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ABSTRACT
In this work, we present the results of 1 yr of upgraded Giant Metrewave Radio Telescope
timing measurements of PSR J0514−4002A, a 4.99-ms pulsar in a 18.8-d eccentric (e = 0.89)
orbit with a massive companion located in the globular cluster NGC 1851. Combining these
data with earlier Green Bank Telescope data, we greatly improve the precision of the rate of
advance of periastron, ω̇ = 0.0129592(16) deg yr−1 which, assuming the validity of general
relativity, results in a much refined measurement of the total mass of the binary, Mtot =
2.4730(6) M�. Additionally, we measure the Einstein delay parameter, γ , something that has
never been done for any binary system with an orbital period larger than ∼10 h. The measured
value, γ = 0.0216(9) s, is by far the largest for any binary pulsar. Furthermore, we measure
the proper motion of the system (μα = 5.19(22) and μδ = −0.56(25) mas yr−1), which is
not only important for analysing its motion in the cluster, but is also essential for a proper
interpretation of γ , given the latter parameter’s correlation with the variation of the projected
semimajor axis. The measurements of γ and the proper motion enable a separation of the
system component masses: we obtain a pulsar mass of Mp = 1.25+0.05

−0.06 M� and a companion
mass of Mc = 1.22+0.06

−0.05 M�. This raises the possibility that the companion is also a neutron
star. Searches for radio pulsations from the companion have thus far been unsuccessful; hence,
we cannot confirm the latter hypothesis. The low mass of this millisecond pulsar – one of the
lowest ever measured for such objects – clearly indicates that the recycling process can be
achieved with a relatively small amount of mass transfer.

Key words: (stars:) binaries: general – stars: neutron – (stars:) pulsars: general – (stars:) pul-
sars: individual: PSR J0514−4002A – (Galaxy:) globular clusters: individual (NGC 1851).

1 IN T RO D U C T I O N

The physical conditions found in globular clusters (GCs) show
remarkably different characteristics when compared to those in
our Milky Way (e.g. Ransom 2008; Freire 2013). The density
of stars reached near the cores of GCs can easily exceed by
several order of magnitudes the typical values found in the Galactic
plane. This translates into an exceptionally high probability of
gravitational interactions between stellar systems, which in turn
promotes the formation (but also the disruption) of two- or many-
body bound systems (Verbunt & Freire 2014). As a result, GCs are
extremely prolific hotbeds for the formation of exotic systems that,

� E-mail: aridolfi@mpifr-bonn.mpg.de (AR); pfreire@mpifr-bonn.mpg.de
(PCCF)

as exemplified below, are the result of non-standard paths of binary
evolution. Among these exotic systems is a large number of binary
millisecond pulsars (MSPs; e.g. Freire 2013).1

As a consequence of their unusual formation paths, the population
of radio pulsars in GCs shows striking differences with respect to
that of our Galaxy, consisting almost entirely of extremely old,
recycled pulsars (in fact, the mystery is the presence of some
anomalously young pulsars, see e.g. Boyles et al. 2011, a likely
solution to this problem is the recent disruption of LMXBs, see
Verbunt & Freire 2014). Although the total number of GC pulsars
accounts for about 5 per cent of the total pulsar population, the
MSPs (here defined as those having a spin period P < 10 ms) that

1For a complete list of all known pulsars in GCs, see https://www.naic.edu
/ pfreire/GCpsr.html.
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are found in GCs account for about 40 per cent of the known MSP
population.2

This large population of MSPs include some of the most extreme
pulsars and systems known. Among these are extremely recycled
MSPs (e.g. PSR J1748−2446ad in Terzan 5; Hessels et al. 2006),
extremely compact binaries (e.g. PSR J0024−7204R in 47 Tucanae;
Freire et al. 2017), extremely energetic pulsars, with very high γ -
ray luminosities (e.g. PSR B1820−30 in NGC 6624, Freire et al.
2011a; and PSR B1821−24 in M28, Johnson et al. 2013) and a
radio pulsar in a ‘redback’ system that changes into an accreting
X-ray MSP and back to radio in time-scales of weeks (Papitto et al.
2013).

Among the most exotic systems in GCs are a small group
of MSPs in highly eccentric binaries with massive compan-
ions: PSR J1835−3259A in NGC 6652 (DeCesar et al. 2015),
PSR J1807−2500B (Lynch et al. 2012), and PSR J0514−4002A
in NGC 1851 (Freire et al. 2004; Freire, Ransom & Gupta 2007).
These systems are so unlike anything seen in the Galaxy that they
are almost certainly the result of secondary exchange encounters,
i.e. exchange encounters that happen after the pulsar is recycled by a
lower mass companion, which is ejected and exchanged by a much
more massive compact object. This is only likely to happen (and has
only been observed) in GCs with a large interaction rate per binary
(Verbunt & Freire 2014). A confirmation of this is PSR B2127+11C,
a double neutron star system in the core-collapsed GC M15 (Jacoby
et al. 2006). Although it superficially resembles a ‘normal’ double
neutron star like those found in the Galaxy, it was recognized at an
earlier stage that it too must be the result of a secondary exchange
interaction (Prince et al. 1991).

These systems are the ultimate example of a non-standard
evolutionary path; they suggest that even more exotic systems, like
double MSP and MSP-black hole systems, might be discovered in
the future.

1.1 NGC 1851A

One of these systems, PSR J0514−4002A, consists of a 4.99-ms
pulsar in orbit around a massive companion every 18.8 d in a very
eccentric (e = 0.89) orbit. It is located in the GC NGC 1851;
henceforth, we designate this system as NGC 1851A. The pulsar was
discovered at 327 MHz with the Giant Metrewave Radio Telescope
(GMRT) located near Khodad, India, in the context of a small low-
frequency survey for pulsars in GCs (Freire et al. 2004).

Subsequent follow-up observations with the Green Bank Tele-
scope allowed for the derivation of a phase-connected timing
solution (Freire et al. 2007). As suggested by earlier GMRT
interferometric images (Freire et al. 2004), the pulsar is at about one
core radius from the centre of NGC 1851. By measuring the rate of
periastron advance, the authors were able to derive the total mass of
the system [Mtot = 2.453(14) M�] and obtain an upper limit on the
mass of the pulsar (Mp < 1.5 M�) and a lower limit on that of the
companion (Mc > 0.96 M�). Although the data were not sufficient
to detect additional post-Keplerian (PK) effects, which would give
access to the individual masses of the binary components, Freire
et al. (2007) envisaged a measurement of the Einstein delay (γ ),
and, depending on the system inclination, of the Shapiro delay, in a
not too distant future.

2As of 2018 April, see the PSRCAT pulsar catalogue at http://www.atnf.csi
ro.au/research/pulsar/psrcat (Manchester et al. 2005).

1.2 Motivation and structure of the paper

After a hiatus of about one decade, new observations of NGC 1851A
were motivated by the major upgrade recently undergone by the
GMRT (Gupta et al. 2017). In a first stage, issues with the timing
stability have been solved, allowing for precise timing of MSPs.
Later, the whole array has been upgraded with new receivers and
electronics. Compared to its original configuration, the upgraded
GMRT (hereafter, uGMRT) delivers up to a factor of 3 better
sensitivity. This is achieved mainly by means of new wide-band
receivers, which provide an almost seamless frequency coverage
from ∼50 to ∼1450 MHz, and a modern digital backend system
(Reddy et al. 2017) that allows a maximum instantaneous bandwidth
of 400 MHz with real-time coherent de-dispersion (CDP). The latter
feature is critical to maximize the sensitivity to far, highly dispersed
GCs, when observed at very low frequencies.

At the same time, detailed simulations suggested that a dense
timing campaign over one orbit should be able to determine at least
the relativistic γ parameter with enough accuracy to measure the
component masses to an uncertainty of about 0.05 M�. Further-
more, a more sparse set of timing measurements spread over 1 yr
would enable a precise measurement of the proper motion of the
system. This, as shown below, is of great importance for a proper
interpretation of the measurement of γ .

Thus, the new capabilities of the uGMRT offered the chance
to finally measure the mass of NGC 1851A and its companion
with good precision. Such a measurement is extremely valuable,
not only for improving the statistics of MSP mass measurements
(still very small in GCs), but also to investigate the nature of the
companion. As we will see below, our measurements indicate that
this companion could well be another neutron star (NS). Since the
system very likely formed in an exchange encounter, the nature of
this companion cannot be elucidated by arguments based on stellar
evolution.

The remainder of the paper is organized as follows. In Section 2,
we describe the new uGMRT timing observations and how the
resulting data were reduced. In Section 3, we present the results of
our timing analysis, with a particular emphasis on the measurements
of the PK parameters and their likely kinematic contaminants; this
will be especially relevant for the measurement of the variation
of the orbital period (Ṗb) and γ . In Section 4, we perform a
self-consistent Bayesian analysis of the orbital orientation space
to determine the likely inclination ranges and the masses of the
components. Since the companion has a mass that is compatible
with it being an NS, it might also be a pulsar. For this reason, in
Section 5 we search for pulsations from the companion. Finally, in
Section 6, we summarize our findings, elaborate on the nature of the
companion star, and discuss some interesting long-term prospects.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

2.1 Observations

We used the uGMRT to observe NGC 1851A at 20 different epochs,
from 2017 April to 2018 March (Table 1). The observing strategy
was designed with two main objectives in mind: (a) improve the
measurements of the proper motion and spin-down parameters and
(b) possibly measure additional PK parameters, such as the Einstein
delay and the Shapiro delay. For the first purpose, we carried out
∼40-min-long observations with a roughly monthly cadence. For
the second purpose, we carried out a single dense orbital campaign
in 2017 May, during which the pulsar was observed on 10 different
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3862 A. Ridolfi et al.

Table 1. List of the recent observations of NGC 1851A made with the uGMRT. All observations were carried out with the 250–500 MHz receiver (Band 3),
GWB as backend, with 200 MHz of bandwidth. The dates and epochs reported are referred to the start time of the observation in UTC time standard.

Date Epoch Mode Length Sampling time Number of Mean anomaly range Notes
(MJD) (min) (μs) channels (deg)

2017 Apr 29 57872 PA 25 81.92 2048 74.00–74.33
2017 May 07 57880 PA 40 81.92 2048 223.75–224.28
2017 May 09 57882 PA 33 81.92 2048 265.41–265.84
2017 May 10 57883 PA 40 81.92 2048 284.54–285.07
2017 May 11 57884 PA 40 81.92 2048 303.76–304.29
2017 May 13 57886 PA 105 81.92 2048 340.82–342.50
2017 May 14 57887 PA 275 81.92 2048 357.45–361.11 Periastron passage
2017 May 15 57888 PA 96 81.92 2048 17.83–19.11
2017 May 17 57890 PA 53 81.92 2048 58.58–59.29
2017 May 19 57892 PA 40 81.92 2048 96.79–97.32
2017 May 22 57895 PA 50 81.92 2048 150.22–150.88
2017 Jun 10 57914 PA 40 81.92 2048 155.93–156.46
2017 Jul 12 57946 PA 40 81.92 2048 45.63–46.17
2017 Aug 19 57984 PA 40 81.92 2048 53.23–53.77
2017 Oct 26 58052 PA/CDP 40 81.92/10.24 2048/512 273.68–274.22
2017 Nov 14 58071 PA/CDP 26 81.92/10.24 2048/512 294.65–295.00
2017 Dec 14 58101 PA/CDP 40 81.92/10.24 2048/512 148.65–149.19
2018 Jan 13 58131 PA/CDP 40 81.92/10.24 2048/512 359.94–360.47 Periastron passage
2018 Feb 15 58164 PA/CDP 40 81.92/10.24 2048/512 271.41–271.94
2018 Mar 15 58192 PA/CDP 40 81.92/10.24 2048/512 88.18–88.71

PA: phased array mode; CDP: coherent de-dispersion mode.

occasions within the ∼18.8 d of its orbit, with longer scans as the
pulsar was approaching periastron. All observations were made with
the 14 antennas of the uGMRT central array, using the 250–500 MHz
receivers (uGMRT Band 3). After summing the two polarizations,
the data were 16-bit digitized and recorded in search mode by the
GMRT Wideband Backend (GWB; Reddy et al. 2017), with a total
bandwidth of 200 MHz centred at a frequency of 400 MHz.

Until 2017 August, the data were taken in phased array (PA)
mode only, with a sampling time of 81.92 μs and 2048, ∼0.0977-
MHz wide frequency channels. Given its dispersion measure (DM)
of ∼52.14 pc cm−3, the signal of NGC 1851A had a dispersive
smearing across each channel of 338 μs at the top (500 MHz) of the
band, and of 1.565 ms at the bottom (300 MHz) of the band. These
translated into an effective resolution of 348 μs and 1.567 ms at the
top and the bottom of the band, respectively.

From 2017 September, the new real-time CDP mode of the
GWB became available. The last six observations made from 2017
October to 2018 March were therefore made using the PA and
CDP modes simultaneously. In CDP mode, the observing band was
divided into 512 frequency channels, which were coherently de-
dispersed at the nominal DM of NGC 1851A. Thanks to this, the
chosen sampling time of 10.24 μs also corresponds to the effective
time resolution of the CDP data. The much higher quality provided
by the CDP data over the PA data is evident from Fig. 1, where
we show a single observation of NGC 1851A as resulting from the
two different modes. The lack of intra-channel dispersive smearing
in CDP mode results in a much narrower pulse profile. Its shape is
thus much closer to the intrinsic one, likely only slightly smeared
by scattering.

2.2 Data reduction

The newly taken uGMRT search-mode data were first folded with
the prepfold routine of a slightly modified version of the

Figure 1. Observation of NGC 1851A as taken with the 250–500 MHz
(Band 3) receiver of the uGMRT on 2017 November 14 simultaneously in
PA mode (left) and CDP mode (right). Top panels: Intensity as a function of
pulse phase (x-axis) and observing radio frequency (y-axis). Bottom panels:
Corresponding integrated pulse profile. Thanks to the CDP available in CDP
mode, the pulse profile of NGC 1851A is much narrower than in PA mode,
resulting in far more precise timing. Radio frequency interference from the
Mobile User Objective System (MUOS) satellite system is visible in the
360–380 MHz band.
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classic branch3 of the PRESTO4 (Ransom 2001) pulsar search
package, using the best NGC 1851A ephemeris available. The
so produced PRESTO folded archives were then converted into
PSRFITS format using the psrconv routine of the PSRCHIVE5

pulsar software package (van Straten, Demorest & Oslowski 2012)
and then carefully cleaned from radio frequency interference (RFI).
All the PA and CDP archives were then separately summed together
to produce a high signal-to-noise (S/N) PA integrated profile, and
a high-S/N CDP integrated profile, respectively. Both profiles were
then smoothed with a Wavelet transform (using the psrsmooth
routine of PSRCHIVE) so as to obtain two noise-free template
profiles to be used with the PA and CDP data sets, respectively.
The use of two different templates for the different data sets is
justified by the large differences in the observed profile shape of
NGC 1851A in the PA and CDP data (Fig. 1). Each noise-free
template was then cross-correlated in the Fourier domain (Taylor
1992) against the folded archives of the relative data set to derive
topocentric pulse times of arrival (ToAs). Because the time stamps
of the CDP data are known to have a positive offset of 0.67108864
s with respect to those of the PA data, we took this difference into
account by subtracting the value from all the CDP ToAs.6 Also,
the PA and CDP template profiles were aligned in phase, using the
profile peak as the reference point, so as to avoid the introduction
of any additional phase offsets. In this way, the PA and CDP ToAs
were directly comparable and no arbitrary offset between the two
data sets was needed.7

The new uGMRT ToAs were then used to extend the pulsar
ephemeris published by Freire et al. (2007) to the present time,
using the TEMPO8 pulsar timing package. When doing so, the
ToAs are first referred to the Terrestrial Time standard of the
Bureau International des Poids et Mesures (BIPM). In order to
subtract the motion of the radio telescope around the Earth’s
centre, TEMPO uses the International Earth Rotation Service tables
and the known coordinates of the telescope. The Earth’s motion
relative to the Solar system barycentre (SSB) was also subtracted
by TEMPO using the DE 430 Solar System ephemeris derived by
the Jet Propulsion Laboratory (Folkner et al. 2014). The resulting
timing parameters are presented in Barycentric Dynamical Time
(TDB).

We used two of the TEMPO orbital models to analyse the data,
all based on the description of Damour & Deruelle (1985) and
Damour & Deruelle (1986). The first is the ‘DDFWHE’ model
(Weisberg & Huang 2016), which is based on theory-independent
‘DD’ model, but with the orthometric parametrization of the Shapiro
delay described by Freire & Wex (2010). The second is the ‘DDK’
model, which will later be used in the Bayesian analysis outlined
in Section 4. This is, again, based on the DD model but takes
into account the kinematic effects described by Kopeikin (1995,
1996) and was implemented in TEMPO by van Straten & Bailes
(2003).

3The classic branch of PRESTO is currently the only version capable of
dealing with the GMRT data format.
4http://www.cv.nrao.edu/ sransom/presto
5http://psrchive.sourceforge.net
6This was done by using the TEMPO’s TIME statement in the ToA file.
7Although the different profile shapes could also introduce an additional
offset between the PA and CDP ToAs, the timing solutions obtained with
and without accounting for such an offset proved to be compatible within
1σ .
8http://tempo.sourceforge.net

3 R ESULTS

The timing parameters for NGC 1851A are presented in Table 2.
The ToA residuals (calculated as observed ToA − prediction of
the timing solution for the same rotation number) are displayed
graphically in Fig. 2. These show no clear systematic trends, which
suggests that the ephemeris in Table 2 accounts well for the spin
and motion of the pulsar.

We will now discuss the astrometric, spin and binary parameters
in this solution. However, before we proceed, we must remark that
some parameters, like the second spin frequency derivative, the
proper motion and the orbital period derivative, are still subject to
change, showing significant differences with every new observation
added. Therefore, their values must be interpreted with caution;
they will be discussed in more detail in a future publication after
further timing provides stable measurements for those parameters.
Other parameters, particularly those used to derive the masses of
the components, appear to be much more robust. For this reason, the
bulk of the discussion will be centred on the mass measurements.

The main new observational result in this section is the detection
of the Einstein delay γ (see Section 3.6). Another highlight is the
detailed interpretation of γ , in particular the study of its correlation
with the rate of change of the projected semimajor axis of the pulsar
orbit, ẋ, in Sections 3.7–3.9.

3.1 Proper motion: transverse velocity relative to NGC 1851

Contrary to the first timing solution published by Freire et al. (2007),
which was limited by a ∼2-yr data set, the much longer time baseline
spanned by our ToAs allowed us to precisely measure the pulsar’s
proper motion. The latter amounts to μα = +5.19 ± 0.22 mas yr−1

in right ascension and μδ = −0.56 ± 0.25 mas yr−1 in declination.
This can be compared to the astrometric measurement of the proper
motion of the cluster as a whole, as recently published by the GAIA
Collaboration with their Data Release 2 (Gaia Collaboration et al.
2018). For NGC 1851, they report μα =+2.1308 ± 0.0037 mas yr−1

and μδ = −0.6220 ± 0.0040 mas yr−1. The motion of the pulsar
relative to the cluster is therefore �μα = +3.06 ± 0.22 mas yr−1

and �μδ = +0.06 ± 0.25 mas yr−1 and it is graphically shown
in Fig. 3. Given the distance to NGC 1851 of d = 12.1 ± 0.2 kpc
(Gaia Collaboration et al. 2018), this translates into a relative linear
velocity of ∼175 ± 13 km s−1. This is more than four times
larger than the cluster’s central escape velocity (∼42.9 km s−1,
Baumgardt & Hilker 2018); hence, it would imply that the pulsar is
not bound to NGC 1851. However, we point out that this result is
a direct consequence of the large discrepancy between the proper
motion of the pulsar, measured by radio timing, and that of the
cluster, measured by the much more precise GAIA’s astrometry.
Such a discrepancy may be due to covariances between the proper
motion and the pulsar’s spin-down parameters, as the latter can
be heavily affected by the cluster’s gravitational potential (see
discussion in Section 3.3). Considering the 10-yr gap in our timing
data, and the fact that the recent one year of data was taken
with two different back-ends, it is too early to draw any firm
conclusions. Further radio observations of NGC 1851A over the
next few years will be necessary before we are able to accurately
measure higher order spin period derivatives, which will in turn
improve the measurement of the pulsar’s proper motion.

3.2 Keplerian orbital parameters

As already discussed by Freire et al. (2004) and Freire et al. (2007),
NGC 1851A is, among binary MSPs, an unusually eccentric system,
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Table 2. Timing parameters for PSR J0514−4002A.

Observation and data reduction parameters

Reference Epoch (MJD) . . . . . . . . . . . . . . . . . . . . . . . . 53623.1551
Span of timing data (MJD) . . . . . . . . . . . . . . . . . . . . . 53258−58192
Number of ToAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
Solar wind parameter, n0 (cm−3) . . . . . . . . . . . . . . . . 10
Overall residual rms (μs) . . . . . . . . . . . . . . . . . . . . . . . 20.9
RMS residual for GBT data (μs) . . . . . . . . . . . . . . . . 30.2
RMS residual for GMRT PA data (μs) . . . . . . . . . . . 36.1
RMS residual for GMRT CDP data (μs) . . . . . . . . . 11.4
χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.31
Reduced χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.008

Astrometric and spin parameters

Right ascension, α (J2000) . . . . . . . . . . . . . . . . . . . . . 05:14:06.69271(20)
Declination, δ (J2000) . . . . . . . . . . . . . . . . . . . . . . . . . −40:02:48.8930(19)
Proper motion in α, μα (mas yr−1) . . . . . . . . . . . . . . 5.19(22)
Proper motion in δ, μδ (mas yr−1) . . . . . . . . . . . . . . . −0.56(25)
Parallax, 
 (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0826
Spin frequency, ν (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . 200.37770740535(10)
First derivative of ν, ν̇ (10−17 Hz s−1) . . . . . . . . . . . −2.8(5)
Second derivative of ν, ν̈ (10−24 Hz s−2) . . . . . . . . . −1.533(27)
Dispersion measure, DM (pc cm−3) . . . . . . . . . . . . . 52.14016(37)

Binary parameters

Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . . . . 18.785179217(19)
Projected semi-major axis, x (lt-s) . . . . . . . . . . . . . . . 36.29028(27)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . . . . 53623.15508797(35)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8879771(11)
Longitude of periastron, ω (◦) . . . . . . . . . . . . . . . . . . . 82.3402(31)
Rate of advance of periastron, ω̇ (deg yr−1) . . . . . . 0.0129592(16)
Einstein delay, γ (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0216(9)
Derivative of Pb, Ṗb (10−12 s s−1) . . . . . . . . . . . . . . . 22(9)
Orthometric amplitude of Shapiro delay, h3 (μs) . . 0.2(13)
Orthometric ratio of Shapiro delay, ς . . . . . . . . . . . . 0.498a

Derived parameters

Magnitude of proper motion, μ (mas yr−1) . . . . . . . 5.22(22)
PA of proper motion, μ (deg, J2000) . . . . . . . . . . . 96.2(28)
PA of proper motion, μ (deg, Galactic) . . . . . . . . . 14.8(28)
Spin period, P (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9905751141121(24)
Spin period derivative, Ṗ (10−22 s s−1) . . . . . . . . . . 7.0(13)
Mass function, f (M�) . . . . . . . . . . . . . . . . . . . . . . . . . 0.1454196(33)
Orbital inclination (deg) . . . . . . . . . . . . . . . . . . . . . . . . 52
Total mass, Mtot (M�) . . . . . . . . . . . . . . . . . . . . . . . . . 2.4730(6)b

Pulsar mass, Mp (M�) . . . . . . . . . . . . . . . . . . . . . . . . . 1.25+0.06
−0.05

Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . . . . 1.22+0.05
−0.06

Angular distance from cluster centre, θ⊥ (arcmin) 0.0784

Notes. Timing parameters and 1σ uncertainties derived using TEMPO in TDB, using
the DE 430 Solar system ephemeris, the Terrestrial Time (BIPM) time-scale and
the DDFWHE orbital model.
aDerived from ω̇ and γ and held fixed (see Section 3.10). b Derived from ω̇.
d is the estimated distance to NGC 1851, its inverse is used for the parallax.
Estimate of vT, Ṗint, and derived parameters assume d.

e = 0.8879771(11), the second highest after PSR J1835−3259A in
NGC 6652, with e = 0.968(5) (DeCesar et al. 2015). Furthermore,
it must have an unusually massive companion, since it has a high-
mass function, f:

f = (Mc sin i)3

M2
tot

= 4π2

T�

x3

P 2
b

= 0.1454196(33) M�, (1)

where Mtot is total system mass, x is the projection of the semimajor
axis of the pulsar’s orbit along the line of sight in light-seconds

(lt-s), Pb is the orbital period of the binary, and T� = GM�c−3 =
4.925490947μs is a solar mass (M�) in time units, where c is the
speed of light and G is Newton’s gravitational constant.

The total mass Mtot was already presented by Freire et al. (2007),
but in this work we present a much more precise value, Mtot =
2.4730(6)M� (see Section 3.5). Thus, from equation (1), we derive

Mc = 1

sin i

(
f M2

tot

) 1
3 = 0.96166(16) M�

sin i
, (2)
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Timing NGC 1851A with the upgraded GMRT 3865

Figure 2. Timing residuals for NGC 1851A, obtained with the DDFWHE timing solution listed in Table 2. Top: ToA residuals as a function of the epoch, with
the 10-yr gap in observations evident. Bottom: ToA residuals as a function of the orbital phase, with phase 0 denoting periastron. The residual 1σ uncertainties
are indicated by vertical error bars. Black indicates the earlier GBT timing, blue the uGMRT data taken in PA mode, and red the uGMRT data in CDP mode.
Note the marked improvement of the CDP data compared to the PA mode.

Figure 3. Position of NGC 1851A with respect to the nominal centre
of the cluster, located at α = 05h14m06.s72 and δ = −40◦02′44.′′2 (Gaia
Collaboration et al. 2018). The dashed circle shows the core radius of NGC
1851, which is 0.09 arcmin, according to Harris (1996, 2010 edition). The
blue arrow indicates the direction of the projected motion of the pulsar
relative to the cluster.

this means that for the largest possible sin i, Mc has a minimum
value of 0.96166(16) M�. The large mass for the companion and
large eccentricity indicate that the system is a product of a secondary
exchange encounter, as already pointed out by Freire et al. (2007).

Knowing Mtot fixes the sum of the semimajor axes of both
components of the binary, also known as the orbital separation, a,
independently of the orbital inclination of the system. This results
from Kepler’s third law:

a = c

[
MtotT�

(
Pb

2π

)2
]1/3

= 2.79776(23) × 1010 m, (3)

or 93.323(8) lt-s. We will need this value in some of the calculations
below. This also implies that there is a minimum value of sin i, which
we can obtain from equation (2) by assuming Mp = 0, Mc = Mtot;
this is sin i > 0.3888.

3.3 Variation of the spin period

The observed variation of the spin period is given by(
Ṗ

P

)obs

=
(

Ṗ

P

)int

− Ḋ

D
, (4)

where Ṗint is the intrinsic spin-down of the pulsar and Ḋ is the
variation of the Doppler shift factor D. As already noticed by Freire
et al. (2007), the observed Ṗ is extremely small, our updated value
is 7.0 ± 1.3 × 10−22 s s−1; thus,(Ṗ /P )obs = 1.41(26) × 10−19 s−1.

The variation of the Doppler shift factor (D) consists of an
acceleration term proportional to the distance, d, and the square
of the total proper motion μ (Shklovskii 1970), another term due
to the effect of the difference in the Galactic accelerations of the
pulsar’s system and the Solar system, projected along the direction
from the pulsar to the Earth, al (Damour & Taylor 1991) plus, in this
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3866 A. Ridolfi et al.

case, the (unknown) acceleration of the system in the gravitational
field of the cluster, ag:

Ḋ

D
≡ −μ2d + al + ag

c
, (5)

where, again, c is the speed of light. In order to separate it from
the Ṗint, Freire et al. (2017) used a similar expression for the orbital
period:(

Ṗb

Pb

)obs

=
(

Ṗb

Pb

)int

− Ḋ

D
. (6)

Subtracting equation (6) from equation (4), we obtain a result that
does not depend on the acceleration or the proper motion of the
system:

� ≡
(

Ṗ

P

)obs

−
(

Ṗb

Pb

)obs

=
(

Ṗ

P

)int

−
(

Ṗb

Pb

)int

. (7)

Freire et al. (2017) then assumed that Ṗ int
b is small to obtain esti-

mates of the intrinsic Ṗ int for several MSPs in the GC 47 Tucanae;
these showed that they are very similar to the MSPs in the Galactic
disc.

For NGC 1851A, we cannot make this assumption. The reason
is that if we evaluate the left side of equation (7), we obtain
� = −1.4(5) × 10−17 s−1. If Ṗ int

b could be ignored, then � would
be positive, since for a rotation-powered pulsar Ṗ int is always
positive. The fact that it is negative means that it is possibly being
compensated by a larger, positive Ṗ int

b . Because this analysis is
independent of the system’s acceleration, the negative � cannot be
explained by the acceleration of the system in the gravitational field
of a nearby star, or the cluster’s. We discuss this in the following
section.

Therefore, in order to estimate Ḋ/D, we assume two extreme
characteristic ages for the pulsar, 0.5 and 10 Gyr; these bracket
the characteristic ages of most known MSPs. Using these ages,
we get values for Ṗint of 1.6 × 10−19 s s−1 and 7.9 × 10−21 s s−1,
respectively. From equation (4), we then obtain for Ḋ/D the extreme
values of 3.2 × 10−17 s−1 and 1.44 × 10−18 s−1. After subtraction
of the proper motion and Galactic acceleration terms, we obtain a
very small line-of-sight acceleration for this binary system. This
does not introduce any useful constraints on cluster mass models;
for this reason, we will not elaborate on it any further.

3.4 Variation of the orbital period

According to Lorimer & Kramer (2004), the observed variation of
the orbital period is given by(

Ṗb

Pb

)int

=
(

Ṗb

Pb

)obs

+ Ḋ

D

=
(

Ṗb

Pb

)GW

+
(

Ṗb

Pb

)ṁ

+
(

Ṗb

Pb

)T

. (8)

Depending on the assumption above for Ṗ int and Ḋ/D we get
for this sum a range of values from 1.6(5) to 4.5(5) × 10−17 s−1.
This implies that the result appears to be at least 3σ significant.
However, we have noticed already that the value of Ṗb,obs has
not fully stabilized yet. As shown in Fig. 4, as we add more and
more epochs to our data set, its positive value keeps changing and
ultimately tends to decrease. For this reason, we will only present
a brief discussion of this effect below. In particular, we look at
the individual terms and discuss whether they could yield a large,
positive Ṗb,int, or not.

Figure 4. Orbital period derivative (Ṗb,obs) of NGC 1851A measured using
the DDFWHE binary model as a function of epoch added from uGMRT
data set (the GBT data set is also always included in the fit). The last point,
which is the one derived using the whole GBT+uGMRT data set, is the
value reported in Table 2.

The first term on the second line of equation (8) is due to loss of
orbital energy caused by the emission of quadrupolar gravitational
waves. Assuming the masses obtained in Section 4, this is given in
GR by Peters (1964):

Ṗb,GR = −192π

5
T5/3

�

(
Pb

2π

)−5/3

f (e)
MpMc

M
1/3
tot

, (9)

f (e) = 1

(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4

)
. (10)

For the masses of the system, as they are determined in Section 4,
we obtain Ṗb,GR = −0.155 × 10−12 s s−1, thus Ṗb,GR/Pb = −9.6 ×
10−20 s s−1. This is two orders of magnitude smaller than �, thus it
does not explain the anomalous � we observe.

The second term in the second line of equation (8) is caused by
mass-loss from the system. Assuming, as Damour & Taylor (1991)
did, that this is dominated by the loss of rotational energy for the
pulsar, this is given by(

Ṗb

Pb

)ṁ

= 2
ṁ

Mtot
= 2

Ė

c2Mtot
, (11)

= 8πG

T�c5

I

Mtot

Ṗint

P 3
	 2.3 × 10−4

(
Ṗ

P

)int

, (12)

where I 	 1038 kg m2 is the moment of inertia of the pulsar. We can
see from the last identity that this term is extremely small compared
to Ṗint/P , which is very similar to Ḋ/D (equations 4 and 6). This
means that this term cannot explain the observed � either.

However, if the companion is losing mass on its own at a
sufficiently large rate, that could cause the observed �. Indeed,
if we assume that � is caused by mass-loss, we obtain(

Ṗb

Pb

)ṁ

	
(

Ṗb

Pb

)obs

+ Ḋ

D
> 1.55 × 10−17 s−1, (13)
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ṁ = Mtot

2

(
Ṗb

Pb

)ṁ

, (14)

ṁ > 1.9 × 10−17M� s−1 = 6.1 × 10−10 M� yr−1, (15)

which is about 104 times larger than the current mass-loss rate for
the Sun. Such mass-loss rates do not generally occur for compact
objects (certainly not for NSs or heavy white dwarfs). However,
as discussed by Freire et al. (2007), the lack of eclipses rules out
extended companions, such as main-sequence star companions, and
even more a giant companion. Therefore, a large mass-loss rate
should not be expected.

Finally, the last term on the second line of equation (8) is
caused by tidal dissipation. This might explain the observed �

if the companion were extended and rotated fast and in the same
sense of the orbit, as in the Earth–Moon system. However, since
the companion does not appear to be extended, this is, again, an
unlikely explanation.

Since the value of Ṗ obs
b has not fully stabilized yet, there is a

chance that none of these effects (mass-loss or tidal acceleration
of the orbit) are real. To our knowledge, this effect has not been
observed in any pulsars to date. Continued timing with the CDP
mode will quickly improve its precision and robustness and confirm
the increase in the orbital period or not.

3.5 Rate of advance of periastron

For NGC 1851A, the observed rate of advance of periastron, ω̇obs is
measured very precisely: ω̇obs = 0.0129592(16) deg yr−1. This is
25 times more precise and slightly larger than the value published
by Freire et al. (2007), ω̇obs = 0.01289(4) deg yr−1. As all mea-
surements in this work, the latter’s uncertainty is a 68.3 per cent
confidence limit, equivalent to 1σ in a normal distribution. Our
new value is thus 1.7σ larger than the earlier. This difference is not
statistically significant.

According to Lorimer & Kramer (2004), in the absence of other
massive objects near the binary, ω̇obs is given by

ω̇obs = ω̇rel + ω̇k + ω̇SO. (16)

The first term is caused by relativistic effects. Assuming general
relativity (GR), we can estimate the total mass of the binary, Mtot

(in solar masses), from ω̇rel and the Keplerian parameters Pb and e
(Robertson 1938) by inverting the well-known expression derived
by Taylor & Weisberg (1982):

Mtot = 1

T�

[
ω̇Rel

3
(1 − e2)

] 3
2
(

Pb

2π

) 5
2

, (17)

If ω̇rel fully accounts for ω̇obs, then we can derive Mtot =
2.47298(45) M�. This constraint is displayed by the red lines in
Fig. 5.

However, ω̇Rel does not fully account for the observations. The
second term in equation (18), ω̇k, is given by Kopeikin (1995), here
re-arranged as in Freire et al. (2011b):

ω̇k = μ

sin i
cos(μ − �), (18)

where μ is the position angle of the proper motion and � is the (un-
known) position angle for the line of nodes. Maximizing this contri-
bution, i.e. setting cos(μ − �) = ± 1 (and using the value for sin i,
from Section 3.6), we obtain ω̇k = ±1.82 × 10−6 deg yr−1, which
is very similar to the measurement uncertainty. Thus, the assumption

that ω̇obs is caused by relativistic effects is mostly warranted, but ω̇K

is already having an influence on the uncertainty of the measurement
of the total mass of the binary.

The last term, ω̇SO, has not yet been detected in any binary pulsar,
so we will for now assume it does not contribute significantly.

As we will see in Section 4, we have at the moment no way
of measuring �. Therefore, ω̇k cannot be evaluated, beyond the
lower and upper limits we have estimated. This means that the
uncertainty of Mtot has to be increased to take into account the
unknown contribution of ω̇k. Adding in quadrature the maximum
value of ω̇k to the uncertainty of ω̇obs, we obtain an estimate for the
uncertainty of the latter: 2.4 × 10−6 deg yr−1. This translates into
a Mtot uncertainty of 6 × 10−4 M�, which is the uncertainty quoted
in Table 2.

3.6 Einstein delay

The main new result in this paper is the measurement of the Einstein
delay, γ . This measures the apparent slowdown of the rotation of
the pulsar near periastron relative to apastron. Assuming that it is
solely an effect of GR (an assumption we discuss in detail below),
50 per cent of the effect is caused by the varying special-relativistic
time dilation (which is caused by the varying velocity of the pulsar
in its orbit) and 50 per cent by the varying gravitational redshift.

Until now, this has been measured only for eccentric systems
with orbital periods of 10 hr (for PSR B15134+12, see Fonseca,
Stairs & Thorsett 2014) or shorter, all of these being double neutron
star systems. The orbital period of NGC 1851A is 45 times larger
than that of PSR B1534+12. This detection was helped by the
magnitude of the effect, γ = 21.6(9) ms; by far the largest ever
measured in any binary pulsar.

In GR, this effect is related to the component masses by the
equation

γ = γK
Mc(Mc + Mtot)

M
4/3
tot

, (19)

γK = T2/3
� e

(
Pb

2π

)1/3

, (20)

these constraints are depicted by the blue lines in Fig. 5. The reason
for the large γ of PSR J0514−4002A has to do with the γ K term
being larger for this pulsar, a consequence of the large values for e
and Pb.

If we already know Mtot, we can determine the masses from γ

using

Mc = 1

2

(√
M2

tot + 4M
4/3
tot

γ

γK
− Mtot

)
(21)

Mp = Mtot − Mc; (22)

for the γ and Mtot measured for PSR J0514−4002A, the result is
Mc = 1.207+0.037

−0.038 M� and Mp = 1.266+0.038
−0.037 M�, assuming GR.

Inverting equation (2) we obtain sin i = 0.797, which implies
either i = 53.8 deg or i = 127.2 deg. These values are represented
by the intersection of the red and blue lines in Fig. 5.

3.7 Covariance of the Einstein delay with ẋ for wide orbits

We now examine the assumption that the observed γ is solely
an effect of GR. We start by examining why measurements of γ

for wide binary pulsars have not been made to date, despite the
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3868 A. Ridolfi et al.

Figure 5. Mass constraints for PSR J0514−4002A. In the main square plots, the lines indicate the regions that are (according to general relativity) consistent
with the nominal and ±1σ measurements of ω̇ (solid red), γ (solid blue), and h3 (grey) obtained from the DDFWHE model (see Table 2). For the h3 estimate,
we assumed the value of ς marked by the dotted grey lines (Section 3.10); only the nominal (near Mp = 0) and +1σ lines are visible; the latter excludes
orbital inclinations near 90 deg. In the left plot, we display cos i (for randomly inclined orbits this would have equal probability) versus the companion mass
(Mc); the grey region is excluded by the mass function of the system – the pulsar mass (Mp) must be larger than 0. In the right plot, we display Mp versus Mc;
the grey region is excluded by the constraint sin i ≤ 1. The side panels display the 1d pdfs for cos i (top left), Mp (top right) and Mc (right), normalized to the
maximum (for details, see Section 4). The distribution for Mc is derived from the distribution for Mc using Mp = Mtot − Mc.

(often) very large expected values of γ K and in some cases Mc as
well.

As pointed out by Blandford & Teukolsky (1976), and later more
explicitly by Wex et al. (1998), we cannot measure γ for a single
orbit (even if measured with extreme precision) because the effect
is re-absorbed into the Keplerian parameters x and ω. If x and ω are
the ‘real’ projected semimajor axis and longitude of periastron for
a particular binary, the measurable, ‘post-absorption’ quantities x

′

and ω
′
are given, to very good approximation, by Wex et al. (1998):

x ′ = x + γ√
1 − e2

cos ω, (23)

ω′ = ω − γ

x
√

1 − e2
sin ω, (24)

for the parameters of NGC 1851A, we get x ′ = 36.29656 lt-
s and ω′ = 82.2665 deg, a difference of 0.00627(26) lt-s and
−0.0737(30) deg relative to the x and ω in Table 2. The uncertainties
of the differences are calculated from the uncertainty of γ .

In order to measure γ , we must in effect measure x
′
for sufficiently

spaced values of ω. Given the large ω̇ for the most compact
and eccentric double neutron star systems, such a measurement
is generally achievable for timing baselines of a few years. In the
case of NGC 1851A, the ω̇ is only 0.0129592(16) deg yr−1, which
means that a full precession cycle lasts 27 779 ± 3 yr. This is,
of course, much longer than the timing baseline for this system,
implying that we can only observe the system at closely spaced
values of ω.

In such cases, we can only measure the current derivative of x
′
.

Differentiating the last equations, we obtain

ẋ ′ = ẋ − γ ω̇√
1 − e2

sin ω, (25)

ω̇′ = ω̇ − γ ω̇

x
√

1 − e2
cos ω + γ ẋ

x2
√

1 − e2
sin ω, (26)

where we assumed that e and γ are constant.
Assuming specifically the DD model, we find that in the equations

above e should be replaced by eθ , which is given by

eθ = e(1 + δθ ), (27)

where δθ is a PK parameter, the relativistic deformation parameter.
In GR, this is expected to be 3.78 × 10−7 for NGC 1851A.
This parameter is not separately measurable for this pulsar. The
difference between e and eθ is so small that it can be ignored in the
discussion that follows.

The difference between ω̇ and ω̇′, 2.24 × 10−6 deg yr−1, is
similar to the uncertainty on ω̇, for that reason we will also ignore
it for the time being (it is taken into account anyway when we fit
for γ ).

Since we only really measure ẋ ′, we cannot separate the instrinsic
variation of the projected semimajor axis (ẋ) from γ , both quantities
are completely covariant (equation 25). Indeed, if we fit for both
quantities in TEMPO, we cannot determine either with any useful
precision.
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Since we have only fitted for γ in our timing solution (not for ẋ),
the ẋ ′ should be given by the γ term in equation (25):

ẋ ′ = −3.34(14) × 10−13 lt-s s−1, (28)

where the uncertainty is derived from the uncertainty of γ .
We can test these expressions very easily by fitting the DDFWHE

solution with ẋ instead of γ . Doing this we obtain a fit with basically
the same χ2 (927.29) and the following parameters:

x = 36.29658(6) lt-s, (29)

ω = 82.266526(31) deg, (30)

ẋ = −3.34(14) × 10−13lt-s s−1, (31)

which agree within 1σ , and exactly with our expectation for the
‘absorbed’ values x

′
, ω

′
, and ẋ ′, respectively.

If the intrinsic ẋ is small compared to ẋ ′ in equation (25) (or if
it can be determined independently with a precision that is small
compared to ẋ ′), then we can measure γ and use it to determine
the masses. If not, then it becomes impossible to measure γ and
determine reliable masses from it. This is a general condition that
must be evaluated before attempting to determine γ for any wide
binary system. We estimate ẋ in the next section.

However, before we proceed, we remark that equation (25)
implies that, for some wide binaries (those with ω close to 0 deg
or 180 deg) the sin ω = 0 term makes it virtually impossible to
measure γ for those binaries, at least while that ω configuration
persists (which can be many thousands of years). One of the factors
that allows the measurement of γ for NGC 1851A is the favourable
ω of 82.34 deg, which almost maximizes the possible contribution
of γ to ẋ ′.

3.8 Variation of the projected semimajor axis

Since we have no independent way of measuring ẋ, it is very
important to carefully estimate it. We do this in this section within
the framework of GR.

According to Lorimer & Kramer (2004), the change in ẋ can be
written, in the absence of any massive objects in the vicinity of the
binary, as(

ẋ

x

)
=

(
ẋ

x

)k

+
(

ẋ

x

)GW

+ dεA

dt
− Ḋ

D
+

(
ẋ

x

)ṁ

+
(

ẋ

x

)SO

.

(32)

The first term is caused by the changing geometry due to the motion
of the system relative to the Earth and it is given by (Kopeikin 1995)(

ẋ

x

)k

= μ cot i sin(μ − �), (33)

where we have, again, re-written the terms as in Freire et al.
(2011b), except for the latter’s negative sign; the reason for this
is that the system we use to measure � and i should be a
right-handed system. Using the most likely value of sin i from
Section 3.6, we obtain for this term a maximum and minimum values
(corresponding to sin(μ − �) = ±1) of ±6.05 × 10−16 s−1. This
implies ẋk = ±2.2 × 10−14 lt-s s−1. This is about 6.5 per cent of ẋ ′.
Therefore, any computation of the component masses will have to
take this effect into account.

The second term is from the decrease of the size of the orbit
caused by gravitational wave emission; this is given by(

ẋ

x

)GW

= 2

3

Ṗb,GW

Pb
= −6.4 × 10−20 s−1, (34)

i.e. ẋGW = −2.3 × 10−18lt-s s−1. This is four orders of magnitude
smaller than ẋk.

The third term, caused by aberration, is proportional to the
geodetic precession rate for the pulsar. This is given by Barker &
O’Connell (1975) as

�geod =
(

2π

Pb

)5/3

T2/3
�

1

1 − e2

Mc(4Mtot − Mc)

2M
4/3
tot

, (35)

assuming the mass values derived in Section 4 and the Keplerian
parameters of the system, we obtain �geod = 0.0037 deg yr−1. The
aberration term is proportional to the latter (Damour & Taylor
1992):

dεA

dt
= P

Pb

�geod

√
1 − e2

cot λ sin 2η + cot i cos η

sin λ
, (36)

where η and λ are the polar coordinates of the pulsar’s spin. For
NGC 1851A, the non-geometric factors (the first two fractions in
the equation above) amount to 1.37 × 10−20 s−1, i.e. the variation
of x caused by this term is about 5.0 × 10−19 lt-s s−1. This is more
than four orders of magnitude smaller than ẋk.

The fourth term is caused by the variation of the Doppler shift.
From the assumption in Section 3.4 of a characteristic age larger
than 0.5 Gyr, it was deduced that Ḋ/D < 3.2 × 10−17 s−1, i.e. its
contribution to ẋ is −1.1 × 10−15 lt-s s−1. This is one order of
magnitude smaller than ẋk.

The fifth term can be derived from Ṗ ṁ
b being given by equa-

tion (13). If we use in that equation the upper estimate of Ḋ/D, as
discussed in Section 3.3, then we get (Ṗb/Pb)ṁ < 4.6 × 10−17 s s−1.
Using equation (34), we obtain (ẋ/x)ṁ = 3.04 × 10−17 s−1, i.e.
ẋṁ = 1.1 × 10−15lt-s s−1. This is one order of magnitude smaller
than ẋk; furthermore, it is of a sign opposite to that of the contribution
from Ḋ/D and of very similar magnitude.

The sixth and last term, ẋSO, has two contributions: the rel-
ativistic spin-orbit coupling, also known as the Lense–Thirring
effect (ẋLT), caused by the rotation of the pulsar or the companion,
and the classical spin-orbit coupling (ẋQM). Generally, for main
sequence stars ẋQM is much larger than ẋLT, for NSs the opposite
is true, and for white dwarfs (WDs) both terms are roughly
similar.

For the Lense–Thirring effect, we have (Damour & Taylor 1992):

ẋLT 	 −x
GSA

c2a3(1 − e2)3/2

(
2 + 3MB

2MA

)
cot i sin δA sin �0

A, (37)

where SA = IA�A is the rotational angular momentum of component
A, IA is that component’s moment of inertia, and �A is that compo-
nent’s angular frequency, δA and �0

A are angles that determine the
alignment of the rotation of component A relative to the orbit and a
is the orbital separation calculated in equation (3).

We now evaluate this term for the pulsar. For NSs, the mo-
ment of inertia is generally assumed to be of the order of
1038 kg m2. For the pulsar, the angular frequency is well known,
�p = 2π/P = 1259.01 rad s−1, thus Sp ∼ 1.25 × 1041 kg m2 s−1.
Therefore,

ẋLT 	 −3 × 10−15 sin δP sin �0
P lts s−1, (38)

which is one order of magnitude smaller than the kinematic term
ẋK. This will therefore have no impact on the mass measurements.
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If the companion is an NS, then the same calculation can be
made, except for the lack of knowledge of the spin period. The
contribution to ẋ is only similar to ẋk if the spin period is of the
order of 0.5 ms, a rotational velocity ∼3 times faster than any pulsar
observed to date. This is unlikely.

Not much changes if the companion is a WD: we still do not know
its rotational angular momentum, S. The moment of inertia for a
massive WD is about 104 times larger than for an NS. The shortest
spin period known for a WD is 13.2 s (Mereghetti et al. 2009). Thus,
if the companion to NGC 1851A were spinning at 13.2 s, the total
angular momentum would be Sp ∼ 4.8 × 1041 kg m2 s−1, and

ẋLT ∼ −1.1 × 10−14 sin δC sin �0
C lts s−1, (39)

which would be of the order of half of the estimated ẋk.
Finally, if the companion is a WD, there will be a contribution

of the classical spin-orbit coupling to ẋ, caused by the rotationally
induced oblateness of the companion. This is given by Wex et al.
(1998):

ẋQM = x

(
2π

Pb

)
Q cot i sin δc cos δC sin �0

C, (40)

where

Q = k2R
2
C�̂2

C

a2(1 − e2)2
with �̂C ≡ �C

(GmC/R3
C)1/2

, (41)

where mC = 2.4 × 1030 kg is the companion mass in kg, RC is its
radius (∼3000 km), and k2 is its apsidal motion constant, which is a
dimensionless measure of the oblateness of the companion; for WDs
this is of the order of 0.1 (Boshkayev, Quevedo & Zhami 2017). For
a spin period of 13.2 s, we have �̂ ∼ 0.2, thus Q ∼ 7.8 × 10−10

and

ẋQM ∼ 8 × 10−14 sin δc cos δC sin �0
C lts s−1, (42)

which, depending on the angles, could be few times larger than ẋk

and is comparable in magnitude with ẋ ′.
Although this is unlikely, we cannot exclude the possibility of

a fast-rotating WD companion. If we have a large contribution of
ẋLT and ẋQM to ẋ, we have no way of separating it from the other
effects.

3.9 Influence of the proper motion on the Einstein delay

As we have seen in the previous section, unless the companion is a
WD with a very fast rotation, ẋk is by far the dominant contribution
to ẋ, amounting up to ±6.5 per cent of ẋ ′. We will from now on
assume that this is, indeed, the case.

Inverting equation (25), and using equation (18), we obtain the
variation of the actual γ as a function of the proper motion μ, �, i,
and the measured γ for systems like NGC 1851A:

γ (�, i) = γ + x
√

1 − e2

sin ω

μ

ω̇
cot i sin(μ − �), (43)

from this we obtain maximum and minimum values of γ (�, i) of
23.1 and 20.3 ms, respectively (the ‘measured’ value, γ , is 21.6 ms)
for values of i close to the values derived in Section 3.6. These
differences are slightly larger than the uncertainty of the measured
γ , which is about 0.9 ms. Using equation (21), we can then obtain
maximum and minimum companion masses of 1.263 and 1.144 M�;
again these differences (of the order of 0.06 M�) are larger than the
mass uncertainties derived in Section 3.6 from the uncertainty of
the measured γ , 0.038 M�.

We note that these estimates rely on our current measurement of
the proper motion which, for the reasons discussed in Section 3.1),
is not yet fully trustworthy. If it is closer to the smaller GAIA proper
motion of NGC 1851, then we would also have a smaller mass
uncertainty caused by the proper motion.

3.10 Shapiro delay

The far from edge-on inclination means that the Shapiro delay is
not easy to measure. In order to quantify its detectability we use
the orthometric parametrization of Freire & Wex (2010), which is
implemented as the DDFWHE model. To do this, we need first a
numerical value for the orthometric ratio ς , this can be derived from
the s ≡ sin i estimated in Section 3.6:

ς = s

1 + √
1 − s2

	 0.50. (44)

Fixing this in the model, we fit the orthometric amplitude, obtain-
ing h3 = 0.2 ± 1.4μs. This means that the Shapiro delay is not
detectable in this system. However, this value of h3 is 1σ consistent
with the expectation for this system, h3 = McT�ς3 	 0.74μs.

Despite being a non-detection, this constraint can already exclude
inclinations close to edge-on, as seen in Fig. 5.

4 BAY ESI AN A NA LY SI S O F THE COMPO NENT
MASSES

In order to estimate the influence of the proper motion on γ , we
used in the previous section a value of cot i that is itself derived
from the mass function of the system and the component masses.
The problem is that the component masses must be derived from
γ (�, i) itself.

For this reason, we have implemented a Bayesian analysis of
the system, with the aim of determining the masses and orbital
inclinations of the system in a fully self-consistent manner.

4.1 Mapping the orbital orientation space

In what follows, we roughly follow the Bayesian analysis done by
Stovall et al. (2019), but with a few important differences. As in the
latter work, we map the quality of fit (the residual χ2) for the orbital
orientation space (cos i and �) using the DDK orbital solution. The
full space ranges from cos i = −1 to 1 and from � = 0 to 360 deg.
Randomly oriented orbits will populate this space uniformly. In
practice, we limit the range of i to regions where Mp is positive, i.e.
where sin i > 0.3888. Thus, −0.9213 < cos i < 0.9213.

Unlike Stovall et al. (2019), we do not sample the third dimension
(in the latter case Mtot) because, as discussed in Section 3.5, the
changes in the total mass caused by the kinematic contribution
ω̇k are of the same order of the measurement uncertainty for ω̇.
The resulting changes in Mtot with � are two orders of magnitude
smaller than the uncertainties in the masses of the components;
therefore, they are irrelevant for the estimates of the component
masses. For this reason, the whole map assumes one value of Mtot

for the estimation of the component masses.
For each point in the grid of cos i and � values, we introduce

these values in the DDK model via the TEMPO’s KIN and KOM
parameters. From this, the model internally estimates all kinematic
effects, particularly the secular ẋ.

For each value of i, we derive Mc from equation (2). We then
introduce it in the model via the TEMPO’s M2 parameter. This
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Figure 6. Central panel: The full cos i–� space for binary pulsars. For
PSR J0514−4002A, the grey regions are excluded by the requirement that
the pulsar mass must be larger than 0. The dotted orange line indicates the
position angle of the proper motion of the system. The grey-scale indicates
the probability density, with zero indicated by white and maximum proba-
bility density indicated by black. As we can see, the best orbital inclination
varies significantly with �. Top panel: Probability density function for cos i,
normalized to the maximum. Right-hand panel: Probability density function
for �. This is almost uniform; that is, this variable is not constrained for this
system.

completes the description of the Shapiro delay: its first parameter
is the orbital inclination i.

Then, for each point we estimate γ from Mc and Mtot using
equation (19), we introduce the result in the model via TEMPO’s
GAMMA parameter.

All these parameters (i, �, Mc, and γ ) are fixed inputs to the DDK
model used to do the timing analysis for that grid point. We then run
TEMPO, fitting for all other relevant timing parameters, including
ω̇, which is allowed to oscillate a little around the best-fitting model
because of ω̇K, and Ṗb, which is dominated by kinematic effects.
We then record the value of the χ2 for each combination of � and
cos i. The resulting 2D grid of χ2 values are then used to calculate
a 2D probability density function (pdf) for �, cos i, as discussed by
Splaver et al. (2002):

p(�, cos i) ∝ e
χ2

min−χ2

2 , (45)

where χ2
min is the lowest χ2 of the whole grid. A grey-scale plot of

this pdf is displayed in the central plot of Fig. 6.
This 2D pdf is then projected along two axes, cos i (1D pdf is

shown on top left-hand panel in Fig. 5 and top panel in Fig. 6) and
� (1D pdf in the right-hand panel of Fig. 6). This is then translated
into the Mc axis using equation (2) (1D pdf in the right-hand panel
of Fig. 5). The 1D pdf for Mp (the top right-hand panel of Fig. 5) is
merely a reflection of the pdf for Mc.

4.2 Results

In Fig. 6, we can see how the orbital inclination derived from ω̇ and
γ varies as a function of �, this is a visual demonstration of the effect
of the proper motion on γ . These orbital inclinations have identical
probabilities because the Shapiro delay is not measured with enough
precision to further restrict cos i. One of the consequences of this is
that, as we can see on the right plot, the probability density function
for � is nearly constant.

The derived pulsar mass is 1.25+0.05
−0.06 M� to 68.3 per cent con-

fidence limit (CL) and 1.25+0.09
−0.12 M� to 95.4 per cent CL; the

asymmetry of the pdf can be easily be seen in Fig. 5. This
mass is slightly lower, but consistent, with the simple estimate
made in Section 3.6. For the companion mass, the distribution is
inverted: Mc = 1.22+0.06

−0.05 M� to 68.3 per cent CL and 1.22+0.12
−0.09 M�

to 95.4 per cent CL.
The mass of NGC 1851A is one of the lowest MSP masses

measured to date. There is only one other MSP, PSR J1918−0642
(Mp = 1.29+0.10

−0.09 M�; Arzoumanian et al. 2018) that could have such
a low mass. This measurement demonstrates that the recycling to
a spin period of ∼5 ms can be achieved with a small amount of
mass: even if the system formed with the lowest known NS mass,
1.174(4) M� (Martinez et al. 2015), the recycling process would
have been accomplished with a mass transfer of ∼0.08 M�.

On the other hand, the mass we measured for the companion
implies that it can be also an NS. We will explore this possibility in
the following section.

5 C O M PA N I O N S E A R C H

If the companion is an NS, it could in principle also be a radio
pulsar. For this reason, we carried out a search for pulsations from
the putative companion.

For each observation listed in Table 1 (taking the CDP data
whenever available, PA data otherwise), we first created a mask
with the rfifind routine of PRESTO, in order to exclude all
those frequency channels and time intervals affected by RFI. Taking
the masks into account, we then used the prepdata routine
to de-disperse all the data at the nominal DM of NGC 1851A
(52.14 pc cm−3), scrunch the frequency band and create a barycen-
tred (i.e. referred to the SSB) time series for each observation. In
doing so, the CDP observations were also downsampled by a factor
of 8, in order to match the sampling time of the PA data.

The actual search for the radio pulsations was done as follows.
First, we used the PYSOLATOR9 software package to remove
the orbital motion of the putative companion pulsar. In essence,
PYSOLATOR subtracts the predicted orbital Rømer delay, together
with any other relativistic effects, from each sample of the time
series. As a result, it outputs a new demodulated time series, where
the pulsar appears as if it were isolated and located at the binary
barycentre. By subtracting the orbital motion, the observed spin
period of the possible companion pulsar will appear constant within
each observation, as well as across multiple observations.10 This
means that there is no need to perform an acceleration search,
and our sensitivity will not be limited by the length of the single
observation (Ransom 2001). All of this is possible only if we have
good knowledge of the system’s mass ratio, q = Mp/Mc. This is
because we know all the characteristics of the companion’s orbit

9https://github.com/alex88ridolfi/pysolator
10This is strictly true only if we ignore the intrinsic spin-down of the pulsar.
Given the small time span of our data set, this is a safe assumption.
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very precisely, with the exception of its projected semimajor axis,
xc. The latter is related to the projected semimajor axis of the pulsar
orbit, xp, as xc = q xp. Given the uncertainties on Mp and Mc, the
mass ratio is in the range of q = 0.929–1.111 to 68.3 per cent CL;
therefore, it is a parameter of our search.

Therefore, we tried several values of q and, for each of them,
all the demodulated time series were Fourier transformed with the
realfft routine ofPRESTO. The so produced power spectra, after
being de-reddened and normalized with PRESTO’s rednoise,
were summed together to produce a single stacked power spectrum
relative to each considered trial q value. In order to properly sum
the spectra together, each demodulated time series was padded by
PYSOLATOR, so as to artificially obtain all-time series with the
same number of samples as that of the longest observation. To
avoid sudden jumps in the time domain, which would translate
into artefacts in the Fourier domain, the added samples were all
set to the average value of the last 10 per cent of the original
time series. This approach, which was also recently used by, e.g.
Cadelano et al. (2018), allowed us to retain phase coherence within
each observation and at the same time to have the resulting power
spectra with homogeneous characteristics (i.e. Fourier bin size and
frequency span), thus being straightforward to sum together.

Clearly, the range of q values had to be explored with a sensible
choice of the step size, �q. The latter was chosen by imposing that,
in the case of the best trial value and the fastest possible companion
pulsar considered (i.e. spinning at 1000 Hz), the maximum drift of
the observed spin frequency in the Fourier domain would be smaller
than the size of one Fourier bin. For our data set, this resulted
in �q = 0.00018, corresponding to a total of 1011 trial values
of q. The so obtained 1011 stacked spectra were then searched
with PRESTO’s accelsearch, allowing no acceleration. All the
candidates were then sifted, removing duplicates and excluding
those with a significance of σ < 5.0. The candidates that survived
the selection criteria were then folded using the original search-
mode data, so as to retain full frequency information. This was
done by producing, for each candidate, an ad hoc ephemeris of
the putative companion, containing the candidate spin frequency,
as well as the orbital parameters as derived from the considered q
value. The resulting diagnostic plots were then inspected by eye.

None of the candidates could be ascribed to an astrophysical
pulsar-like signal.

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 On the nature of the companion

The mass measurements for this system make it comparable to the
highly eccentric PSR J1807−2500B in NGC 6544 (Lynch et al.
2012), where the companion, with a mass of 1.2064(20) M�, might
also be an NS. The companions to these systems could also be
massive WDs.

There are systems in the Galactic disc with similar eccen-
tricities, the double neutron star systems (DNSs). One of them,
PSR J1811−1736, even has an orbital period and orbital eccentricity
similar to NGC 1851A (Corongiu et al. 2007). However, it is
unlikely that NGC 1851A formed like a DNS: all pulsars in DNSs
have much longer spin periods than NGC 1851A (the shortest is that
of PSR J1946+2052, 16.7 ms, Stovall et al. 2018, PSR J1811−1736
itself has a spin period of 104 ms); this is a consequence of the fast
evolution of the massive companion, which results in a relatively
short accretion episode and therefore not much time for spin-up.

From this we conclude that systems like PSR J1807−2500B
and NGC 1851A formed in a secondary exchange encounter, a
likely event in the core of dense clusters like NGC 1851 and
NGC 6544. Such encounters happen (by definition) after the pulsar
was recycled by accretion of mass and angular momentum from a
lighter companion, which can last long enough to spin-up the pulsar
significantly. During the encounter, a massive degenerate object
came to such a close distance to the earlier binary system that a
chaotic interaction ensued. In this case, the most likely result is the
ejection of the lighter component of the binary and the formation of
a new more compact and eccentric binary consisting of the pulsar
and the massive degenerate intruder.

A consequence of the exchange interaction is that we cannot use
stellar evolution arguments to clarify the nature of the companion of
NGC 1851A. Given the possibility that the latter is an NS, we have
made a deep search for radio pulsations from that companion, as
described in Section 5. No pulsations were found. This means that
the question of the nature of the companion remains open: indeed,
the non-detection of the companion is not conclusive since many
NS companions to DNS systems are not detectable as pulsars either;
the same is true for the vast majority of NSs in our Galaxy and in
GCs.

It is highly unlikely that the companion is a main-sequence star.
Superior conjunction happens about 5 min after periastron, and the
separation between the pulsar and its companion in the plane of
the sky is scarcely more than one solar radius (Freire et al. 2007); a
main-sequence companion would almost certainly produce eclipses
near superior conjunction, which are not observed.

6.2 Is the companion losing mass?

The apparent detection of an intrinsic increase of the orbital period
is intriguing. As calculated in Section 3.4, if this is caused by mass-
loss from the companion, then it is losing mass at a rate that is about
104 times larger than the current mass-loss rate for the Sun.

This is interesting because Freire et al. (2007) presented some
evidence (based on the scintillation time-scale of the pulsar, which
seems to be inversely proportional to the orbital velocity of the
pulsar around the centre of mass of the system) of some mass-loss
from the companion. Another possibility is that the Ṗ int

b has a tidal
origin, with rotational energy of the companion being transferred to
the orbit (thus increasing the period).

In either case, a confirmation of the large Ṗ int
b would imply that the

companion is not an NS, because an NS companion would not likely
lose mass at any appreciable rate (owing to its extreme gravity) or
have a tidal interaction with the pulsar. We are thus left with the
possibility of a massive WD companion. If this is losing mass, it
must be at its late stages of formation, where the last vestiges of
its envelope are still being ejected, otherwise no tidal effects are
possible. We find that such a hypothesis is unlikely: any progenitors
of 1.22-M� WDs should have long disappeared from the stellar
population of NGC 1851. In any case, optical observations of the
companion to NGC 1851A are strongly encouraged.

6.3 Continued timing

Apart from the issue of the Ṗb, there is another unsolved issue
remaining, the proper motion. This is very different than the proper
motion of the cluster and would suggest the pulsar is on an
escape path. The other is the large and unexpected Ṗb for this
system. Both issues could arise from the 10-yr gap in timing,
where the phase evolution of the pulsar has not been measured.
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Continued timing should allow a better measurement of the higher
spin frequency derivatives, the proper motion and Ṗb, potentially
allowing a full reconstruction of the spin evolution during the 10-yr
gap in observations. These measurements will certainly help clarify
the issues raised by their current values.

Continued timing with the CDP mode will also improve the
measurement of γ ; its uncertainty scales with T−3/2, where T is
the timing baseline. This will result in much thinner black lines in
Fig. 6, i.e. a much more restricted range of � and cos i where the
system might exist.

Furthermore, a few long observing sessions around periastron in
CDP mode will certainly improve the constraints on the orthometric
amplitude of the Shapiro delay, h3. This could in principle allow
a measurement of the masses that is independent of γ and any
possible contributions to ẋ that it might have. Restricting the range
of inclinations would imply (as we can see looking at Fig. 6) a
restriction of the possible values of �.

6.4 Conclusions

In this paper, we have presented the results for the recent timing
of the NGC 1851A binary pulsar with the uGMRT. Combining
our ToAs with those obtained with GBT 10 yr before, we greatly
improve the precision of the measurement of ω̇, thus obtaining a
far more precise estimate of the total mass of the binary. We also
measure, for the first time, the proper motion of the system and the
relativistic Einstein delay, γ . This is the first time this has been done
for a system with an orbital period larger than 10 h. The detection
is helped by the sheer magnitude of the effect, which is 4.5 times
larger than any measurement of γ made to date in a binary pulsar.
This is also the first time that a measured γ is larger (in this case
four times larger) than the spin period of the pulsar.

The latter effect allows a measurement of the individual masses
of the components. One of the most important results in this paper
is a detailed study of the conditions under which γ can be measured
and its covariance with the variation of the projected semimajor
axis, ẋ, in particular with the kinematic component of that term
that arises inevitably from the proper motion of the system. This
means that, in order to estimate the component masses of a wide
binary system with the help of γ , we must take into account at least
the effect of the proper motion. We do this in an economical and
self-consistent way by sampling the quality (χ2) of the timing fit
for the full orbital orientation space (which consists of cos i and
�). From this χ2 map, we derive probabilistic distributions for
cos i, Mp and Mc. The median and 68.3 per cent confidence limits
of the mass distributions are given by Mp = 1.25+0.05

−0.06 M� and a
companion mass of Mc = 1.22+0.06

−0.05 M�.
The low mass of the MSP implies that the recycling process can

be achieved with a relatively small amount of mass, < 0.08M�. We
cannot use this number to estimate the efficiency of the recycling
process (as done by, e.g. Antoniadis et al. 2012) because we do not
know the mass and orbital properties of the original donor star.

The mass of the current companion implies the possibility
that it is also an NS. This makes the system very similar to
PSR J1807−2500B, located in the GC NGC 6544. Both systems
were very likely formed by exchange interactions in the core of the
GCs where they are located, both are potential MSP–NS systems,
but each could also be an MSP-massive WD system. Given the
possibility that the companion is an NS, we have looked deeply
for radio pulsations from the companion, but none were found.
Therefore, we cannot determine the nature of the companion with
any certainty.

The measured masses imply, according to GR, that the time until
gravitational-wave-induced merger of ∼463 Gyr, which is more
than 30 times the Hubble time. It is to be expected, given the dense
environment and the history of the system, that its interactions with
other stars in the cluster will produce very significant changes in its
orbital parameters (or even in the companion itself) on a time-scale
much shorter than the orbital decay time-scale.

Future observations will refine the proper motion, which will
allow us to measure precisely (and hopefully accurately) the velocity
difference relative to the cluster. Such observations will also allow
a confirmation (or not) of the anomalous orbital period derivative
of the system.
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