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Abstract

We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an
end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase
I upper-limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether
the actual data meet these assumptions. We discuss the organization of this validation approach, the specific
modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations
in scope of the current simulation effort. With mock visibility data generated from a known analytic power
spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current
pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise
levels (at the 2σ level) for k> 0.2hMpc−1 for both bands and fields considered. Our input spectrum is intentionally
amplified to enable a strong “detection” at k∼ 0.2 hMpc−1

—at the level of ∼25σ—with foregrounds dominating
on larger scales and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplified input
signal after suppressing foregrounds with a dynamic range (foreground to noise ratio) of 107. Our validation test
suite uncovered several sources of scale-independent signal loss throughout the pipeline, whose amplitude is well-
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characterized and accounted for in the final estimates. We conclude with a discussion of the steps required for the
next round of data analysis.

Unified Astronomy Thesaurus concepts: Reionization (1383); Astronomical simulations (1857); Astronomy data
analysis (1858); H I line emission (690)

1. Introduction

Measurement of the highly redshifted 21 cm hyperfine
transition of neutral hydrogen holds great promise as a probe
of the Epoch of Reionization (EoR), as well as earlier and later
epochs. Because the power spectrum of 21 cm fluctuations must
be measured in the presence of foregrounds that are ∼105

brighter (in temperature units) than the EoR signal, the level of
precision required of every aspect of the analysis is extra-
ordinarily high. Because the line-of-sight power spectrum is
measured using the spectral axis, it is critically important to
avoid introducing additional spectral structure in the data during
the analysis, as this can contaminate the 21 cm spectrum with
foreground power. This is particularly a problem for interfero-
metric measurements, which mix spatial and spectral structure
(Datta et al. 2009; Parsons et al. 2012a). Inaccuracies may also
be introduced by analysis choices that affect the amplitude of the
desired signal relative to other portions of the data, e.g., biased
estimators of the power spectrum or overfitting of foreground
models or calibration parameters. It is thus necessary to
demonstrate the accuracy of the analysis both for individual
steps in the analysis and for the interconnected, complicated
chain of analysis from raw data to power spectrum.

A number of groups are currently seeking to detect the H I
fluctuation signal from the EoR via the power spectrum. Current
efforts include those of the Murchison Widefield Array (MWA;
Tingay et al. 2013; Dillon et al. 2014; Beardsley et al. 2016;
Ewall-Wice et al. 2016; Li et al. 2019; Barry et al. 2019b; Trott
et al. 2020), the Low Frequency Array (LOFAR; van Haarlem
et al. 2013; Patil et al. 2017; Gehlot et al. 2018; Mertens et al.
2020), the Long Wavelength Array (LWA; Eastwood et al.
2019), and the Hydrogen Epoch of Reionization Array (HERA;
DeBoer et al. 2017). Prior work also includes the Giant Meter
Wave Radio Telescope (GMRT; Paciga et al. 2013) and the
Donald C. Backer Precision Array for Probing the Epoch of
Reionization (PAPER; Kolopanis et al. 2019).

A persistent problem has been that the complexity of the
measurement, combined with the novelty of analysis techni-
ques, has created situations in which significant biases are
created in the final power spectrum in ways that are not initially
obvious. Due to these complications, there have been a number
of limits that have required significant revision. These include
the GMRT (Paciga et al. 2011 as amended by Paciga et al.
2013) and PAPER (Ali et al. 2015 as amended by Ali et al.
2018 and Cheng et al. 2018). Liu & Shaw (2020) provide a
good overview of many of these issues.

In response, an increased effort has been made to explore the
effects of choices in 21 cm analysis pipelines via simulation. These
studies have attempted to isolate specific effects, for example, sky-
based calibration errors (Barry et al. 2016; Ewall-Wice et al. 2017;
Mouri Sardarabadi & Koopmans 2019), redundant calibration
errors (Byrne et al. 2019; Orosz et al. 2019), instrumental coupling
systematics (Kern et al. 2019), power spectrum estimation (Cheng
et al. 2018), foreground modeling and subtraction (Chapman et al.
2013; Mertens et al. 2018; Kern & Liu 2021), interferometric
imaging (Offringa et al. 2019b), the effect of radio frequency

interference (RFI) (Wilensky et al. 2020), and data in-painting
(Offringa et al. 2019a; Trott et al. 2020).
Increasing effort has also gone into connecting these isolated

studies into more complete end-to-end simulations of the
pipelines. For example, the MWA team has two parallel
pipelines (Jacobs et al. 2016; Trott et al. 2016; Barry et al.
2019a). The reliability of the pipeline in recovering a mock
power spectrum (but without including the effects of calibration)
was tested in Beardsley et al. (2016) and more explicitly in Barry
et al. (2019b) (Figure 8). The LOFAR limits published in
Mertens et al. (2020) have had the method simulated in Mertens
et al. (2018) and the effect of calibration considered in Mouri
Sardarabadi & Koopmans (2019) and Mevius et al. (2022).
This paper details the current status of an end-to-end

simulation effort for the HERA pipeline, as a companion paper
to The HERA Collaboration et al. (2021, hereafter HC21) and
specifically addresses the instrument configuration and sys-
tematic effects of HERA Phase I. Importantly, as will be
expanded upon later, these validation tests aim to verify the
accuracy of the HERA Phase I pipeline under the intrinsic
assumptions of the pipeline itself. Furthermore, they provide a
reproducible framework with which to evaluate future HERA
analysis pipelines and data releases. These tests are in principle
sufficient to avoid the algorithmic errors leading to revisions
such as those in Cheng et al. (2018).
The outline of the paper is as follows: Section 2 briefly

describes the HERA instrument and the software pipeline we
are attempting to validate. Section 3 explains the underlying
philosophy of software development and organization of the
validation effort, while Section 4 outlines the simulation
methods used for each individual portion of the pipeline and
the results of isolated tests of those portions. Section 5 then
shows the results for the end-to-end pipeline simulation and a
comparison with an independent method of estimating the
power spectrum. We conclude with a discussion of lessons
learned and next steps in Section 6.

2. The HERA Instrument and Software Pipeline

2.1. The HERA Instrument

HERA (DeBoer et al. 2017) is a dedicated instrument to
measure the power spectrum of spatial fluctuations in the
strength of the hyperfine signal of neutral hydrogen during the
EoR and Cosmic Dawn. The final instrument, currently under
construction at the SKA South Africa site, will comprise a core
of three-hundred and twenty 14 m parabolic dishes in a
fractured hexagonal-close-pack configuration (Dillon & Par-
sons 2016) with 30 outrigger antennas. It will operate over the
frequency range 50–250 MHz (27< z< 5).
Here we are concerned with the state of the instrument

consistent with the HC21 data,25 which comprises 39 active
antennas operating from 100–200 MHz, using the feed type
described in Fagnoni et al. (2021b) in the configuration shown

25 This data set is referred to within the collaboration as H1C Internal Data
Release (IDR) 2.2.
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in Figure 1. In particular, the systematic effects considered are
specific to that instrument. The Phase II instrument under
construction has an entirely different feed (Fagnoni et al.
2021a), signal path, and correlator, and thus will have very
different behavior; the simulation and validation of the analysis
pipeline for that instrument are the subjects of future work.

2.2. Brief Overview of the HERA Analysis Pipeline

The HERA data reduction pipeline takes raw data output
from the correlator and delivers calibrated visibilities with bad
antennas, RFI, and other anomalies flagged or removed, and
produces delay-type (Parsons et al. 2012b; Morales et al. 2019)
power spectra, with accompanying error bars and null tests. A
full accounting is given in HC21, and the key steps are shown
in Figure 2 (in the “Analysis Pipeline” and “PSpec Pipeline”
columns). Steps in the pipeline that were not included in the
validation are indicated with faded colors. We briefly outline
the steps here, indicating the reason certain steps were not
included and where further information can be found.

Raw data are delivered from the correlator (not shown in
Figure 2, but equivalent to the output of the systematic
simulation). A first round of quality checking attempts to
identify antennas that are not performing correctly (“Antenna
Metrics”), as the inclusion of these in the following step
(“Redundant Calibration”) adversely affects the results. We did
not attempt to produce simulations of various kinds of antenna
defect (hardware failure, incorrect wiring), but simply excluded
a subset of possible antennas to simulate the effects of flagging
the antennas. “Redundant calibration” uses the constraint of the
repeated array configuration to solve for internal degrees of
freedom by forcing identical baselines to have an identical
response. The particular implementation is described in greater
detail in Dillon et al. (2020). “Absolute Calibration” solves
for the remaining degenerate parameters undetermined by

redundant calibration. This is done by comparing the
redundantly calibrated data to a set of model visibilities that
have been absolutely calibrated. Those model visibilities had
their absolute flux and phase determined by CASA, using a
model of GLEAM sources, as described in Kern et al. (2020a).
The model visibilities are then subsequently smoothed to not
contain structure beyond the baseline’s horizon delay (with an
additional 50 ns buffer) or 150 ns, whichever is larger. Using a
calibration based on an incomplete sky model is known to
produce biases in the estimated power spectra (Barry et al.
2016). This is mitigated for HERA because the sky-based
calibration is only used to determine the degenerate parameters
(fewer degrees of freedom) and also because of the subsequent
gain smoothing. Because we do not know the level to which
the CASA model was actually incomplete, we do not simulate
the effect of that error in this analysis, in keeping with our
philosophy of simulating data that respects the pipeline
assumptions. We discuss this as part of future work in
Section 6.
At this point the data are flagged (“RFI Flagging”) based on

a number of metrics, including the output of the calibration
steps, with the goal of removing particularly nonredundant
behavior and RFI. An entirely separate study is required to
understand the efficacy of this algorithm in removing RFI,
which we defer to later work. While unflagged RFI is a concern
for the power spectrum (e.g., Wilensky et al. 2020), we show
in HC21 that there is no strong evidence for unflagged RFI at
the current noise levels, and so here we concern ourselves
primarily with the effect of gaps in the data resulting from RFI
flagging. Thus, there is not a simulated RFI injection and
removal step; we simply copy the flagging pattern from the real
data and use it to create gaps in the simulated data.
Following this, the final gains are smoothed in frequency and

time to avoid imparting spurious structure (“Gain Smoothing”),
and a final calibrated data set is produced for each night. The
data are then averaged over nights of observation (“LST
Binning”), with data taken at the same LST for a given baseline
averaged together. Any remaining gaps in the averaged
baseline visibilities due to flagged data are filled (“Delay
Inpainting”) (see Section 4.4; Parsons & Backer 2009; Kern
et al. 2020b). At this point two systematic effects are corrected
(“Systematics Removal”): the presence of internal reflections,
causing an “echo” of the signal at different time delays,
effectively changing the gain solutions; and a cross-coupling
between antennas creating an additive signal. These effects are
described in Kern et al. (2019, 2020b). Baselines are then
averaged in time (“Coherent Time Averaging”) to produce the
data set used in “Power Spectrum Estimation” (the pipeline
used in HC21 uses hera_pspec, which we validate against
an alternative power spectrum pipeline—simpleDS—in this
study). Additional averaging occurs over different baseline
types and the “cylindrical” average from (k∥, k⊥) to k to
produce 1D power spectra with associated errors. Further
details about the pipeline can be found in HC21.

3. Methods

3.1. Overview of Validation Effort

The desire to ensure that the HERA analysis pipeline does
not produce biased results motivated the creation of a separate
“Validation” group within HERA (see Appendix A), which
seeks to provide an ongoing framework for testing the pipeline

Figure 1. The array layout and antenna numbering scheme for the HERA
Phase I data (see Figure 2 of HC21). The subset of antennas used in end-to-end
validation is shown by dark colors; the additional antennas present in the real
array are transparent in this figure. Flagged antennas, shown in red, match those
flagged in the real data (Dillon et al. 2020).
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via realistic simulations. The scope of this paper is somewhat
narrower. The HERA analysis and power spectrum pipeline
described above is clearly a large and complex system. It is
implemented, in part, by the public software repositories in
Table 1, which comprise at least four complete, original,
Python packages, with upwards of 40,000 standard lines of code
between them. While each of the packages is written to a high
collaboration standard (see Appendix A.1 for details), the
interplay between the subcomponents is much more difficult to
test. What we wish to do here is verify that the software pipeline
used in HC21 performs as expected in the case where the

simulated data match the underlying assumptions of the analysis.
Importantly, we do not explore the effects of violating certain key
assumptions of the pipeline, including perfect redundancy of
antenna elements (Dillon et al. 2020), or systematic effects that
differ substantially from Kern et al. (2019, 2020b). That is, we
assume that the physical effects for which the analysis pipeline
was designed to remove are the only (nonnegligible) effects in the
data and that the modeling of these effects in the pipeline is
comprehensive in principle. (In some cases, it was not possible to
completely simulate what was done in HC21, and we have noted
this.) Our key metric for this validation is the recovery of a

Figure 2. A schematic representation of the entire validation pipeline. See Figure 3 for the way in which individual components were tested. Simulation and analysis
flow from left to right, and top to bottom where applicable, as indicated by the black arrows. Broadly, the output of the “Input Data” step is sky and beam models in
image space, which are then input to the “Visibility Simulation” step, which produces “true” visibilities (Equation (16) as used in Equation (19)), spanning 24 hr of
LST and the full frequency coverage of the instrument. At the “Systematic Simulation” step, these visibilities are transformed into the actual time sampling of the
HERA observations over multiple days, downselected to the observed LST range, and have multiplicative and additive systematic and instrument effects applied. The
input to the “Analysis Pipeline” step is then equivalent in format to the raw observed data, and the processing proceeds as if the simulated data were real, including
using the same configuration parameters (e.g., smoothing scales and in-painting tolerances). At the “PSpec Pipeline” stage, further averaging and data selection occur
before the estimation of the power spectrum in selected frequency (redshift) bands and LST ranges. All steps from the actual pipeline are shown, but not all were tested
in this analysis. Steps not tested are indicated in a lighter shade and with dashed borders. In particular, in the “Input Data” and “Visibility Simulation” sections, we did
not construct the absolute calibration (ABSCAL) model in the same way as Kern et al. (2020a) (as indicated by the “GLEAM+” and “CASA” boxes and gray arrows);
rather in our pipeline, we use the exact simulated foreground model with delay smoothing applied. In the “Analysis Pipeline” section, we did not generate the kinds of
antenna errors that would result in flagging from the “Antenna Metrics,” and we did not simulate and extract RFI in the validation pipeline, but rather used preexisting
real flags from the data to test the effect of flagging, as indicated by the “HC20 xRFI Flags” box in place of “RFI Flagging xrfi”.

Table 1
Table of Repositories Tested in this Validation Effort

NAME URL (https://github.com/) DESCRIPTION

PIPELINE

hera_cal hera-team/hera_cal Redundant and sky-based calibration routines.
hera_pspec hera-team/hera_pspec Robust foreground-avoidance power spectrum (and covariance) estimation.

SIMULATION

RIMEz upenneor/rimez Fast and accurate visibility calculation implementing multiple methods for different source
and beam function definitions.

spin1_beam_model upenneor/spin1_beam_model Harmonic space decomposition of the HERA primary beam.
healvis rasg-affiliates/healvis Fast visibility simulation based on HEALPIX discretization.
pyuvsim RadioAstronomySoftwareGroup/pyuvsim Accurate visibility simulation of point sources with very limited approximations.
gcfg zacharymartinot/redshifted_gaussian_fields Consistently simulate cosmological Gaussian fields over the full sky
hera_sim hera-team/hera_sim Add HERA-specific instrumental systematics to visibilities.

4

The Astrophysical Journal, 924:85 (26pp), 2022 January 10 Aguirre et al.

https://github.com/
http://hera-team/hera_cal
http://hera-team/hera_pspec
http://upenneor/rimez
http://upenneor/spin1_beam_model
http://rasg-affiliates/healvis
http://RadioAstronomySoftwareGroup/pyuvsim
http://zacharymartinot/redshifted_gaussian_fields
http://hera-team/hera_sim


known power spectrum, without significant bias in the recovered
signal, at the level of error bars that is consistent with the known
level of thermal noise and its coupling to the signal, following the
error analysis in Tan et al. (2021).

The approach used here tests subcomponents of the analysis
with multiple simulations but does not attempt a statistical suite
of simulations of the full end-to-end result. This is partially the
result of practical limitations of computation (many aspects of
the simulation pipeline would need to be sped up), but also
because we expect (and show) that in the absence of systematic
effects that do not deviate from our assumptions, the output
power spectrum is reproduced within the errors. A more
thorough investigation of ensemble effects is appropriate as the
limits continue to come down and in the exploration of the
violation of pipeline assumptions.

At the current sensitivity of HERA, we do not expect to
make high-significance detections of the EoR power spectrum.
Consequently, our criterion for “how good is good enough?” in
assessing the results of our simulations is that any systematic
effect in the analysis is smaller than the expected error bars on
the EoR spectrum, or the systematic errors in its calibration. In
practice, that means we consider effects to be “small” if they
cause a change in the power spectrum of less than 10%. This
bound will clearly need to be tightened as we begin to move
toward detections. It is worth commenting that errors may
appear at different points in the analysis and may affect the
calibration gains, the individual visibilities, or the power
spectrum itself. Our metric is the power spectrum, and we note
that errors in gains g typically propagate to the power spectrum
as g4 and errors in visibilities V as V2. Thus, errors that affect
the gains or visibilities must meet correspondingly smaller
fractional error requirements so that the final effect on the
power spectrum stays within the desired bound.

3.2. Schematic Overview of the Validation Effort

We designed the validation effort to be incremental, building
complexity in successive steps, and finally resulting in a
simulation including a large fraction of the physical effects that
the HERA pipeline attempts to address. We divided the various
components required for a full simulation into steps and tested
each. The various simulation components are outlined in
Figure 2, and the testing steps in Figure 3. Section 4 describes
these in more detail.

A row in Figure 3 indicates which elements of the simulation
were included in the step. For each of these steps (except 2.0),
the primary metric of success involves the estimated power
spectrum. As we progress through the steps, generally more
elements are included, i.e., these are integration tests where we
cumulatively test the interaction between components. This has
the potential to uncover undetected errors concerning the
interaction of individual components, but also the potential to
hide errors that are negligible in the final power spectrum metric.

Each specific major.minor step tests a unique pathway
through Figure 2, combining different inputs, simulator, and
systematics with relevant pipeline steps. Figure 3 encodes each
of these pathways in matrix form. Note that the steps were not
meant to test every possible combination of components, but
rather to coherently build toward the ultimate test, which
essentially combines all of them. The reason for this
incremental complexity building was pragmatic—defining a
full end-to-end simulation containing all known physical
effects is a large task, and it is not necessarily clear from the

outset what form an effect will have on the final result.
Furthermore, in the case where the test fails, it is difficult to
disentangle effects and determine which component (or
combination thereof) caused the failure. Increasing complexity
gradually builds confidence in the individual analysis compo-
nents before combining them.

4. Simulation Components

We now walk sequentially through the various components
of the simulation, as shown in the first three columns of
Figure 2, and describe how they are constructed, including the
methods and codes (Table 1), as well as how they were tested
within the rubric of Figure 3. With any simulation, there are
physical and instrument effects that are ignored, either due to
ignorance (i.e., unknown systematic effects) or practical
limitations in including them in the simulation. We have
included in Figure 2 a set of effects that encapsulate the most
complete description of the sky and instrument that we are able
to construct at this time. There are known additional effects that
are the subject of future work, which we discuss further in
Section 6.

4.1. Instrument and Foreground Models

The first step in simulating instrumental output is to make
models of the desired signal (“mock EoR”) and astrophysical
foregrounds (point sources and diffuse emission), as well as to
simulate the antenna response pattern and interferometer
layout.

4.1.1. Mock EoR

To be able to test the unbiased recovery of an EoR power
spectrum, it was highly desirable to produce a mock-EoR sky
with a known, analytic power spectrum P(k). It was deemed
more important that the power spectrum be analytically known
and that the simulated EoR be full sky, covering both 4π
steradians and the full observation bandwidth, than that it be
derived from a physical simulation. While this means that the
mock EoR we inject will not have the most realistic power
spectrum nor will it have a non-Gaussian component, these are
second-order effects for ascertaining whether there is bias in the
recovery of the power spectrum.
We chose to use for our mock-EoR signal a realization of a

Gaussian random brightness temperature field

rT z,e( )

(expressed in the emitted frame) with a power spectrum with
a shape

= -P k z A k, , 1e 0
2( ) ( )

which approximates power spectra obtained from cosmological
simulations. The observed field is given by

n
n
n

= = =n ns sT T r z zr, , , 2
e

e(ˆ ) ( ˆ ) ( )

where ν is the observed frequency, νe is the rest frequency,
= -n

n
n

z 1e is the redshift of the source point in the direction ŝ
on the sky, and

ò=n
n

r c
dz

H z
3

z

0 ( )
( )

is the comoving distance in terms of the Hubble function H(z).
Note that the cosmological parameters are implicit in the
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comoving distance rν; we have used the same parameters as in
subsequent power spectrum estimation.

We can create realizations of this temperature field by
expanding in spherical harmonic modes

å ån n=
=

¥

=-

s sT a Y, 4
ℓ m ℓ

m

ℓm ℓm
0

(ˆ ) ( ) (ˆ) ( )*

and generating aℓm that satisfy

n n n n d dá ¢ ñ = ¢¢ ¢ ¢ ¢a a C , . 5ℓm ℓ m ℓ ℓℓ mm( ) ( ) ( ) ( )*

The cross-frequency angular power spectrum n n¢C ,ℓ ( ) is
related to the original power spectrum Pe(k) by
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For our chosen form of the power spectrum, Equation (1),
this takes the simple form
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Our mock-EoR signal is then a realization of this cross-
frequency spectrum. The maximum ℓnecessary is determined
by the effective angular band limit imposed by the natural
spatial filtering of the simulated interferometric array and
sufficient error control on the visibility calculation.

The final field on the sky is expressed as a specific intensity
(in units of Jy str−1) using the conversion

n k n n=n s sI T, , . 8(ˆ ) ( ) (ˆ ) ( )

The conversion factor is given by

k n
n
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k
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2 10
Jy str
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26
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( ) ( )⎡
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´
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2
10 , 10B 26

( ) ( )
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where kB is Boltzmann’s constant in SI units and A(ν) and Ω(ν)
are the effective area and solid angle of the beam, respectively.
To verify hera_pspec’s normalization conventions and

cosmological conversions in going from visibilities to power
spectra, we tested the recovery of P(k)∝ k−2 in the absence of
any foreground emission, noise, or instrumental corruption
beyond the beam (designated Step 0.2 in Figure 3). The results
are shown in Figure 4. While the agreement is generally good,
the results highlight an important aspect of the power spectrum
measurement. The estimated power spectrum P kˆ ( ) is related to
the true spectrum via a window function ¢W k k,( ) via

òá ñ = ¢ ¢ ¢
¥

P k W k k P k dk, . 11
0

ˆ ( ) ( ) ( ) ( )

In general, ¢W k k,( ) is complicated and cannot be made equal
to the ideal d - ¢k k( ). A discussion of the window function is
included in Appendix B, and a general expression is given in
Equation (B5). A full calculation of the window function would
naturally include effects such as the curvature of the sky (e.g.,
Liu et al. 2016) and the bandwidth and resolution of the
frequency sampling of the data. The window function
computed by hera_pspec (and given in HC21, Equation
(19)) does not fully implement Equation (11) and consequently
suffers from small biases at low and high k. In Figure 4, we
show the size of these biases. In the range where we are most
sensitive (0.2� k� 0.5 hMpc−1), these biases are intrinsically

Figure 3. Components included in each validation step. Note the color scheme used here for the various components matches that of Figure 2, which describes the
corresponding steps in the analysis pipeline. Thick horizontal lines represent boundaries between major steps. Varying colors represent different subcategories of the
pipeline. Where applicable, components are simulated/applied from left to right. See Figure 2 for a more detailed flow diagram of the simulation and analysis
components and products. “Input Data” steps are described in Sections 4.1 and 4.4, “Visibility Simulator” steps in Section 4.2, “Systematic Simulations” in
Section 4.3, “Analysis Pipeline” in HC20, and “Pspec Pipe” in HC20 and Kolopanis et al. (2019) and Tan et al. (2021).
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less than 1%. With a simple approximation of the aliasing
effect (Equation (B12)), the bias for k> 0.5 can be reduced to a
similar level. The bias for 0.03< k< 0.2 due to the window
function is more severe. Part of the discrepancy is simply due
to nearly uniform width windows in k when integrated against a
power law, but in general, the window functions become more
complicated in this regime, leading to biases of both signs. We
note that, in the present work, foregrounds will dominate for
k< 0.2 and consequently this low-k bias on the power
spectrum is not detectable. The proper inclusion of the window
function in hera_pspec to allow accurate estimation over all
k is left to future work.

4.1.2. Foreground Models

The simulated foreground emission is constructed from two
components, one of point-like sources and one of spatially
smooth diffuse emission. The point-source component is
composed of all sources in the GLEAM catalog (Hurley-
Walker et al. 2017) for which a spectral model is provided with
the catalog, or a number Nsrc of approximately 240,000
sources, each with a power-law emission spectrum. The
GLEAM catalog lacks the brightest sources, so these were
added separately as point sources according to the values in
Table 2 of Hurley-Walker et al. (2017). Fornax A was added
based on the model of McKinley et al. (2015). Explicitly, for
the Nsrc sources each specified by their flux, spectral index, and

position a sF, ,i i( ˆ ), this component is described by

ån d
n
n

d= -
a

=

s s sI F, 1 . 12p
i

N

i i
1 0

isrc

( ˆ) ( ˆ · ˆ ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

The GLEAM catalog has significant gaps in regions nominally
covered by the HERA observation, notably at R.A.∼ 7 hr as
the Galactic anticenter transits. Rather than inject artificial
sources, we excluded from these simulations observing times
where the GLEAM catalog was significantly incomplete in the
primary beam. The diffuse emission component was simulated
based on an improved version of the GSM (de Oliveira-Costa
et al. 2008; Zheng et al. 2017; Kim et al. 2021). In this version
of the eGSM, the spatial templates are smooth on 3° scales, and
interpolation from the frequencies of the model maps to the
desired frequency was done using a Gaussian process
regression to ensure spectral smoothness.
The key requirements for the foreground model were that it

should be representative of real foregrounds with respect to
spectral smoothness and strength. The tests in Step 1 were
primarily designed to check hera_pspec’s ability to
reproduce known input EoR power spectra in the presence of
foregrounds for kʼs outside the foreground-dominated modes,
thereby demonstrating that there are no dynamic range
limitations in either the visibility simulation or the power
spectrum estimation. Figure 5 summarizes the results of this
test for the combined GLEAM and eGSM sky model.

4.1.3. Antenna Beams

The HERA antenna vector far-field beams ndA s ,j
p
, ( ˆ ) are

simulated from a detailed electrical and mechanical model
using CST Microwave Studio (Fagnoni et al. 2021b). Each
polarized feed p of an antenna j responds to incident radiation
from infinity in the direction (α, δ) with a complex vector

Figure 4. A baseline test of recovering the power spectrum for different power
spectrum shapes. Top: an analytic P(k) ∝ k−2 (orange) was converted to its
corresponding n n ¢C , ;ℓ ( ) harmonic realizations of this correlation were input to
RIMEz to generate mock visibilities, and the delay spectrum was estimated
using hera_pspec. The results of a single realization are shown (blue), along
with the calculated deviation due to the approximate window function of
Equation (B13). (The amplitude here is arbitrary and not related to the level
used in the end-to-end test (Section 5).) Bottom: the fractional deviation
between the input power spectrum and the recovered one, after correction by
Equation (B13), as a function of the number of realizations averaged. Random
fluctuations about the mean analytic form are expected due to cosmic variance;
those fluctuations average down as shown. For k � 0.2, systematic deviations
are < 1%. The systematic deviations at low k are due to not properly
calculating the window function (Equation (B5)).

Figure 5. Noiseless power spectra estimated with hera_pspec, showing
power-law EoR, foregrounds (point-source plus diffuse), and their sum. Also
plotted is the analytic input PEoR(k) (corrected for aliasing, see Figure 4.). The
lower panel shows the residuals with respect to the analytic input. Note that this
figure illustrates both that the simulated foregrounds have the requisite high
dynamic range (i.e., spurious spectral structure induced by the simulator is
negligible) and that the power spectrum estimator correctly handles the linear
sum of EoR and foregrounds in visibility space. Note that the amplitude of
PEoR(k) is lower here than in the end-to-end test (see Section 5).
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antenna pattern
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where d a,(ˆ ˆ ) define an orthogonal coordinate system on the
sphere, here taken to be the standard R.A./decl. system. This
antenna pattern is proportional to the simulated far-field beam
patterns, by the reciprocity theorem. The antenna patterns are
assembled into a Jones matrix per antenna as
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Note that because the antenna pattern is a vector field, the
appropriate representation of it in harmonic space requires spin-
1 spherical harmonics. We implemented this with custom code
(see Table 1). In addition to producing a spatially smooth
representation of the beam, independent of a particular
pixelization, the interpolation of the spin-1 harmonic coeffi-
cients in frequency preserves the smooth frequency evolution
of the beam.

4.2. Visibility Simulation

We had several requirements for the simulation of visibilities
from HERA. One was that our visibility simulator be able to
produce visibilities based on full-sky models of the instrument
beam (including treatment of the full Jones matrix,
Equation (13)) and sky (including both diffuse and point-
source emission). Another was that it correctly handle drift-
scan visibilities and be able to compute visibilities at the
cadence of HERA time sampling over the bulk of a sidereal
day, and at the full frequency resolution and bandwidth of
HERA. The resulting visibilities should do a reasonable job of
reproducing the observed HERA visibilities, though we do not
demand sufficient fidelity that we would be able to calibrate
HERA data to the simulated visibilities. Crucially, however,
when considering the representation of the visibilities in their
Fourier dual spaces (delay for frequency, fringe rate for time),
the simulator should not produce numerical artifacts that
adversely affect the dynamic range between bright foregrounds
and regions in the EoR window. Specifically, with the
assumption of spectrally “smooth” (i.e., compact in delay
space) input models of the sky and beam, the simulator should
not generate numerical errors that scatter foreground power to
high delays. Finally, it should be able to do these calculations
in a reasonable time.

Our primary simulation engine is RIMEz, an internally
developed program that meets these requirements. We describe
the unique features of RIMEz in the next section
(Section 4.2.1). Because any simulator will need to make
approximations to allow computation in a reasonable time and
will leave out some instrument effects, we describe in
Section 4.2.2 independent checks of the simulator with
reference calculations and make a qualitative comparison
against HERA data.

4.2.1. Simulator Method

We take the fundamental visibility measurement equation for
all four correlation products from a single baseline of a a

polarized interferometer to be

n = t
V V

V V
, 15jk

jk
pp

jk
pq
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where the integration is taken over the full sphere. The
coherency matrix is given by

n n n n
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where I, Q, U, and V are the images of the Stokes sky,
expressed relative to the same coordinate system as
Equation (13). While RIMEz is capable of fully polarized
simulations, in this work we assume Q=U= V= 0.
In order to actually compute Equation (16), and in particular

to address the wide field of view of HERA and nontrivial
contribution from diffuse emission over the full sky, it is
necessary to treat the integration over the sphere carefully.
RIMEz evaluates the integral by summation over a harmonic
representation of the beam, fringe, and sky terms, rather than
evaluating these terms on a pixelization of the sphere, similar to
the formalism in Shaw et al. (2014). The RIMEz implementation
is based on the SSHT code for computing spherical harmonic
transforms (McEwen & Wiaux 2011). Computing the visibility
integral in harmonic space (for appropriate values of the
maximum ℓ) naturally handles the spherical quadrature correctly
for continuous functions on the sphere, like diffuse emission and
the beam. Point sources are also included by computing their
harmonic space representation; summation of the coefficients for
all point sources in the simulation allows compressing an entire
catalog into a single set of harmonic coefficients. The relative
orientations of the sky and the beam are handled via the m-mode
formalism for transit telescopes (e.g., Shaw et al. 2014;
Eastwood et al. 2019) to calculate visibilities as a function of
time. Self-consistent autocorrelations are also produced by
including the b= 0 term in Equation (16).

4.2.2. Simulator Validation

Because of the many choices inherent in implementing
Equation (16) as a numerical calculation, we independently
tested RIMEz with the goal of ensuring any systematics
introduced by the simulator are below the dynamic range
inherent to the hera_pspec power spectrum estimation in the
presence of foregrounds. Undesired chromatic modulation of
foregrounds 104 times brighter than the background is the most
challenging, but not the only, aspect to consider. At this
dynamic range, approximations and errors usually ignored in
radio interferometry become important; calculation of phases,
pixelization, sky geometry, and simple coding or math errors
can all be significant. We checked these issues first by
comparison of the RIMEz calculations against analytic
calculations of the visibility phase and amplitude of simple,
unpolarized diffuse, and point-source terms in Equation (16).
These tests revealed small numerical errors at the 10−10 level,
consistent with the expected precision of the internal Fourier
transforms. An additional test compared against pyuvsim
reference simulations including only point sources,26 revealing

26 See the repository in Table 1 for a description of the reference simulations.
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differences in amplitude and phase that were primarily due to
small differences in the calculation of current epoch source
positions from a source catalog.27 While source positions are
important for, e.g., sky-based calibration, they are not relevant
for the validation process because the coordinate system
difference is a small rotation of the sky, and thus does not affect
the visibility smoothness nor the resulting power spectra.28

More comprehensive validation tests of the visibility simulators
will be required in the future and are currently ongoing.

To check for spectral and time smoothness, as part of Steps 0
and 1, RIMEz was used to generate visibilities for mock EoR
and foregrounds and hera_pspec to generate the corresp-
onding power spectra. For both the EoR only (Figure 4) and for
high-dynamic-range simulations of EoR in the presence of
foregrounds (Figure 5), we were able to recover the input EoR,
showing that the simulator was not adding additional spectral
structure, as measured by the power spectrum. We also
inspected the delay and fringe-rate transforms of the data for
anomalous structure (Figure 8) and compared simulated
visibilities against real data for qualitative agreement
(Figure 9).

For the test in Step 0.1, we also used healvis,29 which
takes a nearly orthogonal approach to RIMEz, computing
Equation (16) by pixelizing the beam and sky using HEALPIX
(Górski et al. 2005) and performing a simple Riemann sum
(Lanman & Pober 2019; Lanman et al. 2020; A. Lanman et al.
2021, in preparation). The interested reader should refer to
those papers for a discussion of the accuracy of the healvis
simulator.

4.3. Noise and Instrument Systematic Simulation

4.3.1. Thermal Noise

Thermal noise is generated from a Gaussian distribution
whose variance is determined on a per-time, per-frequency
basis according to the amplitude of the simulated noise-free
autocorrelation30 with an added receiver temperature, Trx,
which is the same for each antenna, and constant with
frequency. The standard deviation of the noise in a given
(time, frequency) sample of the autocorrelation is calculated via
the radiometer equation

s n k n n
n
n

= W
+

D D
t

T t T

t
,

,
Jy, 18auto rx( ) ( ) ( ) [ ( ) ] ( )

where Δν is the channel width, Δt is the integration time, and
κ(ν)Ω(ν) converts to Jy units (see Equation (8)).

Let Vapbq,t be the visibility measured by the cross-correlation
of feed p on antenna a with feed q on antenna b in time (t,
t+Δt) (we drop the implicit dependence of ν for notational
clarity). We assume the thermal noise is uncorrelated between
baselines and polarizations, so we may write the noisy

visibilities as

= + ¹V V V a b, , 19apbq t apbq t apbq t,
noisy

,
true

,
noise ( )

where the real and imaginary parts of Vapbq
noise are drawn from

s 0, 2( ), with the variance given by Equation (18). Hence-
forth, we use “true” to denote the simulated visibility from
Equation (16), including all sources of astrophysical emission,
but excluding noise and instrumental effects except the primary
beam. The autocorrelations just have the receiver temperature
added (with a signal-to-noise ratio of ∼1000 in the auto-
correlations, this is a very good approximation); this ensures
they remain real and positive definite. The ability to reconstruct
the correct power spectrum level given pure input noise was
tested in Step 0.0.31

4.3.2. Gains

Each antenna feed is assumed to have a direction-
independent gain, representing the effects of the electronics
and cables. We assumed each antenna was represented by a
diagonal Jones matrix (ignoring possible cross-coupling
between the feeds). The average bandpass of each feed is
described by a degree 6 polynomial fit to measurements of the
gain derived from HERA data.32 each feed receives a unique
bandpass by perturbing this average bandpass via convolution
with a complex white-noise realization and subsequent
application of a phase factor with a randomly generated delay
and phase offset. That is, if g0(ν) is the bandpass polynomial
evaluated at the simulation frequencies ν, then the antenna-
based bandpass gains are given by

n n n pnt f= +g g K i iexp 2 , 20ad ad ad ad0( ) [ ( ) ( )] ( ) ( )*

where ∗ indicates convolution in frequency, ~ K 0, 1ap ( ) is a
complex white-noise convolution kernel, and τap and fap are
the randomly selected delay and phase offset, respectively, for
antenna a on day d (note that the same random bandpass gain
was used for each feed on an antenna). Note that the bandpass
gains are randomized per day rather than per time. This
formulation ensures that the gains all vary between antennas
but retain the same overall average shape. The hera_sim
package was used to generate these gains. Using these gains,
we determine “uncalibrated” visibilities per frequency, base-
line, polarization, and time:

=V g g V . 21apbq t a d t b d t apbq t,
uncal

, , ,
noisy

  ( )*

Step 2 tests demonstrated that redundant and absolute
calibration return the known input gains to machine precision,
in the absence of noise.33 We note that because we assume the
gains are band limited in delay space, we are not testing the

27 These small position errors have since been corrected in the RIMEz
source code.
28 The complete results of this simulation comparison can be found at https://
nbviewer.jupyter.org/github/HERA-Team/hera-validation/blob/test-neg1.1.
0/test-series/-1/test-neg1.1.0.ipynb.
29 At the time the simulations were done, pyuvsim could not simulate diffuse
emission. For the purposes of long-term support, this functionality of
healvis has been incorporated into pyuvsim. The standalone package is
deprecated and not recommended for new projects.
30 The antennas are assumed to all have identical beam patterns in this work,
so each antenna shares the same autocorrelation visibility prior to the
application of systematic effects.

31 Test notebook available at https://github.com/HERA-Team/hera-validation/
blob/master/test-series/0/test-0.0.0_noise_pspec.ipynb.
32 The HERA bandpass was measured by differencing in time and frequency
the cross-correlation visibilities of 19 antennas to estimate thermal noise. This
noise was matched to a theoretical foreground and receiver temperature model
to generate per-antenna, per-frequency gains. The resulting bandpasses for each
antenna are fit by a single shared polynomial multiplied by an independent
scalar amplitude per antenna.
33 Test notebooks available at https://github.com/HERA-Team/hera-validation/
blob/master/test-series/2/test-2.0.0.ipynb and https://github.com/HERA-Team/
hera-validation/blob/master/test-series/2/test-2.1.0.ipynb.
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effect of real instrument gains that have structure beyond the
smoothing scale of our smoothcal step.

4.3.3. Cross-coupling and Cable Reflection Systematics

Cable reflections are captured as a per-antenna gain-like term
described as

 pnt f= + +g A i i1 exp 2 , 22a
j

M

a j a j a j, , ,˜ ( ( )) ( )

where each reflection is characterized by an amplitude (A),
delay (τ), and phase offset (f). The overall effect of reflections
is the product of the M different reflections (per antenna)
present in the analog signal chain. Note that the reflection gains
are generated per antenna and are unchanging with respect to
feed and time.

Reflection gains result in the visibilities
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The cross-coupling systematic present in the H1C data (Kern
et al. 2020b), Vab

cc, is described as
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where each of the N couplings between the autocorrelation Vaa

and the cross-correlation Vab is characterized as a per-baseline
reflection term. For simplicity, we only apply the cross-
coupling systematic to the cross-correlations—this may be
thought of as a leading-order approximation to the cross-
coupling seen in the data, as cross-coupling shows up as a
much smaller effect in the autocorrelations than in the cross-
correlations (Kern et al. 2019). Each of the cross-coupling
parameters A, τ and f are drawn randomly (see Section 5.1 for
details) per antenna a, feed p and day d (similar to bandpass
gains). Note that whether or not the cross-coupling term is also
subject to reflection depends on the exact physical origin and
placement in the signal chain of the cross-couplings and
reflections. In this model, the cross-coupling does not reflect.
Such a term would be second order in the (already small)
coefficients, so we do not expect it to be significant relative to
the current noise level. The final “corrupted data” that are the
input to the analysis pipeline are
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It is worth noting that we do not remove the cross-coupling
systematics by fitting an equation of the form of Equation (24),
but rather by using the method in Kern et al. (2020b).

4.4. Flagging

The various steps in the analysis pipeline follow very closely
the description in Section (2.2). We discuss in detail here the
only real departure from the actual data analysis pipeline,
which was our treatment of flagged data.

We chose to use the flagging patterns from the real data to
test the question of how cutting data affects the power
spectrum. Recall that we did not simulate RFI or other effects
that would normally be caught by the data quality portions of

the pipeline and produce gaps in time and frequency. The
delayed in-painting process (Parsons & Backer 2009; Kern
et al. 2020b) allows us to “fill in the gaps” in the frequency
domain by estimating the values of the underlying Fourier
modes in the delay domain. Because the H1C pipeline does not
attempt to remove foregrounds, the bright foregrounds
contribute extremely large side lobes in delay-space if the
frequency axis is Fourier-transformed with step-function-like
flagging gaps. Filling in the gaps with an informed estimate of
their true value allows us to apply Fourier techniques to (de)
flagged data and significantly reduce these side lobes.
However, a concern is that errors in the process will propagate
power from inside the wedge into the EoR window. There is an
additional concern that using in-painted estimates (which have
no EoR signal in them) will bias the resulting power spectrum.
We show that this effect is negligible with current flagging via
the end-to-end analysis. Figure 6 shows the results of the Step
3.1 investigation of this process.34

We consider a variety of flagging patterns in time and
frequency taken from the data for a variety of different baseline
lengths and orientations. We consider how accurately (in the
absence of noise) the input power spectrum (foregrounds +
EoR) can be reconstructed after in-painting the gappy data. We
then cast that in terms of an effective dynamic range (relative to
the foreground amplitude at τ= 0 ns) for the reconstruction.
Generically, we find that large gaps in frequency near the
center of a spectral window limit the dynamic range severely,
but that for data with flagging more like the spectral windows
chosen in HC21, the dynamic range exceeds 109 in the power
spectrum. In the ideal case, the middle row of Figure 6 would
show low fractional error in the recovered power spectrum at
all τ (or k∥). For the choice of in-painting parameters used in
Step 3.1, we chose a 10% deviation of the recovered power
spectrum from the flag-free power spectrum as a fiducial
marker to estimate the dynamic range, but recovery better than
this would, of course, be preferred. In the bottom row of
Figure 6, each line crosses 1 at τ= τ10%, where the recovered
power spectrum deviates by 10% in the absolute fractional
error. Better performance thus appears as a larger amplitude at
τ= 0 ns. Both the absolute fractional error and dynamic range
are plotted in Figure 6 because they represent different aspects
of our ability to recover the true power spectrum. Small values
of the absolute fractional error are required to accurately
recover the power spectrum. Large dynamic range values are
required to suppress foreground contamination at higher
delays.
In interpreting Figure 6, it is important to note that the in-

painting parameters are tunable. For the work in HC21, the in-
painting parameters were tuned for recovering power spectra at
a dynamic range set by the expected thermal noise of the
observations. In the case of the noiseless simulated data used in
Step 3.1, the in-painting parameters were tuned further, at the
cost of lower computational performance, to demonstrate the
ability of the in-painting process to obtain a larger dynamic
range. Thus, it is difficult to translate this noise-free test directly
into an impact on the measured power spectrum in the presence
of noise for the full HERA analysis, and so our end-to-end
simulations offer the fullest justification that the additional
power added by this process at k’s in the EoR window averages
down. The reason we performed this test with noise-free

34 Full test notebook available at https://github.com/HERA-Team/hera-
validation/blob/master/test-series/3/test-3.1.0.ipynb.
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visibilities was to isolate the accuracy of in-painting; finding
the composite effects of in-painting errors interacting with
thermal noise effectively requires the level of integration of an
end-to-end test.

5. End-to-end Simulations

Here we summarize the end-to-end test, which combines the
independent steps discussed previously into a single run of our
calibration and power spectrum pipeline. We start by discuss-
ing the production of the simulation and systematics, and then
present the results of the calibration pipeline and the power
spectrum pipeline. Lastly, we present additional tests that look
carefully at the amount of possible signal loss induced by the
analysis pipeline.

5.1. The Simulated Data Set

The end-to-end simulation is not an exact replica of the data
set in HC21. The simulated data set contains fewer days, a
narrower LST range, fewer antennas, and shorter baselines (see
Figure 1). The LST restriction is in part due to the limitations of
the GLEAM sky model, which lacks sources for R.A.> 7 in
HERA’s observing patch. We show the differences between the
simulated data set and HC21 in Table 2. Nevertheless, the
simulated data set is sufficiently complete to capture most of
the features of the real data and to reach a comparable depth
after all averaging steps were completed.

The corrupted data were created to match the data from the
H1C observing season with the computing and software
resources currently available. There were three major steps in
creating the corrupted data: first, we combined simulated
observations of foreground emission and a reionization signal
to form the true visibilities, Vtrue; next, we modified the set of
true visibilities to match the H1C array and observing
parameters (modulo nonredundancy);35 finally, the modified
simulations were used to generate 10 days’ worth of visibilities
that were corrupted with the systematic effects outlined in
Sections 4.3–4.3.3.
The base simulation consists of three components: point-

source foreground emission, diffuse foreground emission,
and visibilities appropriate for a power spectrum of

= - -P k k h200 0.2 Mpceor
1 2( ) ( ) . This power spectrum ampl-

itude was chosen to produce a strong detection at
k∼ 0.2 hMpc−1, but dominated in turn by foregrounds,
systematics, and thermal noise at other scales. The modified
true simulations were corrupted as described in Section 4.3.3.
Here we specify the values used in the data corruption for the
end-to-end test. Recall that Vab

uncal has two parameters per
antenna: the delay, τa, and the phase offset, fa. We drew delays
randomly from a uniform distribution spanning (−20, +20) ns,

Figure 6. In-painting demonstration from Step 3.1. Columns correspond to different spectral windows indexed by channel indices. From left to right, the frequency
channel indices corresponding to each spectral window are (600, 800), (490, 690), and (515, 695). Top row: frequency vs. LST flagging waterfalls. White pixels
represent flags in data, and red strips are integrations unused due to either flags from the in-painting process itself, flag occupancy cuts, or manual LST cuts. The
percentages in the top-left corner of each waterfall represent the number of remaining flags in nonfully flagged integrations, i.e., flags within integrations not
highlighted in red. Middle row: magnitude of fractional error of recovered (in-painted) tP̂ ( ) relative to known input as a function of delay for various baseline types
(colors). The dashed black line marks 10% and the delay at which the fractional error meets or exceeds 10% is denoted as τ10%. Bottom row: a metric for the dynamic
range in the recovered power spectrum, defined as t t=R P P 10%ˆ ( ) ˆ ( ). Good dynamic range in recovery corresponds to higher values at τ = 0 ns and greater values of
τ10% (i.e., crossing the gray reference line farther to the right). Note the generally increasing dynamic range and increasing τ10% with fewer flags in the center of the
band and intrinsic variability in the recovery for different baseline types.

35 This was necessary due to the expensive original simulations having been
defined for a slightly different set of antennas within the HERA array. We
selected a maximal overlapping subset of the simulated baselines, interpolated
to match the intrinsic H1C observation times, for use in the rest of the analysis.
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chosen via manually tuning to matched observed features in
H1C data, and the phase offsets from a uniform distribution on
[0, 2π). The bandpass gains used for this work vary only
between antennas, nights, and as a function of frequency; we
did not add any LST variability to the gains.

Recall that the effect of a single cable reflection is
characterized by an amplitude, delay, and phase offset
(Equation (22)). As implemented, the reflections were split
into two categories: single cable reflections and a reflection
“shoulder” meant to model a series of subreflections. The
former consisted of two relatively high-amplitude reflections
with random per-antenna delays of (200+ 10ò200) ns and
(1200+ 30ò1200) ns, with relative gain amplitudes of 3 × 10−3

and 8 × 10−4, respectively, and ò a standard normal variable.
These delays and relative amplitudes were chosen to match the
observed systematics in the H1C system (Kern et al. 2020b).
The subreflection shoulder consisted of 20 individual reflec-
tions uniformly located between a delay range of 200–1000 ns,
with amplitudes following a power law in delay from 10−3 to
10−4. Each reflection’s delay is perturbed by a Gaussian offset
with a scale of 30 ns, and their amplitudes were perturbed
randomly by 1% of their assigned value. All reflection terms
have their phases drawn from a uniform distribution from [0,
2π) and are not varied across frequency, time, and observing
night. An example of the reflection gains in delay space is
shown in Figure 7.

The cross-coupling model is simulated in a similar manner to
the reflection shoulder, meant to match systematics observed in
the H1C system. We generated an independent set of reflection
terms (amplitude, delay, phase) for each baseline, per night. We
characterize the cross-coupling with 10 reflections (each
determined by an amplitude, delay, and phase). The 10 delays
were spaced linearly between 900 and 1300 ns. Amplitudes are
regular in log-space, A= 10−(τ−100)/200 (going from 10−4 at
τ= 900 ns to 10−6 at τ= 1300 ns), but offset by a random
normal variable with scale 0.01% of the amplitude. The phase
was drawn from a uniform distribution from [0, 2π). Cross-
coupling is simulated as described by Equation (24), where the
systematic is the product of the autocorrelation visibility with
each of the reflection coupling terms. The phase of the
reflections is similarly drawn randomly for each reflection and
antenna from a uniform distribution from [0, 2π).

Figure 8 shows the various components described above in
fringe-rate/delay space, for a 51 m WNW-oriented baseline.
The top panel shows the EoR component, demonstrating that it
primarily populates positive fringe rates (as it is a statistically
isotropic and sky-locked signal, and the baseline has a negative
EW component). The foreground component has a positive
fringe-rate component as well but also demonstrates significant
power at fringe rates near zero, peaking at a delay corresp-
onding to the length of the baseline. The “pitchfork effect” due

to the monopole described by Thyagarajan et al. (2015) also
shows excess power at the delay corresponding to the baseline
length; the observed effect here is clearly related to this when
resolved in both fringe rate and delay. Importantly, the fringe
rates occupied are dependent on the EW component of the
baseline, which is why cross-coupling cannot be removed from
baselines with a small EW component without incurring signal
loss. The cable reflection plot shows the convolution of the
reflection terms with the foreground signal, showing that it acts
to smear the foreground signal horizontally across the delay.
Lastly, the cross-coupling signal is fairly independent of the
other terms, and occupies near-zero fringe-rate modes.
In Figure 9, we show a comparison of the simulated data to

real data, highlighting the simulation’s ability to capture the
general features observed in the data.

5.2. Calibration Results

Each night of the corrupted simulated data are first passed
through the H1C calibration pipeline, which employs a
direction-independent calibration of the XX and YY polariza-
tions for each 10.7 s time integration. The performance of
redundant calibration on the H1C system is described in Dillon
et al. (2020) and can be summarized by the final reduced χ2 of
the gain solutions. Figure 10 shows the reduced χ2 (blue) of the
estimated gains from the simulated data set compared to an
idealized, pure-noise distribution (dashed gray), showing a
slight positive bias indicative of excess variance due to the
presence of baseline-dependent cross-coupling systematics that
break the redundancy condition.
When we compare the estimated gains to the true gains used

to corrupt the data, we find that the gain phases are recovered to
good precision, while the recovered gain amplitudes are biased
slightly high (Figure 11). Gains biased slightly high will result
in the calibrated data being biased slightly low. This bias comes
from a time-varying signal-to-noise ratio (S/N) of the
visibilities and our choice of absolute calibration technique (see
Figure 12). Calibrating noisy data with a low S/N can lead to
biased estimates of the gain amplitude when using a logarithm
to linearize the antenna-based calibration equation (Boonstra &
van der Veen 2003), as we employ here. Comparing the gain

Table 2
Comparison of the Parameters of the Real Data Set and the End-to-end

Simulation

Simulation Data

Number of days 10 18
LST range (hr) 1.5–7 1–10
Number of antennas 33 (8 flagged) 52 (13 flagged)
Total number of baselines 300 741
Maximum baseline length 84 m 118 m

Figure 7. Peak-normalized delay spectra of simulated reflections. Each line is a
different antenna. Note the relatively narrow spread in the reflection at 200 ns
contrasted with the relatively large spread in the reflection at 1200 ns. Low-
level features beyond 1200 ns are second-order reflection terms.
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solutions to the known simulated gains we find solutions biased
high by roughly 4% (left panel of Figure 11).

This absolute flux-scale bias can also be well quantified by
imaging the true model visibilities and the postcalibrated data
and comparing the fluxes of bright point sources near beam
center. This reveals an amplitude biased low by∼8% and
varying slowly with frequency.36

To correct this, we multiply all estimated power spectra and
their 1σ error bars by the measured bias of 1.11 for the low
band and 1.15 for the midband (Table 3).
Other sources of uncertainty from absolute calibration can

also impact the overall error budget. These effects include (i)
the overall uncertainty on the flux scale at ∼10% (Hurley-
Walker et al. 2017) and (ii) the change in the gain amplitude
due to ambient temperature drift during a nightly observation,
which is not corrected for in the H1C pipeline and is estimated
to be roughly 5% (Kern et al. 2020a). While these sources of

Figure 8. Delineation of different simulation components for a 51 m WNW-oriented baseline (44 m westward east–west projection, 25 m northward north–south
projection), Fourier transformed along the frequency and time and frequency axes (x- and y-axes, respectively). The fringe-rate/delay basis is useful for highlighting
unique physical characteristics of each component, though note that there is overlap between some components in this basis (e.g., the foregrounds and cable
reflections).

36 In the real H1C data set, this bias is closer to 4%, which is due to the larger
range in R.A. included in the real H1C data compared to the validation data set.
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uncertainty are added in quadrature with the error bars
in HC21, we do not do so here as these effects have not been
included in simulation.

The model visibilities used in absolute calibration are not
constructed in an identical manner to HC21, which used a
CASA-based pipeline to calibrate a few independent fields,
then stitched them together to construct a set of model
visibilities for all LSTs while finally low-pass filtering the
visibilities across frequency to reduce noise and fill in gaps due
to RFI. Instead, here we simply take the sum of the foreground,
EoR, and noise visibilities as our representative model
visibilities, sidestepping the question of calibration uncertain-
ties due to an incomplete sky model for the time being.
However, as demonstrated in Kern et al. (2020a) and Dillon

et al. (2020), the gain-smoothing procedure applied to the post
redcal + abscal gains is meant to filter off any fast time and
frequency structure in the gains that might be generated by
such issues.
Each night is calibrated independently and then binned onto

a uniform grid in LST and coherently averaged together
(known as LST binning). We show via two methods in
Figure 13 that to within a few percent, the noise in our LST-
binned visibilities matches our expectations. One way to
estimate the noise in LST-binned visibilities is simply to
measure the variance of all visibilities that are to be binned
together after rephasing to a common phase center. In our case,
because our LST-binned data set has a cadence of 21.4 s (twice
as long as the nightly simulations with a 10.7 s cadence), we

Figure 9. Comparison of simulated data (right) with observation data (left) for the same LST range, spectral window, and baseline. Each set of plots shows the four
possible choices of Fourier-transformed versions of the data. The observation data has been redundantly and absolutely calibrated, but not treated for cable reflections
or the cross-coupling systematic. The observation data have also been LST binned, so it has a substantially lower noise level than the simulation. While the simulation
and observation data look strikingly similar, there is a clear difference in the qualities of the high-delay systematic: the simulated version is much more symmetric in
delay, and it appears to be somewhat brighter than it is in the observed data.
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simply compute the variance of all (up to) 20 visibilities in a
single LST bin from the 10 nights simulated. Because the LST
binner is also estimating the mean visibility, we use the
unbiased estimator of the variance (i.e., we use Bessel’s
correction). The left panel of Figure 13 shows that this matches
closely the noise we expect on each input visibility, as inferred
from the calibrated autocorrelations using Equation (18).
Another way of estimating the noise in the LST-binned
visibilities is to take the frequency-interleaved difference—in
this case, n n n n n- - D - + DV V Vij ij ij

1

2

1

2
( ) ( ) ( ). This gives

an estimate of the noise variance at frequency ν, though
discontinuities in Nsamples complicate it slightly. Regardless, the
right panel of Figure 13 shows that the observed noise again
matches the expectation for how the noise in the visibilities
should integrate down quite well, accounting for the number of
samples. In both panels we drop any time or frequencies with
Nsamples< 10 before averaging in order to account for
RFI gaps.

After binning, the averaged visibilities are passed through
systematics treatment (Kern et al. 2019, 2020b). This involves
modeling the smooth foregrounds and in-painting the model in
the remaining RFI flags in the data (Section 4.4). Next, the
autocorrelations are used to model antenna-based reflections in
the signal chain. A total of 28 signal chain reflection terms are
iteratively solved for, chosen by visual inspection of the
residuals, and the algorithm is only provided the rough location
in delay space where we expect reflections to appear
(150–1500 ns). After calibrating out the reflection terms, we
apply the Kern et al. (2019) procedure for modeling and
subtracting off the slowly time-varying cross-coupling sys-
tematics. Note that this cannot be done reliably for baselines
with a projected east–west length less than 14 m without

substantial signal loss (Kern et al. 2019), so we flag all
baselines that do not meet this requirement.
Next, the visibilities are coherently averaged in time with a

214 s averaging window, having first phased the different time
integrations to a common pointing center. Lastly, the instru-
mental XX and YY visibility polarizations are summed to
construct a pseudo-Stokes I visibility as VI= (VXX+ VYY)/2.
Recall that many of these analysis steps are tested individually
(Figure 3), but here we present the effects of these steps on the
fully integrated power spectrum.

5.3. Power Spectrum Recovery

Power spectra are formed in the same manner as described
in HC21. To summarize, we form delay spectra (Parsons et al.
2012b) in two spectral windows, which we refer to as Band 1
and Band 2, spanning 117–132 MHz and 150–168 MHz,
respectively. Note that because we apply a Blackman–Harris
apodization function across each spectral window, their
equivalent bandwidth is half of the full bandwidth. Power
spectra are formed by cross-multiplying every pair of
nonidentical baselines within a redundant set. We then
calculate two sets of error bars: a theoretical noise rms given
the measured system temperature (PN) and a semiempirical
error bar that accounts for the signal-and-noise cross-terms in
the power spectrum, PSN˜ (see Table 3 of Tan et al. 2021). All
incoherent averaging (i.e., averaging after forming the power
spectra) is weighted inversely by PN

2 , but the final quoted error
bars come from PSN˜ . The justification for using these error bars
is outlined in the discussion (Section 5) of Tan et al.
(2021). HC21 outline three broad LST ranges (or “fields”)
that are used for forming an averaged power spectrum. With
the slightly smaller LST coverage studied in this work, we look
at two similar fields, spanning 1.5–2.8 hr LST and 4.4–6.4 hr
LST. Power spectra are formed from three data sets: the full
data without systematics treatment, the full data with
systematics treatment, and just the EoR component of the data.
The first check on our power spectra is to ensure that our

noise estimates agree with the data at different stages of
integration. This has recently been studied and validated for
HERA simulations and real data (Kern et al. 2020b; Tan et al.
2021), but we repeat the exercise here for completeness.
Figure 14 demonstrates the impact of incoherent averaging
within a single redundant set. We show successive averages of
redundant baselines with an increasing number of baselines in
each average. We also plot the propagated thermal noise
uncertainty PN (dashed), which agrees well with the power
spectra outside of the foreground-dominated region for
k> 0.2 hMpc−1. Note that the final average (magenta) shows
an increase in power at low k, which is foreshadowing a low-
level detection of the EoR signal in the simulated data.
After averaging all baseline pairs within a redundant group,

we average the remaining time bins within each LST range,
leading to a cylindrically averaged P(k∥, k⊥) power spectrum
per field per spectral window. Figure 15 shows this for Band 1
of the first LST range. The left panel shows the full data set, the
middle panel shows the data after systematic treatment, and the
right panel shows the EoR-only data set. In all panels, the gray
dashed line shows the extent of the foreground wedge from the
baseline horizon. We expect some amount of leakage beyond
this line simply due to the side lobes of the apodization
function applied before taking the visibility Fourier transform.
What is apparent from Figure 15 are the systematics at

Figure 10. The success of redundant-baseline calibration can be assessed by
examining the difference between raw visibilities and the visibility model by
assuming redundancy and antenna-based gains. This is quantified by χ2 per
degree of freedom, which was defined in (Dillon et al. 2020) and can be
compared to a theoretical expectation (in this case with DoF = 164). Here we
can see that the simulated distribution of χ2 nearly matches the expected
distribution; we expect a mean value of χ2/DoF of 1, we observe 1.03. This is
substantially better the observed distribution, which peaks around 1.3–1.4
(Dillon et al. 2020). The key difference is that while both the validation
simulation and real data contain baseline-dependent cross-talk systematics (an
additive effect that breaks the assumption of redundancy), the simulation does
not contain any antenna position errors or antenna-to-antenna variation of the
primary beam, which likely accounts for most of the observed deviation
from 1.
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k∥∼ 0.5 hMpc−1 that are effectively suppressed by the
modeling and removal step. This systematics treatment also
suppresses power just beyond the foreground wedge. As
discussed in Kern et al. (2020b), this is a result of the fact that
foregrounds entering from the horizon (and thus lying near the
wedge border in k∥, k⊥ space) are slowly time-variable and are
therefore partially filtered off with the cross-coupling filter. So
although Figure 15 becomes less wedge like with the
application of the cross-coupling filter, this is due to filtering
that impacts the edge of the wedge. The wedge will manifest on
longer baselines (e.g., Kern et al. 2020b).

Lastly, we group the cylindrical power spectra in bins of
constant |k| and spherically average them to get our final 1D
power spectra. Figure 16 shows these results for the first LST
cut (top panels) and the second LST cut (bottom panels), for
both Band 1 (left panels) and Band 2 (right panels). We plot the
data before systematic treatment (blue points), after systematic
treatment (orange) points with 2σ error bars, as well as the
EoR-only data set (gray). Open circles denote negative band
powers, which are plotted as positive for visual clarity. The
subpanels show the data after systematic treatment divided by
the EoR-only data set, with the 2σ error bars overlaid. Recall
that the amplitude of the EoR signal was chosen specifically to
allow for detection of the signal at low k, with its significance
decreasing at higher k. The salient points we draw from
Figure 16 are as follows: (1) the EoR signal is recovered to
within the error bars across all k modes,37 and (2) the
systematics at k∼ 0.45 hMpc−1 are suppressed down to the
measured EoR amplitude. Importantly, the recovered power
spectra (orange) match the EoR signal at low k where we detect

the signal at ∼10 times the noise floor and at high k the power
spectra are consistent with noise.
Using the data products at hand, we also perform additional

tests targeted at particularly sensitive components of our
analysis pipeline. One analysis step not quantified in the
unbiased recovery seen in Figure 16 is the amount of loss
induced by coherent time averaging (i.e., LST averaging or
fringe-rate filtering). Over the course of a drift-scan observa-
tion, one can coherently average different time integrations that
are closely spaced together relative to the overall beam-
crossing time after rephasing them to a common pointing
center. Using Monte Carlo simulations of an ensemble set of
mock, P(k)∝ k0 EoR observations, HC21 claim that they can
coherently average their visibilities over a 528 s window and
only induce ∼1% signal loss in the measured EoR power. We
use the data products in this work (which, recall, use a
P(k)∝ k−2 EoR model) to confirm that this specification is met.
Figure 17 shows this test, comparing the ratio of the EoR-only
power spectra having first averaged the visibilities over a 528 s
window over the power spectra with a 43 s averaging window.
We show that, as expected, this induces a ∼1% loss in power
that is constant across Fourier k modes.
Another somewhat sensitive step in our analysis chain is the

filtering of cross-coupling systematics, which is performed by
applying a high-pass filter across the time axis. Recall that such
a filter is designed to reject the slowly variable systematics
while retaining the vast majority of the EoR sky signal (Parsons
et al. 2016; Kern et al. 2019, 2020b). One complication to this
is the impact of the time edges when working with finitely
sampled data. Near the time edges, the properties of the sharp
Fourier filter are degraded, and in our case we observe slightly
more loss than the original specification (Kern et al. 2019). We
can mitigate this effect by flagging the time bins near the edges
after filtering. Figure 18 shows a demonstration of this on a
data set that contains only the EoR signal and a cross-coupling
systematic. We remove the systematic in the same way, but
now in averaging the power spectra we flag all time bins within

Figure 11. After the calibration pipeline, the inferred gain solutions are quite close to the true simulation gains, with amplitude errors at the few-percent level and
phase errors at the few-milliradian level. Calibration errors are likely due to a range of factors including thermal noise, cross-talk systematics, and smoothing of
features in the inferred calibration solution at the 100 ns delay scale. The latter explains both the spectral structure in the phase errors, which is largely contained to
higher harmonics and the increased errors at the band edges, as the smoothing was performed with a Tukey window (α = 0.3), which downweights discrepancies at
high and low frequencies. The cable reflections, which dominate the true gains at high delay, are intentionally smoothed out of the calibration solutions and corrected
only after LST binning. The smoothing out of real spectral structure from cable reflections produces the dominant phase calibration error at most frequencies but is
subdominant to the few-percent-level amplitude bias seen in the left panel, which is due to a small bias in absolute calibration (see Figure 12). While this level of gain
error and bias should be factored into a final power spectrum and errors, it is unlikely to produce substantial signal loss from decoherence.

37 For the second LST cut there is an outlier at k ∼ 0.85 h Mpc−1 for both
Band 1 and Band 2. It is odd that these outliers occur at the same Fourier mode,
although an outlier or two is not entirely unexpected as the error bars plotted
are ± 2σ. At the very least, it is a high outlier, so concerns about signal loss are
not an issue. More work is needed to understand if this is a statistical or
systematic outlier.
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some buffer of the time edge, showing that the amount of loss
converges with a 30 minute buffer. In the end, this results in a
residual 3% (1%) scale-independent loss in power after cross-
coupling subtraction for Band 1 (Band 2).

All of the steps discussed in this work that were found to
lead to loss are summarized in Table 3, most of which are on
the order of a percent. The bias discussed in Section 5.2 is not
technically signal loss in the traditional sense but is still a bias
that results in an underreporting of the EoR signal, therefore we
include it in this table. Note that HC21 also explore the impact
of coherent baseline averaging within a redundant group, which
can in principle lead to signal loss. We do not explore this
currently as baseline nonredundancy is not within the intended
scope of this work, but future work will incorporate this aspect
into the validation pipeline presented here.

Lastly, another metric we can pin down with our validation
simulations is the expected level of cosmic variance on the EoR
signal after all of our coherent and incoherent averaging.
Lanman & Pober (2019) quantify this in a similar manner using
Monte Carlo simulations of a mock-EoR field and find that for
a HERA-37 spherical power spectrum averaged over 8 hr LST
the cosmic variance (1σ) peaks at around 2% of fractional
power. Pushing our own EoR simulation through the analysis
pipeline discussed in this work and averaging the power spectra
over the second LST range (2 hr spanning 4.4–6.4 hr LST), we

find a fractional (1σ) cosmic variance uncertainty of∼5.5% for
both Band 1 and Band 2 (Figure 19). As discussed in Tan et al.
(2021), this is currently a subdominant contributor to the total
error budget.

5.4. Blind Test with Parallel Pipeline

To double-check that our primary power spectrum analysis
pipeline indeed induces minimal signal loss and makes a clear
detection of the input 21 cm power spectrum, we performed a
blind analysis of the mock data with an alternate power
spectrum estimator.38

Parallel, or shadow, analysis is a powerful validation
technique that has been adopted for several published results
(Jacobs et al. 2016; Barry et al. 2019a; Trott et al. 2020). These
analyses are expensive in both researcher and computer time
and thus are often limited in the amount of data processed in
parallel and may share common preprocessing steps. Never-
theless, they provide some measure of confidence that the
reported result is not unique to a particular analysis. Errors
made in the absence of such testing have commonly been
associated with power spectrum estimation (Paciga et al. 2013;
Cheng et al. 2018), so this is where we choose to focus our
efforts. We perform a parallel power spectrum analysis of the
calibrated and LST averaged simulation product using the
SIMPLEDS pipeline (Kolopanis et al. 2019), verifying that it
also reproduces the expected result.
Our shadow analysis followed the procedure described in

Kolopanis et al. (2019). Power spectra were formed by cross-
multiplying redundant baselines and errors estimated by
calculating the expected sensitivity according to Pober et al.
(2014), simulating noise using the autocorrelations as a
measure of variance and bootstrapping across the many
possible pairs of baselines. As this last step is computationally
expensive, scaling with the amount of uv space analyzed, we

Figure 12. Here we show the bias in our amplitude calibration of a single simulated night (JD 2458098), averaged over all unflagged antennas. Because we are
calibrating the overall amplitude of a noisy data set with a lower-noise set of “model” visibilities using a logarithmic linearization of the calibration equation, the time
and frequency bins with low S/N return gain amplitudes that are biased high (Boonstra & van der Veen 2003). The opposite is observed at the transit of Fornax A
around JD 2458098.36, which produces very high-S/N visibilities and suppresses the bias, leading to near-perfect gain amplitude recovery. The right panel shows the
gain bias after frequency and time smoothing of the gain. We see that the bias is now effectively time independent but has a slight dependence on frequency, which is
accounted for when forming power spectra over different parts of the band.

Table 3
Systematic Loss in Analysis

Analysis Step Fractional Bias

Absolute Calibration −11% (−15%)
Cross-coupling Filtering −3% (−1%)
LST Time Averaging −1% (−1%)

Note. Percentage loss in power for Band 1 (Band 2), which is corrected for
after forming the power spectrum and is constant for all k modes. Redundant-
baseline averaging is also explored in HC20 as a possible source of percent-
level loss, but is not studied in this work.

38 Use of the word blind here might not be preferred by blind people;however,
the term is used pervasively in science to describe a technical procedure that is
not well served by synonyms. We keep the term for now to avoid confusion as
the practice is introduced to the field of 21 cm cosmology.
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limited our baseline selection to three vectors of length∼28 m,
of differing orientation. These are the shortest baselines
included in the mainline analysis. This restriction to a narrow
uv range is the largest divergence from the main power
spectrum processing.

As the alternate pipeline was not developed in close
proximity to the simulation, we were afforded an opportunity
to trial blind testing. A blind test using realistic simulations
provides an opportunity to test our judgment in identifying

whether data points that are not noise dominated arise from
foregrounds, systematics, or true 21 cm signal.
A small subgroup, disconnected from the main Validation

team and blind to the preparation of the mock data, was set a
challenge in which they were to distinguish between two data
sets that were the same in every respect, except that one had
21 cm signal and the other did not. These simulation products
were blinded by changing filenames and removing metadata
and provided to the shadow-pipeline team after the “Coherent
Time Averaging” step (see Figure 2).
Figure 20 summarizes the results. In the first analysis, no

cosmological signal could be clearly identified in the data (see
left panel of Figure 20). Residuals were strong enough to make
all data sets look roughly the same. Having finalized and
reported this blind result to the rest of the Validation team, a
meeting was held in which the topics discussed were
intentionally limited to a comparison of data selection between
pipelines and some clarification of the meaning of certain
metadata. Importantly, the form and amplitude of the 21 cm
signal were kept hidden. Each change discussed during these
conversations was recorded and tested one at a time. The final
resulting power spectrum estimate, obtained as a result of these
limited discussions, is shown in the right column of Figure 20.
This figure shows clear improvement over the fully blinded
analysis shown in the left column and indeed confirms that the
alternate pipeline is able to accurately detect the input signal
and differentiate that detection from data without the signal.
The largest improvement between the left and right panels of

Figure 20 came from correctly interpreting sample-count
metadata. The main analysis pipeline assigns flagged channels
a sample count of zero but then in-paints some of these
channels (as described in Section 4.4). These in-painted data
points are meant to be used when computing the delay spectra
but not to contribute toward the estimation of noise. The
alternate pipeline was erroneously reflagging these channels,

Figure 13. Confirmation that noise in LST-binned visibilities matches expectations. Left panel: night-to-night variance over 10 nights (averaged over unflagged
baselines and times in the LST range of 6.464–6.817 hr) compared against noise predicted by LST-binned autocorrelations (see Equation (18)). Right panel: variance
calculated from the same data using frequency differencing compared to normalized predicted noise from autocorrelations and Nsamples. In both panels, we drop any
time or frequencies with Nsamples < 10 before averaging in order to account for RFI gaps. Both metrics indicate a close match with the predictions.

Figure 14. Power spectra from Band 1 after successive incoherent redundant-
baseline averages. In each case, we plot the averaged power spectra (solid) and
their corresponding PN given the amount of averaging (dashed), which marks
the noise amplitude if the power spectra are noise dominated. In each case we
see good agreement between the two for k > 0.2 hMpc−1, except for the final
case where at low k we begin to detect a signal; note the black line, which is the
fully integrated spectrum for this baseline type.
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due to a misunderstanding of the intention of the sample count.
With this misinterpretation, the flagged channels produced a
large level of “ringing” when Fourier transformed, appearing as
anomalous power in the estimated power spectrum.

Despite the aforementioned meeting to obtain clarification
on the metadata, some differences between the pipelines were
intentionally maintained. The single biggest difference between
the pipelines was the selection of the LST range, which was
smaller for the shadow pipeline (about an hour shorter).
Furthermore, the shadow analysis averaged both fields
together. Clearly, these differences do not significantly affect
the conclusions of the test. Indeed, they further strengthen the
case that the analysis is not highly sensitive to the precise
choice of LST range.

This test increases confidence in the power spectrum portion
of the analysis, reinforces the conclusion that loss within the
calibration pipeline is minimal, and provides a guide for how
blind comparison between simulation and data can be
employed to assess the relative likelihood that an observed
power level is due to a true background.

5.5. Accuracy of Error Bars

The level of the injected EoR power spectrum is such that
there are four regimes at the final noise level (integrating all
times and baselines): foreground dominated for k< 0.2, EoR
dominated for 0.2< k< 0.4, systematics dominated (before
subtraction) for 0.4< k< 0.55, and noise dominated for
k> 0.6. Consequently, we can assess the consistency of the
recovered data points with the error bars in a manner similar to
that of HC21 (Equation (26) and Table 5). The null hypothesis
here is that the data points are consistent with zero, given the
error bars reported. Performing this test, we find a significant
detection (p< 0.001) in all bands and fields when including all
k> 0.2, consistent with detections of the injected EoR. For
k> 1, all bands and fields had a p-value consistent with the null
hypothesis, except for Band 2, Field 2, which has two 2σ
outliers at the highest k. The imaginary component of the
power spectrum is consistent with the null hypothesis for all
k> 0.2 and all bands and fields.

6. Discussion and Conclusions

6.1. Basic Conclusions

In general, we have found that the HERA H1C software
pipeline successfully reproduces known analytic input power
spectra, under the assumptions it adopts; we did not find major
issues with any of the pipeline steps we investigated here.
We performed power spectrum estimation with a full end-to-

end mock data set including a wide range of realistic
instrumental effects and foregrounds (see Section 5). In this
test, mock visibility data were self-consistently generated from
a known analytic power spectrum (see Section 4.1.1 and
Section 4.2), obscured with realistic Galactic and extragalactic
foreground models (see Section 4.1.2) and contaminated with
almost all known instrumental effects relevant to the HERA
instrument (see Section 4.3). A summary of the included
components can be found in Figure 3 and the top panel of
Table 4. These mock data, simulated to be broadly consistent
with H1C observing parameters, were passed through the full
H1C analysis and power spectrum estimation pipeline, with all
analysis parameters consistent with those used for processing
actual data (see HC21). As our primary result, we demonstrated
that the pipeline produces power spectrum estimates that are
consistent with the known analytic input to within thermal
noise levels (at the 2σ level) for k> 0.2 hMpc−1 for both bands
and fields considered (see Figure 16).
To test the pipeline in various regimes in which different

components dominate, the analytic input spectrum was
intentionally amplified to enable a strong “detection” at
k∼ 0.2 hMpc−1

—at the level of ∼25σ—with foregrounds
dominating on larger scales, thermal noise dominating at
smaller scales, and systematics dominating (before subtraction)
in between. The pipeline successfully detected this amplified
input signal, after suppressing foregrounds with a dynamic
range (foreground to noise ratio) of 107. Additionally, the
noise-dominated power spectrum at high k was found to be
consistent with the predicted noise power. With the possible
exception of a single k-bin in “Band 1, Field 2”, systematics
were mitigated to below the noise level of the simulation.
This does not guarantee that there are no inaccuracies

remaining, but we can be confident that any are unlikely to

Figure 15. Two-dimensional delay spectra for the end-to-end test (step 4). The left panel shows the result having skipped the systematic subtraction step (and thus
contains all of the extra instrumental systematics injected into the data), the center panel shows the full end-to-end run with systematic subtraction, and the right panel
shows the EoR-only data set. The gray dashed line marks the foreground horizon (i.e., the wedge).
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have major effects on the HC21 results. Recall that the goal of
this effort was to validate the software and algorithms, not the
data. Thus, there may yet be subtle effects present in the real
data, which we did not adequately represent in the simulation,
or analysis choices that do not perform correctly when the
assumptions of the pipeline are violated. However, substantial
issues like those found in Cheng et al. (2018), which were the
result of the algorithm, independent of the data, seem unlikely.

A number of small problems and unanticipated effects were
discovered (e.g., those given in Table 3) and these have led
either to improvements in the existing pipeline which eliminate
them, or inclusion in a list of effects to continue investigating.

6.2. Scope of Future Work

As the HERA pipeline improves and changes, the validation
effort will need to continue to include simulations that

effectively test the new software and challenge the assumptions
made. There are some obvious axes along which the validation
effort will need to be extended or modified for future work; we
briefly list some of them here.
In this work, we have compared portions of the analysis

between two pipelines: the HERA standard one and sim-
pleDS. This comparison was done nearly “blind,” i.e., the
group analyzing using simpleDS did not know anything
about the data sets that were prepared for it and analyzed the
data as if they were from the real instrument. Both aspects of
this cross-check should be kept in future validation efforts,
namely the existence of a parallel pipeline and the independent,
blind analysis of the simulated data sets. This turns up both
differences due to the different algorithms but is also revealing
of different implicit assumptions in the analyses.
A more complete simulation of RFI and the effectiveness of

the flagging is clearly essential as the limits get deeper to

Figure 16. Recovered power spectra of the end-to-end test (step 4). We plot the data before systematic treatment (blue), after systematic treatment (orange) with its 2σ
error bars, as well as the intrinsic EoR signal (gray) and the noise floor (black dashed). The top panel shows the first LST cut (1.5–2.8 hr) and the bottom panel the
second LST cut (4.4–6.4 hr). The subpanels plot the ratio of the recovered (orange) over the EoR (gray), showing unbiased recovery of the intrinsic EoR signal at all k
to within the estimated error bars.
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ensure that there is no significant effect due to unflagged RFI.
In part, this requires devising and implementing a suite of null
tests on the real data, because the complexity of actual RFI will
probably always exceed our ability to simulate it. Nevertheless,
it should be possible to gain considerably more insight via a
detailed simulation step into how well our current algorithms
are doing and whether there are likely gaps in their
effectiveness (The HERA Collaboration & Wilenksy 2019).

The simulations here have several aspects that are specific to
the instrument configuration. An entirely new feed system is
currently being commissioned (de Lera Acedo et al. 2020;
Fagnoni et al. 2021a), which will necessitate a new set of
investigations of systematic effects, new simulations of them,
and tests of the methods proposed to correct or mitigate them.

The continued improvement in our understanding of fore-
grounds, including both better point-source catalogs and better
models of diffuse emission, particularly below 100 MHz, will
be folded into future validation simulations. The foreground
models should also be broadened to include Faraday-rotated
polarized emission, to simulate the effects of polarized leakage
that could be comparable to the level of EoR, especially for the
delay spectrum approach, which does not segregate the
polarized signal via an image-based analysis (Nunhokee et al.
2017; Asad et al. 2016, 2018). The effects of the ionosphere
may also be important, particularly its interaction with the
polarized foregrounds (Martinot et al. 2018).
Another complication not directly addressed by our analysis

is the impact of an incomplete or incorrect sky and/or beam
model on the HERA absolute calibration step. In addition to the
flux-scale issues (quantified in Kern et al. 2020a and accounted
for in HC21), this effect can introduce spurious spectral
structure into the calibration solutions (Barry et al. 2016; Byrne
et al. 2019), which can be mitigated by including only short
baselines (Ewall-Wice et al. 2017; Orosz et al. 2019) in the
calibration. Because the reference visibilities used in absolute
calibration differ little from the true visibilities (they are filtered
at high delay as explained in Section (2.2)), the impact of sky-
model error cannot be quantified here. However, because
calibration solutions are smoothed spectrally at delays larger
than 100 ns, we avoid spectral structure from modeling error by
simply not trying to calibrate any true spectral structure in the
instrument response beyond 100 ns unless it can be modeled as
the sum of reflections and inferred from the autocorrelations.
While this smoothing was primarily motivated by the desire to
mitigate the effect of cross-coupling on the gains (Kern et al.
2020a), it makes the spectral impact of modeling error largely
irrelevant for this analysis. If additional degrees of freedom are
admitted in the calibration solutions in the future (e.g., by
increasing the delay threshold for smoothing), this question
needs to be revisited.
Such considerations also point to the complex open question

of how to simulate the effects of violations of the assumptions of
the analysis, particularly with regard to incomplete knowledge of
the primary beams of the antennas and failure of redundancy
between nominally redundant baselines for various reasons. The
ability to simulate a different primary beam for each antenna is

Figure 17. Signal-loss test for the LST averaging step in the H1C analysis
pipeline. This measures the amount of signal loss induced by coherent
averaging of the visibilities across the LST. The numerator of the ratio is the
power spectrum of the EoR-only visibilities having been averaged over a 7
minute window, while the denominator is the same data product with a time
averaging window of only 43 seconds. This step induces a ∼1% signal loss,
which is deemed negligible compared to other limiting uncertainties. This
result has been verified against different visibility simulators and different EoR
models (Kern et al. 2019).

Figure 18. A measurement of the amount of loss induced by the cross-coupling
high-pass time filter as a function of how much of the data near the edges of our
time axis we flag. Because of edge effects, the cross-coupling filter leads to
more loss for time bins near the bounds of our time axis. We show here that by
flagging 30 minutes on either side, we minimize this loss, with a residual loss
of 3% (1%) in power for Band 1 (Band 2).

Figure 19. The fractional (1σ) cosmic variance uncertainty on the power
spectrum for 2 hr of drift-scan observations with HERA-37 is on
average ∼5.5%. This is computed by taking the rms of the EoR-only power
spectra across the 2 hr time range and then dividing by the effective degrees of
freedom set by the HERA beam-crossing time of 1 hr.
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included in our simulation packages (RIMEz and pyuvsim),
but how to represent realistic variations is currently a topic of
active research (e.g., Choudhuri et al. 2021). Another example of

this is simulating time-variable gains that capture the actual
instrument behavior.
Another consideration not addressed in this validation suite,

but firmly in place for future tests, is the applicability of the
pipeline to markedly different (but physically reasonable)
shapes for Peor(k). For instance, one might imagine that a
“sharp” feature in Peor(k) might cause difficulties for power
spectrum estimation. The interaction of the window functions
with the power spectrum also needs to be considered more
carefully.
Finally, the end-to-end approach here only considered a

simulation of a single data set of approximately the same size
as the actual one. As the HERA data grow, this will be an
increasingly difficult task, to say nothing of the need for
exploring errors via multiple realizations of noise, systematic
effects, and cosmological signal. In particular, our criteria for
what constitutes a successful end-to-end test will need to be
more rigorously tied to keeping systematic errors from the
analysis to less than the random errors due to instrument noise
(and its coupling to signal), combined with the expected cosmic
variance (e.g., Lanman & Pober 2019). This will also have an
effect on how we assess the errors on tests of portions of the
pipeline (the “steps” in Figure 3). We will need to investigate
further which aspects of the pipeline truly require a simulated
data set comparable to the full one and which require multiple
realizations to understand the statistical effects. This is
particularly important with respect to systematic effects whose
exact parameterization is difficult to quantify (e.g., primary
beam nonredundancy).

This material is based upon work supported by the National
Science Foundation under grant Nos. 1636646 and 1836019
and institutional support from the HERA collaboration
partners. This research is funded in part by the Gordon and
Betty Moore Foundation. HERA is hosted by the South African
Radio Astronomy Observatory, which is a facility of the

Figure 20. Two blinded simulations were processed using an independently developed shadow pipeline (simpleDS; Kolopanis et al. 2019). One contained a detectable
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discussion between the simulation team and the shadow group about weighting and data selection, but not unblinding the files, a strong distinction emerged (right),
which the group interpreted as evidence for a (simulated) 21 cm signal. This was confirmed in unblinding by adding the expected 21 cm signal. Green lines show
theoretically predicted noise power (PN) at the 1σ and 2σ levels.
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Appendix A
The HERA Validation Subsystem

The HERA collaboration has placed a high emphasis on
detailed validation by establishing a dedicated Validation team,
formalized as an essential HERA subsystem. HERA “sub-
systems” are the major components of the HERA experiment

and have a dedicated team associated with each. In addition to
the “Validation” subsystem, others include “Power Spectrum
Estimation,” “Analysis,” “Quality Metrics,” and “Inclusion/
Diversity.”
The scope of this effort is clearly wide ranging: ultimately it

is to verify that the reported power spectra from the HERA
collaboration are free from defects, whether from code bugs,
poor algorithmic choices, or inappropriate physical assump-
tions. At the same time, the goal is not to merely internally
validate, but also to ensure that the pipeline is reproducible and
understandable by the wider community, in order to build
confidence in reported upper limits or detections.

A.1. Code Standards

HERA has adopted a set of high-standard open-source
software practices that encourage transparency, reproducibility,
interoperability, and peer-verification. All systems-level HERA
code is hosted open-source on a single GitHub organization.39

A set of well-defined software standards is applicable across
the organization, encouraging a certain degree of homogeneity
between project-level packages. Among these standards are

1. Documentation: Python code is self-documented (i.e.,
includes “docstrings”40 for all public modules, functions,
classes, and methods), using a uniform docstring format
(typically NUMPYDOC). Extra tutorials and examples are
also encouraged.

2. Testing: all systems-level HERA packages are thoroughly
unit-tested,41 and kept at >95% code coverage.42 Testing
is performed continuously via an online Continuous
Integration provider (e.g., Travis or Github Actions).

3. Formatting: all code is PEP8 compliant43 (often enforced
by the use of external tools such as BLACK44 PRE-
COMMIT45), making each package more homogeneous
(important when there are many contributors to the
repository) and easy to read. This is important for
transparency both within and without the collaboration.

4. Review: each package uses the GitHub flow46 as a
software delivery workflow. In brief, in this workflow the
“master”47 branch is considered protected and is disabled
for direct code changes on GitHub. This requires new
code additions (and bug fixes) to be developed in a
branch that is “not master” and a formal “pull request”
(PR) to be created and accepted before merging back into
the protected “master“ branch. All repositories have an
option enabled in which PRs must be first reviewed and

39 https://github.com/hera-team—note that not all repositories found here are
considered “systems-level”.
40 Docstrings are a Python construct for documenting code objects in place in
the code and can be used to automatically create up-to-date online
documentation.
41 Unit tests are functions that assert specific conditions on the behavior of the
basic units of the software (e.g., functions or class methods) and can be
collected and run together in an automated fashion. This is in contrast to
integration tests, which assert conditional behavior of combinations of the basic
units.
42 Code coverage represents the percentage of standard lines of code in the
package that are run during the execution of the test suite.
43 https://www.python.org/dev/peps/pep-0008/
44 https://black.readthedocs.io
45 https://pre-commit.com/
46 https://guides.github.com/introduction/flow/
47 In the near future, the master branch will be renamed to main, as is now
widely endorsed.

23

The Astrophysical Journal, 924:85 (26pp), 2022 January 10 Aguirre et al.

https://github.com/hera-team
https://www.python.org/dev/peps/pep-0008/
https://black.readthedocs.io
https://pre-commit.com/
https://guides.github.com/introduction/flow/


accepted by a person other than the author before they
can be merged. PRs must also satisfy a host of other
status checks, such as passing Continuous Integration
tests and satisfying coverage checks. Such reviews lessen
the probability that subtle bugs enter the code (especially
those that are only apparent when one has familiarity with
a different part of the code), but also serve to increase the
overall familiarity with the code base, as it evolves, of the
wider collaboration.

A.2. The Validation Code Repository

Following the lead of the wider collaboration, the HERA
Validation team has established a public repository in which all
pipeline validation tests are performed and archived.48 We have
defined a comprehensive set of tests of the pipeline, moving
from simplistic analyses through to a full end-to-end simulation
and analysis (see Section 3.2). Each of these tests is performed
and documented in a Jupyter notebook,49 developed and
archived in our GitHub repository. Jupyter notebooks allow
combining arbitrary documentation and code execution in order
to generate a full analysis. We utilize this ability, adopting a
certain template for each test that includes listing the full
provenance of all data used, the exact package versions of all
dependent software (down to the git hash), a summary
description, a set of criteria to meet for the test to pass, and a
list of suggestions for follow-up tests. These sections promote
reproducibility and clarity.

Each test is recorded via a three-digit identifier: major.
minor.test, in which the major digit identifies a broad
class of physical effects being tested, the minor digit identifies
variations on that class of physical effects, and the test digit
represents an iteration in the testing procedure (e.g., a test may
fail and require rerunning with a bugfix, or with a slight
alteration in the assumptions). Each notebook contains a single
test. Although all tests are version-controlled, we do not
overwrite test notebooks when an updated test is performed.
The failed or outdated tests are kept at the top level of the
repository to make it easy to determine the history of the test.50

In keeping with the standards of the rest of the collaboration,
validation tests are required to be reviewed and accepted by the
rest of the group before being merged into the master branch.

Extra features of GitHub have also been used to aid in the
organization of the Validation effort. In particular, newly
proposed tests are created as GitHub issues, where they are
discussed before accepting them into the test-suite canon. A set
of custom tags has been specified, explicitly defining each
simulation and analysis component the test would validate (see
Figure 3).

This system has served well in this particular validation
effort and will continue to be used to develop further validation
tests for upcoming data releases.

Appendix B
Window Functions and Aliasing

This appendix seeks to explain the discrepancy between the
analytic input and estimated power spectrum and present the

definition of the “aliased” power spectrum in Figure 4 and why
it is much closer to the estimated power spectrum.
In general the power spectrum estimates P k( ) produced with

hera_pspec in this paper can be described by

 åå a b a b=
a b

P k E k V V, , , B1( ) ( ) ( ) ( ) ( )*

where V is the visibility function and α, β are indices over the
set of points


a n= bt, ,( ) at which the visibility function is

measured. Let the visibility V be sourced by only the
cosmological signal, as in the simulation that produces
Figure 4. The covariance matrix of the data is then a linear
functional of the power spectrum, which may be written

òa b
a b

á ñ =
¶á ñ

¶

¥
V V

V V

P k
P k dk. B2

0
( ) ( ) ( ) ( )

( )
( ) ( )*

*

The expectation value of the power spectrum estimate is thus

 å a b a bá ñ = á ñ
ab

P k E k V V, , B3( ) ( ) ( ) ( ) ( )*

ò å a b
a b

á =
¶á ñ

¶ ¢
¢ ¢
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We define the “window function”

å a b
a b

á ¢ º
¶á ñ

¶ ¢ab
W k k E k

V V

P k
, , , , B5( ) ( ) ( ) ( )

( )
( )

*

and hence an unbiased estimator for the power spectrum—i.e.,
an estimator such that

áá ñ =P k P k B6( ) ( ) ( )

–would be one such that the window function is

å a b
a b

dá
¶á ñ

¶ ¢
= - ¢

ab
E k

V V

P k
k k, , . B7( ) ( ) ( )

( )
( ) ( )

*

With a countable number of samples α and finite bandwidths of
our measurements, it is not possible to achieve such a window
function exactly—any real measurement will be “corrupted” by
a window function ¢W k k,( ) with a finite width. The best that
can be accomplished is that the window function is localized so
that the estimate of P k( ) has contributions from only ¢k nearby
to k. The delay spectrum estimator applied in Figure 4 has the
form

 
n n d dá ¢ = - ¢ b bE k t t w w i k n m, , , , , , exp

B8
n i m j n m t t ij,( ) ( ( ))

( )

(i.e.,  is the delay spectrum normalization scalar and is the
frequency band dependent delay conversion factor), which
produces a localized window function when wn is a frequency
taper like the Blackmann-Harris used in our power spectrum
estimates.
It is this effect that causes the evident discrepancy between

the input and estimated power spectrum in Figure 4. In the low-
k regime (k∼ 0.1) the window function has an approximately
constant width (in linear units of k), except for the lowest
several k points. Each power spectrum estimate is an integral
over the true power spectrum within that constant width, but as
the estimated k point decreases toward low k, the intrinsic
power-law power spectrum increasingly varies over the width

48 https://github.com/hera-team/hera-validation
49 https://jupyter.org
50 Jupyter notebooks are also not particularly well-suited for granular version
control.
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of the window function. This causes the estimate to be
increasingly biased high with respect to the central value of the
analytic input. However, at the lowest two or three k points, the
window functions become much less well behaved, i.e., more
oscillatory and less localized, which produces the dip in the
lowest k point in Figure 4.

At high k the effect of the window function is approximated
by a classical aliasing calculation—aliasing in a DFT-based
power spectrum estimate is described by a window function,
and in this case the aliasing window function is a decent
approximation of the true window function in our test. To see
this, consider the window function induced by the classical
aliasing in a DFT and the resulting power spectrum. If a
Gaussian random function f (r) has a power spectrum P(k), i.e.,

ò p
á = p

-¥

¥
f r

dk
e f k

2
, B9ikr2( ) ˜ ( ) ( )

p dáá ¢ ñ = - ¢f k f k P k k k2 , B10˜ ( ) ˜ ) ( ) ( ) ( )(

and f (r) is sampled at a rate of 2ks with samples fn= f (rn) and
the power spectrum is estimated from the DFT estimate

åá µ p

=

f k e f , B11m
n

N
i m

n
1

2 n
N˜ ( ) ( )

then the measured power spectrum =P k f km m
2ˆ ( ) ∣ ˜ ( )∣ has an

expectation value á ñ »P Paliased
ˆ (for N 100) where, according

to the well-known equation,
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=
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1
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This can be expressed as the effect of a window function
defined as

d d
d
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and then for k ä [0, ks)
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The function Paliased is the “aliased” power spectrum in
Figure 4.
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