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ABSTRACT

A limiting systematic effect in 21-cm interferometric experiments is the chromaticity due to the coupling between the sky and
the instrument. This coupling is sourced by the instrument primary beam; therefore it is important to know the beam to extremely
high precision. Here, we demonstrate how known beam uncertainties can be characterized using data bases of beam models. In
this introductory work, we focus on beam errors arising from physically offset and/or broken antennas within a station. We use
the public code OSKAR to generate an ‘ideal’ SKA beam formed from 256 antennas regularly spaced in a 35-m circle, as well as
a large data base of ‘perturbed’ beams sampling distributions of broken/offset antennas. We decompose the beam errors (‘ideal’
minus ‘perturbed’) using principal component analysis (PCA) and Kernel PCA (KPCA). Using 20 components, we find that
PCA/KPCA can reduce the residual of the beam in our data sets by 60—90 per cent compared with the assumption of an ideal
beam. Using a simulated observation of the cosmic signal plus foregrounds, we find that assuming the ideal beam can result
in 1 per cent error in the epoch of reionization (EoR) window and 10 per cent in the wedge of the 2D power spectrum. When
PCA/KPCA is used to characterize the beam uncertainties, the error in the power spectrum shrinks to below 0.01 per cent in the
EoR window and < 1 per cent in the wedge. Our framework can be used to characterize and then marginalize over uncertainties

in the beam for robust next-generation 21-cm parameter estimation.

Key words: dark ages, reionization, first stars —interferometric — statistical.

1 INTRODUCTION

Measuring the epoch of reionization (EoR) 21-cm signal is one
of the key science goals of current and upcoming low-frequency
interferometers such as the Murchison Widefield Array (MWA;
Tingay et al. 2013; Wayth et al. 2018), the Hydrogen Epoch of
Reionization Experiment (HERA; DeBoer et al. 2017), the Low
Frequency Array (LOFAR; van Haarlem et al. 2013), the Giant
Metrewave Radio Telescope (GMRT; Swarup et al. 1991), and the
upcoming Square Kilometre Array (SKA; Dewdney et al. 2009;
Mellema et al. 2013). To date, several upper limits of the EoR power
spectrum have been published (see e.g. Barry et al. 2019; Li et al.
2019; Trott et al. 2020; Mertens et al. 2020; Abdurashidova et al.
2022). For an actual detection of the EoR signal, an unprecedented
level of precision is required. This is because foregrounds and
instrumental systematics dominate over the reionization signal by
several orders of magnitude.

Possibly the most complicated and pronounced instrumental
systematic comes from the uncertainty in the model of the primary
beam (Sutinjo et al. 2015; Jacobs et al. 2017; Line et al. 2018).
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For the wide field-of-view (FoV) instruments common to 21-cm
cosmology, this beam must be well-characterized over essentially
the entire sky, including in side-lobes close to the horizon. The beam
itself is a highly multidimensional quantity, changing over direction,
frequency, pointing, and polarization. Furthermore, accurate mea-
surements in the far-field regime are incredibly difficult; individual
elements are far too large to be characterized with anechoic chambers.
While novel techniques such as mapping with pulsars (Newburgh
et al. 2014) and drones (Jacobs et al. 2017) show some promise, it
is unclear if they will achieve the necessary angular resolution and
coverage required.

In principle, simulations of the beam via electromagnetic mod-
elling (EM) can be highly accurate, although to generate the most
accurate models requires significant computational investment. Even
so, there are multiple potential sources of error in such models.
Considering the primary beam of an SKA ‘station’, which consists
of 256 individual dipoles phased together to generate a single
primary beam, there are two potential avenues towards modeling:
(i) EM-modelling of an individual dipole, followed by synthesis
of the primary beam under some assumptions (e.g. all dipoles are
identical, we know to high precision the location and rotation of
each dipole, and we can neglect the effect of surrounding dipoles on
the response of the individual dipole), or (ii) direct EM-modelling
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of an entire station. Most work to date has taken the first approach,
for reasons of computational feasibility and the fact that different
stations can easily be modelled without re-performing the expensive
EM modelling of the dipole, simply by rearranging the individual
dipole models. In particular, this is the approach taken by OSKAR,
a core instrumental simulation code for the SKA. In this approach,
there are two kinds of errors one expects to be present; first, there may
be errors in the EM model of the individual dipole, arising from e.g.
small in situ physical defects of the dipole, uncertainties in physical
parameters of the simulation (e.g. soil permittivity and conductivity)
and discretization of the model itself. Secondly, there are errors
associated with how the dipole models are synthesized, including
deviations of different dipoles from identity, small positional and/or
rotational errors, the potential for a small fraction of the dipoles in
the station to be offline for a particular measurement, and perhaps
most importantly, ‘mutual coupling’ effects that modify an individual
dipole’s response based on the presence of surrounding electrically-
conducting dipoles (Sutinjo et al. 2020; Bolli et al. 2021; Fagnoni
et al. 2021). Fractional errors in the modelled beam with respect
to the true in situ beam, from all of these potential sources, tend
to be small close to zenith (for a good model), but can grow
quite large towards the horizon, where mutual coupling, ground
reflections and other imperfections are most active. While this
potentially large fractional error close to the horizon is attenuated
in its effect on model observations in proportion to the amplitude
of the beam in that region, the presence of side-lobes close to the
horizon can up-weight these imperfections strongly enough that they
become a concern for the extreme precision requirements of 21-cm
cosmology.

In this paper, we focus on characterizing the primary beam
of SKA stations. As already mentioned, current state-of-the-art
characterizations involve EM modelling of an individual dipole,
followed by synthesis into a station of 256 dipoles given their
location within the array. Here, we adopt this same general approach,
which has many benefits in terms of computational efficiency, but
supplement it with a characterization of the inevitable error that
must be present in the resulting primary beam model. Our ‘error
characterization’ framework, based on principal component analysis
(PCA) decomposition, is highly flexible, and is not limited to a
particular kind of modelling error. Instead, we present a framework
whose purpose is to be able to characterize any given uncertainty
in the physical modeling, and compress the resulting errors from
their native extremely high-dimensional space into a few parameters
that capture the spread of potential models. As a worked example
of this framework, in this paper we focus on two particular sources
of potential error in the primary beam model of an SKA station: (i)
dipole location offsets, and (ii) the presence of offline dipoles.

We note that, in practice, these sources of error are not likely
to be the dominant source of model error for the SKA. The SKA
is expected to have a system that reports offline dipoles with
each station alongside each observed timestamp. This would in
principle allow one to accurately account for these missing dipoles
in one’s primary beam model, without uncertainty. Nevertheless, in
practice, doing so individually for each station at each observation
time might be prohibitively expensive, or this information may
not be available to a particular analyst, and a framework which is
able to simply capture the resulting errors may be more feasible.
Furthermore, location errors of the dipoles are expected to be
limited to ~1 mm using current technology, as is the case for
LOFAR. For offsets this small, the induced errors will likely be
subdominant to the more complicated effects of mutual coupling
and EM modeling errors. Nevertheless, since these two sources of
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error are conceptually and computationally simple to model, we
use them in this paper to showcase our framework, which itself
is principle able to cover more complicated sources of error, so
long as they can be physically modeled to produce a training
set.

As mentioned, our framework is based on a PCA compression
of the beam model residuals, which we shall describe in more
detail in Section 2. In general, we’d like to have an unbiased
estimate of the true beam, over its high-dimensional space, with an
accurate assessment of our uncertainty of that estimate. This model
should propagate through instrumental calibration and through to
power spectrum estimation. There are two possible approaches for
modelling the beam: physical and empirical, both of which have
drawbacks. A physical approach would involve identifying a set
of physical parameters that are uncertain in detail, and fitting for
those parameters (or, rather, marginalizing over them). Problems
with this approach are (i) it is extraordinarily computationally
demanding, as it requires performing an EM simulation for each
dipole for every posterior sample, (ii) the number of unknown
physical parameters is potentially very large, and (iii) it is likely
that not all relevant physical parameters are identified, which
means the posterior sample does not include the true beam. An
empirical approach avoids problems (i) and (iii) by adopting a
flexible description of the output beam model, which is intended
to be flexible enough to include the true beam in its posterior
space. However, in general such an approach has the drawback
that the native dimensionality of the output model is extraordinar-
ily large (including spatial angles, frequencies, polarizations, and
pointings), and furthermore the flexibility of the model can lead
to negative consequences for the posterior spread of the desired
parameters due to high uncertainty on the priors. Our framework
adopts this empirical approach, but circumvents the problem of
high dimensionality via PCA compression, resulting in a limited
set of parameters able to cover the majority of the posterior sample
space, and also an approximate prior based on the physical training
set.

The paper is organized as follows. We first describe the beam
simulation and the basis set that we use in Section 2. In Section 3,
we present the results of our analysis that motivates our choice for
the perturbation model and the impacts on the reconstructed beam
errors. In Section 4, we study the impact of using the ideal beam and
the reconstructed beam errors on the power spectrum of a mock sky
consisting of the 21-cm signal and foregrounds in an interferometric
framework. Finally, we discuss our findings and conclude the paper
in Section 5.

2 METHOD FOR CHARACTERIZING BEAM
UNCERTAINTIES

In this section, we explain the method used to generate the beam and
the basis set used to characterize the beam errors. We generate elec-
tromagnetic simulations of an idealized beam, as well as thousands of
realizations of non-ideal beams. This training set is used in two PCA-
based approaches to identify the primary modes of variation amongst
the perturbed beams, and to determine the number of such modes that
adequately reconstruct any perturbed beam. The linear coefficients of
these modes thus represent a compressed parameter space which can
be marginalized in parameter estimation. We first create a data base
of perturbed beam realizations and sample the errors in Section 2.1.
We then introduce our PCA and kPCA methods for characterizing
the beam errors in Section 2.2.
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Figure 1. The ideal antenna layout (top left panel), along with the same
layout but with broken (top right panel), offset (bottom left panel), and both
broken + offset antennas (bottom right panel).

2.1 Data base of beam models

We use OSKAR (Dulwich et al. 2009) version 2.7.6 to simulate the
primary beam response of a station based on the antenna layout. The
station has 256 antennas positioned within a circle of diameter 35 m,
motivated by the design of upcoming SKA stations. We define the
ideal station as one in which all the antennas are regularly spaced
within the circle, with a spacing of ~1.8 m between each antenna. Be-
cause the actual SKA stations are expected to have pseudo-randomly
distributed antennas, we have included a brief investigation of having
this configuration in Appendix A. For computation purposes, we
only generate the beam at 150, 170, and 190 MHz for a zenith-
pointing observation. The exact input parameters we use in OSKAR
are presented in Table C1 in Appendix C.
Our perturbation model is based on two scenarios:

(i) broken (i.e. offline) antennas, in which some antennas are
excluded from the beam synthesis process. The number of broken
antennas in each realization is sampled from a uniform distribution
between Nyoken = 1-12 (corresponding to < 5 per cent of the total
256 antennas), with their positions assigned randomly.

(ii) offset antennas, in which all antennas are displaced from the
ideal position following a zero-mean normal distribution with o, =
o, =3cm.

We create three separate data sets, each comprised of 10000
perturbed beam realizations: (i) broken + offset, (ii) broken only,
and (iii) offset only. Fig. 1 shows the ideal antenna layout, along
with three examples of the same layout but with broken-only, offset-
only, and both broken + offset antennas, respectively. The 10000
realizations in each data set are divided into 7000 training and 3000
test realizations.

Throughout, we refer to the simulated power beam of the ‘ideal’
station as Bigea1(V, 6, ), where v is the frequency, 6 is the zenith angle,
and ¢ the angle around the zenith pole, and the the simulated power
beam of a particular realization of a perturbed station as Bperwrbed (V, 6,
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¢). Instead of modelling the perturbed beams themselves, we model
their residuals, i.e:

AB(V, 0, ¢) = Bperlurbed(vs 0, ¢) - Bideal(vv 0, ¢) (1)

A particular model of the residuals will be represented as ZE, where
we use subscripts to denote the basis used (see next subsection).
Note that the residual of residuals is equivalent to the residual in the
modelled beam,i.e. AB — AB = Bperurbed — (Bideat + A B). For visu-
alization purposes, in Fig. 2 we show the ideal beam, Bige, (left-hand
panel), an example realization of Byerurned (middle panel) from the
broken + offset data, and the corresponding AB (right-hand panel)
at v =150 MHz within angular difference, (6., 6,) = £10° from the
pointing direction. By comparing Figs 2 to A2, we have shown that
having either a regularly spaced or a pseudo-random station does
not affect the main results of this paper because the levels of error
in the beam are comparable in both cases, both in the mainlobe and
sidelobe. In any case, as we highlighted previously, our purpose here
is to illustrate the approach of empirically characterizing systematics
to be used in forward models, and not to have ultrarealistic examples
of any specific systematic.

To quantify the beam errors we calculate the fractional residual,
X = |AB|/Bjgea for each model in the data sets, and then compute
the mean and standard deviation of X over all realizations at
each frequency, v. We present the sample mean (top panels) and
sample standard deviation (bottom panels) at 150 MHz for the
three sets in Fig. 3. For the broken + offset (left panels) data
sets, the mainlobe areas are mostly unaffected by the different
antenna configuration as shown by o (X) that is consistent with 0,
although the sidelobes can differ by as much as 100 per cent near
the nulls. In contrast, the impact of the antenna offsets (middle
panels) is very large, with errors exceeding 100 percent around
the nulls and in the side-lobes. Interestingly, the residuals in the
broken-only (right-hand panels) data set are intermediate between
the ones in the offset-only and broken + offset. This could im-
ply that the impact of ‘breaking’ and ‘offsetting’ can partially
compensate for one another. Indeed, one might consider that the
positional offsets partially act to ‘fill the gaps’ left by the broken
antennas, resulting in a net lower error when both effects are
at play. Nevertheless, to quantitatively understand such effects, a
proper investigation with electromagnetic simulations needs to be
conducted.

2.2 Perturbation basis set

We utilize PCA and Kernel PCA to model the beam residuals, AB,
arising from the different antenna configurations. We describe each in
turn. These are applied to the 7000 samples in each of our three beam
error training sets, and then tested on the remaining 3000 samples.

2.2.1 Principal component analysis (PCA)

The goal of a traditional PCA is to reduce the dimensionality of a
data set by performing a linear change of basis and determining the
extent to which each eigenvector captures the variation within the
data set. The most significant basis vectors are termed the ‘principal
components’. Typically, a data set Y = (y1, Y2seees Y — 1, ¥n) 18 first
standardized with respect to its mean and standard deviation,

_ Y — u(Y)

oY) ’ @
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Figure 2. The ideal beam, Bjgea(v) (left-hand panel), an example realization of Bperwrbed(v) (middle panel) broken + offset data, and the consequent AB(v)
(right-hand panel) at v =150 MHz within angular difference (6., ) = +10° from the pointing direction. The fractional error is of the same general magnitude
as the fractional error using a pseudo-random station layout in Fig. A2.

" Broken + Offset Offset Only

(X))

6, [Degrees]
=)
Fractional Difference, X(v)

olX(v)] o

O, [Degrees]

Figure 3. Mean of the fractional residual, <X> (top panels), and their standard deviations, o (X) (bottom panels), over the 10000 realizations for the
broken + offset (left), offset-only (middle), and broken-only (right) data sets at 150 MHz, where the maximum value for the colour-scale has been limited to
100 per cent.

and its covariance matrix, C(Z), is computed. The eigenvectors, v, Finally, a are arranged in descending order, yielding principal
and eigenvalues, a, are then calculated following components in order of significance in which a feature vector
can be formed with some number of features or components, N,
and the reconstructed beam, @N;pCA = va a;v;. The principal
Cv=av. 3 components have the limitation that they are linear transformations

MNRAS 514, 4655-4668 (2022)
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of the input data set; non-linear transformations that require fewer
terms to adequately describe the data may exist.

2.2.2 Kernel principal component analysis (KPCA)

KPCA extends the PCA method via non-linear transformations of the
data set. The data is first mapped to an arbitrary higher dimension,
often referred to as the feature space, and then linear PCA is
performed on this feature space. The feature space, however, does
not need to be explicitly computed. Instead, it is sufficient to compute
the kernel,

K, y) = v v, (C))

where ¥ (y;) is the non-linear transformation from real to feature
space (Scholkopf, Smola & Miiller 1997). One downside of KPCA
is that a unique, one-to-one inverse relation that transforms v (y;)
back to y; does non exist. However, other methods such as ridge
regression (Hoerl & Kennard 1970a,b) can be used for this purpose,
which is what is being used here. For a simple introduction to KPCA,
we refer the reader to Appendix D.

To model our data set comprised of AB(v), we developed SPAX,
an efficient PCA and KPCA code that is GPU and CPU-optimized.
The following kernels are available within SPAX for KPCA:

K (i, y;) =y y; llinear] ®)
= tanh (ky/ y;) [tanh] (6)
= (137 y; +r)* [polynomial] ™
= exp (—«l[|y; + y;|1?) [radial basis] ®)
=i/} -y} [cosine]. (C))

The kernels, K, regularization parameter, and hyperparameters «, r,
and d are flexible; different kernels (and/or hyperparameter values)
can be used for the transform and inverse transform, respectively,
in order to improve the fit to the training data set. We perform
hyperparameter optimization using a simple, coarse grid search,
selecting the parameter combination that minimizes the mean square
error (MSE) between AB and the reconstructed residual using N
features, A By for all three frequencies. We note that reconstructing
the beam error/residual is obtained by finding the best-fitting set
of eigenvalues using the given eigenvector basis. Hyperparameter
calibration is performed separately for all three data sets, and we
allow the inverse kernel to be different from the transform kernel.
Our course grid assumes integer values, with N = 10, d = 2,
and r = 1 where applicable to reduce computation. The best set
of parameters that gives the lowest MSE for each data set are
presented in Table 1, in which the subscript ‘inv’ refers to the
parameter for the inverse transform. We highlight that using more
sophisticated hyperparameter Bayesian optimization should yield
even better results; we defer this to future work when we apply our
method to mock data.

The relative performance of KPCA versus (linear) PCA can
depend strongly on the processes which generate the data itself.
In simplest terms, if the data itself is a linear combination of effects,
then PCA is optimal. However, if the data is inherently a non-linear
transformation from a more compact basis, then KPCA may be
better in compressing the information content. In practice, if the

Thttps://github.com/dprelogo/SPax
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Table 1. The best set of parameters and kernels that gives the lowest MSE
for each data set based on a simple, coarse Monte Carlo ‘grid-search’. The
subscript ‘inv’ refers to the parameter and kernel for the inverse transform.

Broken + Offset Broken only Offset only
K 54 2 79
Kiny 1 1 23
K tanh tanh tanh
Kiny poly rbf poly

=
& 1g-s| —--- PCA; broken+offset ---- PCA; offset
—— KPCA; broken+offset ~—— KPCA; broken ~.___
—— KPCA,; offset ---- PCA; broken ">~
20 40 60 80

Number of components

Figure 4. The mean of Ry for the broken + offset (red), broken (blue), and
offset (green) data sets with varying N (number of components) using PCA
(dash lines) and KPCA (solid lines).

data are inherently most compact in a non-linear basis, we may
expect KPCA to outperform (i.e. have a smaller MSE) linear PCA
when reconstructing with a ‘small’ number of components. However,
linear PCA is guaranteed to achieve perfect reconstruction if using
N — Ngin (i.e. an MSE of close to zero), whereas KPCA is not,? and
therefore there may be a crossover at some N.

3 RESULTS: HOW WELL IS THE BEAM ERROR
RECOVERED?

To decide how many components to include in the final reconstruction
of the beam across all frequencies, we vary N and evaluate the
reconstruction error Ry = |Z§N — AB|. We present the mean,
(R y) (coloured lines) across the 3000 realizations of broken + offset
(red lines), offset (green lines), and broken (blue lines) test data at
only 150 MHz for simplicity for PCA (dash lines) and KPCA (solid
lines) in Fig. 4. Although PCA yields lower values of the mean
reconstruction error (Ry) at N > 50 for the broken + offset data set
(red dash line), its decrease with the number of components is slow.
In contrast, with KPCA, (R y) decreases rapidly by N = 20 for both
the broken + offset and broken data sets and then plateaus somewhat
as N increases. This relative performance is in qualitative agreement
with our expectations from the previous section. On the other hand,
the offset only data set plateaus quicker with KPCA at N ~ 10 with
only a small improvement in (Ry).

Since we want to model the beam error with the least number of
components possible, below we limit ourselves to the first N = 20

2KPCA essentially performs standard linear PCA in a non-linearly trans-
formed space. While it is guaranteed to minimize the MSE in this space, it
is not guaranteed to minimize MSE in the space of the data. It is difficult to
judge whether this is better or worse without understanding the natural basis
of the data.

MNRAS 514, 4655-4668 (2022)

220z 1snbny 0 uo Jesn YND Aq +/88099/359/€/v7 L G/3|01HE/SEIUW/WOD dNODlWapEdE//:SdiY WOy papeojumo(q


https://github.com/dprelogo/SPax
art/stac1588_f4.eps

4660

A. Nasirudin et al.

6,[Degrees]

Broken+Offset
ABpca — AB 10-2
| 10~
N N
] ] | .
Z@0%" 30
%)
o B ..I .
- e N -107?
4 * 4 . {
i7asy:
( ;':‘% 1
- - -1072

16-10

0 16-10 0 16-10 0 10

6, [Degrees]

Figure 5. From left to right, the actual beam error (AB), the PCA-reconstructed beam error (ZEPC A), the difference between the PCA-reconstructed and actual
error (ZEPCA — AB), the KPCA-reconstructed beam error (ZEKPC ), and the difference between the KPCA-reconstructed and actual error (ZEKPC A — AB)
from one sample realization of the broken + offset data for all three frequencies. In this example, the standard deviation of the fractional difference between the
reconstructed and actual error over all 6, ¢ and v for PCA and KPCA is 344.1 and 114.68, respectively.

components for both PCA and KPCA for all data sets. We note that
even though the reconstruction with KPCA for the offset only data
gives minimal improvement with N = 20 compared to N = 10, we
have still chosen to use thg@rmer for simplicity. Hereafter, A B y—2
is referred to simply as AB and the PCA/KPCA reconstruction is
done on the full data set with all three frequencies.

We illustrate the recovery of the beam error in Figs 5-7, for a
randomly chosen sample from each of our test sets. From left to
right, we sh(ﬂv\ the actual beam error (AB), the PCA-reconstructed
beam error (A Bpc Al,\the difference between the PCA-reconstructed
and actual error (ABpca — AB), the KPCA-reconstructed beam
error (@Kpc A)s anggle difference between the KPCA-reconstructed
and actual error (ABgpca — AB). Rows correspond to our three
frequency bins.

With 20 features, both PCA and KPCA can effectively reconstruct
AB of our sample from the broken + offset example shown in Fig. 5,
including the frequency evolution of the features, the size of the
mainlobe, and the magnitude of the perturbation. All these result
in average difference of <| 10~*]. At 190 MHz, however, the model
seems to be slightly less sensitive to structures in the sidelobe region,
as is apparent in the middle and right-most panel on the bottom row,
especially with PCA. For reference, the distribution of the KPCA
eigenvalues (which, as expected, follow a Gaussian distribution), are
presented in Fig. C2 in the Appendix.

For the broken-only sample in Fig. 6, both PCA and KPCA are
able to capture the overall details of AB, including the evolution of
the features and the size of the mainlobe, as shown in the second
column from the left and fourth column from left in Fig. 6. However,

MNRAS 514, 4655-4668 (2022)

the error in the reconstruction can be up to an order of magnitude
higher with PCA and there are more small-scale features compared
to the reconstruction with KPCA.

For the offset-only example shown in Fig. 7, both PCA and
KPCA perform worse than seen in the previous two examples. The
reconstructions (second and fourth columns from left) somewhat
resemble the large-scale structures of AB, but instead of having two
large ‘half-ring’ structures in the sidelobe, both PCA and KPCA
model them as multiple radial features. Moreover, the reconstructed
error can be up to two orders of magnitude higher than in the previous
examples, as is evident in the third and right-most columns.

To summarize, we present the mean and standard deviation of
|AB| and Ry over the 3000 test realizations and all three frequencies
for the three test data sets with PCA and KPCA in Table 2. Using
PCA/KPCA, there is up to a factor of 10 reduction in beam error
compared with the assumption of an ideal beam. The mean and
standard deviation of R, vary from 10 per cent to almost 50 per cent
for the broken + offset and offset data sets, respectively.

4 IMPACT OF BEAM RECONSTRUCTION ON
THE POWER SPECTRUM

Although we have established that PCA and KPCA do a good job
in capturing the beam error from our data sets, the reconstruction is
not perfect. Hence in this section, we investigate the impact of these
residual errors on the recovery of the power spectrum, using a realistic
sky composed of the EoR signal and point-source foregrounds.
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Figure 6. From left to right, AB, XEPCA, ZEPCA — AB, Z_EKPCAv and ZEKPCA — AB from one sample realization of the broken-only set for all three
frequencies. In this example, the standard deviation of the fractional difference between the reconstructed and actual error over all 6, ¢ and v for PCA and
KPCA is 347.70 and 59.49, respectively.
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Figure 7. From left to right, AB, ZEPCA, ZEPCA — AB, ZEKPCA, and XEKPCA — AB from one sample realization of the offset-only set for all three
frequencies. In this example, the standard deviation of the fractional difference between the reconstructed and actual error over all 6, ¢ and v for PCA and
KPCA is 247.78 and 280.07, respectively.
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Table 2. The MSE and standard deviation of MSE of AB and |X§ — AB|
with PCA and KPCA for the three test data sets across all three frequencies
and pixels.

Broken + Offset Broken only Offset only
(|ABY) 3.7 x 1074 8.4 x 1074 58 x 1073
o(JAB)) 45 x 107 23 x 1073 8.5 x 1073
(Rpca) 4.4 x 1073 1.9 x 10~ 2.0x 1073
o(Rpca) 57 x 1073 1.9 x 107 1.8 x 1073
(R kpca) 3.9 x 107 1.7 x 10~% 22 x 1073
o (Rkpca) 49 x 107 3.9 x 1074 25 % 1073

4.1 Foreground model

Following Nasirudin et al. (2020), we simulate extragalactic point-
source foregrounds with a flux-density source count distribution with
the power-law relation

dN BV I
—(S,v) =as, — Jy ‘st ), (10)
ds Vo

where dN/dS is the source spatial density per unit flux density, S,
is the flux at a specific frequency v, B is the slope of the source-
count function, and y is the mean spectral-index of point sources.
Based on an observational result from Intema et al. (2011), we set «
=4100Jy~!sr7!, B =1.59, and y = 0.8 at vy = 150 MHz. Having
drawn source fluxes from the above distribution, we situate them
uniformly randomly across the sky and bin them into a regular grid
that matches the beam output from OSKAR. We sample the point
sources between Sy, = 50 plJy and Sy = 50 mJy3 at 150 MHz.
The observation consists of 128 linearly spaced frequency channels
between 150 to 165 MHz.

4.2 Reionization model

The differential brightness temperature, §7, during the EoR can be
approximated as

N H(z) T,
8Ty(z) ~ 27xpi(1 + 8u1) dvjdr + HG@) 1-— 7

1

1 0.15\ 2 / Q,h?

w (1F2 2 ) (mK), (11
10 ,h2 0.023

where xy; is the neutral fraction, &, is the evolved Eulerian over-
density, H is the evolving Hubble constant, dv/dr is the gradient of
the line-of-sight velocity component, T, is the temperature of the
CMB, T; is the spin temperature of neutral hydrogen (H1), z is the
redshift, 2y, is the dimensionless matter density parameter, €2, is the
dimensionless baryonic density parameter and / is the normalized
Hubble constant (Furlanetto, Oh & Briggs 2006).

We use the efficient seminumerical EoR modelling tool, 21CM-
FASTV3 (Mesinger, Furlanetto & Cen 2011; Park et al. 2019; Murray
et al. 2020), to generate the light-cone of §7}, during the EoR.
For a detailed description of the code and astrophysical model,
we refer readers to Mesinger et al. (2011), Park et al. (2019), and
Murray et al. (2020). In our research, we use the default parameter
values of 21CMFASTV3, which are shown to reproduce current high-z
observations (Park et al. 2019) and simulate the light-cone of a 512

3Choudhuri, Bull & Garsden (2021) found that the brightest sources to be
particularly important in the presence of beam variations/non-redundancy,
but because we assume that brighter sources have been perfectly peeled from
the observation, hence we only model those below the peeling threshold.
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Figure 8. The spectral behaviour of the residual between the ideal and
perturbed beam generated by OSKAR with 128 frequency channels, ABfine
for some values of (0, ¢). Because ABgpe is spectrally smooth, this justifies
the interpolation of AB, KEKPCA» and @KPCA-

Mpc h~! box. This choice of parameters corresponds to a neutral
fraction of 0.5 at z ~ 6.5. Because the light-cone covers only ~3.3°
at 150 MHz, we tile it across the 20° mock sky and coarsen the grids
to match with the resolution of the beam.

4.3 Interferometric framework

At wavelength, A, the baseline displacement, u = (u, v), is defined as
u = x /A, where x is the physical displacement between the stations
in meters hence it is frequency dependent. The sky coordinate, /, is
defined as I = (I, m) = (sin 6 cos ¢, sin 0 sin ¢).

Using the flat-sky approximation, the visibility at frequency v,
V(u;, v), for each baseline j is defined as

Vuj,v) = /S(l, V)B(, v)exp(—2miu; - )dl (Jy), (12)

where S(I, v) and B(l, v) are the flux density of each point-source
and the beam attenuation at I and v. The observed interferometric
visibility is identical to the Fourier transform of the product of signal
and the beam model under the flat-sky approximation. Here, we
assume all stations have the exact same layout hence the same beam
and that the beam databases from Section 2 with three frequencies
spanning 150, 170, and 190 MHz have been linearly interpolated to
128 channels between 150 and 165 MHz. The interpolation of the
reconstructed beam using only the three frequencies is motivated by
our finding that the spectral behaviour of the residual between the
ideal and perturbed beam generated by OSKAR with 128 frequency
channels, ABjgye 1s smooth in frequency, as shown for some (6, ¢) in
Fig. 8.

For computation purposes, we Fast Fourier Transform over the
2D image to a regular-spaced 2D grid u,, and then interpolate
V(ug, v) from the regular 2D grid to the baselines u;. We then
apply a Blackman—Harris taper H(v) over the frequency axis, and
calculate the delay transform (i.e. Fourier transform of un-gridded
visibilities along the frequency axis),

Vuj, v) = / V(uj, v)H(v)exp(—2mit -v)dv (Jy Hz). (13)

The delay power spectrum is then calculated by cylindrically aver-
aging the power of the visibilities within radial bin r = ~/u? + v?,
which is proportional to the angular mode, k. We approximate
the delay power spectrum as the power spectrum, in which t is
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Table 3. The visibility simulation parameters
used in this research.

Parameter Value
Nsources 288812
Nantennas; perturbed 255
Vrange 150-165 MHz
Nchannel 128
Avchannel 78.74 kHz
N, timestamp 1
Pointing Zenith

proportional to the line-of-sight mode, k. The conversion of the
power spectrum, r and t to cosmological units are outlined in
Appendix B. For reference, we calculate the wedge region given
by

p SinlrE) [y d//EE)
+ (1+2)

where 6,y is the angular radius of the FoV (Thyagarajan et al. 2013;
Dillon et al. 2014).

Table 3 provides a summary of the visibility simulation parame-
ters, mainly the number of foreground sources, Nyoyrces, the number
of antennas in the perturbed beam synthesis, Nunennas; perturbed the
frequency range, Vyange, the number of frequency channels, N,, the
channel width, Avcpaner, and the number of timestamp, Nimestamp-
We note that because we have not included any thermal noise in this
work, the total integration time is not relevant.

ky = (h Mpc™), (14

4.4 Impact of different beams on the power spectrum

To understand the impact of beam errors on the recovery of the
cylindrical power spectrum (hereafter PS), we convolve our sky
described in Sections 4.1 and 4.2 with the sample realization of
Byerturbed Shown in Fig. 5. Following the steps outlined in Section 4.3,
we then simulate the effects of interferometric observation and
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calculate the respective PS. From left to right, the panels in Fig. 9
show the PS of a sky consisting of the cosmic signal, foregrounds,
and both cosmic signal plus foregrounds, respectively, that has been
convolved with Bjge,. In the foreground PS (middle panel), the well
known key features shown in e.g. Dillon et al. (2014) and Barry et al.
(2016) are clearly visible, mainly the foreground dominated region
in dark blue where k; < 0.11 h Mpc~!, the yellow-blue region of the
wedge at k; > 0.1/ Mpc~!, and the mostly red EoR window.

Finally in Fig. 10 we present the fractional error in the PS of
the beam-convolved total signal (EoR + FG) with respect to the
ideal PS from the third panel of Fig. 9, i.e. AP/Pigea = [P(Bx[FG
+ EoR]) — P(Bigew*[FG + EoRDI/P(Bigea*[FG + EoR]) for
B = [Bperturbedv Bperlurbed - ABPCAv Bperlurbed - ABKPCA] (left-hand
to right-hand panels, respectively). From the left-hand panel we see
that not accounting for beam errors mis-estimates the power spectrum
throughout k-space, with errors peaking at ~10 per cent in the wedge
region. Instead, modeling A B using either PCA or KPCA reduces the
error in the recovered power spectrum by over a factor of a hundred
in the EoR window and a factor of ten in the wedge (compare middle
and right to the left-hand panel).

Because the visibilities in the wedge are highly correlated, any
deficit or surplus of beam attenuation with respect t0 Bperwrbed 18
reflected in the entire wedge region. Indeed, as expected, beam
errors affect foregrounds more than the cosmic signal, even in
the PS space. However, there is some excess power close to the
horizon line on long baselines, in which the spur-like structure
above the horizon line seems to be caused by slight variations in
the true beam for different antennas. This could be caused by our
small FOV coupled with the type of perturbations on these scales.
Because we are less likely to capture the perturbations perfectly at
the edge of the FOV as shown in Figs 5, 6, and 7, most of the
differences are clustered in the horizon thus potentially exacerbating
the effect.

Finally, we stress that this exercise is highly idealized, providing
only a minimum estimate of the PS recovery error. In practice, we
will not be able to fit the PCA and KPCA coefficients to the perturbed

EoR FG EoR+FG 108
- 100 4
T L1085
N m
= |
b .
8 9]
s /] -10* &
- “ =
| l/ o~
8 P v
s L E
< 10714 Vg 102
i 4
~ ,’1
7/
T 4]
10! 102 10! e

k, [h Mpc!]

Figure 9. From left to right, the PS of cosmic signal, foregrounds, and both cosmic signal and foregrounds, respectively, for a mock sky convolved with Bjgeql-
The black dash line shows the extent of the wedge which is calculated following equation (14).
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Figure 10. From left to right, the fractional difference between the PS of both cosmic signal and foregrounds convolved with Bperturbed Bperturbed — XEPCA,

and Bperwurbed — @Kpc A with respect to the PS of the same sky convolved with Bjgeal-

beam directly, as we have done here. Instead, eigenvalues would need
to be co-varied when performing calibration and inference. We defer
this analysis to future work.

5 CONCLUSIONS

Some of the most important systematics in radio interferometry
arise from imperfect knowledge of the telescope beam. In this work,
we demonstrate an empirical approach to characterizing known
sources of beam errors. Focusing on offline and offset antennas for
an SKA-like beam, we generate thousands of realizations of beam
errors. We use these realizations to define a beam error basis using
PCA and KPCA.

We demonstrate that both PCA and KPCA perform well in recov-
ering beam errors from offline and offset antennae. Compared with
assuming an ‘ideal’ beam, using the top 20 components in either basis
can reduce the MSE by ~tens—100 per cent over our test data sets.

We demonstrate how this beam error characterization translates
to improved power spectrum recovery. We generate a mock sky
comprised of point source foregrounds and the cosmic signal,
and recover the cylindrical power spectra assuming different beam
models. For arandom realization of beam error, we find that assuming
the ‘ideal’ beam results in PS errors that peak at ~10 percent
around the wedge region. Instead if either PCA or KPCA is used
to characterize the perturbed beam with 20 components, the PS error
is reduced by a factor of ~10-100 throughout k-space.

We stress that we did not include additional errors from, e.g.
calibration, in this work. We expect that fractional errors in sky-based
calibration will be much more sensitive to errors in the assumed
beam model, and these are further squared when propagated to
power spectrum space. Depending on the spectral structure of these
calibration errors, inaccuracies as small as 10~> can be crippling to
a power spectrum estimation (Barry et al. 2016; Patil et al. 2016).
Therefore, we expect improved beam characterization to be even
more important when calibration is also included; we defer this to
future work.

MNRAS 514, 4655-4668 (2022)

Our general framework of using an empirical basis to characterize
systematics should prove useful for an end-to-end inference pipeline
for 21-cm interferometry. The principal eigenvectors from PCA
and KPCA can provide an optimal basis for systematics, with the
corresponding eigenvalues being co-varied together with cosmo-
logical parameters when performing Bayesian inference. We will
demonstrate this in a follow-up work.

ACKNOWLEDGEMENTS

‘We thank P. Bull for helpful comments on a draft version of this work.
This work was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 638809 - An Illumination to the
Dark Ages: modelling reionization and interpreting observations
(AIDA) - PI: Mesinger). The results presented here reflect the
authors’ views; the ERC is not responsible for their use. We gratefully
acknowledge computational resources of the Center for High Perfor-
mance Computing (CHPC) at Scuola Normale Superiore (SNS).

DATA AVAILABILITY

The data from this study will be shared on reasonable request to the
corresponding author.

REFERENCES

Abdurashidova Z. et al., 2022, ApJ, 925, 221

Barry N., Hazelton B., Sullivan I., Morales M. F,, Pober J. C., 2016, MNRAS,
461, 3135

Barry N. et al., 2019, ApJ, 884, 1

Bolli P, Di Ninni P, Bercigli M., Labate M. G., Virone G., 2021, in 15th
European Conference on Antennas and Propagation (EuCAP). IEEE,
Dusseldorf, Germany, p. 1

Choudhuri S., Bull P, Garsden H., 2021, MNRAS, 506, 2066

DeBoer D. R. et al., 2017, PASP, 129, 045001

Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L., 2009, Proc. IEEE,
97, 1482

220z ¥snbny 0 uo Jasn YNO Aq +/88099/559%/€ /71 G/8I01HE/SEluL/Wod dno-dlWwapese//:sdyy woly papeojumod


art/stac1588_f10.eps
http://dx.doi.org/10.3847/1538-4357/ac1c78
http://dx.doi.org/10.1093/mnras/stw1380
http://dx.doi.org/10.3847/1538-4357/ab40a8
http://dx.doi.org/10.1093/mnras/stab1795
http://dx.doi.org/10.1088/1538-3873/129/974/045001
http://dx.doi.org/10.1109/JPROC.2009.2021005

Dillon J. S. et al., 2014, Phys. Rev. D, 89, 023002

Dulwich F., Mort B. J., Salvini S., Zarb Adami K., Jones M. E., 2009,
Proceedings of Wide Field Astronomy & Technology for the Square
Kilometre Array (SKADS 2009). Chateau de Limelette, Belgium, p. 31

Fagnoni N. et al., 2021, MNRAS, 500, 1232

Furlanetto S. R., Oh S. P,, Briggs F. H., 2006, Phys. Rep., 433, 181

Hoerl A. E., Kennard R. W., 1970a, Technometrics, 12, 55

Hoerl A. E., Kennard R. W., 1970b, Technometrics, 12, 69

Intema H., Van Weeren R., Rottgering H., Lal D., 2011, A&A, 535, A38

Jacobs D. C. et al., 2017, PASP, 129, 035002

Li W. etal., 2019, ApJ, 887, 141

Line J. L. B. et al., 2018, PASA, 35, e045

Mellema G. et al., 2013, Exp. Astron., 36, 235

Mertens F. et al., 2020, MNRAS, 493, 1662

Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955

Morales M. F,, Wyithe J. S. B., 2010, ARA&A, 48, 127

Murray S. G., Greig B., Mesinger A., Munoz J. B, Qin Y., Park J., Watkinson
C. A, 2020, J. Open Source Softw., 5, 2582

Nasirudin A., Murray S., Trott C., Greig B., Joseph R., Power C., 2020, ApJ,
893, 118

Newburgh L. B. et al., 2014, in Stepp L. M., Gilmozzi R., Hall H. J., eds,
Proc. SPIE Conf. Ser. Vol. 9145, Ground-based and Airborne Telescopes
V. SPIE, Bellingham, p. 91454V

Park J., Mesinger A., Greig B., Gillet N., 2019, MNRAS, 484, 933

Patil A. H. et al., 2016, MNRAS, 463, 4317

Scholkopf B., Smola A., Miiller K.-R., 1997, International Conference on
Artificial Neural Networks. Springer, Berlin, Heidelberg, p. 583

Sutinjo A. T. et al., 2015, IEEE Trans. Antennas Propag., 63, 5433

Sutinjo A. T., McKinley B., Belostotski L., Ung D. C., Thekkeppattu J. N.,
2020, Union Radio-Sci. Int., 2

Swarup G., Ananthakrishnan S., Kapahi V., Rao A., Subrahmanya C.,
Kulkarni V., 1991, Curr. Sci., 60, 95

Thyagarajan N. et al., 2013, ApJ, 776, 6

Tingay S. et al., 2013, PASA, 30, 21

Trott C. M. et al., 2020, MNRAS, 493, 4711

van Haarlem M. P. et al., 2013, A&A, 556, A2

Wayth R. B. et al., 2018, Publ. Astron. Soc. Aust., 35, €033

Radio beam error characterization 4665

Pseudo-random Layout
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Figure A1. An example of a pseudo-random station layout.

APPENDIX A: PSEUDO-RANDOM STATION
LAYOUT

In this section, we present some extra materials regarding a pseudo-
random station layout that we have investigated in this work. Fig. A2
shows the OSKAR-generated beam using the layout shown in
Fig. Al, along with a broken + offset perturbation on the same
beam and the difference between the two.
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Figure A2. The beam using a pseudo-random layout, Bandom(v) (left-hand panel), an example realization of broken + offset perturbation on the same beam
Brandom; perturbed (v) (middle panel), and the consequent AB(v) (right-hand panel) at v = 150 MHz. The fractional error is of the same general magnitude as the

fractional error using a regularly spaced station layout in Fig. 2.

APPENDIX B: UNIT CONVERSION

The conversion of §7 to S(v) (and vice versa) follows the Rayleigh—
Jeans law

2k pv?8T,
S) = (73”2 B) x 10 Qysr),
C

where kg is the Boltzmann constant.

Under the assumption that 7 is equivalent to the Fourier counterpart
of the line-of-sight mode, 1, both k| and & are converted from r and
7 in Fourier dimensions following:

Table C1. The OSKAR parameter input used in this research.

Frequencies (MHz)

Parameter Values
FoV (°) 20
RA of Observation (°) 0

(B Dec of Observation (°) —27
Latitude of Telescope (°) =27
Longitude of Telescope (°) 117
Observation Time (UTC) 17:00:00
Observation Date 1 August 2020

[150, 170, 190]

2m|r| .
= (Mpc™" h), (B2)

LoDy T Array Layout

and 4000 1
®
2m Hy fn E
= 7 Hy f>1 2(Z) (Mpe—' h) (B3) 3000
c(1+72)
. . . . 2000 - o
from Morales & Wyithe (2010). Here, z is the observation redshift, ® ®
Dy(z) is the transverse comoving distance, Hy is the Hubble constant, 1000 4 ®
/o1 1s the rest frequency of the 21-cm hydrogen hyperfine transition E bd @ e L
and E(z) is defined as —_ 04 @
> )
E@) =V (1 + 2 + (1l + 27 + Qa, (B4) -1000{ ® o %o
where Q4, and €2 are the dimensionless density parameters for dark —2000 °®
energy and the curvature of space. ° -
—3000 -
&

APPENDIX C: EXTRA MATERIALS —4000 1
In this section, we present some extra materials concerning the —4000  -2000 0 2000 4000
research for interested readers. The parameter input used for OSKAR X [ m]

is presented in Table C1 and the SKA-like station layout is shown in
Fig. C1. In addition, Fig. C2 shows the probability density functions
(PDFs) of the first 20 components in the higher dimension space from
the KPCA, ordered from largest (top left panel) to smallest (bottom
right panel) variance.
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Figure C1. The SKA-like array layout.
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Figure C2. The PDFs of the first 20 components in the higher dimension
space from the KPCA, ordered from largest (top left panel) to smallest (bottom
right panel) variance.

APPENDIX D: KERNEL PCA EXAMPLE

The purpose of this simple example is to qualitatively describe the
main ingredients of the KPCA algorithm — in particular: data space —
v, feature space — v¥(y), and two kernels (x and k) defining mappings
from one to another. Moreover, we would like to show very different
roles the two kernels have in the process.

In Fig. D1, we show a bi-modal distribution (with the two modes
labeled ‘1’ and ‘2’). The horizontal axis represents data space. In
this simple example, we would like to use KPCA to accentuate the
bi-modality of this distribution.

We first pull samples from the distribution and use the kernel « (y;,
¥)) = ¥ (i) - ¥(y;) as a part of the KPCA algorithm. Here v/ (y) is
in feature space, which is not directly accessible and can be infinite
dimensional. Performing KPCA in this space and selecting the first
N components amounts to selecting basis vectors in the feature space
following the largest variance of the samples. After fitting the data,
this subset of a feature space ¥, is accessible and the mapping
¥ v () is known.

D1 Mapping to and from feature space

For the example above, one can show the first component of the
feature space v¥1(y) (see Fig. D2). Samples from the modes in

Figure D1. Initial distribution on which we would like to run a KPCA
algorithm.
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Figure D2. Mapping from data space to the KPCA feature space ¥ .
Starting from the top distribution in data space, points are transformed through
the learned function in the middle into the first component of the feature space,
shown on the right. Samples from two underlying distributions are denoted
with different colours for better visualization.

the distribution are distinguished by different colours, for bet-
ter visualization. Starting from the distribution on the top, we
pass it through the (learned) transformation shown in the mid-
dle, getting the distribution on the right. As expected, the two
modes (blue versus orange) are much better separated in the
first component of the feature space, v, than they were in data
space, y.

Contrary to linear PCA, however, an exact inverse transform to
return from /| back to data space generally does not exist. Therefore,
we define the inverse transform using kernel ridge regression. In
linear ridge regression from ¥ back to y, we would minimize the
mean square error over the data:

A
> (= woy) S Iw (1)

i

where w are the weights and second term is a standard /, regulariza-
tion. However, as the inverse function is highly non-linear, we firstly
transform ¥, into another (possibly infinite) feature space ¢, and
learn the transformation w back to y. The minimization is then:

- A
> (i =W (W)’ + SIWIE (D2)

i

One can prove that the feature space ¢ does not have to be accessed
and is only implicitly defined by the kernel k¥ ((¥ )i, (¥y);) =
¢ ((Wy)i) ¢ ((Wy);).

In Fig. D3, we show the results of such procedure. We can see that
the learned mapping is indeed non-linear and the initial distribution
is well preserved. However, the inverse transform is not exact and
differences between distributions of initial and recovered samples
can be clearly seen (Fig. D4).
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Figure D3. Mapping from the feature space ¥ y = (Y1, ¥2, ...) back to the
data space, y. Kernel ridge regression feature space ¢ is never accessed and
only defined by the kernel k. Samples from the two underlying modes are
separated in colour for better visualization.
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Figure D4. Histogram of initial samples (marked with 1 and 2) and samples
recovered after inverse transformation from vy to y (marked with I and 2x).
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