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ABSTRACT
The Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the
area between 288°E – 360°E and 22.5°N – 22.5°S. Using the NASA MESSENGER data, we
compiled a geological map of the quadrangle at a 1:3,000,000 scale. The mapping was
mainly based on photo-interpretation of an MDIS (Mercury Dual Imaging System)
monochrome 166 m/pixel basemap. Additional datasets were also considered: stereo-DTM
of the region, mosaics with high-incidence illumination, and the MDIS global color mosaic.
The map shows that the quadrangle is characterized by the prevalence of crater materials
which are distinguished into three classes based on their degradation degree. Different
plain units were also identified and classified on the basis of their density of cratering.
Several structures, mainly represented by contractional faults, were mapped in all
quadrangle areas. The map represents the first complete geologic survey of H06 at this scale
and provides a highly detailed analysis of the Kuiper quadrangle’s surface geology.
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1. Introduction

Mercury geological mapping had a main impetus in
the 1970s thanks to data produced by the NASA
space mission Mariner10 flybys, which allowed us to
observe about 45% of the planet’s surface.

For mapping purposes, the surface was divided into
15 quadrangles, from H1 to H15 (where H stands for
Hermes). Each quadrangle was named after a promi-
nent feature well recognizable within their area. Before
Mariner 10, such features were represented by albedo
features. After the mission, the surface of nine quad-
rangles (i.e. H01, H02, H03, H06, H07, H08. H11,
H12, and H15) was visible at a higher resolution for
distinguishing their morphology. Consequently,
these quadrangles were renamed after the prominent
features observable within them (Strom & Sprague,
2003). Finally, thanks to the images released by the
NASA MESSENGER mission, the remaining 6 quad-
rangles (i.e. H04, H05, H09, H10, H13, H14) were
designated with their present names.

The Kuiper quadrangle (H06), originally called Tri-
crena, was renamed after the Kuiper crater, a rayed
55 km diameter crater with the highest albedo
recorded on the planet (Hapke et al., 1975). Kuiper
crater and its ejecta define the base of the youngest
of the five chrono-stratigraphic systems, the Kuiper-
ian, which spans from 1 Ga to the present. Note , how-
ever, that narrower periods have been proposed
recently (i.e. 130 Ma-present according to Le Feuvre

& Wieczorek, 2011; 280 Ma-present according to
Banks et al., 2017).

The quadrangle was mapped by De Hon et al.
(1981), who were able to classify only a part of the
quadrangle, since the inadequate illumination con-
ditions of its western part (approximately west of
55°) did not permit to distinguish the surface features,
and the areas east of 10° were beyond the evening ter-
minator (De Hon et al., 1981). The spatial resolution
of the images varied from 2 to 1.5 km/pixel due to
the different altitudes of the Mariner10 spacecraft
during the acquisition of the images (De Hon et al.,
1981).

The main units identified were intercrater plains,
cratered plain materials, and crater and basin
materials. The former unit groups, the heavily cratered
terrains, represent the oldest unit of the quadrangle.
They were considered volcanic in origin but include
ejecta of ancient craters and basins. Cratered plains
material embays or fills the larger, older craters and
is also considered volcanic. It is densely cratered but
less than the intercrater plains. Crater and basin
material includes floor, rim and wall of craters. It
was divided into 5 categories on the basis of the differ-
ent degradation stages (from 5 for the freshest craters
to 1 for the most degraded ones).

Because of unfavourable high-sun illumination, the
western part of the quadrangle was mapped with lower
definition, and the terrain was classified a general
‘plains material’, which includes cratered terrains
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and smooth plains, sparsely cratered surfaces con-
sidered volcanic or generated by impacts.

Also, lineaments were poorly characterized and
mostly represented by crater rims. Indeed, very few
tectonic structures were detected, largely associated
with craters or confined within smooth plains.

The present work provides a complete geological
map of the quadrangle at a scale of 1:3,000,000. This
was possible thanks to a large amount of the NASA
MESSENGER (MErcury Surface, Space ENvironment,
GEochemistry and Ranging) images that provide glo-
bal coverage of the planet with different sun angles at
higher spatial resolution for Mariner10.

Our map of the Kuiper quadrangle is part of a more
extensive project devoted to the mapping of the entire
surface of Mercury (Galluzzi et al., 2021). Several quad-
rangles have been already mapped (Galluzzi et al., 2016;
Guzzetta et al., 2017; Mancinelli et al., 2016; Pegg et al.,
2021; Wright et al., 2019), and mapping of others is in
progress (Guzzetta et al., 2021, 2018).

2. Data

2.1. Basemaps

The main basemap used for the Kuiper geological map
was the MDIS (Mercury Dual Imaging System) BDR
(Basemap reduced Data Record) product (Table 1).
BDRs are mosaics of WAC (wide-angle camera) and
NAC (narrow-angle camera) images at the highest
available spatial resolution (166 m/pixel). They
include images with low emission angles at moderate
to high incidence angles, which best highlight the
topography. The images were received in several
mosaics to have four tiles for each quadrangle (NE,
SE, SW, NW). To map the Kuiper quadrangle, we con-
sidered a 5° of overlap with the surrounding quadran-
gles to allow a globally consistent interpretation of the
geological units at the boundaries. Therefore, for the
geological map, we used 14 tiles (Figure 1).

In addition to the BDRs, we used HIW and HIE
Basemaps (Table 1), which include images with high
incidence angle illuminated from the west and east,
respectively. These helped us discern low relief topo-
graphy (Figure 2(a, b)).

Coupled with the monochrome images, we used
the MDIS WAC global color mosaic, with three
and eight colors (Figure 2(c, d)) (Table 1). The
spatial resolution of the mosaics, about 332 and
665 m/pixel for the three and eight colors, respect-
ively, does not allow a detailed mapping, but they
were useful to distinguish the boundaries of some
geological units. Particularly suitable were the
mosaics seen with R: 1000, G: 750, B: 430 nm.
Also, the Enhanced color mosaic was used (Figure
2(e)), which, despite its moderate resolution
(665 m/pixel), highlights the different color units

well, and in particular, was useful to identify and
map the volcanic deposits.

The available basemaps based on MASCS (Mercury
Atmospheric and Surface Composition Spectrometer)
and XRS (X-ray spectrometer) data did not contribute
significantly to the definition of the unit boundaries
due to their lower resolution. For this reason, although
some spectral studies have been carried out with those
data on specific H06’s targets by other authors (e.g.
D’Incecco et al., 2015; Weider et al., 2015), they
have not been considered in this work.

2.2. Digital Terrain Model (DTM)

The main support for the analysis of the H06 topo-
graphy came from the Deutsches Zentrum für Luft-
und Raumfahrt (DLR) DTM (Figure 2(f)), built
using stereo photogrammetry (Preusker et al.,
2017) (Table 1). About 10.500 NAC and WAC
MDIS stereo images, with an average resolution of
150 m/pixel, were collected to produce a final DTM
with a spatial resolution of 221.7 m/pixel and vertical
accuracy of about 30 m.

DTM was used to constrain the mapping and better
to assess the stratigraphic relationship between the
geological units.

3. Method

3.1. Projection and scale

To proceed with the mapping of H06 we firstly pro-
jected the basemaps. Because the Kuiper quadrangle
is located in the equatorial area, we used an equirec-
tangular projection. The reference datum for the pro-
jection was a sphere with a radius of 2440 km. For
BDR images we projected each tile and then we
mosaicked them to obtain the final BDR basemap.
For projection and mosaicking, we used ISIS software.

The projected basemaps were then imported into
the ArcGIS environment, which allows the geological
features to be drawn as vector layers.

The output map scale is 1:3,000,000, which derives
from a mapping scale with a two to five larger factors,
following USGS guidelines (Tanaka et al., 2011).
According to Galluzzi et al. (2016), five scale time lar-
ger mapping allows a cleaner and smoother linework;
therefore, a map scale up to 1:600,000 can be used.
However, considering the image resolution, the map-
ping scale (Sm) should be:

Sm = Rr× 2000

where Rr is the raster resolution (Tobler, 1987). Since
the BDR basemap is 166 m/pixel, the resulting map-
ping scale is 1:300,000. Hence, we mapped the Kuiper
quadrangle at a scale ranging from 1:300,000 to
1:600,000.
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3.2. Mapping method

To map the Kuiper quadrangle, we considered three
main feature classes: (i) geological units, (ii) linea-
ments, and (iii) surface features. Following USGS
guidelines (Tanaka et al., 2011), we classified the sur-
face characterized by the same morphology/texture,
albedo/color characteristic, and stratigraphic position
as a geological unit. We indicated geological contacts

between units in two ways: certain, where the contact
is detected with confidence (the boundary between the
units is clear and sharp); and approximate, where
there is uncertainty in drawing the contact because
the boundary between adjacent units is not well
defined.

Lineaments include tectonic structures, crater rims,
and pit rims. The tectonic structures are subdivided
into (i) thrusts, including lobate scarps and high relief

Figure 1. BDR mosaicked basemap of the Kuiper (H06) quadrangle in equirectangular projection with 5° overlap. Black square
defines the boundary of the quadrangle. The mosaic includes 14 tiles: 4 for the Kuiper quadrangle and the remaining 10 for
the adjacent quadrangles. Notes: Kuiper quadrangle BDR mosaicked basemap used for the mapping and a sketch indicating
the mosaic’s tales.
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ridges (Watters & Nimmo, 2010); (ii) wrinkle ridges,
appearing as a low relief archwith a narrow superposed
ridge, localized mainly in smooth plains, considered to
be formed by a combination of folding and thrust fault-
ing (Watters et al., 2009); and (iii) general contractional
faults, including all the reverse faults with no significant
break nor a lobate trace, classified in thismode based on
the observation of the dominant contractional nature
of Mercury tectonics (e.g. Byrne et al., 2014). Normal
faults have not been detected in the quadrangle.

Figure 2. H06 supplementary basemaps. (a) 166 m/pixel HIE BDR MDIS mosaic; (b) 166 m/pixel HIW BDR MDIS mosaic; (c) 665 m/
pixel enhanced color mosaic (Denevi et al., 2016); (d) 221.7 m/pixel DLR DTM mosaic (Preusker et al., 2017); (e) 332 m/pixel 3 color
MDIS mosaic; (f) 665 m/pixel 8 color MDIS mosaic. Notes: Six tales showing the supplementary Kuiper quadrangle basemaps used
for the mapping.

Table 1. Basemaps used for H06 geological mapping.
Original basemaps Spatial resolution
MDIS_BDR_256PPD_Hxxdda 166 m/pixel
M1_M2_M3_M10Filt (Becker et al., 2009) 500 m/pixel

MDIS_v0_3color (MD3 basemap) 332 m/pixel
MDIS_v5_8color (MDR basemap) 665 m/pixel
MDIS_Basemap_Enhanced_color_mosaic 665 m/pixel
MDIS_HIE_256PPD_Hxxdda 166 m/pixel
MDIS_HIW_256PPD_Hxxdda 166 m/pixel
MSGR_DEM_DLR_EQ_H06_DM_222_I_v01 221 m/pixel
axx indicates the quadrangles and dd indicates the tiles NW, NE, SW, SE as
shown in Figure 1.
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Crater rims are mapped differently according to their
diameter: for diameters equal to or higher than 20 km,
craters are mapped with geological contacts defining
the crater floor and crater material (i.e. crater walls, cen-
tral peak and ejecta), whereas a continuous line with
ornamental ticks, oriented inwards, defines their crests.
For diameters between 5 and 20 km (small craters),
only the crater crests are traced with a simple continuous
line; no geological contacts are drawn to define their ter-
rain. Finally, buried or degraded craters are mapped with
a dashed line defining their crests.

Pit rims represent the edge of irregular pits that are
interpreted to be volcanic vents.

Surface features include crater chains and clusters,
hollows and faculae; these are diffuse bright red areas
(Pegg et al., 2021; Wright et al., 2019) that have been
considered as explosive volcanic deposits (Gillis-Davis
et al., 2009; Goudge et al., 2014; Head et al., 2009; Joz-
wiak et al., 2018; Kerber et al., 2009, 2011; Murchie
et al., 2008; Rothery et al., 2014; Thomas et al., 2014);
. They have been mapped with polygons superposed
on the geological units. Only features greater than
10 km (in length or width) were considered.

3.2.1. Crater classification
Previous geological maps classified craters into 5
classes (c1–c5), on the basis of their morphologies,
assigning to each class a stratigraphic position
(McCauley et al., 1981, recently reviewed by Kinczyk
et al., 2016). However, using this classification, mor-
phologically degraded craters often overly craters
with a fresher aspect. To avoid this contradiction, fol-
lowing previous high-resolution maps (Galluzzi et al.,
2016; Guzzetta et al., 2017; Mancinelli et al., 2016), we
used a 3 classes classification. Other researchers (Pegg
et al., 2021; Wright et al., 2019) chose to adopt 3 and 5
classes classification. In the 3 classes system, c1 and c3
are the end-members: c1 includes the oldest craters,
characterized by a very degraded morphology,
whereas c3 consists of the youngest craters, showing
a fresh appearance. Finally, c2 includes the craters
with intermediate morphologies between the two
end-members. This classification avoids any conflict
between relative ages implied by the crater degra-
dation state and their relative stratigraphic ages.

4. Geological map description

The Kuiper quadrangle is mainly represented by crater
material since several large craters and basins are
found in the quadrangle. Some of them are very
recent, and their ejecta blankets cover large areas.
The second most extensive terrain in H06 is intercra-
ter plains representing the oldest surface on Mercury.
Smooth plains are limited and confined to some of the
largest basin and crater floors.

4.1. Crater material

c3: craters with sharp, intact rims and well-preserved
central peaks. The crater walls are extensively terraced.
The floor appears rough or covered by smooth depos-
its, with a sharp contact between wall and floor. Ejecta
can extend over 1 diameter from the crater rim, and be
rayed and bright, with a hummocky surface texture
(Figure 3(a, b)). The boundaries of distal ejecta are
sharp. Numerous crater chains, radial to the crater
rims, are often observed.

c2: craters with intermediate morphologies between
c1 and c3. The rims are complete but not fresh. Ter-
races, if present, are not sharp. Ejecta are extensive,
but distal ejecta lack clear boundaries (Figure 3(c)).

c1: degraded craters, with eroded, almost erased,
rims. The crater floor of these craters shows a rough
surface or it is covered by smooth deposits. Central
peaks are absent or heavily eroded. Only the proximal
ejecta are seldom detected. c1 craters are heavily
affected by secondaries (Figure 3(d)).

Cfs: crater floor material, smooth. Planar floor
affected by few craters, typical of craters c3 and c2.
In c1 this feature may result from resurfacing. In c2
and c3 it could impact melt or lava flows.

Cfh: crater floor material, hummocky. Floor with a
rough texture, moderately affected by craters. In c3
and c2 it represents mass wasting deposits coming
from crater walls and emplaced on the floor, whereas
in c1 it represents a degraded floor resulting from sub-
sequent impacts.

4.2. Plains

Three different plains are recognized in H06: intercra-
ter, intermediate, and smooth plains.

Intercrater plains (icp): they are the most extensive
plains of H06 and Mercury in general. Heavily cra-
tered terrains. The surface texture is rough and hum-
mocky (Figure 4). In color images they do not have a
peculiar color, showing from yellow to blue shades.
Icp is the oldest surface present on the planet, with
assigned Tolstojan to pre-Tolstojan age (> 3.9 Ga;
Whitten et al., 2014). The origin of these plains is
debated: they are commonly thought to represent
effusive volcanic deposits although an impact origin
cannot be excluded (Denevi et al., 2013; Whitten
et al., 2014). They are superposed by craters belonging
to all three classes (c1–c3).

Intermediate plains (imp): they are plains with
intermediate characteristics between intercrater and
smooth plain. Indeed, they are more cratered than
the smooth plains but less than the intercrater ones
(Figure 5). On H06, the boundaries of intermediate
plains are not sharp and definable. Instead, a progress-
ive transition with the intercrater plains is visible. In
the transition area, the surface becomes progressively

JOURNAL OF MAPS 5



Figure 3. Crater classes of H06. (a) Kuiper crater as an example of c3 class; (b) 3-color image highlights the rayed ejecta of crater;
(c) Brunelleschi crater as an example of c2 class. (d) Tchaikovsky crater as an example of c1 crater class (see text for more details
about crater classification criteria). Notes: Four panels describing the different classes of craters mapped in the Kuiper quadrangle.

Figure 4. Example area of intercrater plains in H06. This type of plain shows a rough texture and is heavily cratered. This leads to
this terrain considering to be the oldest surface of Mercury. Basemap: 166 m/pixel BDR mosaic in equirectangular projection.
Notes: An example of intercrater plains as shown in BDR mosaic and corresponding geological map of the same view.
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less cratered with crater rims progressively embayed
by intermediate plains. Color maps do not help dis-
tinguish the boundary between intercrater and inter-
mediate plains because they show a similar color to
the surrounding plains. Some wrinkle ridges are
observed, which helped us distinguish between inter-
mediate and intercrater plains, because the latter
have no wrinkle ridges. Imp are considered effusive
volcanic deposits; however, their nature is not
defined yet, and even the opportunity of mapping
them as a distinct terrain is debated. Indeed, Imp
were firstly detected and classified in the maps based
on Mariner10 images, according to their morphologi-
cal characteristics (e.g. Grolier & Boyce, 1984; Spudis
& Prosser, 1984). Denevi et al. (2009), described
them based on their spectral behaviour, which is
different from smooth plains and low-reflectance
material. Lately, Whitten et al. (2014) suggested that
intermediate plains are composed of intercrater and
smooth plains and consequently that they should be
grouped into the latter units. In this work, we refer
mainly to their morphological characteristics to dis-
tinguish the intermediate plains. This terrain is super-
posed only by c3 and c2 craters. Some c1 craters are
detected, but they appear embayed or filled by the
plains.

Smooth plains (sp): they are poorly cratered sur-
faces that show a smooth texture (Figure 6). In H06
smooth plains are not common and mainly localized
into the larger basins. Frequently, wrinkle ridges are
observed on the smooth plains. Smooth plains show
distinctive color for the surrounding areas, which
allows easy detection of the unit. The most extensive
smooth plains of the quadrangle surround the Rudaki

crater, and it has been classified by Denevi et al. (2013)
as ‘intermediate reflectance plains’. The remaining
smooth plains of H06 show a similar color, suggesting
comparable reflectance characteristics. Smooth plains
are thought to be recent effusive volcanic deposits
(Denevi et al., 2013) with a Calorian age (3.7–
3.9 Ga) (Denevi et al., 2013; Fassett et al., 2009;
Head et al., 2011; Ostrach et al., 2011; Strom et al.,
2008, 2011). They are superposed by c2 and c3 classes
craters. Well-defined patches of smooth plains have
also been detected in the proximal ejecta of some of
the greater basins (i.e. Giotto, Lermontov, Handel
basin), within their ejecta. These patches are
interpreted as ponds of impact melt (Wright et al.,
2019).

4.3. Units’ relative age

To establish the time relationship between the differ-
ent units, we dated them through crater counting, fol-
lowing the method described in Crater Analysis
Techniques Working Group (1979). We chose four
sample areas: two intercrater, one intermediate and
one smooth plain. For the latter two we chose the
only extensive outcrops present on H06, for which a
better statistic can be collected.

The obtained counts were arranged in cumulative
size-frequency distribution (CSFD) and compared to
each other to establish their relative ages (Figure 7
(b)). Subsequently, the CSFDs were related with the
Le Feuvre and Wiekzoreck Production Function
(LWPF) to estimate their absolute model age (Figure
7(c–f)). The CSFD and the corresponding model ages
confirm that icps are the oldest terrain in the

Figure 5. Example area of intermediate plains in H06. Intermediate plains show a less rough texture and are less cratered than
intercrater plains. Basemap: 166 m/pixel BDR mosaic in equirectangular projection. Notes: An example of intermediate plain as
shown in BDR mosaic and corresponding geological map of the same view.
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quadrangle, with an age of 3.8 (±0.01) Ga (non-por-
ous scaling law). This places the unit formation at the
Late Heavy Bombardment (LHB) (Marchi et al.,
2013).

The intermediate plains’ age stands between
smooth and intercrater, with a value of 3.7 (±0.02)
Ga (non-porous scaling law). An overlap with inter-
crater plain CSFDs is observed for craters smaller
than 20 km, which is probably due to the presence
of secondaries, which in this range of diameter could
influence the statistics. For intercrater and intermedi-
ate plains, the non-porous scaling law has been chosen
since only craters larger than 20 km were considered
as the best fit with LWPF. Therefore, hard rock terrain
is involved.

The smooth plains are the youngest geological unit,
with an age of 3.6 (+0.04–0.01) Ga, based on a porous
scaling law. We used this scaling law due to the modest
dimension of craters that affected only the upper surface,
which is likely fractured by subsequent impacts and lava
flows cooling (Giacomini et al., 2020; Schultz, 1993).

On the basis of the observed superposition relation-
ships among the different units and the absolute
model ages obtained in this work, and from the esti-
mations of previous authors (Byrne et al., 2016;
Marchi et al., 2013; Neukum et al., 2001; Ostrach
et al., 2015; Whitten et al., 2014), we propose the stra-
tigraphic scheme shown in Figure 8.

5. Conclusion

We compiled a geological map of the Kuiper quadran-
gle (H06) using MESSENGER data at a scale of 1:3M.

The available dataset has allowed building a more
detailed map than the previous 1:5M map of the quad-
rangle (De Hon et al., 1981), based on Mariner10
images. The criteria used for the mapping follow pre-
vious quadrangle geological maps (Galluzzi et al.,
2016; Guzzetta et al., 2017; Mancinelli et al., 2016;
Wright et al., 2019).

We mapped geological units, lineaments and sur-
face features. The mapped geological units were
grouped into crater material, belonging to three
classes (c1–c3) based on degradation degree, and
plains (smooth, intermediate and intercrater plains).
Lineaments were distinguished in crater rims and
structures. Finally, surface features include crater
chains, hollows and pyroclastic materials.

The crater counting performed on the geological
units confirms the classification of IMP as a distinct
unit, distinguishable morphologically and stratigra-
phically from smooth plains, following Galluzzi et al.
(2016). This map is part of a wider project devoted
to the global mapping of the Mercury surface (Galluzzi
et al., 2021).

Software

To produce our map we used ESRI ArcGIS software.
Some images have been processed using ISIS3 (Inte-
grated Software for Imagers and Spectrometers v3)
software (Eliason, 1997; Gaddis et al., 1997; Torson
& Becker, 1997), developed by the USGS (United
States Geological Survey). To perform the crater
counting we used Crater Tools (Kneissl et al.,
2011), whereas to plot the results of the counts, we

Figure 6. Example area of smooth plains in H06. This type of plain shows a smooth surface and is little affected by cratering.
Basemap: 166 m/pixel BDR mosaic in equirectangular projection. Notes: An example of smooth plain as shown in BDR mosaic
and corresponding geological map of the same view.
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Figure 7. Crater size-frequency distributions and age assessments for the four areas taken into account. (a) The location where
crater counting was performed. Two intercrater plains (outlined in blue), one intermediate (outlined in green) and one smooth
plain (outlined in pink) have been considered. (b) cumulative plot highlighting the relative ages of the different units. Intercrater
plains (c–d), intermediate plains (e), and smooth plains (f) absolute ages obtained using the Le Feuvre and Wiekzoreck Production
Function (LWPF) absolute model age. Notes: Series plots showing the crater-size frequency distributions resulting from the crater
counting of different sample areas for intercrater, intermediate and smooth plains.
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used the Craterstats2 (e.g. see Michael & Neukum,
2010).
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