

Anno di pubblicazione	2019
Data inserimento in OA@INAF	2022-07-15T09:40:26Z
Titolo	ESPRESSO: the new VLT workhorse for high-precision astronomy
Autori	DI MARCANTONIO, Paolo
Handle	http://hdl.handle.net/20.500.12386/32507

ESPRESSO: the new VLT workhorse for high-precision astronomy

P. Di Marcantonio on behalf of ESPRESSO Team

Outline of the talk

- the ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations) instrument
- ESPRESSO at the VLT

espresso

- ESPRESSO Data Flow and its final deployment
- ESPRESSO operations
- ESPRESSO "science" software in a nutshell

Galactic Archaelogy in the Gaia Era

Parameter	singleUHR	singleHR	multiMR
Wavelengths		Blue arm: 380 – 520 nr Red arm: 520 – 780 nr	n n
Spectral coverage		Full	
Spectra format	Echelle, up to 4	4 spectra per order (2 fiber	rs, 2 spectra / fiber)
Resolving power	225'000	134'000	59'000
Aperture on sky	0.5 arcsec	1.0 arcsec	4x1.0 arcsec
Spectral sampling	2.5 pixels	4.5 pixels	10 pixels
Spatial sampling	9 pixels	18 pixels	44 pixels
Available binning	1x1	1x1 or 2x1	4x2 or 8x4
Sky/Simultaneous reference		Yes (mutually exclusive	2)
Instrumental RV precision	<10 cm/s	<10 cm/s	~1 m/s

ESPRESSO science

measurement of highprecision RVs of G, K and M dwarfs to search for rocky planets inside the HZ

espresso

investigate possibly variability of fundamental constants

 \geq study chemical composition of stars in local galaxies, IGM etc.

the ESPRESSO instrument (FDR movie)

Figure 107. Blue spectral format. The box on the left represents the CCD area.

EFTF-FCS Besancon 1999; Opt.Commun. 172, 59 (1999); Phys. Rev. Lett. 84, 3232 (2000) & Phys. Rev. Lett. 84, 5496 (2000)

Institutes of four countries (1 PI or Co-PI in each)

- Switzerland: Univ. Geneva (Lead, F. Pepe), Univ. Bern
- Italy: INAF Trieste (S. Cristiani, P. Molaro, P. Di Marcantonio), INAF Brera
- Portugal: Univ. Porto (N. Santos), Univ. Lisbon
- Spain: IAC (R. Rebolo Lopez)

Associated partner (Representative in Executive Board)

ESO (H. Dekker)

ESPRESSO @ VLT

ESPRESSO milestones:

- PDR: end of November 2011
- ✓ **FDR**: May 2013
 - CT First light: 25 Sept 2016 on UT4
- PAE: Q2 Q3 2017, shipment on Aug 2017
 - ESPRESSO single-UT first light: 27 Nov 2017 on UT1
 - ESPRESSO 4-UT first light: 3 Feb 2018
- Delivery to community: Oct 2018 (single-UT mode only)
- Start of GTO: September 2018

ESPRESSO Data Flow deployment

Data Flow model for Espresso (OHS-DHS)

(courtesy C. Guirao)

Exposure Time Calculator Image: Contract Spectroscopy Mode Version P103.4 Optical Eckele's Spectroscopy Mode Version P103.4 Image: Contract Spectroscopy Mode Version P103

 Template Spectrum 	A0V (Pickles)										
O MARCS Stellar Mode	Teff=4000 log(g)=-0.5 [Fe/H]= 0	M= 1 V Redshift	Target Magnitude :								
O Upload Spectrum	Select	2 - 0.00	V → = 7.00	Instrument Setup							
O Blackbody	Temperature: K		Magnitudes are given j								
O Power Law	Index: F(\lambda)	or h ^{index}		Telescope feed:	1UT V						
O Emission Line	Lambda: nm Flux: 10 ⁻¹⁶ erg FWHM: nm	ts's'cm² (per arcsec² for exte	nded sources)	Resolution/detector mode: Exposure Time:	singleHR11 30.000 s	∨ Single UT, high sp	ectral/RV resolution	n, 1x1 binning and fo	àst readout		
Spatial Distribution: Po	int Source										
Sky Conditions				Results							
Cverride almanac sk Moon FLI: Almanac UT 08001200 UT 08001201 UT 0800120 UT 08001 UT 0800120 UT 0800120 UT 08001 UT 0800120 UT 0800	y parameters and use instead typ Airmass 9 12:56:54 309:1300 1 Time LCT = 09:56:54 1 Time LST = 15:26:28 1 as Name or ID: [Aldebaran / HIP201 [] [] [] [] [] [] [] [] [] [] [] [] [] [Time step forvard back Time step forvard back To hour	+ ers except Moon phr	 Include exposure time: Include RV precision f Tables: Toggle All / No Spectral Format Expected Counts 	t for S/N:	550 nm (only possible fo Graphs: Input Spectrum Efficiency Obj Sky Maximum Intensity S/N	r stars of G, K or M io Graphs	spectral type)			
UT rise culm. set	e azimuth altitude zenith distance	airmass FLI moon/sun n phase angle	noon/target separation								
Target 19:33 01:30 07:31 11:26:28	199°.5 -64°.1 154°.1 target too low		30 -							Submit	Reset
11:08 Moon 18:02 01:02	105°.0 9°.8	0.06 "dark"	100°.7								
09:54 Sun 16:44 23:42	100°.0 37°.3 day	27°.9	0-210	o zzim zalan mino orim azim mino s4m selar selar s	as asias asias 10.00 11.00 71		eso oralo	bserving	/etc/hin/	aon/f	orm2INIS N
An advance	ed almanac is available in the ESO Sk	Calc sky model calculator		Universal Time	<u> </u>					<u>yen/n</u>	
-					— A	WE=ESPR	E220+11	12.IVIUDE	=spect	10	

Seeing/Image Quality:

• Seeing: 1.00 arcsec FWHM in V-band at zenith (use this value in the proposal)

Probability 87% of realising the seeing ≤ 1 arcsec

During the observing run, the Observation Block (OB) to be executed is loaded on the Observation Handling (OH) workstation and then sent to the BOB (Broker for Observation Block) tool on the IWS. BOB reads the contents of the OB and executes one by one the templates specified in there. Each template consists in general of a sequence of commands determining completely a scientific exposure. *It allows presetting the telescope, to setup the instrument and detector so that the required scientific observation could be properly performed.*

Acquisition phase

During the acquisition phase, after telescope presetting, a <u>correction</u> is necessary in order to center the object on the fibre entrance.

espresso

A carefully designed and tested algorithm is able to find <u>automatically the</u> <u>most luminous object in</u> <u>the field (which usually</u> coincides with the object under interest due to the small instrument field-ofview), computes the required correction and send it to the telescope.

Stabilization phase

The purpose of the (field) stabilization is to maintain the object centered on the fiber during the whole duration of the scientific exposure. The TCCD(s), one per front end, acquires the image in a continuous loop up to 7 Hz; auxiliary software two in real-time, processes. analyze the obtained image and command the low-level piezo tip-tilt devices such to try keep the object well to centered on the fiber.

espresso

ESPRESSO exposure meter

espresso

The signal-to-noise ratio of the ongoing scientific exposure is continuously monitored by the <u>ESPRESSO exposure meter</u> (EM). In ESPRESSO, the EM is actually a <u>small spectrograph</u> in itself and a dedicated process continuously computes the counts in three spectra channels from images obtained by a dedicated TCCD.

Thanks to its fixed spectral format and long-term stability, ESPRESSO has been conceived, starting already from the preliminary design phases, as "*truly science-grade products generating machine*".

To this purpose, in addition to the standard **Data Reduction Software (DRS)** package, a dedicated ESPRESSO **Data Analysis Software** (DAS) package has been developed with the aim to extract scientific information as soon as reduced data are available.

<u>@ Paranal</u>: pipeline as quick-look tools to do a real-time coarse assessment of the quality of calibrations and science observations; runs unsupervised with the help of data organizer (DO) and Reduction Block Scheduler (RBS) via OCA rules;

<u>ESPRESSO specific</u>: each science image can be reduced using the wavelength calibration taken few hours or even minutes before - virtual product functionality

<u>@ Garching</u>: more thorough data processing and evaluation - raw calibration frames into master calibrations; generate quality control parameters to monitor the instrument and detector performance

BAD PIXEL MASK

ORDER POSITION TABLES

ORDER PROFILE

FLAT-FIELD

BLAZE

WAVELENGTH SOLUTIONS

RESOLUTION MAPS

SIM REF SPECTRUM

CONTAMINATION

REL EFFICICENCY

ABS EFFICIENCY

SCIENCE PRODUCTS

DRS example results

-	Rtd – Real-Tir	ne Display, versio	on 3.2.1	• 🗆
<u>File View G</u> raphics	<u>R</u> eal-time			Help
Obje	ct: ESPRESSO_S2D_LF	C_FP_A.fits		
	X: 4503.0	Y: 69.0	Value: 516.836	
	α:	δ:	Equinox:	
M	fin: -202.565 N	Max: 824714	Bitpix: -32	
La	w: 89.384 H	ligh: 628500	Auto Set Cut Levels	
Zoom Sca	de: 2× = Z	zGZN		
			Cuts (1)	
			Pixel Values	
	600000	4 1 1 1		
111111	111			
	400000		ТИИИ	
		-		
	200000	- 11 11 1	Y D U H	Π Π Π Π
		\mathbf{POO}	0000	$J \cup \cup \cup$
		0 51	0 100	150
		X: 3	Value: 46396.6	09375
		Print		Close
	J			
			A	
i image: i = select object, -	++ ₩ = scroll image, →+	= measure WCS,	Control → 🔛 = select re	gion

espresso

OVLT

Single two-dimensional (S2D) spectrum extracted from the LFC exposure with one order shown by cuts. Regular spacing and the almost constant flux level could be easily noticed.

Wavelength coverage starts at 378.25 nm for the bluest order of fiber A and ends at 525.1 nm for the reddest order on the blue chip. On the red chip the shortest wavelength is 523.8 nm while the longest wavelength is 788.4 nm.

Additional info:

http://eso.org/sci/software/pipelines/espresso/espresso-pipe-recipes.html/

ESPRESSO Data Analysis

The ESPRESSO DAS comprises a total of 13 recipes. It is split into <u>four branches</u>: one for the *analysis of QSO spectra* and three for the *analysis of star spectra*.

Some of the recipes are common to more branches while others are specific to the treated spectra.

espresso

Each DAS branch is managed by a dedicated *Reflex workflow*.

All the recipes are *available off-line at the telescope* on a dedicated workstation and *the users* have the possibility to install the whole package also on *his/her computer*.

Operation	Branch	Name
Co-addition of spectra	star, quasar	espda_coadd_spec
Creation of a spectral mask	star, quasar	espda_mask_spec
Creation of a list of absorption lines	star, quasar	espda_create_linelist
Continuum fitting of a 1D spectrum	quasar	espda_fit_qsocont
Identification of the absorption systems	quasar	espda_iden_syst
Voigt-profile fitting of absorption lines	star, quasar	espda_fit_line
Measurement of the EW of spectral lines	star	espda_compu_eqwidth
Computation of the stellar parameters	star	espda_compu_starpar
Continuum fitting of single orders	star	espda_fit_starcont
Comparison with a synthetic spectrum	star	espda_synth_spec
Computation of the radial velocity using a synth. spec.	star	espda_rv_synth
Computation of the radial velocity	star	espda_compu_radvel
Computation of the stellar activity indexes	star	espda compu rhk

DAS workflow example

🕀 🕤

File <u>E</u>dit <u>V</u>iew W<u>o</u>rkflow <u>T</u>ools <u>W</u>indow <u>H</u>elp

espress

Search

Components Data Outline

Search Components

Advanced... Sources

All Ontologies and Folders Components

Projects

👂 🚞 Dataturbine

😑 Esoreflex Þ Þ 😑 Job

D Directors

Opendap

👂 🚞 Outreach

Þ 🚞 R

Image: Statistics

👂 🚞 Demos

Actors

ESPRESSO DAS WORKFLOW - Quasar Branch (v. 0.9.7)

DIRECTORIES

Input directories:

Workflow

- ROOT_DATA_DIR: /home/develdas/Work/sandbox/data_wkf
- RAW DATA DIR: \$ROOT DATA DIR/reflex input/espda/
- CALIB_DATA_DIR: /home/develdas/Work/sandbox/install/calib/espda-0.9.7

Working Directories:

- BOOKKEEPING_DIR: \$ROOT_DATA_DIR/reflex_book_keeping/espda
- LOGS_DIR: \$ROOT_DATA_DIR/reflex_logs/espda
- TMP_PRODUCTS_DIR: \$ROOT_DATA_DIR/reflex_tmp_products/espda
- BOOKKEEPING_DB: \$BOOKKEEPING_DIR/bookkeeping.db

Output directories:

• END_PRODUCTS_DIR: \$ROOT_DATA_DIR/reflex_end_products/espda/

PARAMETERS

NB: Parameters in yellow boxes are temporary.

General parameters:

- RecipeFailureMode: Ask In case of recipe failure: 'Continue', 'Stop', 'Ask' EraseDirs: false Erase working directories: 'true' or 'false'
- FITS VIEWER: fv Fits viewer used for inspection: 'fv'
- ProductExplorerMode: Triggered Show Product Explorer window: 'Triggered'
- SelectDatasetMethod: Interactive Dataset selection: 'All'/'New', 'Reduced', 'Failed', 'Interactive'
- INSTR: ESPRESSO Instrument (ESPRESSO/UVES/XSH/HARPS) WAVEL_MIN: 380 Minimum wavelength WAVEL_MAX: 780 Maximum wavelength

• END_PRODUCTS_SUBDIR: r.ESPRE.2017-11-28T05:01:10.428-A01_0001/2018-05-10T13:55:00

Auxiliary parameters (do not change):

GLOBAL TIMESTAMP: 2018-05-28T12:10:13

ESORexArgs: --suppress-prefix=TRUE

N_SELECTED_DATASETS: 1 • N SELECTED SYSTEMS: 1 • CURRENT_LINE: 1

 VEL_STEP_UVES: 3.0
 VEL_STEP_XSH: 13 VEL_STEP_HARPS: 1.0 GLOB_VEL_STEP: 0.5 RESOL UVES: 45000
 RESOL XSH: 5900 RESOL HARPS: 115000 GLOB RESOL: 140000 • LINE VEL STEP: 1.5

- Edit ROOT_DATA_DIR to point to your data (subdirs will be searched)
- Edit END PRODUCTS DIR to your preferred location
- (N.B.: must not be a subdir of ROOT DATA DIR)
- Run the workflow:
 or ctrl-R
- Monitor the progress: 'Window' > 'Runtime Window -

execution finished: 2517 ms. Memory: 681984K Free: 219687K (32%)

Galactic Archaelogy in the Gaia Era

luttExplore

DAS quasar branch results

B

Q

Line para	meters Fitting
hwidth	0.1
par-range	1e-4.10.0.22.0,2.0.100.0,0.0
edit-time	
	Continue Wkf
	Continue Wkf Re-run Recipe
	Continue Wkf Re-run Recipe Help

executions of this recipe This data belongs to dataset:

r.ESPRE.2017-11-28T05:01:10.428-A01_0001

Files Info

An absorption system (MgII) detected and fitted on the spectrum of quasar HE0515– 4414 (observed during the comm 1b run, rebinned at 1 km/s). **Blue:** normalized spectrum; **green:** best-fit composite Voigt profile; **red:** residuals.

DAS star branch results

Top: plot of the output for the RV standard star HD 35854;
 blue: the observed normalized merged spectrum corrected for RV compared with the synthetic spectrum (red).
 Center: Observed - synthetic flux residuals. Bottom: cross-correlation function fitted with a Lorentzian function

panel show instead the CCF of the sky spectrum after subtraction of the sky spectrum alone.

A comparison of a portion of HE0515-44 taken in 3600s the equivalent of 18 HARPS exposures for a total 93000 sec.

The image shows a drift sequence of more than 20 hours duration. The instrument drifted during this time by less than 1 m s⁻¹. On fiber A and B individually a scatter of about 1 m s⁻¹ *rms* is observed, which we consider to be due to the detector itself (self-heating due to fast read-out). The proof is that this scatter is perfectly common-mode. In fact, the differential drift B-A remained small for the whole duration. The 20-hours dispersion is about 18 cm s⁻¹, but if we consider the last 10 hours only, *the dispersion is 9.4 cm s⁻¹*, comparable with the photon noise and compliant with the requirements!

GTO - Fundamental constants

Figure 1 – Radial velocity differences between the solar lines as measured in the ESPRESSO 1UT Single 2x1 mode spectrum of Iris (6-Dec-2017) and the CERES-HARPS solar spectrum calibrated with the Laser Frequency Comb from ⁹. The gap at 530 nm is due to the HARPS gap.

HIRES layout

Figure 1 Left: Simulated cross-correlation values of the detection of the CO2 molecule in a Venus-like atmosphere in Trappist-1b or c, combining data of 4 transits with HIRES. Right: Reflected light cross-correlation signal of the direct surroundings of Proxima Cen.

HIRES@ELT: fundamental constants science case

espresso

Figure 5 Expected statistical precision on variations in the fine-structure constant, $\Delta \alpha / \alpha$, achievable with future high-resolution spectrographs as a function of telescope diameter. The equivalent velocity precision is also shown (assuming a typical variety of metal-ion transitions). The length of the bars indicates the range of precision expected for different spectral resolutions available on those facilities. Two modes of operation for VLT/ESPRESSO are shown, its single-telescope mode (8-m effective diameter), with a range of resolving powers, and its anticipated four-telescope mode (16-m effective diameter), with R up to \approx 70,000.

INAF-OATs

In this talk I have presented ESPRESSO, its DFS, challenges and instrument peculiarities together with some first "results".

- <u>ESPRESSO</u>, the next generation ESO VLT high-resolution ultra-stable spectrograph, <u>is</u> <u>ready for operations</u>.
- After the very successful commissioning periods where instrument performance have been assessed and validated ESO gave green light for starting routine observations from October 2018 in single UT mode.
- \geq 4 UT mode will be offered in 2019 after a final science verification phase.