

Publication Year	2017
Acceptance in OA@INAF	2022-07-20T13:15:40Z
Title	Group-size Accretion at large Radii on Massive Clusters of Galaxies
Authors	DE GRANDI, Sabrina
Handle	http://hdl.handle.net/20.500.12386/32531

Group-size Accretion at Large Radii on Massive Clusters of Galaxies

Sabrina De Grandi

Collaborators:

D. Eckert, S. Paltani (Swiss-Geneva), M. Girardi, M. Nonino (Italy-TS), M. Longhetti, S. Molendi, F. Gastaldello, M. Rossetti, S. Ghizzardi (Italy-MI), E. Roediger (UK-Hull), M. Gaspari (USA-Princeton), M. Owers (Australia), L. Rudnick (Minnesota), S. Ettori, T. Venturi (Italy-BO).

Galaxy Clusters are the nodes of the cosmic web

- In the hierarchical scenario of structure formation, clusters are still forming through:
 - merging of several massive entities,
 - accretion of smaller structures (galaxies and galaxy groups) from the cosmic filaments.
- While major mergers carry a lot of mass but are rare, most of the cluster mass (~ 80%) accumulates through accretion of small structures (galaxies and galaxy groups)
- Signatures of accretion processes should be found in the outskirts of clusters where they are connected to filaments

- On the smallest scales, a few disturbed infalling galaxies have been observed in the optical and in X-rays in nearby clusters (e.g. Virgo, Coma, A3627)
- The ram-pressure stripping is expected to be the key to the evolution of the cluster galaxy population by quenching rapidly the star formation in galaxies that fall into clusters.
- Observations at larger, groups and clusters, scales started more recently

The XMM Cluster Outskirts Project (PI D. Eckert, VLP 1.2Ms)

Targets are the outer regions of a sample of 13 clusters: M₅₀₀ > 3x10¹⁴ M_☉ @ z<0.1

- ➤ Main GOALS (details on sample selection in Eckert+17):
 - measure the distribution of entropy and thermal energy
 - > asses the presence of non-thermal pressure support in cluster outskirts
 - > study the occurrence and mass distribution of in-falling gas clumps

Accreting group in Hydra-A (A780)

Accreting group in Hydra-A (A780)

Right ascension

(De Grandi et al. 2016)

Accreting group in Hydra-A (A780)

- ❖ At the X-ray peak there is the LEDA 87445 E-type galaxy with z=0.0575 (z_{HvdraA}=0.0539)
- 42 galaxies with published Line-of-Sight velocities (Smith+04)

CFHT/Megacam r-band image

The LEDA 87445 group: kinematical analysis

- Line-of-Sight velocity distribution of the galaxies with z_{spec}
 (DEDICA method by Girardi+98)
- Red: distribution of galaxies assigned to HydraA
- Green: distribution of 33 fiducial members.

DS-test based on the mean velocity of 33 fiducial members detected a substructure around LEDA 87445 with a c.l. larger than 99%.

The temperature of the group is 1.3 keV, \sim 2 times smaller than in the surrounding ICM (\sim 2.5 keV)

Regions selected for spectral analysis.

This temperature is typical of a galaxy group with total mass of a few 10¹³M_☉.

The metallicity is peaked on the LEDA galaxy and decreases along the tail.

The abundance peak indicates a previously evolved group.

The low Z_{Fe} in the tail could be due to Fe-bias due to presence of multiphase gas (here analyzed with a 1T-model)

HydraA/A780

The SB drop at ~100 kpc west indicates the presence of a contact density discontinuity. Since we measure $n_{in} > n_{out}$ and $T_{in} < T_{out}$ this discontinuity is a Cold Front.

Note: The Cold Front is not pointing towards the main cluster core

Ram Pressure Stripping properties

Interesting features:

- the cold front at the peak with the KH rolls on the side,
- the remnant tail (still bound to the galaxy) in the blue low-velocity area, and
- the stripped wake trailing behind.

Ram Pressure Stripping properties

- From the "stagnation point" analysis at Cold Front (Vikhlinin et al. 01) $\mathcal{M}=1.1^{+0.3}_{-0.4}$ group velocity of 965^{+270}_{-370} km/s (\approx c_{sound})
- If $v_{group} \sim const$, the gas in the outermost tail's region was stripped ~ 0.8 -1 Gyr ago.
- For groups of M_{tot}=3x10¹³ M_☉ the gas mass is ~5% M_{tot} (Sun+09) **•** M_{gas}, group ~1.5x10¹² M_☉
- We estimated the gas mass in the tail, M_{gas,tail}, from the measured gas density and assuming a simple geometry of the tail

~50% of the group gas has been stripped

Thermal conduction constraints

Thermal conduction quickly transfers heat between hot and cold gas phases erasing in-homogeneities.

The thermal conduction timescale in the plasma is

$$t_{cond} \sim \frac{l^2}{D_{cond}} \propto T^{5/2} \sim 16 \; {
m Myr}$$

By comparing this timescale with the "age" of the tail

$$t_{age\ tail} pprox rac{l_{tail}}{v_{group}} \sim 800 ext{-}1000\ ext{Myr}$$

We find that:

$$t_{age\ tail}/t_{cond} \geq 50$$

the thermal conduction in the ICM is highly inhibited (direct confirmations outside the cluster core)

We roughly estimated the orbit of the group from its X-ray morphology

Dashed red circle is the Keplerian orbit: smaller orbits are bound with the main cluster

current position of LEDA @1.1Mpc

Orbits of a test particle in the potential well of HydraA moving with different velocities (pure tangential velocity, dynamical friction neglected)

Probably Group at first passage (large impact parameter, 50% still gas retained)

Reconstructing the orbit with hydro-simulations

E. Roediger et al. (in prep.)

Work in Progress

Hydro-dynamical simulations (E. Roediger et al., in prep.)

200 ks Chandra obs of LEDA (PI De Grandi, first 100ks obs Feb17)

DOLORES-TNG/VIMOS-VLT spectroscopy of galaxies (PI Girardi, in prep.)

We discovered a group with irregular, elongated morphology moving radially towards the cluster center @ 1.5 Mpc. (Eckert et al. 2014)

- The tip is associated with a galaxy group (at least 5 with z_{spec} confirmed members).
- The bulk of the gas is lagging behind the tip in the long fainter tail
- The tail is the most extended observed so far
 ~ 800 kpc

Disruption of an in-falling group onto A2142

- The emission behind the group (tail) comes from the intra-group gas that has been stripped by the ram-pressure of the ambient ICM
- The tip of the emission is the remaining unperturbed gas lying at the center of the group.

Chandra data - Eckert et al. 2017

GMRT radio contours at 610 MHz overlayed (Venturi et al. subm.) on *Chandra*

CFHT *g*-band image of the region with *Chandra* red contours

Complex structure of the tip: G3-G5 brightest X-ray structure with extended radio emission (NE head-tail morphology) consistent with group moving toward SW

200 ks Chandra data Eckert et al. 2017

Density jump at the tip (leading edge) indicates a Cold Front

Chandra SB map shows complex geometry:

- straight narrow tail (~250 kpc)
- asymmetric, patchy region

Disturbance in the gas distribution of the group can be either due to:

symmetry axis

- gas sloshing in the group or
- expanding AGN outflows (e.g. Roediger in prep)

200 ks Chandra data Eckert et al. 2017

Density jump at the tip (leading edge) indicates a Cold Front

Chandra measurements are consistent with a mild level of turbulence in the stripped gas with a Mach number in the range 0.1-0.25.

- The galaxy group is moving radially at infall velocity $v_{group} \sim 1200 \; \mathrm{km/s}$
- The gas is significantly cooler (~1-2 keV) than the ambient ICM (~5 keV, Tchernin+16), typical of a group with M_{tot}~ a few 10¹³ M_☉
- Comparing the gas mass in the tail with total gas mass of the group we find that

$$M_{gas,tail} \sim 90\% M_{gas,group}$$

This group is in an advanced state of disruption

We find that

$$t_{age\ tail}/t_{cond} \geq 400$$

Thermal conduction in the ICM is strongly suppressed

Chandra SB

XMM (>300 ks)

A2033 A2029 SDSS galaxy distribution (only galaxies with z_{spec}) MSPM04331

R500

R200

Rest-frame LOS velocity vs. projected distance from the center of A2029 of the spectroscopic 685 members of the cluster complex.

signs of interactions?

The A2029 Supercluster

Summary

- We found spectacular evidences of accreting structures in the outskirts of A2142 and Hydra A (A2029 in prep).
- The X-ray structures are associated with infalling galaxy groups with M_{tot} of a few 10¹³ M_☉
- The X-ray gas trails behind the core of the structures because of ram-pressure stripping over ~ Mpc scales
- Ram-pressure stripping is efficient already at large distance from the cluster core
- The long survival of the tails brings direct evidence that thermal conduction is strongly suppressed at these radii
- Group-size accretion is a frequent phenomenon (3/13, but we have other candidates, work in progress)
- Stay tuned! More is coming soon from a statistical analysis of the accretion at large radii from the whole X-COP sample.

