 

These gaps can make it difficult to study processes at time-scales
onger than the typical length of a GTI, because the windowing
f the GTIs will impose their own imprint on a standard Fourier
eriodogram. Alternative approaches include the Lomb–Scargle
eriodogram (Lomb 1976 ; Scargle 1982 ) and a recent method by
ilkins ( 2019 ) that employs Gaussian Process models to fill the
NRAS 511, 5689–5708 (2022) 
aps in the observations with realistic simulated data points. The
imulation-based modelling approach employed here for dead time
an also straightforwardly be used for studies of variability at very
ow frequencies in the presence of gaps. If a model for the variability
xists and can be used as a simulator, we can construct simulated data
ets and impose the same GTIs on these simulations as the instrument
id on the real data during the collection process. 
We simulate a 44-ks observation of a stochastic light curve

enerated using a power spectrum comprising a broken power law
ith a very low frequency break at νbreak = 0 . 3 mHz , equi v alent to a

ime-scale of 3000 s. The broken power law we use is given by 

 ( ν) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

A 

(
ν

νbreak 

)−α1 

, if ν < νbreak 

A 

(
ν

νbreak 

)−α2 

, if ν ≥ νbreak 

. (2) 

e use the real GTIs from the observation presented in Section 2 to
ntroduce realistic gaps into the data. Because we are interested in
he behaviour of the model in the presence of gaps, no dead time was
ncluded in the simulations. The simulated data are shown in Fig. 16 .
ther parameters of the model are the fractional rms amplitude rms f ,

he LF power-law index α1 , the HF power-law index α2 , and the
ean count rate μcr . We built a simulator that generates simulated

bservations using equation (2), given a set of parameters, and
ses the NuSTAR GTIs from observation 80401312002 and use
his simulator in combination with the SNPE algorithm, comparing
ogarithmically binned periodograms. 

We run 10 rounds of sequential posterior estimation, each with
000 simulations (see Table 4 for the priors used in this model).
he results are presented in Figs 17 and 18 , respectively. The
osterior probability is relatively narrow for all parameters except
or the LF power-law index. The latter result is unsurprising, given
hat there are only approximately seven frequency bins below the
reak, which naturally makes estimation of that index difficult given
he typical intrinsic noise in the periodogram. More importantly,
o we v er, the break frequenc y is well constrained and accurately
nferred, as is the HF power index, though the latter has a fairly broad
istribution. 
In initial experiments, the incident count rate was entirely uncon-

trained, an initially surprising result that can be explained by the use
f the fractional rms normalization we used for the periodogram. This
ormalization rescales the periodogram such that it is independent
f the mean count rate. But because the periodogram is the only
ummary of the data used in the model, the incident mean count rate
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Accurate timing with SBI 5701 

GTIs, log
GTIs

Figure 16. Top panel: light curve simulated from a broken po wer-law po wer spectrum. In dark purple, the observed segments. Light pink marks the gaps and 
shows the data points that would have been observed if these gaps did not exist. Bottom panel: the logarithmically binned periodogram for the data without the 
GTIs imposed (light pink), and with the GTIs imposed (purple). The imprint of the gaps is most strongly visible in the HF power-law index, where the gaps 
push the index towards a smaller value. The dashed line marks the location of the break frequency. 

Table 4. Priors used in the models. 

Model Parameter Meaning Probability distribution 

Red noise SBI model rms f Fractional rms amplitude Uniform(0.1, 0.5) 
α1 Power-la w inde x below νbreak Uniform( − 0.2, 5.0) 
α2 Power-la w inde x abo v e νbreak Uniform( − 0.2, 5.0) 

log ( νbreak ) Break frequency Uniform(log (10 −4 ), log (10 −2 ) 
μcr Mean incident photon count rate Uniform(500, 1500) 

Red noise MCMC model a A rn Red noise amplitude Uniform(10 7 , 10 9 ) 
A wn White noise amplitude Uniform(10 2 , 10 4 ) 

Notes. An o v erview o v er the model parameters with their respective prior probability distributions for the red noise models 
in this section. 
a The MCMC model shares α1 , α2 , and νbreak with the SBI model; fractional rms amplitude and mean count rate are 
reparametrized as two amplitude parameters. 
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an no longer be inferred. For the results presented in this section,
e used the absolute rms normalization (Uttley & McHardy 2001 ) 

nstead, which preserves the scaling factor due to the flux in the
eriodogram and thus allows for accurate inference of the mean 
ount rate as shown by the well-constrained and accurate distribution 
n Fig. 17 . In line with these well-constrained posterior distributions,
ig. 18 reveals that realizations drawn from the posterior follow the 
bserved data very closely. 
We compare the SNPE-derived posterior with a posterior from 

lassical MCMC on the periodogram. This pretends that the gaps do 
ot exist, and is not an entirely fair comparison: Both the Lomb–
cargle periodogram and the Gaussian Process-based interpolation 
ethod from Wilkins ( 2019 ) would almost certainly provide better

erformance, but come with their own limitations: accurate inference 
n Lomb–Scargle periodograms is not straightforward because 
owers at neighbouring frequencies are not al w ays statistically 
ndependent. The Gaussian Process interpolation can be very com- 
utationally e xpensiv e for long light curv es, unless there e xists a
ovariance function that is fast and easy to invert and that also
atches the presumed underlying process well. 
MNRAS 511, 5689–5708 (2022) 
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Figur e 17. Mar ginalized posterior probability distributions for the red noise 
model. 

Figure 18. Purple: simulated observation of a broken power-law-type red 
noise process with gaps; pink: realizations drawn from the posterior proba- 
bility distribution displayed in Fig. 17 ; orange: posterior median from 100 
posterior realizations. 
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We use the same model as for the SNPE, but with two re-
arametrizations. Instead of the fractional rms amplitude and the
ean count rate, the model used for traditional MCMC has an

mplitude for the broken power law and a parameter for the flat
hite noise at high frequencies (priors for all parameters in Table 4 ).
e use a standard analytical χ2 likelihood, and, where possible, the

ame flat priors as for the SNPE model for easier comparison. 
In Fig. 19 , we present the comparison between the simulation-

ased model and the analytical model without gaps for the most
mportant parameters: the two spectral indices α1 and α2 , and the
reak frequency νbreak . In both models, the LF index is not well
onstrained, as expected, given the small number of frequencies
elow the break frequency. Both the break frequency and the HF
ower-la w inde x are biased a way from the true value in the analytical
odel without gaps. Especially α2 is inferred to be close to a spectral

ndex of 2.2, and the narrow distribution excludes the true value of
.5. The posterior distribution inferred through SNPE, conversely,
s much broader, but with a mode at the true value. The bias is less
ronounced for the break frequency, but still significant. Our results
NRAS 511, 5689–5708 (2022) 
uggest that SNPE can produce accurate posteriors for problems that
nvolve data with gaps, at the cost of some precision. 

 Q P O  M O D E L L I N G  IN  G R S  1 9 1 5  + 1 0 5  

o test the model on real data, we extract photon events from
uSTAR observation (obsid 80401312002 ) of the black hole X-

ay binary GRS 1915 + 105. The observation has a total exposure of
6 166 s and a mean count rate of μcr = 143 counts s −1 after summing
he photons of both detector modules and taking into account GTIs.
n averaged periodogram generated out of 530 light curve segments
f 64 s each reveals a strong QPO at 2.2 Hz and a harmonic at twice
hat frequency (Fig. 20 ). Because we would like to explore the time-
ependent structure of the QPO, we split the light curve into segments
f 240 - s duration, each of which is turned into a periodogram that
verages 15 individual segments of 16 - s duration. The periodogram
s logarithmically binned with f = 0.01 in order to reduce noise at the
igh frequencies. This yields a total of 207 averaged periodograms
 v er the full observation. Visual inspection reveals that the QPO is
resent o v er the course of the entire observation. 
We build a model for the underlying power spectrum of the

bserved data that contains three Lorentzian components: (1) a
ero-centred Lorentzian to account for the broadband noise, (2) a
orentzian to account for the strong QPO around 2.2Hz and (3) a
orentzian to account for the harmonic, with its centroid frequency

equired to be twice the centroid frequency of component (2) and its
uality factor to be the same as component (2). We parametrize these
omponents relative to the broadband noise component, which is
xed to an amplitude of A rn = 1.0, and relative to the fractional
ms amplitude of the entire spectrum. The mean incident count
ate of the light curve is the final free parameter. All parameters
re described with their priors in Table 5 . To simulate dead-time-
ffected light curves, we choose the constant dead time model with
dead = 0 . 0025 s. Simulated light curves are generated with a high
esolution of d t hires = 10 −5 s in order to be able to accurately represent
ow short-term variations and dead time combine to affect the data.
fter removing photons due to dead time, light curves are rebinned

o a resolution of d t = 0 . 001 s, equi v alent to a Nyquist frequency of
Ny = 500 Hz , in order to allow the model to accurately estimate the
ncident count rates. 

Using this simulator, we generate 100 000 simulated periodograms
rom parameters drawn from the prior specified in Table 5 , which we
se to train the density estimator. Based on the results in Section 4 ,
e choose not to include a neural network to generate summary

eatures, but let the MAF use the periodogram directly. While a
equential estimation would be less computationally e xpensiv e, it
ould also require training a separate estimator for each of the
07 individual light curves from this observation. We generate more
imulations upfront and train a single MAF in order to take advantage
f the amortization of this process: Once trained, generating samples
rom the posterior is a fast and efficient process for all light
urves. We also retrain the network with 10 000, 25 000, 50 000, and
5 000 simulations to understand whether we can perform similarly
uccessful inference with fewer simulations, and find that 50 000
imulations produces posteriors of comparable shapes and widths. 

In Figs 21 and 22 , we show the marginalized posterior distributions
nd realizations drawn from the posterior probability distribution for
he first of the 207 light curves. We find that the posterior density
s well-constrained in a single mode for all parameters, though
he quality factor has a relatively wide posterior. The comparison
etween the observed periodogram and posterior draws reveals
ome variance in the latter, expected given the noise properties of
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Figure 19. Comparison of posterior inferences for three critical parameters in the red noise model: the power-law spectral indices α1 (left-hand panel) and 
α2 (middle panel) below and abo v e the break frequency νbreak (right-hand panel), respectively. In purple, we present the marginalized posterior distributions 
inferred with simulation-based model and SNPE. In pink, the marginalized posterior distributions inferred using a χ2 likelihood under the assumption that there 
are no gaps affecting the periodogram. 

Figure 20. Top panel: light curve for NuSTAR observation 80401312002 of the black hole X-ray binary GRS 1915 + 105, binned at a 5-s resolution. Bottom 

panel: the averaged periodogram created from combining 530 individual segments of 64 - s duration reveals a strong QPO at 2 . 2 Hz and an associated harmonic 
at 4 . 4 Hz . It also shows the characteristic broadband oscillatory structure typical for dead time. 
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Table 5. Priors used in model for GRS 1915 + 105. 

Parameter Meaning Probability distribution 

rms f Fractional rms amplitude Uniform(0.1, 0.4) 

ν0 FWHM of the zero-centred Lorentzian Uniform(1, 10) 
A QPO Relative amplitude of the QPO Uniform(0.5, 20) 
νQPO QPO centroid frequency Uniform(1.5, 3.5) 
q QPO Quality factor of the QPO Uniform(3, 100) 
A h Relative amplitude of the harmonic Uniform(0.1, 1.0) 
μcr Mean incident photon count rate Uniform(500, 1500) 

Note . An o v erview o v er the model parameters with their respective prior probability distributions 
for the model for GRS 1915 + 105. 

Figure 21. Corner plot of the posterior probability distribution for the QPO 

model and the first light curve of the NuSTAR observation of GRS 1915 + 105. 

Figure 22. Periodogram of the first light curve in the NuSTAR observation 
of GRS 1915 + 105 (purple), along with realizations of random draws from 

the posterior (pink) and the posterior median (orange). The well-constrained 
posteriors in Fig. 21 translate into realizations that generally capture all of the 
behaviour seen in this periodogram: the LF noise, the QPO and its harmonic, 
and, at high frequencies, the imprint of dead time. 
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 periodogram averaged from 15 segments. The posterior median
rom 100 simulations traces all features in the periodogram closely
nd shows no inherent biases. Visual checks of the posterior samples
or other light curves in the observation confirms that, o v erall, the
NRAS 511, 5689–5708 (2022) 
ensity estimator trained on 100 000 simulations does a good job of
pproximating the posteriors. 

In order to explore the time-dependent behaviour of the pe-
iodograms, we generate posterior samples for each of the 207
veraged periodograms generated from this observation. Because the
odel is amortized, drawing posterior samples is fast, of the order of

econds for 10 000 samples. We generate histograms with 200 bins
or the marginalized posteriors for each parameter in each segment,
nd then plot these histograms in a heatmap as a function of time
Fig. 23 ). This plot reveals significant variation in all parameters.
tark dips in the posterior for the incident count rate that occur
irectly at the beginning of a GTI and are likely due to instrumental
ffects. We also observe stochastic variability in the fractional rms
mplitude, and somewhat more structured changes in the centroid
requency of the QPO: while the other parameters appear to jitter on
horter time-scales, the QPO centroid frequency seems to change on a
ime-scale closer to the length of the total observ ation. Ho we ver, this
ppearance may be related to the fact that in both our simulations and
n the real data, the centroid frequency is al w ays the parameter with
he narrowest posterior density; thus, we cannot say whether there is
n intrinsic difference between variability in different parameters. To
he eye, this variation may appear near-periodic, though we caution
he reader that this might be an illusion generated by an otherwise
tochastic process (e.g. Press 1978 ). 

As a check on the validity of the model, we compare the inferred
ncident count rates with the observed mean count rate in each light
urve, and with a commonly-used analytical estimate for the incident
ount rate, given by 

exp = 

μobs 

1 − τdead μobs 
, (3) 

here μobs is the observed mean count rate and τ dead is the dead
ime. Fig. 24 presents the comparison between observed count
ates, expected count rates, and the mean of the posterior pdf for
ach of the light curves as a function of time. Overall, both the
nalytic estimate and the posterior means are significantly higher
han the observed count rates, as expected for a bright light curve
ith a significant loss of photons. While the posterior means and

he analytic estimate appear very similar, the posterior means are
ystematically higher by ∼ 0 . 75 counts s −1 . This may indicate that the
nalytic estimate is a slight underestimation. Both analytic estimate
nd posterior means used a constant dead time model; if variable
ead time were consistently taken into account, we would expect the
ncident count rate somewhat higher, as was the case in Section 4.5 .
ecause posterior means are only an incomplete representation of a

ull posterior, we also present violin plots of the posterior for the first
ve light curves along with the analytical estimate as a comparison.
hile o v erall, the distributions and the analytical estimates agree, the
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Figure 23. Posterior probability densities as a function of time. For each parameter in the model, we generate histograms of the marginalized posterior 
probability densities out of 5000 posterior samples. For each parameter, we use the same 200 equally spaced bins for all posteriors. The histograms are then 
plotted as a heatmap as a function of time (black: little or no probability, orange high probability). Black gaps are associated with gaps in the GTIs. Instrumental 
signatures are visible in the artificially low incident count rate estimates at the start of some GTIs. 

Figure 24. Left-hand panel: comparison of the observed mean count rate (purple), the mean of the posterior probability distribution (pink) and the expected 
mean count rate calculated using the observed count rate and NuSTAR constant dead time using equation (3) for each of the 207 light curves in NuSTAR 

observation 80401312002 . Right-hand panel: violin plot of the posterior probability densities for the incident mean count rate (purple), and the expected 
mean count rate (orange) as in the left-hand plot, for the first five light curves. 
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atter seems to generally fall into the lower half of the distribution,
n line with the o v erall observation that the posterior fa v ours slightly
igher incident mean count rates. 

 DISCUSSION  

roblems where an analytical likelihood is inaccessible or where the
ata are affected by instrumental effects that are hard to incorporate
n a parametric model are common in science. X-ray astronomy is no
xception, and dead time has been a long-standing issue for timing
tudies in this field. Our work here presents a powerful new approach
o mitigating instrumental effects like dead time, based on recent
dvances in density estimation via neural networks, which have dra-
atically impro v ed the efficienc y and accurac y of SBI. Simulations

o assess instrumental effects are not new in astronomy. However, SBI
s presented here embeds these simulations into the framework of
robabilistic modelling and allows for a direct estimation of posterior
robability distributions from these simulations. 
We used dead time in NuSTAR as an example, but in some

ays, NuSTAR is the least interesting instrument for this kind of
pproach. Its two identical detectors make other, faster methods
ike the FAD accessible, though we have also shown that the
ead time distribution in NuSTAR does matter compared to the
onstant value often assumed. In studies that require extremely
ccurate measurements of the incident flux, the model proposed
ere, especially when drawing individual dead time intervals from
he observed distribution, is likely to produce less biased results,
hough this will also depend on the strength of the variability in
uestion (biases are most likely strongest for very high fractional
ms amplitudes; Bachetti & Huppenkothen 2018 ). Ho we ver, there
re instruments for which alternative approaches are not available
ecause the instrument comprises a single detector, or because the
ead time process itself is more complex (e.g. energy-dependent dead
ime). In these cases, simulations might be the only option to assess
nd mitigate dead time effects. 

Traditionally, SBI required the careful construction of handcrafted
ummary features from the data to enable the algorithm to efficiently
onstruct posteriors. For a relatively simple problem with few pa-
ameters, we have shown that SNPE works impressively well on the
eriodograms themselves. We note, ho we ver, that the periodogram
n fact is a summary of the data, albeit a noisy and incomplete
ne. For stochastic processes common in accreting sources like GRS
915 + 105, it is a better estimator than the raw light curves would be,
hough our experience with the example of a red noise process with
aps and without dead time also shows that a careful construction
f the summaries used is still important. Because the mean flux in
 light curve imposes a constant scaling factor on the periodogram
hat is divided out in the fractional rms normalization, a model that
ses this normalization to construct the periodogram as a summary
ill not be able to infer the incident count rate in the light curve,
ecause there is no information available in the summary to do.
nterestingly, we only noticed this in the model without dead time,
espite the fact that all previous simulations in Section 4 also employ
he same normalization. We conclude that in these other cases, the
ncident mean count rate was actually inferred through the dead time
rocess itself. Because the effect of dead time is flux-dependent, the
odel can use the shape of the periodogram across a wide range of

requencies to estimate the incident flux, despite no other information
bout the flux being available. 

In this paper, we focused on introducing and validating SBI
sing relatively simple toy problems to showcase the approach,
ut the method admits much more complex problems and data
NRAS 511, 5689–5708 (2022) 
ets. In principle, one might combine different, more comprehensive
ummaries of the data, such as time lags, covariance-energy spectra,
hase-resolved spectroscopy, or rms-flux spectra in order to perform
oint probabilistic inference given an underlying physical model for
he effects observed in the data. Because new, neural-network-based

ethods for SBI scale well to higher dimensions, and because they
lso allow for the use of intrinsically stochastic models, limitations to
his approach come primarily from the ability to simulate the process
n question. 

While in the past, SBI was extremely computationally e xpensiv e,
he sequential approach proposed by Greenberg et al. ( 2019 ) makes
t possible to construct accurate posteriors with a few thousand sim-
lations; less than or at most equal to what many MCMC algorithms
ommonly used in astronomy require. Amortized inference without
he sequential components is significantly more computationally ex-
ensive, but depending on the problem at hand, that upfront expense
ay be justified if it enables inference across many different data

ets later on, as we have shown on the GRS 1915 + 105 data. While
e do not find that summaries constructed through convolutional
eural networks impro v e our results, and posterior inference seems
o work well on the periodograms from GRS 1915 + 105 data without
uch summaries, it is possible that other sources may benefit from
eature extraction with convolutional neural networks. In general,
hile our results provide a proof of concept that SBI with SNPE

nables reliable inference in the presence of dead time, our modelling
hoices should not be seen as prescriptive, especially when applying
his approach to sources with significantly different light curves and
eriodograms, which may require additional experimentation and
yperparameter optimization. 

We caution that a simulator based on a physical model might
e computationally e xpensiv e. F or the problem considered here,
e found that simulating whole light curves of more than a few

housand seconds becomes very slow because of the simultaneous
equirement of a time resolution smaller than the typical time-scale
f the dead time process. This leads to an e xcessiv ely large number of
requencies to be inverse Fourier-transformed into a light curve, and
onsequently to a slow simulator. However, simulations can be pre-
ecorded, and easily parallelized. Amortized inference on multiple
bservations only works if the observations all have the same overall
roperties as the simulated data: That is, they must have the same
ength and time resolution in order to be comparable to the simulated
ata. Finally, while neural networks have been shown to be extremely
fficient and flexible estimators of densities, they are also opaque
odels that are difficult to interpret. Understanding when they fail,

r how well they estimate the target posterior density in practice
an be difficult. We performed e xtensiv e simulations to understand
he model’s performance on a relatively simple problem with dead
ime. We also employed posterior predictive checking through
omparisons between the observed periodogram and realizations of
he posteriors as well as the posterior median to identify possible
iases in the model. 
The fast posterior sampling using the amortized model has addi-

ional advantages, because it opens up spectral timing to hierarchical
nference. Rodrigues et al. ( 2021 ) recently introduced an algorithm
or SNPE in a hierarchical modelling context. In the context of
he GRS 1915 + 105 data presented abo v e, a hierarchical model
ould help constrain the variability properties of the QPO centroid
requenc y. Giv en a (stochastic or periodic) function for the evolution
f the QPO centroid frequency in time, a hierarchical model might
efine the parameters of that function as population-level parameters,
nd recast the centroid frequency for each individual segment as
atent variables. In a hierarchical framework, these parameters are
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ointly inferred. This provides a powerful tool for future spectral 
iming studies of accreting sources. 
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