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A B S T R A C T 

Observation of redshifted 21-cm signal from the Epoch of Reionization (EoR) is challenging due to contamination from the 
bright foreground sources that exceed the signal by several orders of magnitude. Removal of this very high foreground relies on 

accurate calibration to keep the intrinsic property of the foreground with frequency. Commonly employed calibration techniques 
for these experiments are the sky model-based and the redundant baseline-based calibration approaches, which can suffer from 

sky-modelling error and array redundancy imperfection respectively. In this work, we introduce the hybrid correlation calibration 

( CorrCal ) scheme, which aims to bridge the gap between redundant and sky-based calibration by relaxing redundancy of the 
array and including sky information into the calibration formalisms. We apply the CorrCal to the data of Precision Array 

for Probing the Epoch of Reionization (PAPER) experiment, which was pre-calibrated using redundant baseline calibration. 
We show about 6% suppression at the bin right on the horizon limit of the foreground wedge-like structure, relative to the pre- 
calibrated power spectra. This small impro v ement of the fore ground power spectra around the wedge limit could be suggestive 
of reduced spectral structure in the data after CorrCal calibration, which lays the foundation for future impro v ement of the 
calibration algorithm and implementation method. 

Key words: instrumentation: interferometers – methods: observational – telescopes – cosmology: dark ages, reionization, first 
stars. 
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 I N T RO D U C T I O N  

he cosmic dark ages ended at around 100 million years after
he big bang, marking the formation of the first structures such
s galaxies and stars. These objects started to emit radiation that
nfluences the nearby primordial intergalactic medium (IGM), which
redominantly filled with the neutral hydrogen atom. As the number
 E-mail: Ma@ukzn.ac.za 
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f these very first sources increases, they emitted sufficient radiation
o convert the neutral IGM into the fully ionized medium of the
ydrogen atom eventually. The period that marks the transition of
eutral IGM into the fully ionized state is known as the Epoch of
eionization (EoR) in the history of the Univ erse. Thus, inv estigating

he era of EoR will answer the fundamental questions of the formation
f the first structures and their properties. 
The measurement of the radiation from the high-redshifted 21-cm

mission line is employed to probe the EoR era. This emission line
s due to the hyperfine transition of the neutral hydrogen atom in the
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1 The prototype version of the software located on https://github.com/sievers 
/corrcal2.git is being used for this work. 
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GM empowered by the first sources. The information imprinted into 
he radiation associated with the redshifted 21-cm line can be used 
s a powerful tool in the modern cosmology to study the ionization
tate and large-scale temperature fluctuation of IGM, owing to the 
ormation of the first structures (see e.g. Barkana & Loeb 2001 ;
h 2001 ; Furlanetto, Oh & Briggs 2006 ; Morales & Wyithe 2010 ;
ritchard & Loeb 2012 ). 
A direct probe of the EoR is the tomographic mapping of redshifted 

1-cm signals from the neutral hydrogen atom (Madau et al. 1996 ;
arkana & Loeb 2001 ; Furlanetto et al. 2006 ; Morales & Wyithe
010 ; Pritchard & Loeb 2012 ). Significant progress has made in the
ast decades, because sev eral e xperiments dedicated to studying this
ignal have been built or are being upgraded. The first-generation 21- 
m experiments, including the Murchison Widefield Array (MWA; 
ingay et al. 2013 ), the Donald C. Backer Precision Array for
robing the Epoch of Reionization (PAPER; Parsons et al. 2010 ), the
Ow-Frequency ARray (LOFAR; van Haarlem et al. 2013 ), and the 
iantMeter wave Radio Telescope EoR experiment (GMRT; Paciga 

t al. 2011 ) are already operating and taking data. Observations 
rom these first-generation e xperiments hav e set upper limits to the
tatistical power spectrum of 21-cm brightness temperature from 

osmic reionization. In particular, results from MWA, LOFAR, and 
APER observations (e.g. Paciga et al. 2011 ; Dillon et al. 2014 ; Patil
t al. 2017 ; Cheng et al. 2018 ; Kolopanis et al. 2019 ; Mertens et al.
020 ) have placed upper limits on the statistical power spectrum 

f the 21-cm emissions o v er a broad range of redshifts, providing
vidence for the heating of the IGM before reionization. The most
ecent result from MWA constrained the EoR power spectrum as 
 

2 = (43 mK ) 2 = 1 . 8 × 10 3 mK 

2 for k = 0 . 14 h Mpc −1 at z = 6.5,
hich is the tightest measurement currently (Trott et al. 2020 ; Rahimi

t al. 2021 ). Lessons learned from these e xperiments hav e led to the
onstruction of the second-generation instruments, which include the 
ydrogen Epoch of Reionization Array (HERA; DeBoer et al. 2017 ), 

he upgraded MW A (MW A-II; Wayth et al. 2018 ), and the LOFAR 2.0
urv e y (Edler, de Gasperin & Rafferty 2021 ). With more collecting
reas and impro v ed electronics, high-significant measurements of the 
1-cm power spectrum are anticipated from these second-generation 
nstruments (Pober et al. 2014 ; Liu & Parsons 2016 ; Wayth et al.
018 ). 
Detecting the 21-cm signal from EoR is challenging due to the 

eakness of 21-cm signal comparing to the brightness temperature 
f the foreground originated from synchrotron radiation from our 
alaxy, strong point sources, and thermal bremsstrahlung from the 
 II re gion (Shav er et al. 1999 ; Santos, Cooray & Knox 2005 ;
urlanetto et al. 2006 ; Bernardi et al. 2009 ; Parsons et al. 2014 ).
o disentangle strong foregrounds from weak 21-cm signal, several 
itigation techniques have been developed (see e.g. Wang et al. 

006 ; Bo wman, Morales & He witt 2009 ; Liu et al. 2009 ; Liu &
e gmark 2011 ; P arsons et al. 2012 ; Dillon, Liu & Te gmark 2013 ;
iu, Parsons & Trott 2014a ; Beardsley et al. 2016 ; Pober et al. 2016 ;
othi et al. 2021 ). These techniques, in general, can be catego-

ized into two approaches – foreground subtraction and foreground 
 v oidance (Chapman & Jeli ́c 2019 ). F ore ground subtraction involves
odelling of the foreground and subtracting them from the data. 

n contrast, foreground a v oidance completely discards foreground 
ontaminated data from analysis and tries to reconstruct the power 
pectra of EoR in the F ourier re gime, which are not affected by
oreground. 

In both foreground mitigation and subtraction, accurate calibration 
f the array is critical because calibration errors can contaminate the 
ourier mode of the EoR power spectrum (Morales et al. 2012 ; Ewall-
ice et al. 2017 ). Furthermore, simulations in Orosz et al. ( 2018 )
uggested that calibration error introduced by quasi-redundancy in 
ntenna positioning and slight variations of the beam responses 
etween different antennas are significant sources of contamination 
f the EoR signal. Even in the limit of perfect antenna positioning and
elescope response, the EoR window can still be contaminated if the
nstrument calibration is susceptible to sky-modelling error (Byrne 
t al. 2019 ). 

The array configuration of PAPER is designed to enhance sen- 
itivity for a first power-spectrum detection by measuring same 
ourier modes on the sky with a group of redundant baselines.
hese redundant visibilities need to be calibrated accurately by using 

he redundancy information of the array. The calibration technique 
mplemented for such kind of array layout is generally known as
edundant baseline calibration (Wieringa 1992 ; Liu et al. 2010 ).
his technique intends to calibrate measurements from the array 
f antennas configured on a regular grid spacing with maximum 

edundancy in baseline distribution and tightly packed with the 
rift-scan mode of observations. Then one can use statistical tool 
o calibrate the visibilities for independent baselines. 

In this work, we introduce a recently developed calibration scheme 
alled correlation calibration ( CorrCal 1 ), first proposed in Sievers 
 2017 ). CorrCal aims to bridge the gap between sky-based and
edundant calibration by incorporating partial sky information and 
nformation on the non-redundancies of the array into the calibration 
olutions. We use this new scheme to re-calibrate data from the
4-element PAPER array (hereafter PAPER64), which is a 9-h 
ntegration data set. Ali et al. ( 2015 ) calibrated this data set with a
edundant baseline calibration scheme and published power spectrum 

esults. This work used the same initial calibration techniques 
mployed in Ali et al. ( 2015 ) but has an independent pipeline from
hat point on. We will show that CorrCal can potentially constrain
he wedge-like structure of foreground in the Fourier space. 

The rest of paper is organized as follows. In Section 2, we
ive a general review of common calibration approaches for radio 
nterferometric measurements. In Section 3, we present CorrCal 
alibration scheme. In Section 4, we apply our method to the 9-
 PAPER-64 data set. In Section 5, we present the results of the
orrCal calibration. The conclusion will be in the last section. 

 A  REVI EW  O F  C A L I B R AT I O N  FORMALIS M  

n radio interferometry, the correlated signal (visibility) from two 
ndependent receiving elements (antennas) is the sum of the system 

oise and the actual sky signal (or true sky visibility) multiplied by
he complex gain parameters of the antennas. The gain parameters 
epend on the electromagnetic properties of the antennas, whereas 
he additive noise is mostly dominated by the thermal noise of the
eceiver system and the sky components. 

Performing a calibration is to solve for the complex gain param-
ters to reco v er the true sky signal from the measured signal. The
athematical form of this statement is the measurement equation, 

 pq = g p g 
∗
q v pq + n pq . (1) 

ere, g p and g q are the unknown complex gain parameters of antenna
 and antenna q , which depend on the frequency f . v pq is the true
ky visibility corresponding to the baseline between antenna p and 
ntenna q , for which we ultimately want to reco v er from the measured
isibility (observed data) d pq . n pq is the system noise on this baseline,
MNRAS 510, 1680–1696 (2022) 
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hich is usually assumed to be Gaussian. The asterisk superscript
indicates the complex conjugate. All terms in equation (1) are

mplicitly time-dependent. The antenna gain g can also be written as
 complex exponential form with amplitude a and phase φ for each
f the antenna p (or q ), 

 p = a p exp (iφp ) . (2) 

ote that we used ‘i’ to indicate the imaginary unit 
√ −1 throughout

he paper. 
For multiple baselines, the measurement equation can be written

n a more compact form by using vector and matrix notations 

d = G v + n . (3) 

ere, d is a vector containing the measured visibilities of different
aselines. v is vector of the corresponding true sky visibility. G is a
iagonal gain matrix with g p g ∗q as its elements placed diagonally, and
 is a vector containing noise of the corresponding baseline formed
rom antenna p and q . For simplicity, we will omit the frequency (and
ime) dependency in the vector and matrix notations through the rest
f the paper unless otherwise stated. 
Most calibration software packages developed so far to solve for

he gain parameter G can be categorized into either one of the two
onventional approaches, i.e. sky-based calibration or redundant-
aseline calibration. 2 In the sub-sections that follow, we present
he underlying mathematical formalism of these two calibration
pproaches and discuss their inherent advantages and disadvantages.

.1 Sky-based calibration 

ky-based calibration uses a model visibility that approximates
he true sky visibility, m pq ≈ v pq to solve for the gain solutions.
quation (1) can be written equi v alently in the matrix form, 

d = G m + n . (4) 

he model visibility is usually constructed from known sources
nd the telescope beam response. Solving for the gains G is then
ssentially equi v alent to minimizing the χ2 function of the dif ference
etween the measured visibility d and the model visibility m , 

2 = ( d − G m ) † N 

−1 ( d − G m ) . (5) 

ere, N is an ensemble average noise matrix in which its diagonal
lements are the noise variance σ 2 

pq on the baseline formed from
ntenna p and antenna q , 

 = 〈 n n 

† 〉 
= σ 2 

pq I , (6) 

here the angle brackets 〈 ... 〉 denote ensemble average, and in the
econd equality in equation (6) assumes that the noise matrix
s diagonal, i.e. the noise on visibilities of different baselines is
ncorrelated . I is the identity matrix, and † denotes a complex
onjugate transpose. The measured visibility can be corrected (or
alibrated) by using the gain solutions estimated from optimization
f equation (5). Ho we ver, the precision of sky-based calibration is
ighly dependent on the sky models, which are imperfect due to
issing sources or an inaccurate beam model. This imperfection can

ead to calibration errors that introduce foreground contamination in
he cosmological Fourier space for 21-cm signal (Barry et al. 2016 ;
eardsley et al. 2016 ; Ewall-Wice et al. 2017 ; Byrne et al. 2019 ). 
 It is worth noticing that Liu et al. ( 2010 ) investigated the Taylor expansion 
f the sky to deal with direction dependence or non-redundancy. 

�  

3

NRAS 510, 1680–1696 (2022) 
.2 Redundant calibration 

edundant calibration relies on multiple copies of identical baselines
n arrays with the regular layout to relatively solve for both the gain
arameter and the true sky visibility from an o v er-determined system
f linear equations without the need for the sky model (Wieringa
992 ). The measurement equation for redundant calibration replaces
he true sky visibilities v pq with visibility terms that are constrained
o be equal across redundant baselines u α , where α inde x es the
edundant baseline sets (redundant groups), 

 pq = g p g 
∗
q u α + n pq . (7) 

ince the number of measured visibility d pq is greater than the
umber of u α that averaged over redundant group of the array and
he gain parameter g , this equation becomes o v er-determined and
an be solv ed, pro vided there are sufficient redundant baselines. The
olutions for equation (7) can be then determined by minimizing the
2 function of the form, 

2 = ( d − G u α) † N 

−1 ( d − G u α) . (8) 

n contrast to equation (5), the redundant visibility parameter u α here
s not pre-defined and will be solved iteratively alongside with the
ntenna gain factor G ≡ g p g q . To minimize the χ2 function, a least-
quare estimator is usually utilized. We direct the interested reader to
he existing literature (e.g. Liu et al. 2010 ; Zheng et al. 2014 ; Dillon
t al. 2018 , 2020 ) for detailed discussion of the least-square solver
mplementation. Minimizing equation (8) gives us a power spectrum
stimation 

ˆ x = [ A T

 N 

−1 A ] −1 A T

 N 

−1 d . (9) 

ere, the matrix A , which depends on the array configuration, maps
he measured visibility d to the calibration parameters G and v for
hich we want to solve. The vector ˆ x contains the least-square

stimates for per antenna gain parameter and per-redundant group
veraged visibility. Equation (9) is solvable iteratively, using the fitted
alibration parameter as the fiducial guesses for the next cycle of the
tting, until the solutions converge. The method is implemented in the
mniCal 3 software package (Zheng et al. 2014 ), which was used to
alibrate PAPER and the MWA Phase II observations (Parsons et al.
014 ; Ali et al. 2015 ; Li et al. 2018 ; Kolopanis et al. 2019 ). 
Due to the degeneracies in the measurement equation (equa-

ion (7)), the least-square estimator of equation (8) will not converge
o a unique solution. Here, the term degeneracies refers to the linear
ombinations of gains and visibilities that redundant calibration
annot solve for, which results in the χ2 function invariant across
ifferent choices of the degenerate parameters. In-depth discussions
f de generac y issues in redundant baseline calibration can be found
n Liu et al. ( 2010 ), Zheng et al. ( 2014 ), Dillon et al. ( 2018 ), and
yrne et al. ( 2019 ). 
In general, redundant baseline calibration suffers from four types

f degeneracies for array elements configured on the same plane.
irst, if one multiplies the amplitude of the antenna gain by a
onstant factor A and divides the sky parameter by A 

2 , the χ2 

emains unchanged so that the o v erall amplitude, A , of the instrument
annot be solv ed. Secondly, mo ving the phase of the gain parameter
y certain amount � , i.e. g p = | g p | e jφp → | g p | e j ( φp + � ) does not
ffect the χ2 due to the cancellation of g p × g ∗q in equation (1). The
hird and fourth degeneracies are caused by phase gradients � x and
 y along x and y directions, respectively, for a planar array. For
 https:// github.com/jeffzhen/ omnical.git

https://github.com/jeffzhen/omnical.git
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xample, if one shifts g p = | g p | e jφp → | g q | e j ( φq + � x x q + � y y q ) , it does
ot affect the χ2 if it is complemented by shift in sky parameter
 

true 
pq = | V 

true 
pq | e jφpq → | V 

true 
pq | e j ( φpq −� x b x −� y b y ) , where x q and y q are

he coordinates for antenna j , and b x = x q − x p and b y = y q − y p are x
nd y coordinates of a baseline vector b connecting antenna p and q ,
espectively. So, the phase gradients � x and � y are still degenerate 
n the relative calibration stage. In a sense, inclining the whole array
n either direction ( x or y ) is exactly equi v alent to moving the phase
entre of the sources on the sky in opposite direction. Hence, these
wo effects can cancel each other and result in the phase-gradient 
egeneracies, which in turn results in the sources appearing to be 
ffset from the phase centre. 
To fix the de generac y issues, the redundant calibration can be

ivided into two calibration steps. These are relative calibration and 
bsolute calibration. First, relative calibration is performed using 
he algorithm that we have just described to solve the antenna 
ains and the true sky. Ho we ver, these solutions are degenerate,
nd an o v erall amplitude, an o v erall phase, and phase gradient
alibration parameters remain unknown. Then, absolute calibration 
s performed to set these degeneracies to a reference and obtain the
nal calibration solutions. One particular approach for absolution 
alibration, as discussed in Byrne et al. ( 2019 ), is to map a pre-defined
ky model of bright point sources to the degenerate parameters. 
o we v er, setting de generacies using the sk y information in redundant

alibration is difficult because incompleteness of the sky model 
an introduce frequency-dependent gain errors, which may lead to 
pectral structures in the otherwise smooth observations (Barry et al. 
016 ; Byrne et al. 2019 ). 
Thus, the fundamental shortcomings of redundant calibration are 

mperfection of array redundancy and sky-modelling error. During 
he absolute calibration stage, the sky-modelling error enters into the 
edundant calibration. Redundant calibration assumes that the same 
ky is seen by all baselines in the same redundant group, requiring
hese baselines to have the same physical length and orientation. 
his assumption also dictates that all antenna elements in the array 
ave the same primary beam responses. In the real situation, both 
re impossible to achieve for the level of accuracy required. These 
on-redundancies will result in calibration errors that lead to more 
oreground contamination in the cosmological Fourier space for 21- 
m signal (Ewall-Wice et al. 2017 ; Orosz et al. 2018 ). The powerful
lternative is to include the relaxed-redundancy information and 
osition of sources into the calibration formalism (Sievers 2017 ). 

 C O R R E L A  T I O N  C A L I B R A  T I O N  (  CorrCal )  

ievers ( 2017 ) proposed a hybrid calibration scheme called Cor-
Cal , which aims to further bridge the gap between sky-based 
nd redundant calibrations by taking into account sky and array 
nformation into the calibration algorithm. The CorrCal framework 
elies on the assumption that sky information is statistically Gaussian,
hich is a good approximation (Sievers ( 2017 )). This assumption 

llows CorrCal to relax the redundancy of the array and including 
he known sky information in its formalism through covariance-based 
alculation of χ2 . The covariance matrix thus forms a statistical 
odel of the sky power spectrum, weighted by the instrumental 

esponse. We describe the underlying mathematical formalism of 
orrCal in this section. 
Giv en a v ector of the measured visibilities d defined in equa-

ion (3), its covariance � follows, 

 = 〈 d d † 〉 . (10) 
sing the definition of d from equation (3), � can be expanded as, 

 = 〈 ( G v + n )( G v + n ) † 〉 
= G 〈 v v † 〉 G 

† + G 〈 v n 

† 〉 + 〈 n v † 〉 G 

† + 〈 n n 

† 〉 . (11) 

y assuming that the instrumental noise vector n does not correlate
ith the true sky visibility vector v , the middle two terms drop out.
he last term describes the noise covariance, which is generally as-
umed to be Gaussian and uncorrelated between baselines; therefore, 
t can be written as a noise matrix N as defined in equation (6). The
rst term describes the correlation of the sky multiplied by the gains.
f we define the v ariance–cov ariance matrix of the true sky as 

 = 〈 v v † 〉 , (12) 

equation (11) takes 

 = G C G 

† + N . (13) 

nder an assumption that the sky is random Gaussian distributed, we
ote that by virtue of the central limit theorem, the multitude of ran-
om phenomena that produce the random character of the observed 
ata d implies that their distributions are nearly Gaussian in general.
hus, the likelihood L of data d , given their covariance matrix � ,

akes the standard form of a multidimensional Gaussian distribution, 

 ( d , � ) ∝ exp 

[
−1 

2 
d † � 

−1 d 
]

. (14) 

sing equation (13) in this equation, we obtain the likelihood 

 ( d , C | G ) ∝ exp 

[
−1 

2 
d † ( G C G 

† + N ) −1 d 
]

. (15) 

aking the logarithm of both sides of equation (15), we obtain the
og-likelihood function log L , 

log L ( d , C | G ) ∝ −1 

2 
d † ( G C G 

† + N ) −1 d . (16) 

aximizing the likelihood function L is equi v alent to minimizing
he (ne gativ e) log-likelihood log L . The term on the right-hand side
f equation (16) measures the square of the distances from predicted
or true) visibility to the measured visibility in the standard deviation
nit. Minimizing this term against G is equal to maximizing the 
ikelihood of true visibility being observed. The exponential term is 
hus simply equal to the χ2 , given by 

2 = d † ( G C G 

† + N ) −1 d . (17) 

he covariance-based calculation of χ2 in this equation is the 
nderlying mathematical formalism of CorrCal . We further add an 
dditional term χ2 → χ2 + ( 

∑ 

i Im( g i )) 2 + ( 
∑ 

i Re( g i ) − N ant ) 2 as a
egularization factor to bound the gain solution. Here, the χ2 function 
oes not explicitly depend on the sky parameter or written in terms of
he redundant sets of visibility, but still, the array and sky information
re integrated into the covariance matrix C of the true sky visibility. 

Since we are modelling the data as Gaussian distributed, a form
f the χ2 function in equation (17) is different from the one defined
n equation (5) and equation (8), which explicitly depends on the
ky parameters m and u α , respecti vely. Ho we ver, the CorrCal
pproach of keeping the array and sky information in the C matrix
llows one to reproduce an exact copy of the redundant calibration
lgorithm in a limiting case. For instance, all baselines within the
erfectly redundant group see the same sky, so the ef fecti ve noise
 eff for this group is written as the sum of per-visibility diagonal
oise variance matrix N and covariance between visibilities. That is, 

 eff = N + ( a1 ) ⊗ ( a1 ) † , (18) 
MNRAS 510, 1680–1696 (2022) 
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here a is a parameter controlling the variance of the sky signal,
 = [1 , 1 , 1 , . . . ] is a vector of ones, and an operator ⊗ denotes
he outer product of vectors. Applying the Woodbury identity [see
quation (24)] to N 

−1 
eff , and taking a → ∞ , the χ2 becomes the same

o one for redundant calibration algorithm. 
Although complete information of the true sky can never be

btained, we can incorporate partial sky information into the co-
ariance matrix by using known sky models. Thus, we further split
he covariance matrix in equation (17) into two components as per
uggestion in Sievers ( 2017 ), 

 = S + R , (19) 

here the matrix S contains the covariance of the expected visibilities
f known sky sources, whereas R is the covariance matrix of the
isibilities within the redundant group that contains everything else
hat is not in S , i.e. ‘the rest,’ which is mostly the diffuse sky signal
rom our Galaxy’s emission, weighted by the instrumental response.
ote that equation (19) assumes that the sky components in S and
 are uncorrelated since most point sources are extragalactic. With

his definition, equation (17) becomes 

2 = d † ( G ( S + R ) G 

† + N ) −1 d . (20) 

ote that the explicit formalisms of S and R will be presented in
ection 3.1 in details. 
With the redundant group diffuse sky R and sources S expressed

s vector outer products, equation (19) can be rewritten as 

 = s s † + r r † , (21) 

here r and s are N -dimensional vectors for the diffuse sky and
ource components, respectively. We substitute equation (21) for C
n equation (20) to obtain a χ2 function 

2 = d † ( N + G ( s s † + r r † ) G 

† ) −1 d . (22) 

pplying the gain matrix to the source and redundant vectors in this
quation, we have 

2 = d † ( N + ̂  s ̂ s † + ̂  r ̂ r † ) −1 d , (23) 

here ̂  s = G s , ̂  r = G r , so ̂  s † = s † G 

† and ̂  r † = r † G 

† . 
Inversion of the matrices inside the parenthesis term in equa-

ion (23) can be done with Woodbury inversion formula (Woodbury
950 ), which we write here in the special case of a Hermitian matrix
f both B 

−1 and I + v † B 

−1 v are invertible 

 B + v ⊗ v † ) −1 = B 

−1 − B 

−1 v ( I + v † B 

−1 v ) −1 v † B , (24) 

here B and the identity matrix I are square matrices with dimension
 × N , while v is N -dimensional vector. 
For the sake of computational tractability, the implementation of

he Woodburry inversion to equation (23) in CorrCal follows the
ollowing steps: 

(i) First, the Woodburry inversion can be applied to � 

−1 , where
 = ( N + ̂  r ̂ r † ) for each redundant group separately, ignoring the

ource vectors s . To apply Woodburry identity to � 

−1 , let B = N
nd v = r . Then, the inverted form of � is kept separate for each
edundant group and saved in a factored form by applying the
holesky factorization of the matrix [ I + v † B 

−1 v ] −1 in equation (24)
or the redundant vectors r . 

(ii) Finally, using the source vectors s , and the already factored
orm of � 

−1 from the first step, the Woodburry inversion can be
omputed using ( � + ̂  s ̂ s † ) −1 . 
NRAS 510, 1680–1696 (2022) 
.1 Determining the sky and noise v ariance–co v ariance 
atrices 

o perform the CorrCal , we first need to estimate the matrices R , S ,
nd N . Thus, in this section, we will deri ve these v ariance–cov ariance
atrices explicitly. 

.1.1 Diffuse sky component matrix ( R ) 

or an instrument with a small field of vie w, the cov ariance matrices
an be directly constructed from the visibility in the two-dimensional
2D) UV plane. Ho we v er, most 21-cm e xperiments, including PA-
ER, use receiving elements that have wide field of views. Thus, the
urvature of the sky becomes important. To account for this effect and
implify the calculation, we will first project the visibility function
nto the spherical harmonic space before calculating the covariance. 

Giv en a v ector u = b / λ that expresses the baseline vector b
etween antennas p and q in wavelength λ, the measured cross-
orrelation signal from these antennas, or the visibility, ignoring
oise term, is given by, 

 pq ( u | f ) = 

∫ 
d 
I ( ̂ r , f ) B( ̂ r , f ) , (25) 

here 

( ̂ r , f ) = A p ( ̂ r , f ) A 

∗
q ( ̂ r , f ) exp [ −2iπu · ˆ r ] 

= | A p ( ̂ r , f ) | 2 exp [ −2iπu · ˆ r ] . (26) 

n this equation, I ( ̂ r , f ) is the flux density measured o v er a solid
ngle 
 subtended by the observed region of the sky in the direction
f a unit vector ˆ r . A p ( ̂ r , f ) and A q ( ̂ r , f ) are the primary beam of
ntenna p and q , respectively. Here, the squaring of the antenna
eam term A p ( ̂ r , f ) in the second equality of equation (26) comes
rom the fact that we assume that all antennas have the same primary
eam response. The antenna position information is integrated into
he exponential factor. Thus, the second line of the equation carries
rray information (position and beam response). 

Expanding the terms for the sky ( I ( ̂ r , f )) and array ( B( ̂ r , f )) o v er
he spherical harmonics, we have 

 ( ̂ r , f ) = 

∑ 

�m 

a �m 

( f ) Y �m 

( ̂ r ) , (27) 

( ̂ r , f ) = 

∑ 

�m 

b �m 

( f ) Y �m 

( ̂ r ) , (28) 

here a � m and b � m are the amplitudes of the flux density and the beam
unction for the spherical harmonics Y � m , respectively. The angular
umber � = 0, 1, 2, 3, . . . , and the azimuthal number m = −� , −�

 1, ···, � − 1, � follow standard convention, allowing 2 � + 1 values
f m for each value of � . Using equation (27) and equation (28), the
isibility in equation (25) can be expressed in spherical harmonics as, 

 pq ( f ) = 

∫ 
d 


∑ 

�m 

a ∗�m 

( f ) Y 

∗
�m 

( ̂ r ) 
∑ 

� ′ m 

′ 
b � ′ m 

′ ( f ) Y � ′ m 

′ ( ̂ r ) 

= 

∑ 

�� ′ mm 

′ 
a ∗�m 

( f ) b � ′ m 

′ ( f ) 
∫ 

d 
Y 

∗
�m 

( ̂ r ) Y � ′ m 

′ ( ̂ r ) 

= 

∑ 

�m 

a ∗�m 

( f ) b �m 

( f ) , (29) 

here we have used the orthogonality of spherical harmonics
o turn the integral in the second line into a Kronecker delta
unction. Equation (29) is the spherical harmonics version of the
isibility equation in the absence of noise. 
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Figure 1. A delay term ( b · ˆ r /c) pattern in nanoseconds (ns) o v er PAPER 

latitude for baselines pointed along the East–West (left) and the North–South 
(right) directions. These baselines are calculated from the actual PAPER-64 
antenna coordinates that are shown in Fig. 8 . 
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Figure 2. The AIPY-simulated antenna beam pattern of PAPER-64 array at 
150 MHz at different longitudes, plotted for the PAPER latitude (30.7 ◦S) at 
Karoo desert, South Africa. 

Figure 3. Covariance matrix between baselines obtained from the diffuse 
sky component at 150 MHz for a redundant group containing about 30-m 

length baselines. The axes of this figure spanning the true measured variation 
in the baseline lengths for the baselines in the 30-m group. The entries of the 
covariance are not precisely equal as displayed in the figure. The covariance 
between baselines drops off as baselines become less redundant. 
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We calculated the array function that is defined in equation (26)
sing the exponential argument ( b · ˆ r /c) in equation (25) and the 
APER-64 beam model depicted in Fig. 2 . The simulated exponential 
rgument is shown in Fig. 1 for the PAPER-64 baselines oriented 
long the East–West and the North–South directions. To generate the 
eam model of the PAPER-64 array within the frequency range of
20 –168 MHz, we use the Astronomical Interferometry in Python 
AIPY), 4 a software package primarily developed for PAPER/HERA 

ata analysis. Fig. 2 shows that the AIPY-simulated PAPER-64 beam 

odel projected on the HEALPIx 5 coordinates at three arbitrary right 
ccessions for frequency of 150 MHz. We will use this beam model
or all calculations of the covariance matrices. 

Using the expected visibility function defined in equation (29), in 
his section, we construct the diffuse sky covariance matrix R . While 
etermining this matrix, all degrees of freedom including frequencies 
nd baselines must be taken into accounts. We estimate this matrix 
rom the relation 

 ( u f );( u ′ f ′ ) = 〈 v diff ( u , f ) v diff , ∗( u 

′ , f ′ ) 〉 

= 

〈 ∑ 

�m 

a 
diff , ∗
�m 

( f ) b diff 
�m 

( u , f ) 

×
∑ 

� ′ m 

′ 
a diff 

� ′ m 

′ ( f ′ ) b diff , ∗
� ′ m 

′ ( u 

′ , f ′ )) 

〉 

= 

∑ 

�m 

∑ 

� ′ m 

′ 
b diff 

�m 

( u , f ) 
〈
a 

diff , ∗
�m 

( f ) a diff 
� ′ m 

′ ( f ′ ) 
〉

× b 
diff , ∗
� ′ m 

′ ( u 

′ , f ′ ) , (30) 

here ‘diff ′ is to denote that v pq ( f ) is coming from the diffuse sky
omponent and the angle bracket 〈 ... 〉 shows the averaging over an
nsemble of realizations of the fluctuation. With the assumption that 
he sky is statistically isotropic Gaussian random field, the covariance 
or sky flux density spherical harmonics coefficients becomes 

a diff 
�m 

( f ) a diff , ∗
� ′ m 

′ ( f ′ ) 
〉 = 〈| a �m 

( f , f ′ ) | 2 〉 δ�� ′ δmm 

′ 

= C 

diff 
� ( f , f ′ ) δ�� ′ δmm 

′ , (31) 

here C 

diff 
� ( f , f ′ ) = 〈| a diff 

�m 

( f , f ′ ) | 2 〉 is the diffuse sky angular power
pectrum, which depends only on multipole number � that corre- 
ponds to the angular scale θ = 180 ◦/ � , and δ is the Kronecker
elta function. This is because the assumption of isotropy ensures 
 ht tps://github.com/HERA-Team/aipy.git 
 https:// github.com/healpy/ healpy.git

t
b
t  

R  
hat 〈| a diff 
�m 

( f , f ′ ) | 2 〉 is a function of only � , not m . Therefore, there
s no correlation in the m modes. Thus, the covariance matrix
equation (30)] can be simplified to 

 = 

∑ 

�m 

b diff 
�m 

( u , f ) b diff , ∗
�m 

( u 

′ , f ′ ) C 

diff 
� ( f , f ′ ) . (32) 

quation (32) is a general expression for the covariance matrix 
orresponding to the diffuse sky. It depends on the baseline and
ntenna beam model through a function defined in equation (26). 
he measured antenna positions (instead of assuming that they are 
erfectly redundant) are integrated into this equation. Hence, through 
his expression, the covariance-based calculation of χ2 in equa- 
ion (20) carries array information during optimization processes. 
ig. 3 displays the covariance matrix between visibilities at 150 MHz

n a given redundant group of baselines whose length is about 30 m.
In equation (32), ho we ver, the term C 

diff 
� ( f , f ′ ) is not known. The

easured data covariance matrix should be constructed from the 
ame redundant group that R had formed to estimate C 

diff 
� ( f , f ′ ).

he data covariance matrix can be determined from 

 

α = 〈 d α( u , f ) d α† ( u 

′ , f ′ ) 〉 , (33) 

here D 

α is a covariance matrix of measured visibility data d α

rom the redundant group α. To determine the C 

diff 
� ( f , f ′ ), thus,

e equate the covariance matrix D 

α with the diffuse sky matrix 
 from the same redundant group α in equation (32). Note that 

he diffuse galactic emissions dominate visibilities from shorter 
aselines, while visibilities measured by longer baselines are unlikely 
o be dominated by diffuse emissions, so we only equate D with R (i.e.
 

α ≈ D 

α) if both are computed from the same redundant group α.
MNRAS 510, 1680–1696 (2022) 
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Figure 4. Left: Cross-frequency sky power spectrum C 

diff 
� ( f , f ′ ) obtained from equation (34). Middle: The fitted power spectrum C 

diff 
�, fits ( f , f 

′ ). Right: The 

residuals C 

diff 
�, resd ( f , f 

′ ) = C 

diff 
� ( f , f ′ ) − C 

diff 
�, fits ( f , f 

′ ). In all plot, we assume that the � -dependence of C 

diff 
� ( f , f ′ ) is the same. The whiteout regions are 

corresponding to the flagged frequency channels from the data. 
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his assumption may a v oid mode-mixing between baselines with
ifferent lengths. It follows that, 

 

diff 
� ( f , f ′ ) ≈ D 

α∑ 

�m 

b diff 
�m 

( u , f ) b diff 
�m 

( u 

′ , f ′ ) 
. (34) 

To pull C 

diff 
� ( f , f ′ ) out of the summation sign in equation (32),

e assume that for a given redundant block α, the sky is slowly
hanging function of � ≈ 2 π | u | . In other words, this means that the
ngular power spectrum of the sky does not evolve significantly over
he baseline length within the redundant group. 

Since sky power spectrum is real, we discard the complex part
f C 

diff 
� ( f , f ′ ) in equation (34). Then, we implement the power-law

urve fitting into equation (34) to model the angular cross-frequency
ower spectrum statistically. We make explicit assumptions about
he functional form of the fitting function based on the fact that
he power spectrum of the diffuse emission follows a simple power
a w with frequenc y (Santos et al. 2005 ). We implement the SCIPY
ptimization routine for curve fitting to fit data with the pre-specified
unction. With the fitting parameters A (amplitude in mK 

2 ) and the
pectral index α, the fitted power spectrum takes 

 

diff 
fits ( f , f 

′ ) = A 

(
ff ′ 

f 2 0 

)−α

, (35) 

here the fitted parameters A = 249 . 69 mK 

2 and α = 1.5, and the
 0 = 150 MHz is the reference frequency. Since the power spectrum
f the diffuse emission does not evolve significantly over baselines in
he quasi-redundant group, we assume that the fitted power spectrum
s not a function of � . 

Then, the fitted angular power spectrum C 

diff 
fits ( f , f 

′ ) (see Fig. 4 )
or that particular quasi-redundant group will be inserted in place of
 

diff 
� ( f , f ′ ) in equation (32) to estimate the model covariance matrix
f the group. Likewise, one needs to derive the best-fitting cross-
requency power spectrum statistically from the respective quasi-
edundant sets to estimate the diffuse sk y co variance matrix in each
edundant group. In terms of the fitted C 

diff 
fits ( f , f 

′ ) parameter, the
iffuse sky covariance matrix R finally takes 

 = C 

diff 
fits ( f , f 

′ ) 
∑ 

� 

b diff 
� ( u , f ) b diff , ∗

� ( u 

′ , f ′ ) . (36) 
NRAS 510, 1680–1696 (2022) 
We use equation (36) to represent the diffuse sky component for
2 optimization process in equation (17). The dimension of the
ovariance matrix R depends on the number of baseline N u and
umber of frequency channels N f , i.e. its dimension is equal to N u N f 

N u N f . 

.1.2 Point source component matrix ( S ) 

he partial information about the point sources on the sky is one
f the components the CorrCal calibration scheme employs to
stimate the best likelihood antenna gain parameters. Simulation
n Sievers ( 2017 ) showed that the inclusion of the bright sources
nformation in CorrCal has a significant effect in reducing both
mplitude and phase calibration error. Ho we ver, the phase error has
educed remarkably (about a factor of 5 better than non-source-
nformed correlation calibration) when the correlation information of
oint sources has implemented in Sievers ( 2017 ), which substantially
mpro v es the quality of phase calibration. 

In this study, we use the published astronomical catalogues
n Jacobs et al. ( 2013 ) to model the known sources. Using sources
nformation in this catalogue, we form the matrix S that carries the
ources information. 

The source position is implicit in time and usually expressed in
erms of right ascension (RA) and declination (Dec) of catalogue
ource position. The time dependence of sources position vector ˆ r i 
hus comes from source motion relative to the observer meridian,
hich best visualized using the Hour-Angle (HA) and the observer

ocal sidereal time (LST). Because HA defines the amount of time
ince the source transited the observer meridian, hence, it tells how
istant a source is from the meridian. Based on the HA values (HA
 LST-RA) of each source from the catalogue, we use sources that

re abo v e the horizon during observations time to create S . We then
roject each source position on to the sphere. Then, we predict the
isibilities in the spherical sky from a set of point sources with known
ositions. Using the source statistics in this catalogue, we calculate
he predicted visibility with the help of equation (26) for known
ources. That is, suppose the point source profile is a Dirac-delta
unction on the sky ˆ r i ( i = 1, 2,..., N ps , N ps is the total number

art/stab3516_f4.eps
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Figure 5. Noise variance estimated from the system temperature of PAPER. 
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Figure 6. Left: Eigenvalues of cross-frequency covariance matrix described 
in equation (36). The vertical axis represents the log 10 eigenvalues, while the 
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The first three eigenmodes for R corresponding to the first three eigenvalues 
for the frequency range from 120 to 168 MHz. 
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f point sources), then the specific intensity [equation (25)] can be 
ritten as 

 ( ̂ r , f ) = 

N ps ∑ 

i= 1 

I ( ̂ r i , f ) δ2D ( ̂ r , ̂  r i ) , (37) 

here δ2D ( ̂ r , ̂  r i ) is a 2D Dirac-delta function. Substituting this 
unction into equation (26), we obtain the visibilities vector for point 
ources 

 

ps ( u , f ) = 

N ps ∑ 

i= 1 

I ( ̂ r i , f ) 
∣∣A pq ( ̂ r i , f ) 

∣∣2 e −i2 πu ·ˆ r i . (38) 

o simulate beam function for sources, we use the known position 
n the sky from the established catalogue in Jacobs et al. ( 2013 )
nd the PAPER-64-simulated beam model that is displayed in Fig. 2 .
aking the outer product between the visibility vector v ps ( u , f ) and

ts complex conjugate transpose v ps , † ( u , f ), we form the covariance
nformation for the discrete sources, 

 = v ps ( u , f ) v ps , † ( u , f ) . (39) 

hus, we will use this source information covariance matrix to 
alculate the χ2 function in equation (20). 

.1.3 Noise matrix ( N ) 

n this work, we estimate the per-diagonal noise variance matrix N 

rom the radiometer equation 

rms = 

T sys √ 

2 �f τ
, (40) 

here �f = 97 kHz is the frequency bandwidth in kHz, τ = 49.2 s
s the integration time. The system temperature T sys from the relation 
efined in equation (23) of Cheng et al. ( 2018 ) is, 

 sys = 180 K 

(
f 

0 . 18 GHz 

)−2 . 55 

+ T rcvr , (41) 

here f is frequency, and T rcvr is a receiver temperature which equals
o 144 K. The noise variance is shown in Fig. 5 . 

.2 Eigendecomposition of sky signal co v ariance matrix 

he amplitude of R in equation (36) for a perfectly redundant group 
ontaining two baselines is equal to a parameter controlling the 
ariance of the sky, C � , times a square matrix of ones. That is, 

 = C 

2 
� 

[
1 1 
1 1 

]
, (42) 

Ho we ver, for a quasi-redundant group, all the off-diagonal ele- 
ents of the correlation matrix R are slightly different from one. As

hown in Fig. 3 , all the elements of the covariance matrix are not
recisely equal. It shows that the correlation between baselines de- 
reases as they become less redundant. In that case, we approximate
 from its eigendecomposition in our analysis follo wing Sie vers 
 2017 ). If each redundant group in the array is not represented by
ew eigenmodes that are much less than the visibilities in the group, it
hows that there is no sufficient redundancy in the array and therefore
ny calibration scheme that relies on the array redundancy may 
ot give the accurate results. In the eigendecomposition analysis, 
ew modes of the principal components accounted for most of 
he variances in the original data. Thus, those eigenmodes of R
orresponding to sufficiently large eigenvalues could replace its 
riginal data with very little loss of information. In the left-hand panel
f Fig. 6 , we show the eigenvalues of cross-frequency covariance 
atrix described in equation (36). The vertical axis represents the 

og 10 eigenvalues, while the horizontal axis labels the corresponding 
rincipal component numbers. The sharp falloff in the eigenvalues 
gainst the eigenmode index suggests that by measuring a few modes
f an eigenvalue, one can account for most of the variation in the
riginal data that forms R . In addition, all the eigenvalues are greater
han zero because R is a positive-definite covariance matrix. In the 
ight-hand panel of Fig. 6 , we depict the first three eigenmodes for
 corresponding to the first three eigenvalues for a frequency range 

rom 120 to 168 MHz. Specially, the first and the second eigenmodes
re more important to explain the diffuse sk y co variance between
requency channel because they are a relatively smooth function of 
requency. 

We keep eigenmodes with amplitude more than 10 −5 times the 
argest. This allows the keeping of ∼2–3 complex eigenmodes per 
uasi-redundant block. These few modes could represent most of the 
ariations in a given redundant group α. For instance, the proportion
f variance related to the eigenvalues λ1 and λ2 can be calculated 
rom (

λ1 + λ2 

λ1 + λ2 + · · · + λp 

)
× 100 , (43) 

here p is the total eigenmodes. If the value of equation (43) is
reater than the threshold percentage 99 per cent , we use eigenmodes 
orresponding to eigenvalues λ1 and λ2 to create a matrix that carries 
nformation about weights contributed by the variables in the original 
ata to these eigenmodes. Variables with the highest correlation (in 
bsolute value) with a principal component receive the highest weight 
n that component. This vector can be calculated from the statistical
MNRAS 510, 1680–1696 (2022) 
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elation 

 = e i 
√ 

λi , (44) 

here ( e i , λi ) is the eigen vector–eigen value pairs for R , and the
ubscript i is the principal component index. Using the vector outer
roduct of p thus we estimate a matrix that represents the diffuse sky
ov ariance, gi ven by 

 PCA = p ⊗ p † , (45) 

here R PCA is the diffuse sky covariance matrix calculated from
he principal component analysis of R for a given redundant block
. The dimension of R PCA would significantly be reduced if very

ew eigenmodes could represent most of the variation in the original
ata. For instance, if we keep only two eigenmodes of R for a given
edundant group containing four baselines, a comple x v ector p could
e 

 = [ p 1 , p 2 , 0 , 0] , (46) 

here p 1 and p 2 are complex elements of a vector p that retained
rom eigenmode analysis. The outer product of this vector by its
omplex conjugate transpose takes 

 ⊗ p † = 

⎡ 

⎢ ⎢ ⎣ 

p 1 p 

∗
1 p 1 p 

∗
2 0 0 

p 2 p 

∗
1 p 2 p 

∗
2 0 0 

0 0 0 0 
0 0 0 0 

⎤ 

⎥ ⎥ ⎦ 

. (47) 

ere, the operator ∗ denotes a complex conjugate. Adding the noise
o the abo v e matrix, we have 

 = N + p ⊗ p † . (48) 

All off-diagonal elements of the noise variance matrix N , which
as the same size as p ⊗ p † , are zero. Thus, � has only a relatively
mall number of non-zero elements and it can be considered to be
parse because most of its elements are zero. Therefore, it is wasteful
o use the general dense matrix algebraic methods to inverting � 

ince most of the O ( N 

3 ) operations devoted to inverting the matrix
nvolve zero operands. Hence, in terms of memory storage and
omputational efficiency, performing the sparse matrices operation
raversing only non-zero elements has significant advantages o v er
heir dense matrix counterparts. Taking advantage of the sparse
tructure of the correlation matrix �, CorrCal utilizes the sparse
atrix operations to increase its computational performance in a

arge data set. 
To implement the sparse matrix computations in CorrCal , per-

edundant group correlation matrices � are stored as sub-matrices
n the diagonal of the square block-diagonal matrix. These sub-
atrices will be square, and their dimensions vary depending on the

umber of baselines in the redundant group. Since the off-diagonal
lements of the block-diagonal matrix are zero, and there can be
any sparse sub-matrices stored as its diagonal elements, the o v erall
atrix must be sparse. It can be easily compressed and thus requires

ignificantly less storage, which also enhances the computational
peed. 

.3 Implementation of CorrCal 

he crucial steps to perform CorrCal are grouping data according
o their corresponding redundant baseline and determining the
atrices R , S , and N to each of these redundant groups. Then, one

eeds to set up the sparse matrix representations for these matrices
nd determine the χ2 function and its gradient information using the
orrCal routines. Utilizing these ingredients as inputs, CorrCal
NRAS 510, 1680–1696 (2022) 
nally adopts the Scipy 6 built-in optimization algorithm to fit
ntenna gains. We summarize the procedures of implementation of
orrCal as follows: 

(i) First, we need to create the sparse matrices representing R , S ,
nd N set up to each redundant group using the CorrCal routine,
parse 2level() . The following arguments must be supplied to

his routine to create sparse matrices: 

(a) The real-imaginary separated per-redundant group dif-
fuses sk y v ector p . In this v ector, we make all its entries equal
to zero except those entries corresponding to eigenmodes that
we kept per redundant block [see equation (46)]. 

(b) The real-imaginary separated vector s that carries infor-
mation about the known point sources. 

(c) Per-diagonal noise variance matrix N . 
(d) A vector that contains indices setting off the redundant

group. 

(ii) Secondly, the χ2 function and its gradient information should
e determined using the CorrCal subroutines. The arguments
assed to these sub-routines in order to calculate the χ2 function
nd the gradient information of χ2 are: 

(a) A vector containing the real-imaginary separated initial
guess for antenna gains. 

(b) Per-redundant group measured visibility data vector. The
real-imaginary parts should be separated such that imaginaries
follo w their respecti v e reals [e.g. see v ectorized visibility
in equation (49)]. 

(c) The sparse matrix representations for R , S , and N from
the first step. 

(d) A vector containing per-visibility antenna indices. 

(iii) Finally, using the χ2 , its gradient information, and a vector of
he initial guess for antenna gains that scaled by a large number as
n input, CorrCal adopts the SCIPY built-in non-linear conjugate
radient algorithm, Scipy.optimize.fmin cg() , to solve for
ntenna gains. 

.3.1 Antenna gain solutions as a function of frequency–bandpass 
olution 

or the EoR studies, highly precise frequency-dependent bandpass
alibration plays a crucial role. If one’s calibration solution has
 noise-like structure along the frequency axis, it may introduce
ne-frequency structure to the otherwise smooth sky observations
ven if the instrument’s response is the slow function of observing
requencies. It poses the serious challenges towards efforts to isolate
pectrally structured weak 21-cm signal from spectrally smooth
trong fore ground signal. Sev eral strate gies hav e proposed for en-
uring smooth calibration solutions as a function of frequenc y. F or
nstance, simulation in Ewall-Wice et al. ( 2017 ) and Orosz et al.
 2018 ) has shown that downweighting measurements from longer
aselines in a redundant baseline calibration solution would eliminate
he migration of fine spectral structure from longer baselines to the
horter baselines regimes. This effect is because the longer baselines
ave more chromatic nature than the shorter ones as shown in Morales
t al. ( 2012 ). Other strategies fit the calibration solutions with smooth
unction in frequency for a bandpass calibration. 

https://github.com/scipy/scipy.git
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Figure 7. The bandpass gain solution derived from a snapshot of 10-min 
observation (JD2456242.25733) of PAPER-64 elements. Amplitude (left) and 
phase (right) of the gain solutions against frequency. Each line is a different 
antenna. Discontinuity in the gain solution shows the flagged frequency 
channel affected by RFI contamination. 
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Ho we ver, the natural formalism of CorrCal would allow one to
t for gain solutions as a function of all frequency channels at once.
t means that instead of solving an independent set of equations for
very single frequency, visibility data d from different frequency 
hannels put together in a longer vector as, 

 = 

[
R e { v( f 1 ) } , I m { v(f 1 ) } , R e { v(f 2 ) } , I m { v(f 2 ) } , · · ·

]
, (49) 

here R e { v( f 1 ) } , I m { v( f 1 ) } , R e { v(f 2 ) } , and I m { v(f 2 ) } are the real
 R e ) and imaginary ( I m ) parts of the visibility measurements corre-
ponding to frequency channel f 1 and f 2 , respectively. Concatenating 
isibility from all frequency channels in a longer vector like equation 
49) enforces CorrCal to e x ecute co variance information between 
requencies. This imposes one to solve for smooth bandpass gain 
olutions for all frequencies as a single calibration step as depicted 
n Fig. 7 . To some extent, the frequency structure of the gain solutions
n Fig. 7 is comparable to the autocorrelation result in Li et al. ( 2019 )
nd Byrne et al. ( 2019 ). Once these bandpass calibration solutions
re found, we divide these solutions to the raw data for CorrCal
alibration. 

The correlation calibration suffers from the same de generac y 
roblem as with redundant baseline calibration presented in Sec- 
ion 2.2. Therefore, the gain solutions in CorrCal are degenerate, 
nd these de generac y issues will have to be dealt with. In this
ork, the o v erall amplitude de generac y in CorrCal gain solutions

s constrained by setting the average absolute value of the gains 
qual to 1. Because we are applying CorrCal to data that have
lready been absolutely calibrated, we do not want to rescale the 
 v erall amplitude. To set the o v erall phase degenerate parameter � ,
e define the reference antenna. We then set the o v erall phase by
ringing the argument of the gain of the reference antenna equal to
ero. The phase gradient de generac y issues are resolved using the
nown point sources information on the sky. Then, we solve for
hase gradient parameters by fitting them with the phase solutions 
f gain that have been obtained using sources information. That 
eans, 

2 
phase = 

N ∑ 

p= 1 

( Arg [ ̂  g p ( f )] − � x b x,p − � y b y , p) , (50) 

here b x , p and b y , p are the x and y components of the baseline b
or antenna p . Then, we subtract the fitted gradient parameters off
rom the phase calibration solutions across the array to set for phase
radient issues. 

.4 Comparisons of CorrCal to other methods 

he CorrCal approach has a distinct feature to alleviate issues 
ike imperfections of array redundancy and miss-modelled sky cata- 
ogue that redundant baseline and sky-based calibration techniques 
uffer from. In CorrCal , sources with known positions can be
ncluded as a prior even if their fluxes are not precisely known,
ecause the position of the sources is better known than their
ntensities during observation time and frequency. This concept 
llows CorrCal to assume that the source catalogue is complete 
nd well modelled with precisely known source positions. The 
ethod works well if the sky-modelling error could be mostly 

aused by uncertain/missed source fluxes in the sky-based calibration 
pproach. 

The covariance-based formulation of χ2 in CorrCal provides 
ignificant flexibility by relaxing the assumption of explicit re- 
undancy to accounts for imperfections of array redundanc y. F or
nstance, if baselines in a quasi-redundant group are assumed 
o be alike but they are not perfectly alike, then the CorrCal
ethod incorporates this offset from perfection in its formalism by 

uppressing the off-diagonal elements of covariance matrix within 
he group. Ho we ver, the redundant baseline method assumes that
he baselines are perfectly redundant in the group, and therefore all
he off-diagonal elements of the covariance matrix in the group are
xactly equal [e.g. equation (42)]. 

 T H E  PA PER -6 4  DATA  SET  

APER is a low-frequency radio interferometer experiment dedicated 
o probing the EoR through the measurements of the 21-cm power
pectrum (Parsons et al. 2010 ). It was the first 21-cm array experiment
ith a redundant array configuration, where antennas were arranged 

n a regular grid to generate multiple copies of the same baselines.
he redundant baselines probe the same modes on the sky, resulting

n significant impro v ement in the sensitivity of the 21-cm power
pectrum; thus, it is reasonable to use redundant calibration. The array 
as operating at the South African SKA site in the Karoo desert until

ts decommissioning in 2015. It was first deployed with 16 antennas
nd continued to gro w, e ventually increasing to 128 antennas in
015. PAPER has 1024 frequency channels across the 100-MHz 
and. It observes between 100 and 200 MHz, corresponding to 
he 21-cm signal from redshifts 6–13, with a frequency resolution 
f ∼97 kHz. Data from the 32-elements PAPER array have been
nalysed in Parsons et al. ( 2014 ), which results in one of the very
rst upper limits on the 21-cm power spectrum at z = 7.7. Analyses
f the data set from the 64-elements PAPER array (hereafter PAPER-
4) in Cheng et al. ( 2018 ) and Kolopanis et al. ( 2019 ) have placed
ignificant upper limits on the power spectrum amplitude of 21-cm 

ignal. 
We will perform a re-calibration of the PAPER-64 data set taken

rom Ali et al. ( 2015 ) with CorrCal . This data set has been
alibrated with redundant calibration using the OmniCal software 
nd then absolute calibrated. The absolute calibration has been made 
y fitting to the bright sources such as Fornax A, Pictor A, and the
rab Nebula to set the o v erall phase. Using the Pictor A calibrator,

he o v erall amplitude in these data has been fixed. The detailed
iscussions about the absolute calibration stage for these data are 
resented in Ali et al. ( 2015 ). The data set has dual polarization
roducts. We use one night of observations taken between 2012 
MNRAS 510, 1680–1696 (2022) 
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Figure 8. Antenna position (left) and UV coordinate of the PAPER-64 array. 
The North–South and East–West antenna coordinates are in meter, and the 
UV coordinates are in wavelengths at 150 MHz (right). 

Table 1. Summary of observational parameters and their values used in this 
work. 

Parameter Value 

PAPER array location 30 . 7 o S , 21 . 4 o E 

Observation dates 2012 No v ember 10 to 2012 No v ember 11 
Observing mode Drift-scan 
Time resolution ∼42.9 s 
Frequency range 120 MHz–168 MHz 
Frequency resolution 0.49 MHz 
Number of antenna 61 
Field of view 60 ◦
Visibility polarization XX , YY 
Shortest baseline 4 m 

Longest baseline 212 m 
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o v ember 10 (JD2456242.17382) and 2012 No v ember 11 (JD
456242.65402). As depicted in Fig. 8 , the PAPER-64 array system
omprises 64 dipole antennas arranged on a regular grid spacing
ith the total number of baselines equal to 64 × (64 − 1)/2 = 2016

nd thus measure 2016 visibilities. For our calibration, we use all
aselines except those associated with three antennas that were
agged during the observation due to known spectral instability.
he observation parameters of this data set are summarized in
 able 1 . W e direct readers to Ali et al. ( 2015 ) for more details of
bservation strategies, flagging of radio frequency interference (RFI),
hannelization of data, antenna cross-talk minimization, and other
echnical information of the PAPER array. Our method proposes a
ew possibility to fully gauge the systematics and noise of radio
nterferometry. 

 RESULTS  

.1 Post- CorrCal spectral structure of data 

fter CorrCal implementation, we have tried to compare the
tructure of data as a function of frequency. Fig. 9 depicts the real
art of visibility against frequency for a single integration time of a
iven baseline. The careful examination of the plot shows that the
eal visibility gets spectrally smoother (red curve) after CorrCal
e-calibration. It signifies the reduction of the spectral structure of
he visibility measurements after re-calibration. Considering that,
NRAS 510, 1680–1696 (2022) 
n the following section, we present the effect of re-calibration
n the delay transformed power spectra (Parsons & Backer
009 ). 

.2 Delay-space power spectra 

he statistical analysis of the Fourier mode of the power spectrum
 k ⊥ 

, k � ) for low-frequency observations is a powerful tool to probe
he EoR (Morales & Hewitt 2004 ). This method shows the existence
f distinctive regions dominated by 21-cm signal and foreground
ontaminants in a 2D line of sight ( k � ) and transverse co-moving

k ⊥ 

= 

√ 

k 2 x + k 2 y 

)
Fourier plane. The spectrally smooth foreground

s expected to contaminate the region of low k � values, while the vast
ajority of k � values are free from these contaminants (Liu et al.

014a ). Ne vertheless, se veral studies have shown that foreground
ontamination may go further to the higher k � values because of
hromatic interaction of interferometry with intrinsically smooth
oreground (Morales et al. 2012 ; Parsons et al. 2012 ; Vedantham,
hankar & Subrahmanyan 2012 ; Th yag arajan et al. 2013 ; Dil-

on et al. 2014 ; Liu et al. 2014a ; Liu, Parsons & Trott 2014b ).
his effect leads to the distinctive wedge-like structure in k ⊥ 

nd k � Fourier space, leaving the foreground-free EoR window
eyond the wedge (see results in Figs. 10 and 11 and discussions
here). 

To convert the measured visibility to 2D power spectrum in k � 
nd k ⊥ 

space, the per-baseline delay transform method is used.
he technique was first introduced by Parsons & Backer ( 2009 ).
s thoroughly presented in Parsons et al. ( 2012 ), the delay trans-

ormed visibility is obtained by inverse Fourier transforming of
ach baseline along the frequency axis. The method allows the
mooth foreground to localize at the central region between the
e gativ e and positive geometric delay limits, and any spectrally
nsmooth structure such as 21-cm signal may spread across delay
xis (Parsons et al. 2012 ). We will re vie w the mathematical formalism
f the per baseline delay-transform method in Appendix A. In
ur analysis, we use Stokes I visibilities 7 taken by PAPER-64
rray from Julian date 2456242.17382 to 2456242.65402 (2012
o v ember 10–11) to form the 2D power spectrum using delay

ransform method, a total of about 9-h observation o v er frequencies
40–160MHz. 

art/stab3516_f8.eps
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(a)

(b)

Figure 10. Delay power spectra on either side of k � direction. F ore ground wedges are confined under the region bounded by the black line or the horizon 
line. (A) The delay power spectra for data already calibrated with OmniCal . (B) Power spectra after CorrCal re-calibration. The lower panel displays linear 
scale percentage deviation. The ne gativ e percentage deviation in power at the bin right on the horizon shows that the wedge has become tighter after CorrCal 
re-calibration. 
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F ollowing P arsons et al. ( 2012 ) and Pober et al. ( 2013 ), we apply
he Blackman–Harris window function during the delay-transform 

tage to minimize the foreground leakage caused by the finite 
andwidth of frequency. This technique allows the EoR window to be 
ostly dominated by 21-cm brightness temperature by reducing the 

oreground spectral leakage to the smallest possible amount (Parsons 
t al. 2012 ; Pober et al. 2013 ). We employ the one-dimensional
1D) CLEAN algorithm on the delay-transformed data to reduce the 
ffect introduced by RFI flagging and to increase the resolution 
n delay space (Pober et al. 2013 ). We then cross-multiply the
onsecutiv e inte gration time to a v oid the noise bias. After these
tages, we form the cylindrical delay power spectrum in k space using
quation (A5). 

Fig. 10 shows the delay power spectra where the positive and 
e gativ e values of k � have not been averaged together. This form
f power spectra is expected because emissions from the negative 
nd positive delay directions are proportional to the negative and 
ositi ve k � , respecti vely. The delay power spectra from emissions
ear-zero delays (where k � ∼ 0) are confined within the central 
egion of the 2D delay power spectra. It corresponds to fore-
round emissions from the peak primary beam response of the 
nstrument. 

Ho we ver, from Fig. 10 , we see that the strength of power spectra
round zero delay decreases as one mo v es from the lower k ⊥ 

to
igher k ⊥ 

regions. Furthermore, for both calibration approaches, 
ore emission goes beyond the horizon limit for shortest base- 

ines (smallest k ⊥ 

values). This effect is because shorter baselines 
esolve out less of the Galactic synchrotron so that emission 
ill be brighter and sidelobes extend further in k � (Pober et al.
013 ). 
The black diagonal line represents the horizon limit determined 

y baseline length and the source location relative to the main field
f view of the array, marking the boundaries of the foreground 
edge. Its analytic expression has been defined in equation (A7). 
he spectral-smooth emissions are supposed to be confined within 

hat limit, and any emissions that are intrinsically unsmooth with 
requenc y are mo ving be yond the horizon limit. The calibration
rror plays a non-negligible role in this regard in imparting the
pectral structure to emissions that were originally spectrally smooth 
s discussed earlier. This unnatural spectral structure, imparted due 
o calibration error or other effects, will affect the EoR window
y scattering power beyond the wedge limits. To see CorrCal ’s
mpact on the delay power spectra, we compare foreground power 
n a wedge region of the power spectrum, and outside of it in
hich the 21-cm signal is dominating by taking the percentage 
e viation between po wer after CorrCal and OmniCal , sho wn in
he bottom panel of Fig. 10 . It is apparent that the power spectra inside
nd outside the wedge region are comparable for both calibration 
pproaches. Ho we v er, we observ e a consistent drop in power at the
in right on the horizon after CorrCal . Most importantly, this is
onsistent with some of the analyses done with MWA in (Li et al.
018 ; Li et al. 2019 ; Zhang et al. 2020 ) that demonstrate redundant
alibration’s ability to make small impro v ements in the modes
earest (but not inside) the wedge. This phenomenon suggests a 
eduction in the spectral structure of the data after re-calibration with
orrCal . 
The well-known wedge-shaped foreground power spectra from 

ur analysis are shown in Fig. 11 . We generate this form of power
pectra by averaging power from both positive and ne gativ e k � 
irections and folding it o v er the centre of the zero-delay line (where
 � = 0) of Fig. 10 . A similar feature of power spectra has been
bserved from PAPER-64 data in Pober et al. ( 2013 ), as displayed in
ig. 3 of their work. Moreo v er, Kohn et al. ( 2016 ) have reported
 wedge-like structure from the analysis of PAPER-32 data. In 
ur analysis, Figs 11 (a) and (b), respectively, display the wedge-
haped power spectra to data already calibrated using OmniCal 
MNRAS 510, 1680–1696 (2022) 
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Figure 11. Same as Fig. 10 but averaged and folded over the delay centre to obtain the ‘wedge’-shaped delay power spectra. From left to right: (A) 
The power spectra generated from data already calibrated with OmniCal package; (B) the power spectra obtained after data have re-calibrated using 
without source information in CorrCal ; (C) power spectra after re-calibration using source information in CorrCal . The right two panels show the 
linear scale percentage deviation without and with sources information in CorrCal formalism, respectively. The black diagonal line marks the horizon 
limit ( τH ). 
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nd to data after CorrCal re-calibration. The middle panel in
ig. 11 (c) shows power spectra after data have been calibrated
sing point sources information in CorrCal . For each case, the
edge extends to higher values of k � at a longer baseline ( k ⊥ 

)
egime, demonstrating how the theoretical wedge limit increases
s a function of baseline length. In addition, sources that are located
 ar aw ay from the pointing centre of the primary beam will also
ppear at higher delays, corresponding to higher k � . The relative
eviation of power in percent between CorrCal and OmniCal
alibration approaches is shown in the third ( CorrCal without
ky sources information) and fourth ( CorrCal with sky sources
nformation) panels of Fig. 11 from left to right, respectively.
he ne gativ e percentage deviation at the bin right on the horizon

n [(B − A) / A] × 100 per cent and [(C − A) / A] × 100 per cent of 
ig. 11 indicates that the power spectra around the wedge limit have
ecome slightly tighter after CorrCal re-calibration. This effect
s not considerably saturated if we include the sources’ information
n CorrCal formalism as shown in the right-hand panel of the
gure. 
The R.H.S panel of Fig. 12 depicts a portion of 2D power spectra

or a given group of baselines whose lengths are about 150 m. We
v erage o v er k ⊥ 

axis o v er the range of 0 . 0733 h Mpc −1 < k ⊥ 

<

 . 0736 h Mpc −1 to generate the corresponding 1D power spectra
hown on the L.H.S of Fig. 12 . From this figure, we observe that
here is a steep falloff of the power spectrum right away the horizon
imit as expected, showing that the foreground power confined within
he slice of the wedge is brighter than the 21-cm signal by 4–5 orders
f magnitude. This sharp falloff follows the same trend for both
alibration schemes. Ho we v er, the inclusion of sk y sources statistics
s a prior during CorrCal re-calibration step does not show the
ignificant change in the power spectra, as shown on the L.H.S of
ig. 12 . 
c  

NRAS 510, 1680–1696 (2022) 
 C O N C L U S I O N S  

n this work, we used a new calibration scheme ( CorrCal ) to re-
alibrate the PAPER64 observations. Our new calibration scheme
oils down to the covariance-based calculation of χ2 , allowing
ne to include the relaxed array redundancy and sky information
nto its formalism. This formalism also provides space for cross-
requency bandpass calibration. Furthermore, the inclusion of known
ources information in CorrCal breaks the statistical isotropy of
he sky, which sets the overall phase gradient degenerate parameter
cross the array. We have compared the spectral smoothness of
he observed data before and after CorrCal ’s application. We
bserved that the spectral structure of the visibility data after
orrCal becomes slightly reduced, for instance, as shown in Fig. 9 .
he significant factor for this impro v ement could be the Cor-
Cal natural formalism to carry out the cross-frequency bandpass
alibration. 

We implemented the delay-transform method (Parsons & Backer
009 ; Parsons et al. 2012 ) to filter out smooth foregrounds from the
pectrally structured weak 21-cm signal in 2D Fourier k −space. The
omparison results in the delay space show that the power spectra
round the foreground wedge limit have been reduced by about
 per cent after the CorrCal re-calibration. Nevertheless, this effect
oes not significantly impro v e the power spectrum in any bin around
he horizon limit of the foreground wedge and further investigation
ill be needed to test the algorithm ef fecti veness and its implemen-

ation methods. The current numerical tests lay the foundation of
alibration radio instruments using correlated signals on the sky. Our
uture work will include possible beam shape errors, antenna pointing
rrors, and position errors, and impro v e the CorrCal method by
sing sky and antenna simulation (e.g. pyuvsim ) and compare it
ith sky-based calibration and redundant baseline calibration. In

onclusion, the CorrCal may be an alternative calibration method

art/stab3516_f11.eps
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(a)

(b)

(c)

Figure 12. Right: Two-dimensional power spectra after (A) OmniCal , (B) CorrCal re-calibration without sources info, and (C) CorrCal re-calibration 
with sources information. The lower panels are the percentage deviation of B to A and C to A, respectively. The black dashed vertical line is representing the 
horizon ( τH ) limit. Left : The averaged slice of power spectra from k ⊥ = 0 . 0733 h Mpc −1 to k ⊥ = 0 . 0736 h Mpc −1 to both calibration schemes. The top panel 
is the one-dimensional average power spectrum as a function of k � for a portion of baselines ( ∼ 150m) to both calibration strategies. The bottom panel is the 
percentage deviation. 
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or radio interferometry, which potentially helps to probe the EoR 

sing the 21-cm signal. 
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PPENDI X  A :  DELAY  SPECTRUM  

fter data with XX and YY linear polarization being re-calibrated
sing CorrCal separately, we form the Stokes I parameter by
ombining each linear polarization following Moore et al. ( 2013 ): 

 I = 

1 

2 
( V XX + V YY ) , 

here V XX and V YY , respectively, are visibilities from XX and YY linear
olarization. We then use V I (Stokes I polarization visibility) to form
he power spectra using a delay-transform approach following that
f Ali et al. ( 2015 ). 
Approximating the interferometric visibility equation that is de-

ned in equation (25) o v er the flat-sky model, we have 

d ( u, v, f ) = 

∫ 
d l d m I ( l, m, f ) A ( l, m, f ) e −2 πi( ul+ vm ) , (A1) 

here ( l , m ) are direction cosines of a unit vector ˆ r , pointing to
he source on the sky. These sky-plane direction cosines have the
orresponding antenna-plane Fourier dual u and v, respectively, that
s defined in Section 3.1. Following the representation of Parsons &
acker ( 2009 ), we can rewrite equation (A1) in terms of geometric

ime delay τ g for a single baseline b as 

d b ( f ) = 

∫ 
d l d m I ( l, m, f ) A ( l, m, f ) e −2 iπf τg , (A2) 

here 

g = 

1 

c 
b · ˆ r = 

1 

c 
( b x l + b y m ) , (A3) 

ith b = ( b x , b y ), ( u, v) = f b /c and ˆ r = ( l, m ). Here, b x and b y are
rojected baseline length in metre along east and north directions in
he antenna plane, respectively. Note that τ g in equation (A2) shows
he time shifting of signal arriving one antenna relative to other due
o source location on the sky with respect to the baseline vector
rientation in the antenna plane. 
Delay transform technique begins by converting the frequency

pectrum of the visibility into the delay spectrum through application
f Fourier transform on the visibility along its frequency direction.
pplying the windowing function W ( f ) o v er equation (A2) and

hen Fourier transforming it along its frequency axis, the delay
ransformed visibility takes a form 

˜ 
 b ( τ ) = 

∫ 
B 

d f W ( f ) v mea 
b ( f ) e 2 πif τ

= 

∫ 
B 

d f W ( f ) 

[∫ 
d l d m I ( l, m, f ) A ( l, m, f ) e −2 πif τg 

]
× e 2 πif τ

= 

∫ 
B 

d l d m 

˜ W ( τ ) ∗ ˜ I ( l, m, τ ) ∗ ˜ A ( l, m, τ ) ∗ δD ( τ − τg ) , 

(A4) 

here the window function W ( f ) chosen by the data analyst is used
o control the quality of delay spectrum as suggested in Vedantham
t al. ( 2012 ) and Th yag arajan et al. ( 2013 ), B is the bandwidth
f observation o v er which the integration has to be carried out,
he delay parameter τ is the Fourier dual of f in unit of time,
˜ 
 b ( τ ) is the delay transformed visibility observed by a baseline
 , and ∗ stands for convolution. Hence, from equation (A4), one
an clearly see that there is mapping between point sources on
he sky in ˜ V b space and the Dirac-delta function δD , convolved
y Fourier transform of window function ˜ W ( τ ), sky flux density

˜ 
 ( l, m, τ ), and the antenna beam response ˜ A ( l, m, τ ), as shown in
arsons et al. ( 2012 ). Analytically, the delay formalism that relates
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he spatial power spectrum P 21 ( k � , k ⊥ 

) of 21-cm signal from the EoR
uctuations to the delay-transformed visibility ˜ V has been derived 

n Parsons et al. ( 2012 ) as 

 21 ( k ‖ , k ⊥ 

) ≈ ˜ V 

2 
21 

(
λ2 

2 k B 

)2 
X 

2 Y 


B 

, (A5) 

here λ is the observing wavelength, k B is the Boltzmann constant, 
 is the observing bandwidth, 
 is the solid angle of the primary
eam of the antenna, and X and Y are cosmological scalars that
onv ert observ ed angles and frequencies into h Mpc −1 as calculated 
n Parsons et al. ( 2012 ). 

Following the method in Pober et al. ( 2013 ), the successive
imestamp in delay-transformed visibilities has been cross-multiplied 
o a v oid the noise bias. Using the formalism in Kohn et al. ( 2016 ), it
an be written as 

˜ 
 

2 
21 ≈ | ̃  V 21 ( τ, t) × ˜ V 21 ( τ, t + �t) e iθzen ( �t) | 2 . (A6) 

ere, � t ≈ 42.9 s (a time resolution of PAPER-64 data) and θ zen ( � t )
s the zenith re-phasing factor. The line-of-sight k � , and transverse
o-moving k ⊥ 

components of k in terms of the instrumental and 
osmological parameters have been shown in Morales & Hewitt 
 2004 ), 

 ⊥ 

= 

2 π | u | 
D m 

( z) 
, 

 ‖ ≈ η
2 πH 0 f 10 E( z) 

c(1 + z) 2 
, 

here | u | = 

√ 

u 

2 + v 2 , η is the Fourier conjugate of f , which used
o denote the spatial frequency along the line of sight and it has
he unit of time, f 10 = 1420 MHz is the rest frequency of 21-cm
mission from cosmic re-ionization, c is the speed of light in free
pace, D m 

( z) is the transverse co-moving distance at the reference
edshift z, the present-day Hubble constant H 0 = 70 km s −1 Mpc −1 , 
nd the function E( z) = 

√ 


m 

(1 + z) 3 + 
k (1 + z) 2 + 
� 

. Here, 
he cosmological density parameters 
m 

, 
� 

, and 
k are total matter 
ensity, the dark energy density, and curv ature, respecti vely. The 
eometric delay τ g in equation (A3) sets the maximum delay limit 
eyond which no emissions enter the interferometry involving that 
aseline. This limit will be attained when the angle between b and

ˆ r is set to be zero. Such an alignment to both vectors is achieved,
he maximum delay is commonly referred to ‘horizon limit ( τH )’.
heoretically, o v er the ( k ⊥ 

, k � ) cylindrical space, it can be determined
rom 

 ‖ = 

H 0 E( z ) D m 

( z ) 

c(1 + z) 
k ⊥ 

. (A7) 

s e xhaustiv ely discussed in P arsons et al. ( 2012 ), an y strictly smooth
oreground emissions with power-law spectra are confined within the 
arrow range of horizon limits such that −τH ≤ τ ≤ τH . However, 
ntrinsic sky components and instrumental effects that are generally 
on-smooth can scatter beyond the horizon limit. This is due to
he sidelobes of the convolving kernel of sky and beam, i.e. ˜ I ∗ ˜ A ,
hich broadens the footprint of k � modes in cosmological k space.
his kernel is narrow for smooth spectrum foreground sources and 
onfined within the wedge. Ho we v er, flux be yond the horizon limit
s representing the power spectrum of unsmooth emissions such as 
1-cm signal. Therefore, regions in a wide range of k � modes are
onsiderably affected by the 21-cm signal if one keeps the frequency
esponse of the instrument smoother. More of these modes are free
rom foreground contamination on shortest baseline, i.e. at smallest 
 ⊥ 

regions (Datta, Bowman & Carilli 2010 ; Parsons et al. 2012 ;
edantham et al. 2012 ; Pober et al. 2013 ). 

PPENDI X  B:  DETERMI NI NG  T H E  E O R  

I G NA L  LOSS  IN  CorrCal ANALYSI S  

o determine whether our analysis methods are lossless or not in the
oR power spectrum estimate, first, we simulate visibility data using 
ERA simulation pipeline ( hera sim 8 ). For this simulation, we use

he analytic airy beam model (the same for all antenna elements),
he simulated antenna gains, the GaLactic and Extragalactic All- 
k y MWA (GLEAM) sk y sources (Hurle y-Walker et al. 2017 ), and
he simulated EoR signal using hera sim . Then, to quantify our
ew calibration approach does not lead to the EoR power spectrum
ignal suppression, we propagate simulated data into the CorrCal 
or calibration. We then compute the 2D power spectrum for both
imulated and reco v ered data after CorrCal calibration using the
elay spectrum approach described in Appendix A. Fig. B1 shows 
he delay space power spectra for both simulated and reco v ered
ata. From the figure, it is apparent that the reco v ered power spectra
fter CorrCal are comparable to the expected one, confirming that 
orrCal calibration method does not lead to significant signal loss. 

 ht tps://github.com/HERA-Team/hera sim.git 
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(a) (a)/(b)(b)

Figure B1. Top: (A) Expected delay power spectra, (B) reco v ered power spectra after CorrCal calibration, and (C) the power spectra ratio of B to A. The 
solid black dashed line is the horizon limit, τH . Bottom: Averaged 1D power spectra as a function of k � for a portion of baselines in the ∼ 30 m group. 
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