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ABSTRACT

Classification of the optical spectra of active galactic nuclei (AGN) into different types is currently based on features such as line
widths and intensity ratios. Although well founded on AGN physics, this approach involves some degree of human oversight and
cannot scale to large datasets. Machine learning (ML) tackles this classification problem in a fast and reproducible way, but is often
(and not without reason) perceived as a black box. However, ML interpretability and are active research areas in computer science that
are providing us with tools to mitigate this issue. We apply ML interpretability tools to a classifier trained to predict AGN types from
spectra. Our goal is to demonstrate the use of such tools in this context, obtaining for the first time insight into an otherwise black
box AGN classifier. In particular, we want to understand which parts of each spectrum most affect the predictions of our classifier,
checking that the results make sense in the light of our theoretical expectations. We trained a support-vector machine on 3346 high-
quality, low-redshift AGN spectra from SDSS DR15. We considered either two-class classification (type 1 versus 2) or multiclass
(type 1 versus 2 versus intermediate-type). The spectra were previously and independently hand-labeled and divided into types 1
and 2, and intermediate-type (i.e., sources in which the Balmer line profile consists of a sharp narrow component superimposed on a
broad component). We performed a train-validation-test split, tuning hyperparameters and independently measuring performance via
a variety of metrics. On a selection of test-set spectra, we computed the gradient of the predicted class probability at a given spectrum.
Regions of the spectrum were then color-coded based on the direction and the amount by which they influence the predicted class,
effectively building a saliency map. We also visualized the high-dimensional space of AGN spectra using t-distributed stochastic
neighbor embedding (t-SNE), showing where the spectra for which we computed a saliency map are located. Our best classifier
reaches an F-score of 0.942 on our test set (with 0.948 precision and 0.936 recall). We computed saliency maps on all misclassified
spectra in the test set and on a sample of randomly selected spectra. Regions that affect the predicted AGN type often coincide
with physically relevant features, such as spectral lines. t-SNE visualization shows good separability of type 1 and type 2 spectra.
Intermediate-type spectra either lie in-between, as expected, or appear mixed with type 2 spectra. Misclassified spectra are typically
found among the latter. Some clustering structure is apparent among type 2 and intermediate-type spectra, though this may be an
artifact. Saliency maps show why a given AGN type was predicted by our classifier resulting in a physical interpretation in terms of
regions of the spectrum that affected its decision, making it no longer a black box. These regions coincide with those used by human
experts, for example relevant spectral lines, and are even used in a similar way; the classifier effectively measures the width of a line
by weighing its center and its tails oppositely.

Key words. methods: statistical – galaxies: active – quasars: general – galaxies: Seyfert

1. Introduction

Active galactic nuclei (AGN) are the most energetic non-
transient phenomena in the Universe. AGN can be found in
the nuclei of galaxies characterized by highly ionized gas
not correlated with stellar activity. The gas surrounding the
AGN can be photoionized by photons produced by accretion
mechanisms onto a supermassive black hole (SMBH), with
MBH ≈ 106−109 M�, which accretes material from the surround-
ing interstellar medium (Salpeter 1964; Zel’Dovich & Novikov
1965; Lynden-Bell 1969; Rees 1984).

? The code on which this work is based can be found at the following
link https://gitlab.com/tobia.peruzzi/agn_spectra

Classically AGN, and in particular Seyfert galaxies, are
divided into two groups (Khachikyan & Weedman 1971;
Khachikian & Weedman 1974): type 1 and type 2. The corre-
sponding physical interpretation, called the Unified Model, is
that for type 1 the observer looks directly into the unobscured
accretion disk surrounded by fast-moving gas clouds, and for
type 2 the line of sight into the accretion disk is blocked by an
obscuring medium (Antonucci 1993; Urry & Padovani 1995).

AGN emit radiation in virtually all bands, and consequently
have historically been described in terms of several classes of
objects depending on the band they were discovered in. AGN
classification is reviewed in detail by Padovani et al. (2017),
which also includes a systematic discussion of the definitions
of different but sometimes overlapping classes of AGN defined
over time by observational astronomers in bands ranging from
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the radio to the gamma rays, known as the AGN zoo. In the fol-
lowing we focus on the problem of classification into type 1 and
type 2 because of its implications for statistical analyses (see
Elitzur 2012, which also discusses a refinement of the original
unified model) on large catalogs and to illustrate an application
of machine learning (ML) interpretability tools.

Classification of sources into type 1 and type 2 is typically
based on features observed in the optical spectrum, such as the
full width at half maximum (FWHM) of the broad Hβ line:
type 1 AGN are classically defined as having FWHM of per-
mitted broad lines in excess of those of the forbidden lines that
rarely exceed 1000 km s−1, generally accompanied by an intense
blue continuum; type 2 show permitted and forbidden emis-
sion lines of comparable width (Khachikian & Weedman 1974).
Among type 1 AGN, the ratio of equivalent widths between FeII
optical emission and the HI Balmer emission line Hβ helps to
classify large samples of quasars along a main sequence
(Boroson & Green 1992). This approach may be supple-
mented by observables in different bands, leading to the four-
dimensional Eigenvector 1 (4DE1) parameter space (Sulentic
et al. 2000a,b, 2007). These methods of AGN classification are
firmly grounded in our understanding of AGN physics, but are
hard to automate and require at least some human oversight.
Direct quantification of the classification performance attained
by humans is obviously hard, as it would involve setting up a
controlled classification experiment, but there are documented
instances of spurious source identifications which were over-
turned on closer inspection (e.g., Järvelä et al. 2020). The perfor-
mance of automatic approaches on the other hand can be easily
evaluated on an unseen test set. For these reasons, AGN classifi-
cation for extremely large datasets, such as the Sloan Digital Sky
Survey (SDSS), is likely to require an automated approach. The
challenge we are facing is to make classification fast and accu-
rate, without turning the classification process into a black box
and losing physical interpretability.

Surprisingly, automatic ML classification of AGN optical
spectra was attempted only a few times based on artificial neu-
ral networks (Rawson et al. 1996; González-Martín et al. 2014)
and nearest neighbor schemes (Zhao et al. 2007). In all cases the
focus was on correct automatic classification rather than on the
interpretability of the resulting model. This is also the case for
the most recent and to our knowledge most accurate AGN clas-
sification result based on a supervised ML framework presented
by Tao et al. (2020). They trained various black box ML mod-
els on 10000 SDSS DR-14 spectra, achieving remarkably high
classification performance (≈93% in terms of the F-score met-
ric, which we discuss below). The authors also use random for-
est feature importance to gain some insight into which principal
components of the feature space of spectra are more informative,
but do not discuss their physical meaning. Despite the great clas-
sification performance, the current state of the art in automated
AGN classification lacks interpretability: how are these models
achieving such high performance? In the following we focus on
this question, while pointing the reader interested in a general
discussion of ML in astronomy to the excellent review by Fluke
& Jacobs (2020).

Interpretability and explainability are open research areas in
ML, and a variety of techniques have been proposed depending
on the context in which the need for model explanation arises
(see Molnar 2019, for a review). In astronomy and science in
general, the ability to provide an explanation in addition to a
bare prediction is likely crucial for adoption of ML methods.

While interpretability techniques are increasingly being
applied to a variety of astronomical problems (see, e.g., Peek

& Burkhart 2019; Villanueva-Domingo & Villaescusa-Navarro
2021; Zhang et al. 2020), along with natively interpretable models
such as simple decision trees (e.g., Askar et al. 2019), they are still
far from the norm in the field. Generally speaking, interpretability
toolsareeithermodel specificormodelagnostic.Theformerapply
only to a specific set of ML models, while the latter potentially
apply to any model, including a black box model; model agnostic
tools are clearly more interesting for application to astronomy. In
the following we visualize the gradient of our classifier’s predic-
tion (more precisely the relative change in the predicted probabil-
ityorconfidence for thepredictedclass),which isapplicable toany
underlying ML model as long as it is differentiable. The gradient
is inexpensive to compute, clearly indicates how to modify a given
instance (an AGN spectrum in our case) to change the associated
prediction, and can be readily visualized.

In this paper we obtain comparable accuracy to that found
by Tao et al. (2020), also using a support-vector machine (SVM;
Cortes & Vapnik 1995). We then explain our trained classifier’s
decision on an individual basis by visualizing its gradient by a
so-called saliency map (Simonyan et al. 2013) given any AGN
spectrum. SVMs are differentiable, allowing us to compute the
gradient of the predicted class probability at any given point in
feature space. Since the coordinates of this space are the fluxes
measured for each wavelength in our spectra, we can use the gra-
dient computed at any given spectrum to visualize which parts of
the spectrum are responsible for a type 1 classification (slightly
increasing the flux at those wavelengths increases the predicted
probability of being type 1), which parts are irrelevant (increas-
ing the flux has no effect), and which parts pull in the oppo-
site direction toward a type 2 classification (increasing the flux
decreases the predicted probability of being type 1). This can
be conveniently shown as a color-coding of the spectrum under
consideration, and is an easy way to check what the model is
basing its predictions on.

In addition to interpretability tools applied to classifiers,
visualization and visual clustering based on dimensionality
reduction approaches where high-dimensional data is mapped
to a low-dimensional space, such as a plane for visualization
purposes, are also becoming more commonplace in astronomy
(see, e.g., Kos et al. 2018; Anders et al. 2018; Lamb et al.
2019; Furfaro et al. 2019; Steinhardt et al. 2020a,b; Kline &
Prša 2020), with applications also to AGN ranging from time-
tested linear methods such as principal component analysis (Yip
et al. 2004a,b) to advanced deep learning approaches (Ma et al.
2019; Portillo et al. 2020). Since we use saliency maps as an
instance-by-instance explanation of our ML model it is natural
to leverage dimensionality reduction to represent AGN spectra
on a plane, where we then show which instances (data points)
we are examining. This also allows us to visualize the position
of misclassified instances with respect to the other data in our
set.

In Sect. 2 we describe the dataset used, and in Sect. 3
the supervised classification setup. In Sect. 4 we present the
SVM performance (4.1), the AGN spectra space visualized with
the dimensionality reduction algorithm t-distributed stochastic
neighbor embedding t-SNE (4.2), and the application of saliency
map interpretability tool to AGN spectra (4.3). In Sect. 5 we pro-
vide a summary of the results reached in this work.

2. Data

Our dataset is composed of 680 type 1, 2145 type 2, and 521
intermediate-type AGN spectra from the SDSS survey. All of
them have been accurately classified by previous works in the
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literature, and are expected to have a lower rate of misclassifi-
cation than what is typically achieved with unsupervised sample
selection (see Sect. 2 of Berton et al. 2020). For this reason they
are well-suited to testing our automatic classification procedure.

The selection of type 1 spectra is described in detail by
Marziani et al. (2013). First, they selected sources cataloged
as quasars in the SDSS DR7 in the redshift range 0.4–0.75
and with magnitudes brighter than 18.5 in g, r, or i band, to
ensure a good spectral quality. They also included sources with
FWHM(Hβ)< 1000 km s−1 selected by Zhou et al. (2006), which
are usually not classified as quasars by SDSS. After a visual
inspection to remove low-quality spectra, they included 680
sources in the final sample.

The selection of the type 2 and intermediate-type spectra
was carried out by Vaona et al. (2012). In SDSS DR7 they
selected all the sources showing the [O II]λ3727, [O III]λ5007,
and [O I]λ6300 lines, with an additional criterion on the signal-
to-noise ratio (S/N)([O I]λ6300) > 3. This sample of 119226
sources was subsequently reduced by applying a redshift thresh-
old 0.02 ≤ z ≤ 0.1. The lower limit was needed to ensure
the presence of the [O II] line, while the upper limit to avoid
contamination from extranuclear sources within the fiber aper-
ture. An empirical criterion based on line ratios suggested by
Kewley et al. (2006) was applied to remove sources without
AGN activity (see Eq. (1) in Vaona et al. 2012). The remain-
ing objects were further analyzed on the basis of the diagnostic
diagrams by Veilleux & Osterbrock (1987) and their Hα widths,
and were finally divided into two samples of 2153 Seyfert 2 and
521 intermediate-type AGN. Thanks to these strict selection cri-
teria, their spectra had a typical S/N, defined here as the ratio
of the mean flux of the 5100 Å continuum to the standard devi-
ation in the same spectral region, between 10 and 40, directly
comparable to that of the type 1 sample.

Intermediate-type AGN show Balmer line profiles that con-
sist of a sharp narrow component superimposed on a broad
component (Osterbrock & Koski 1976; Osterbrock 1981, 1991).
Following the classification proposed by Osterbrock, they are
classified as 1.2, 1.5, and 1.8 in order of decreasing prominence
of the broad component. For the context of the classification task
presented in this work, they are considered as a single type since
an additional subdivision would require a level of sophistication
that is not necessary at this stage.

Every spectrum was shifted to rest frame using the values of
z given by the SDSS and normalized to the flux value at 5100 Å
in the rest frame. This value was chosen in order to normalize on
a flux that belongs to the continuum and not to an emission line
or some other component.

In order to perform classification on a fixed number of spec-
tral features, we needed to turn each spectrum into an array
of normalized fluxes of the same length. Every spectrum in
the dataset was thus interpolated over 1000 points at equally
spaced wavelengths obtaining flux values at the same wave-
lengths for every spectrum. Over the range of wavelength over-
lap, this results in an effective resolution in wavelength strictly
higher than the nominal SDSS resolution in the same range, and
therefore no information is lost in the interpolation. These flux
values constitute our features, so our feature space has 1000
dimensions. We restricted the range of our interpolation to the
shared overlap of our spectra (i.e., between the maximum among
the minimum wavelengths of all the spectra and the minimum
among the maximum wavelengths of all the spectra) so that we
could include all spectra in the final sample without having to
add padding. We note that this approach somewhat reduces the
amount of information available to our classifier with respect to

Table 1. Extremes of the wavelength interpolation ranges for type 1,
type 2, and intermediate-type AGN spectra.

Type 1 Type 2 Int. Adopted range

Min 2713.93 Å 3727.07 Å 3728.91 Å 3728.91 Å
Max 5265.95 Å 6955.6 Å 8318.88 Å 5265.95 Å

Notes. Columns: AGN types in our dataset (first three columns from
the left) and adopted range in the last column. Rows: minimum and
maximum wavelengths in Å.

that used during human classification because some lines used in
the latter may end up outside our adopted range. The values of
the resulting wavelength range are reported in Table 1.

3. Supervised classification setup

To classify AGN spectra we selected a support-vector machine
(SVM) classifier (Cortes & Vapnik 1995) for two-class classifi-
cation between type 1 versus type 2, and multiclass with type 1
versus type 2 versus intermediate-type. SVMs look for a maxi-
mum margin hyperplane separator between the classes, possibly
after an implicit transformation into a higher dimensional space
where data that is not linearly separable may become so. Maxi-
mizing the margin means that the separation surface is as far as
possible from any data point, which is an additional constraint
with respect to other methods that just find a separation sur-
face. Intuitively this reduces the uncertainty in the classification
(since points are far away from the separation surface, they are
firmly classified) and results in a boundary between classes that
depends only on a handful of training data points near the sur-
face, the eponymous support vectors. It was shown empirically
that SVMs perform well on a variety of structured data, text,
and other classification tasks (see, e.g., Manning et al. 2008).
In the following we use SVMs in the scikit-learn (Pedregosa
et al. 2011) implementation for python. We make use of soft-
margin classification, so the separating hyperplane is allowed to
make some classification mistakes if this increases the margin,
but these mistakes are weighted negatively within the cost func-
tion that is optimized to train the SVM. The cost of mistakes is
a hyperparameter that we fine-tune in validation together with
other hyperparameters, such as the kernel used for a nonlinear
SVM, as described in the following.

The whole dataset was randomly divided into a training and
a test set with an 80%−20% split. The training set was further
randomly split into training and validation sets, again with an
80%−20% split, so the final proportions are training 64%, vali-
dation 16%, and testing 20%. The hyperparameter optimization
(see below) took place within a five-fold cross-validation loop,
while the test set was kept as a holdout set from the beginning
(i.e., it was not involved in any cross-validation loop). The train-
validation-test split was adopted in order to have a subset used to
select the best set of parameters for the classifier (the validation
set) and a subset of unseen data in order to test the performance
of the best model on unseen data. The latter is one of the tech-
niques used in ML to avoid overfitting, which happens when a
ML model is unable to generalize well to new data. The random
partitioning was unstratified, meaning that it is performed with-
out imposing any kind of fixed ratio between the number of sam-
ples belonging to different classes, given the relatively balanced
nature of our dataset with respect to the different class frequen-
cies. However during all training steps of our SVM, we applied
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Table 2. Class frequency in training, validation, and test sets.

Type 1 Type 2 Int.

Train 441 1370 330
Validation 107 352 76
Test 132 423 115

Notes. Columns: AGN types in our dataset. Rows: subsets of the com-
plete AGN spectra dataset used in supervised classification.

weights inversely proportional to class frequency in an attempt to
counter class inbalance, using the class_weight=balanced option
in scikit-learn. In Table 2 we show the frequency of the classes
in training, validation, and test sets.

We then performed a hyperparameter optimization for our
SVM classifier using a grid search approach. The parameters
optimized were cost C, which is the regularization parameter
(the strength of the regularization is inversely proportional to C,
which represents the cost of misclassification for a soft-margin
SVM), and γ, which is a kernel coefficient used only for polyno-
mial kernels or radial basis function (RBF) kernels that can be
seen as the inverse of the radius of influence of samples selected
by the model as support vectors. The choice of the kernel used
was also itself subject to optimization. The grid search optimiza-
tion was first applied to a wide range for parameter C, from
5×10−4 to 5×104 on an equally spaced logarithmic grid, and then
interactively restricted around the best value until the F-score
stopped improving (i.e., the fourth decimal digit remained con-
stant). The range investigated for γ was narrower, going from
0.005 to 5.0. Both ranges were selected while keeping in mind
the trade-off between computational requirements and the ability
to satisfactorily cover hyperparameter space.

The hyperparameter optimization was performed for four dif-
ferent kernels: linear, polynomial of degree 2 and 3, and RBF. The
performance was evaluated with the F-score, which is defined as
the harmonic mean of precision and recall (Van Rijsbergen 1979;
Chinchor 1992), where precision is the number of true positives
(TP) divided by the total number of samples classified as positive
(i.e., TP plus false positive, FP) and recall is the number of true
positives divided by the number of all the actual positive samples
(i.e., true positive plus false negatives, FN).

Based on these definitions, we can express precision, recall,
and F-score as follows:

P =
TP

TP + FP
, (1)

R =
TP

TP + FN
, (2)

F = 2 ·
P · R
P + R

. (3)

In the astronomical literature precision is often referred to as
purity and recall as completeness.

A high value (close to 1) of the F-score means that the classi-
fier is able to correctly classify most of the data, achieving both
good precision and good recall. These definitions of course apply
to a given class, where positive means a member of that class and
negative a non-member. Their extension to a multiclass setting
is straightforward by taking the mean over the different classes.

It was found that the kernel with the highest performance,
that is the highest F-score, for multiclass classification was the
linear one and the best regularization parameter was C = 0.07,
while for two-class classification all the kernels achieved nomi-
nally perfect results except for the polynomial of degree 3. These

Table 3. F-score on validation set for the multiclass classification prob-
lem for four different models corresponding to different SVM kernels
(from top to bottom): linear, radial basis, polynomial of degree two,
polynomial of degree three.

Kernel Optimized C Optimized γ F-score

Linear 0.0700 N/A 0.920
RBF 34.000 0.003 0.912
Poly 2 0.0005 0.500 0.916
Poly 3 0.0005 0.050 0.918

Notes. Columns: Kernel (first column), hyperparameters optimized in
the classification context (second and third columns), and F-score value
(last column). Rows: SVM kernels.

Table 4. F-score on validation set for four different models (two-class
classification).

Kernel Optimized C Optimized γ F-score

Linear 0.40000 N/A 1.000
RBF 45.0000 0.005 1.000
Poly 2 0.00005 0.600 1.000
Poly 3 0.00050 0.050 0.997

Notes. Columns and rows as in Table 3.

Table 5. Performance metrics calculated on test set with incremental
additive Gaussian noise.

Noise σ 0.1 0.2 0.4 1.0 2.0 3.0 4.0

Mean 0.92 0.89 0.82 0.74 0.68 0.57 0.56
Type 1 1.00 1.00 1.00 0.99 0.83 0.64 0.62
Type 2 0.95 0.92 0.86 0.76 0.68 0.59 0.60
Int. 0.82 0.74 0.63 0.48 0.38 0.33 0.27

Notes. Noise standard deviation in units of flux value at 5100 Å of the
original spectrum. Columns: Gaussian standard deviation noise values.
Rows: Mean F-score (first row) and F-score values for every type in the
dataset.

metrics were calculated on the validation set. The performances
of the four different models corresponding to the four kernels can
be seen in Table 3 for multiclass classification, and in Table 4 for
two-class classification.

We then trained the SVM using both the training and vali-
dation subsets and evaluated the model performance on the test
set.

3.1. Dependence on signal-to-noise ratio

We explored how the performance of our SVM (trained on
both the training and validation subsets) changes when we add
Gaussian noise onto the test-set spectra. The noise’s standard
deviation was taken proportional to the flux value correspond-
ing to 5100 Å, with the following values as proportionality fac-
tors: 0.1, 0.2, 0.3, 0.4, 1.0, 2.0, 3.0, and 4.0. The metrics can
be seen in Table 5 and in Fig. 1a and b. As can be seen,
for small values of the noise, the mean F-score remains above
0.8, but decreases almost linearly with increasing noise fac-
tor, while the type 1 F-score initially remains equal to 1.0.
The type 2 F-score decreases similarly to the mean F-score,
but remains above 0.85. On the contrary, the intermediate-type
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Fig. 1. F-scores for linear SVM on data with incremental noise. Blue: mean F-scores; orange: F-scores for type 1; green: F-scores for type 2; and
red: F-scores for intermediate-type. (a) Noise factor values: 0.1, 0.2, 0.3, 0.4. (b) Noise factor values: 1.0, 2.0, 3.0, 4.0.

F-score decreases rapidly with the noise factor, reaching 0.63
for noise factor 0.4. With higher values for the noise fac-
tor, all the F-scores are below 0.8, the only exception being
for the first two values of the type 1 F-score that remain
above 0.8 for noise factor 1.0 and noise factor 2.0. It is worth
noting that for higher values of the noise factor, the type 1
F-score decreases rapidly, in contrast to the F-scores of type 2
and intermediate-type. This can indicate that in general spectra
characterized by a low S/N are harder to classify, and that the
SVM classifier we used also begins to misclassify type 1 AGN
for high values of the noise, but the confidence for type 2 and
intermediate-type does not change considerably after some val-
ues of the noise factor.

4. Interpretability framework

4.1. Classifier gradient visualized as saliency map

In order to gain insights on what our SVM classifiers have
learned, we followed the saliency map approach that found wide
application in the context of deep neural networks (Simonyan
et al. 2013) and has proven very useful in the interpretation of
image classifiers, showing which parts of a given image con-
tribute the most to the image’s predicted classification. In this
paper we refer exclusively to the second meaning of the term
“saliency map” defined in the Simonyan et al. (2013) paper,
which is an image (in our case a one-dimensional array repre-
senting a given AGN spectrum) where each pixel represents the
derivative of the class score with respect to the value of the cor-
responding pixel of a given image as per their Eq. (4).

In the context of our work we built saliency maps as follows.
We considered the class score or, loosely speaking, the prob-
ability associated by our classifier with a given sample’s pre-
dicted class, pc( fi), where fi is the flux at wavelength λi for a
given spectrum and c is the predicted class, for example, type
I. We then computed a numerical approximation to the gradient
gi = ∇ f log pc( fi), which yields a vector the same length as the
original spectrum. Finally, we visualized the computed gradi-
ent vector as a color-coding in addition to the original spectrum,
with blue (orange) corresponding to wavelengths for which the
associated component of the gradient is positive (negative).

To compute the gradient gi, each feature fi of a chosen sam-
ple is individually perturbed by a certain value ei, forming n
spectra with the ith feature perturbed, where n is the number
of features (in this work equal to 1000). Then our SVM model
is used to reclassify these perturbed spectra, obtaining a value

of pc( f j + δi jei) for each one. Since the perturbation was chosen
as ei = 0.01 fi (i.e., a 1% perturbation), pc( f j + δi jei) − pc( fi)/ei
approximates the ith component of the gradient of log pc.

A gi value close to zero (shown in white in the map) means
that a perturbation of the ith feature does not change the confi-
dence of the classifier in classifying the spectrum as belonging to
a specific class; a positive value means that a perturbation of the
ith feature strengthens the confidence of the classifier’s predic-
tion for the given class (increases the class score) and a negative
value reduces it.

4.2. Dimensionality reduction for visualization

t-SNE (van der Maaten & Hinton 2008) is an unsupervised
dimensionality reduction algorithm used for visualization and
data exploration in many ML settings. The goal of dimension-
ality reduction is to map high-dimensional data to a lower-
dimensional space (in our case the plane) while preserving the
pairwise distances of points. This is impossible to do rigorously,
because the high-dimensional space cannot be embedded in the
plane, but t-SNE achieves this approximately by prioritizing the
distances of points that are near to each other, so short dis-
tances are distorted the least, while the large-scale structure of
the dataset is mostly lost. This is obtained by minimizing a loss

L = −
∑
i, j

pi j log qi j/pi j, (4)

where pi j is a similarity measure between points i and j in the
original high-dimensional space and qi j is a (different) similar-
ity measure in the low-dimensional space. While pi j decays as
a Gaussian with the distance between point i and j, qi j decays
like a Student’s t-distribution with one degree of freedom, hence
the name of the algorithm. We can see from Eq. (4) that points
that are far from each other in the high-dimensional space do not
contribute much to the loss as their pi j goes to zero exponentially
with squared distance. The outcome of t-SNE depends on the
perplexity hyperparameter, which drives the standard deviation
of the Gaussian used to define pi j and can be loosely interpreted
as the typical size of the subgroups expected in a given dataset.
A practical illustration of the effect of varying perplexity can be
found in Wattenberg et al. (2016). Since perplexity can be set at
the discretion of the user of t-SNE, results that depend strongly
on this parameter, such as clustering structure that shows up only
for a narrow range of values of perplexity, should not be blindly
trusted. In the following we make sure to test a wide range of per-
plexity values. We use t-SNE in the scikit-learn implementation
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Table 6. Metrics values on test set for linear, RBF, and polynomial ker-
nels for multiclass classification.

Kernel Precision Recall F-score

Linear 0.948 0.936 0.942
RBF 0.945 0.927 0.935
Poly 2 0.925 0.928 0.927
Poly 3 0.935 0.932 0.933

Notes. Columns: Values of precision, recall, and F-score. Rows: SVM
kernels.

Table 7. Metrics values on test set for linear, RBF, and polynomial ker-
nels for two-class classification.

Kernel Precision Recall F-score

Linear 1.0 1.0 1.0
RBF 1.0 1.0 1.0
Poly 2 1.0 1.0 1.0
Poly 3 1.0 1.0 1.0

Notes. Columns and rows as in Table 6.

Table 8. Precision, recall, and F-score obtained by SVM with linear
kernel for every class in the test set.

Type Precision Recall F-score

1 1.0 1.0 1.0
2 0.96 0.97 0.96
Int. 0.89 0.83 0.86

Notes. Columns as in Table 6. Rows: AGN types.

(Pedregosa et al. 2011) for Python. While our main use for t-SNE
visualization is to show where the AGN spectra that we selected
for inspection through saliency maps are located, which is partic-
ularly useful for misclassified spectra, we also gain some useful
insight on the structure of our dataset through this approach, as
shown below.

5. Results

5.1. Classifier performance

The metrics values reached by our models on our test set are
reported in Table 6 for multiclass classification and in Table 7
for two-class classification. We find that they are comparable to
those obtained on the validation set, suggesting that no overfit-
ting is occurring. Table 8 lists the values of precision, recall, and
F-score obtained by our best model for the three classes: type
1, type 2, and intermediate-type AGN. It is clear that separating
type 1 and type 2 can be easily done by every kernel with the
right choice of hyperparameters. On the other hand, the multi-
class classification including intermediate-type spectra is a more
difficult task to solve, requiring a careful choice of hyperparam-
eters in order to achieve high performance.

The confusion matrix for the two best models for multiclass
classification can be seen in Fig. 2 and the normalized confu-
sion matrix in Fig. 3. Even if the linear kernel performs slightly
better than the RBF, both models are able to classify the major-
ity of the spectra, failing only in the classification of a small
number of type 2 and intermediate-type spectra. Specifically, 22

intermediate-type spectra (out of 115) were classified as type 2
by the RBF model, and 12 type 2 (out of 423) as intermediate;
the linear model failed to classify 19 intermediate spectra (out
of the same 115) and classified them as type 2, and 12 type 2
(out of the same 423) were classified as intermediate. This was
an expected result because the distinction between type 2 and
intermediate AGN is difficult in the presence of spectra with
low S/N. Therefore, this uncertainty in the distinction between
intermediate-type and type 2 AGN spectra in presence of a low
S/N can affect the automated classification result.

5.2. Training time complexity

Every kernel was also evaluated in terms of the computational
time of the training. The computational time is evaluated by tak-
ing the time average of ten different trainings for every kernel
(using both train and validation sets for this purpose). The results
presented in Table 9 show that the two polynomial kernels are the
fastest, in particular the polynomial of degree 2. Surprisingly, the
linear kernel appears to be the slowest. A possible explanation
could be that the scikit-learn implementation used in this work
(libsvm-based; Chang & Lin 2011) is less efficient for the linear
case, as stated in the scikit-learn documentation (Pedregosa et al.
2011). The documentation also provides an estimation of the
time complexity, in big O notation, of the SVM implementation,
that scales between O(nfeatures × n2

samples) and O(nfeatures × n3
samples)

(Pedregosa et al. 2011). Every computation in this step was per-
formed on an Intel(R) Core(TM) i7−6700HQ CPU (2.60 GHz).

5.3. Visualizing spectra with t-SNE

Thanks to the interpolation used in this work, the AGN spec-
tra space turns out to be 1000-dimensional, while the original
spectra comprised a variable number of points typically on the
order of a few thousands. The dimensionality of feature space is
still quite high, however. We then used t-SNE to map our spec-
tra dataset to a plane. The algorithm was first applied to data
not scaled and not mean normalized to compare the results of
this case to the case with pre-processed features, as described
below.

The result of t-SNE applied only to type 1 and type 2 AGN
can be seen in Fig. A.1. In the embedded plane, type 1 AGN
and type 2 AGN are clearly separated, with just a few outliers.
The perplexity parameter was set to 50 in Fig. A.1. With lower
perplexities the separation between the two types was somewhat
less clear, but still persisted as can be seen in Fig. A.2. Addition-
ally, some smaller-scale structures can be seen. We also applied
t-SNE to the whole dataset, including intermediate-type AGN.
The result can be seen in Fig. 4 (in this case as well the perplex-
ity was set to 50). Predictably, intermediate-type AGN cannot
be well separated from the other two classes, in particular from
type 2 spectra with which they appear somewhat mixed. How-
ever, there is a clear cluster of intermediate-type spectra con-
necting the regions occupied by type 1 and type 2 spectra, true to
the definition of intermediate-type. While spurious groups may
sometimes appear in t-SNE plots, this is likely a physically moti-
vated feature since it persists even when the perplexity is varied
(see below). At the moment we can only speculate on the phys-
ical meaning of the other two subclusters of intermediate-type
spectra that appear to gather in distinct “islands” at the extremes
of the region occupied by type 2 spectra. Perhaps this should be
addressed by direct visual inspection of the spectra as part of a
future work. In Fig. A.3 we plot the embedded spaces for various
values of perplexity, showing that the main results we outlined
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Fig. 2. Confusion matrix heatmaps for SVM classification over test set. Horizontal axis: labels predicted by the classifier. Vertical axis: true labels
for the samples. (a) Confusion matrix for RBF kernel. (b) Confusion matrix for linear kernel.
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Fig. 3. Normalized confusion matrix heatmaps for SVM classification over test set. Horizontal axis: labels predicted by the classifier. Vertical axis:
true labels for the samples. (a) Normalized confusion matrix for RBF kernel. (b) Normalized confusion matrix for linear kernel.

Table 9. Training computational time for various kernels.

Linear RBF Poly 2 Poly 3

15.13 s 13.34 s 12.94 s 12.96 s

Notes. Every time measurement is calculated by taking the average of
10 training for every kernel. All measures are in seconds. Columns:
SVM kernels. Rows: computational times.

here are robust to changes in the perplexity parameter; this is
discussed further in Appendix.

5.4. Saliency maps

In the following we consider directly the multiclass problem
(type 1, type 2, intermediate-type) because of its higher scien-
tific interest and because we find no misclassified instances in the
two-class problem (i.e., we have a nominally perfect accuracy),
as discussed above. We thus used saliency maps to investigate
misclassified and correctly classified spectra in the multiclass
problem. The saliency maps for a correctly classified spectrum
(Fig. 5) and a misclassified spectrum (Fig. 6) show that the main
optical lines used by humans to classify AGN spectra are also
recognized by the SVM as important features. In every saliency
map we plot the main lines that can be used to classify AGN
spectra: [O II] 3727, He I 3889, Hδ4101, Hγ4340, Hβ4861,
[O III] 4959, and [O III] 5007). The region around the Hβ line

Fig. 4. t-SNE embedded plane for type 1, type 2, and intermediate-type
AGN. Perplexity: 50. Blue points: type 1; yellow points: type 2; red
points: intermediate-type; red circles: possible intermediate-type sub-
groups identified by the t-SNE algorithm.

plays an especially important role, as can be seen in both Fig. 5
and Fig. 6, where the center of the line and its tails appear in
opposite colors, signifying the opposite effect on the class score
of an increase in flux. In particular, Fig. 6 is an intermediate-
type confidently (76%) misclassified as type 2, with the model’s
decision depending mostly on the Hβ line. This is apparent by
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Fig. 5. Intermediate-type spectrum correctly classified by our SVM.
The regions of the spectrum shown in blue are those that most con-
tributed toward its classification as an intermediate-type, whereas those
shown in red would reduce the SVM classification confidence if their
flux increased. Several regions surrounding lines conventionally used
for classification appear in blue, suggesting that our SVM model relied,
in this case, on clues similar to those used by human experts; in par-
ticular, the center of the Hβ line appears in red and the tails in blue,
which corresponds to the classifier using the width of the Hβ line for its
decision.

looking at the region next to the Hβ line where the continuum is
the reddest spot in the saliency map. This shows that the misclas-
sification is largely due to the absence of a broad component in
Hβ (we recall here that red means that increasing the flux value at
that location would reduce the confidence in the predicted class).
Other regions of the saliency map that appear to contribute to
the misclassification are the other hydrogen lines, but their con-
tribution is minor as evidenced by the color-coding. Even so,
the pattern of color-coding is similar, suggesting that lack of a
broad component is the main driving feature for misclassifica-
tion here. To properly classify this spectrum we likely would
need to observe the Hα line, which is not included in the current
spectral range, otherwise an intermediate-type 1.9, which would
show a broadening only on the Hα line, may appear as a type 2
because it has a virtually unbroadened Hβ line. These findings
should be contrasted with Fig. 5, where the color-coding shows
the same behavior, but in reverse: the tails of the Hβ appear col-
ored in blue, showing that increasing the flux there would lead to
an even more confident classification as intermediate-type. This
applies similarly to the other hydrogen lines.

For example, increasing the flux in the tails of the Hβ line
(i.e., increasing its width for a given height of the central peak)
reduces the classification probability of classifying the spectrum
in Fig. 5 as intermediate-type, while it increases the probabil-
ity of classifying it as type 1, as one would expect; increasing
the flux in the center has exactly the opposite effect. This result
is expected because a broader Hβ profile, indicative of a type
1 AGN, would significantly change the shape of the spectrum
next to the line. Interestingly, the saliency maps show that the
continuum between the Hγ and Hβ also affects the classification
results. This is also reasonable, considering how the continuum
differs between type 1 spectra and type 2–intermediate.
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most contributed toward its classification as a type 2, whereas those
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20 10 0 10 20 30
Embedded1

60

40

20

0

20

40

60

Em
be

dd
ed

2

1

2
3

4

5
6

7

8

9

10

1112

13
14

Type 1
Intermediate
Type 2
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that were correctly classified by our SVM are shown in green, while
misclassified spectra are shown in red. Color-coding for the points as in
Fig. 4. Green rectangles: correctly classified spectra for which saliency
maps were calculated; red rectangles: misclassified spectra for which
saliency maps were calculated.

In Fig. 7 we show the spectra for which we calculated a
saliency map projected onto the t-SNE embedded plane. In the
figure the red panels correspond to misclassified spectra and
the green ones to correctly classified spectra. The correspond-
ing saliency maps can be seen in Fig. 8 for misclassified spectra,
and in Fig. 9 for correctly classified spectra. The numbering cor-
responds to that reported in Fig. 7.

For the spectra in Fig. 8 where an intermediate had been
misclassified as type 2, the cause of misclassification as inferred
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Fig. 8. Saliency maps for misclassified spectra. The regions of the spectrum shown in blue are those that most contributed toward the classification
chosen by our model, whereas those shown in red would reduce the SVM classification confidence if their flux were to increase. (1) Type 2
misclassified as Int. (2) Type 2 misclassified as Int. (3) Type 2 misclassified as Int. (4) Int. misclassified as type 2 (5) Int. misclassified as type 2
(6) Int. misclassified as type 2.

from the saliency map is the same as discussed above for Fig. 6.
When the opposite misclassification occurs, we note that the Hβ
line often appears embedded in the underlying stellar absorption,
a situation that is likely not common enough in our training set
for the model to learn to deal properly with it.

Classification probabilities calculated by the SVM classifier
can be seen for misclassified spectra in Table 10 and for correctly
classified spectra in Table 11.

The classification of spectra to a high level of confidence,
like the 14th spectrum in Fig. 9, does not change considerably
under small perturbations, as are the ones used in this work to
calculate the confidence derivative. This can be interpreted as the
fact that single features, even if perturbed, do not change a high
confidence prediction, showing that the results obtained with the
SVM are robust.

6. Conclusions

We trained a support-vector machine model to classify AGN
spectra, obtaining fairly accurate results on a test set not seen
in training (F-score of ≈ 94%). While it is tempting to just apply
the trained model to a large sample of spectra, we argue that it is
crucial to first understand why the classifier returns the predic-
tion it does. We showed that simple interpretability tools, such
as a saliency map, allow us to easily accomplish this, at least on
a spectrum-by-spectrum basis. Even though a general explana-

tion of the criteria used by a classifier (as would be achieved by
some natively interpretable ML method) is in general impossi-
ble to achieve for a black box classifier, saliency maps make it
possible to understand the workings of an otherwise black box
classifier in the neighborhood of any given data point.

We computed saliency maps of a random sample of correctly
classified and misclassified spectra. In general we find that the
regions of the spectrum that most affect the classifier prediction
are similar to those used by a human expert, namely those around
the spectral lines [O II] 3727, He I 3889, Hδ4101, Hγ4340,
Hβ4861, [O III] 4959, and [O III] 5007. In addition, the way
in which the model uses the information in these regions con-
forms to our expectations; for example, it implicitly relies on the
width of the Hβ line which increases the probability of classify-
ing a spectra as type 1. We thus conclude, at least for the spectra
we considered, that our classifier operates much in the same way
as a human would, just automatically and much faster. This is
extremely reassuring regarding the possibility of applying ML
classifiers to the large datasets of spectra that will result from
upcoming surveys, which will not be amenable to direct human
classification.

We also visualized the high-dimensional feature space of
the spectra using the t-SNE algorithm, which maps spectra to
points in a plane while attempting to preserve the local pairwise
distances. We find that type 1 and type 2 spectra are mapped
to distinct regions of the plane, forming two islands separated
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Fig. 9. Saliency maps for correctly classified spectra. Color-coding and axes as in Fig. 8. (7) Type 1, correctly classified (8) Type 2, correctly
classified (9) Int. type, correctly classified (10) Type 2, correctly classified (11) Type 2, correctly classified (12) Int. type, correctly classified (13)
Type 1, correctly classified (14) Type 1, correctly classified.

Table 10. Classification probabilities for misclassified spectra for which
saliency maps were calculated.

Index Prob. type 1 Prob. int. Prob.type 2 True class

1 0.0 0.41 0.58 Type 2
2 0.0 0.68 0.32 Type 2
3 0.01 0.13 0.86 Int.
4 0.0 0.48 0.52 Type 2
5 0.0 0.07 0.93 Int.
6 0.0 0.14 0.86 Int.

Notes. Columns: reference index (first column), probabilities predicted
for every class and ground truth in the last column. Rows: misclassified
spectra highlighted in red in Fig. 7.

Table 11. Classification probabilities for misclassified spectra for which
saliency maps were calculated.

Index Prob. type 1 Prob. int. Prob.type 2 True class

7 0.99 0.01 0.00 Type 1
8 0.00 0.02 0.98 Type 2
9 0.00 0.95 0.05 Int.
10 0.00 0.05 0.95 Type 2
11 0.00 0.05 0.95 Type 2
12 0.00 1.00 0.00 Int.
13 1.00 0.00 0.00 Type 1
14 0.99 0.01 0.00 Type 1

Notes. Columns and rows as in Table 10.
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by a clear-cut isthmus. If intermediate-type spectra are also
included, some of them happen to populate the isthmus, form-
ing a bridge between type 1 and type 2, as expected from the
very definition of intermediate-type spectra. However, several
intermediate-types end up in the same region occupied by type
2 spectra, apparently mixed with them. It may be that label-
ing these spectra as intermediate-type is questionable in the first
place. Interestingly, both intermediate-type and type 2 spectra
show subclustering structure in the t-SNE plane. While this may
be an artifact of t-SNE, it persists when different values of the
perplexity hyperparameter are used (perplexity roughly corre-
sponding to the expected size of groups in the dataset), which
suggests that the result is genuine. Further work is needed to
characterize these subgroups, perhaps comparing them with pro-
posed AGN subtypes; we plan to carry this out in a subsequent
paper.
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Appendix A: Effects of feature scaling and
perplexity on t-SNE results

The t-SNE algorithm depends on perplexity, a tunable parame-
ter that loosely corresponds to the expected number of neighbors
of the typical point in the dataset under consideration. The visu-
alization produced by t-SNE can vary strongly as perplexity is
changed, and there is no general rule on how to pick the right
value for this parameter. This may result in misleading visual-
izations, so it is best to try different values of perplexity and be
wary of features (e.g., data subclusters) that only show up in a
narrow range of perplexities (Wattenberg et al. 2016). In Fig. A.2
we explore the effects of varying perplexity between 5 and 40
for type 1 and type 2 AGN, while in Fig. A.3 we also include
intermediate-type AGN.
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Fig. A.1. t-SNE embedded plane for type 1 and type 2 AGN. Blue
points: type 1; yellow points: type 2.

After that, the t-SNE algorithm was fed with scaled and mean
normalized data, which means that every feature xi is expressed
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Fig. A.2. t-SNE for type 1 and type 2 with various perplexity values.
Color-coding of points as in Fig. A.2. (a) Perplexity: 5 (b) Perplexity:
15 (c) Perplexity: 30 (d) Perplexity: 40.
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Fig. A.3. t-SNE for whole dataset with various perplexity values. Color-
coding of points as in Fig. 4. (a) Perplexity: 5 (b) Perplexity: 15 (c)
Perplexity: 30 (d) Perplexity: 40.
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Fig. A.4. t-SNE embedded plane for type 1, type 2, and intermediate-
type AGN spectra scaled and mean normalized. Color-coding of points
as in Fig. 4.

by

xi =
xi − µi

si
(A.1)

where µi is the average of the ith feature and si is the standard
deviation of the ith feature. The results can be seen in Fig. A.4,
with a perplexity of 50. The result for other perplexity values can
be seen in Fig. A.5.

Overall, the outcome is similar to the un-normalized case,
and t-SNE (with the right choice of perplexity) seems to per-
form just as well after feature scaling and mean normalization.
The result presented in Fig. A.4 can be interpreted even more
clearly as a transition from type 1 spectra (characterized by
broad lines and strong continuum) to intermediate-type spec-
tra (characterized by narrower lines and lower continuum), and
from intermediate-type to type 2 spectra (characterized by nar-
row lines and almost constant continuum). Some intermediate-
type spectra will still be clustered together with type 1, or more
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often with type 2 spectra, but this is an expected result. The
distinction between intermediate-type and type 2 spectra is not
strict, and spectra of the two types may appear similar. Nonethe-
less the figure shows a clear transition region between type 1 and
type 2 populated by intermediate-type spectra.
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Fig. A.5. t-SNE for whole dataset scaled and mean normalized with
various perplexity values. Color-coding of points as in Fig. 4. (a) Per-
plexity: 5 (b) Perplexity: 15 (c) Perplexity: 30 (d) Perplexity: 40.
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