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A B S T R A C T 

A limiting systematic effect in 21-cm interferometric experiments is the chromaticity due to the coupling between the sky and 

the instrument. This coupling is sourced by the instrument primary beam; therefore it is important to know the beam to extremely 

high precision. Here, we demonstrate how known beam uncertainties can be characterized using data bases of beam models. In 

this introductory work, we focus on beam errors arising from physically offset and/or broken antennas within a station. We use 
the public code OSKAR to generate an ‘ideal’ SKA beam formed from 256 antennas regularly spaced in a 35-m circle, as well as 
a large data base of ‘perturbed’ beams sampling distributions of broken/offset antennas. We decompose the beam errors (‘ideal’ 
minus ‘perturbed’) using principal component analysis (PCA) and Kernel PCA (KPCA). Using 20 components, we find that 
PCA/KPCA can reduce the residual of the beam in our data sets by 60 –90 per cent compared with the assumption of an ideal 
beam. Using a simulated observation of the cosmic signal plus foregrounds, we find that assuming the ideal beam can result 
in 1 per cent error in the epoch of reionization (EoR) window and 10 per cent in the wedge of the 2D power spectrum. When 

PCA/KPCA is used to characterize the beam uncertainties, the error in the power spectrum shrinks to below 0 . 01 per cent in the 
EoR window and ≤ 1 per cent in the wedge. Our framework can be used to characterize and then marginalize o v er uncertainties 
in the beam for robust next-generation 21-cm parameter estimation. 

Key words: dark ages, reionization, first stars – interferometric – statistical. 
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 I N T RO D U C T I O N  

easuring the epoch of reionization (EoR) 21-cm signal is one 
f the key science goals of current and upcoming low-frequency 
nterferometers such as the Murchison Widefield Array (MWA; 
ingay et al. 2013 ; Wayth et al. 2018 ), the Hydrogen Epoch of
eionization Experiment (HERA; DeBoer et al. 2017 ), the Low 

requency Array (LOFAR; van Haarlem et al. 2013 ), the Giant 
etrewave Radio Telescope (GMRT; Swarup et al. 1991 ), and the 

pcoming Square Kilometre Array (SKA; Dewdney et al. 2009 ; 
ellema et al. 2013 ). To date, several upper limits of the EoR power

pectrum have been published (see e.g. Barry et al. 2019 ; Li et al.
019 ; Trott et al. 2020 ; Mertens et al. 2020 ; Abdurashidova et al.
022 ). For an actual detection of the EoR signal, an unprecedented
evel of precision is required. This is because foregrounds and 
nstrumental systematics dominate o v er the reionization signal by 
everal orders of magnitude. 

Possibly the most complicated and pronounced instrumental 
ystematic comes from the uncertainty in the model of the primary 
eam (Sutinjo et al. 2015 ; Jacobs et al. 2017 ; Line et al. 2018 ).
 E-mail: ainulnabilah.nasirudin@sns.it 
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or the wide field-of-view (FoV) instruments common to 21-cm 

osmology, this beam must be well-characterized o v er essentially 
he entire sky, including in side-lobes close to the horizon. The beam
tself is a highly multidimensional quantity, changing o v er direction,
requency, pointing, and polarization. Furthermore, accurate mea- 
urements in the far-field regime are incredibly dif ficult; indi vidual
lements are far too large to be characterized with anechoic chambers. 

hile no v el techniques such as mapping with pulsars (Newburgh
t al. 2014 ) and drones (Jacobs et al. 2017 ) show some promise, it
s unclear if they will achieve the necessary angular resolution and
o v erage required. 

In principle, simulations of the beam via electromagnetic mod- 
lling (EM) can be highly accurate, although to generate the most
ccurate models requires significant computational inv estment. Ev en 
o, there are multiple potential sources of error in such models.
onsidering the primary beam of an SKA ‘station’, which consists 
f 256 individual dipoles phased together to generate a single 
rimary beam, there are two potential avenues towards modeling: 
i) EM-modelling of an individual dipole, followed by synthesis 
f the primary beam under some assumptions (e.g. all dipoles are
dentical, we know to high precision the location and rotation of
ach dipole, and we can neglect the effect of surrounding dipoles on
he response of the individual dipole), or (ii) direct EM-modelling 

http://orcid.org/0000-0003-2213-4547
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f an entire station. Most work to date has taken the first approach,
or reasons of computational feasibility and the fact that different
tations can easily be modelled without re-performing the e xpensiv e
M modelling of the dipole, simply by rearranging the individual
ipole models. In particular, this is the approach taken by OSKAR ,
 core instrumental simulation code for the SKA. In this approach,
here are two kinds of errors one expects to be present; first, there may
e errors in the EM model of the individual dipole, arising from e.g.
mall in situ physical defects of the dipole, uncertainties in physical
arameters of the simulation (e.g. soil permittivity and conductivity)
nd discretization of the model itself. Secondly, there are errors
ssociated with how the dipole models are synthesized, including
e viations of dif ferent dipoles from identity, small positional and/or
otational errors, the potential for a small fraction of the dipoles in
he station to be offline for a particular measurement, and perhaps

ost importantly, ‘mutual coupling’ effects that modify an individual
ipole’s response based on the presence of surrounding electrically-
onducting dipoles (Sutinjo et al. 2020 ; Bolli et al. 2021 ; Fagnoni
t al. 2021 ). Fractional errors in the modelled beam with respect
o the true in situ beam, from all of these potential sources, tend
o be small close to zenith (for a good model), but can grow
uite large towards the horizon, where mutual coupling, ground
eflections and other imperfections are most active. While this
otentially large fractional error close to the horizon is attenuated
n its effect on model observations in proportion to the amplitude
f the beam in that region, the presence of side-lobes close to the
orizon can up-weight these imperfections strongly enough that they
ecome a concern for the extreme precision requirements of 21-cm
osmology. 

In this paper, we focus on characterizing the primary beam
f SKA stations. As already mentioned, current state-of-the-art
haracterizations involve EM modelling of an individual dipole,
ollowed by synthesis into a station of 256 dipoles given their
ocation within the array. Here, we adopt this same general approach,
hich has many benefits in terms of computational efficiency, but

upplement it with a characterization of the inevitable error that
ust be present in the resulting primary beam model. Our ‘error

haracterization’ framework, based on principal component analysis
PCA) decomposition, is highly flexible, and is not limited to a
articular kind of modelling error. Instead, we present a framework
hose purpose is to be able to characterize any given uncertainty

n the physical modeling, and compress the resulting errors from
heir native extremely high-dimensional space into a few parameters
hat capture the spread of potential models. As a w ork ed example
f this framework, in this paper we focus on two particular sources
f potential error in the primary beam model of an SKA station: (i)
ipole location offsets, and (ii) the presence of offline dipoles. 
We note that, in practice, these sources of error are not likely

o be the dominant source of model error for the SKA. The SKA
s expected to have a system that reports offline dipoles with
ach station alongside each observed timestamp. This would in
rinciple allow one to accurately account for these missing dipoles
n one’s primary beam model, without uncertainty. Nevertheless, in
ractice, doing so individually for each station at each observation
ime might be prohibitively expensive, or this information may
ot be available to a particular analyst, and a framework which is
ble to simply capture the resulting errors may be more feasible.
urthermore, location errors of the dipoles are expected to be

imited to ∼1 mm using current technology, as is the case for
OFAR. For offsets this small, the induced errors will likely be
ubdominant to the more complicated effects of mutual coupling
nd EM modeling errors. Nevertheless, since these two sources of
NRAS 514, 4655–4668 (2022) 
rror are conceptually and computationally simple to model, we
se them in this paper to showcase our framework, which itself
s principle able to co v er more complicated sources of error, so
ong as they can be physically modeled to produce a training
et. 

As mentioned, our framework is based on a PCA compression
f the beam model residuals, which we shall describe in more
etail in Section 2 . In general, we’d like to have an unbiased
stimate of the true beam, o v er its high-dimensional space, with an
ccurate assessment of our uncertainty of that estimate. This model
hould propagate through instrumental calibration and through to
ower spectrum estimation. There are two possible approaches for
odelling the beam: physical and empirical, both of which have

rawbacks. A physical approach would involve identifying a set
f physical parameters that are uncertain in detail, and fitting for
hose parameters (or , rather , marginalizing o v er them). Problems
ith this approach are (i) it is extraordinarily computationally
emanding, as it requires performing an EM simulation for each
ipole for every posterior sample, (ii) the number of unknown
hysical parameters is potentially very large, and (iii) it is likely
hat not all rele v ant physical parameters are identified, which
eans the posterior sample does not include the true beam. An

mpirical approach a v oids problems (i) and (iii) by adopting a
exible description of the output beam model, which is intended

o be flexible enough to include the true beam in its posterior
pace. Ho we ver, in general such an approach has the drawback
hat the native dimensionality of the output model is extraordinar-
ly large (including spatial angles, frequencies, polarizations, and
ointings), and furthermore the flexibility of the model can lead
o ne gativ e consequences for the posterior spread of the desired
arameters due to high uncertainty on the priors. Our framework
dopts this empirical approach, but circumvents the problem of
igh dimensionality via PCA compression, resulting in a limited
et of parameters able to co v er the majority of the posterior sample
pace, and also an approximate prior based on the physical training
et. 

The paper is organized as follows. We first describe the beam
imulation and the basis set that we use in Section 2 . In Section 3 ,
e present the results of our analysis that moti v ates our choice for

he perturbation model and the impacts on the reconstructed beam
rrors. In Section 4 , we study the impact of using the ideal beam and
he reconstructed beam errors on the power spectrum of a mock sky
onsisting of the 21-cm signal and foregrounds in an interferometric
ramework. Finally, we discuss our findings and conclude the paper
n Section 5 . 

 M E T H O D  F O R  C H A R AC T E R I Z I N G  B E A M  

NCERTAI NTI ES  

n this section, we explain the method used to generate the beam and
he basis set used to characterize the beam errors. We generate elec-
romagnetic simulations of an idealized beam, as well as thousands of
ealizations of non-ideal beams. This training set is used in two PCA-
ased approaches to identify the primary modes of variation amongst
he perturbed beams, and to determine the number of such modes that
dequately reconstruct any perturbed beam. The linear coefficients of
hese modes thus represent a compressed parameter space which can
e marginalized in parameter estimation. We first create a data base
f perturbed beam realizations and sample the errors in Section 2.1 .
e then introduce our PCA and kPCA methods for characterizing

he beam errors in Section 2.2 . 
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Figure 1. The ideal antenna layout (top left panel), along with the same 
layout but with broken (top right panel), offset (bottom left panel), and both 
broken + offset antennas (bottom right panel). 
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.1 Data base of beam models 

e use OSKAR (Dulwich et al. 2009 ) version 2.7.6 to simulate the
rimary beam response of a station based on the antenna layout. The
tation has 256 antennas positioned within a circle of diameter 35 m,
oti v ated by the design of upcoming SKA stations. We define the

deal station as one in which all the antennas are regularly spaced
ithin the circle, with a spacing of ∼1.8 m between each antenna. Be-

ause the actual SKA stations are expected to have pseudo-randomly 
istributed antennas, we have included a brief investigation of having 
his configuration in Appendix A . For computation purposes, we 
nly generate the beam at 150, 170, and 190 MHz for a zenith-
ointing observation. The exact input parameters we use in OSKAR 

re presented in Table C1 in Appendix C . 
Our perturbation model is based on two scenarios: 

(i) broken (i.e. offline) antennas, in which some antennas are 
xcluded from the beam synthesis process. The number of broken 
ntennas in each realization is sampled from a uniform distribution 
etween N broken = 1–12 (corresponding to � 5 per cent of the total 
56 antennas), with their positions assigned randomly. 
(ii) offset antennas, in which all antennas are displaced from the 

deal position following a zero-mean normal distribution with σx = 

y = 3 cm. 

We create three separate data sets, each comprised of 10 000 
erturbed beam realizations: (i) broken + offset, (ii) broken only, 
nd (iii) offset only. Fig. 1 shows the ideal antenna layout, along
ith three examples of the same layout but with broken-only, offset-
nly, and both broken + offset antennas, respectively. The 10 000 
ealizations in each data set are divided into 7000 training and 3000
est realizations. 

Throughout, we refer to the simulated power beam of the ‘ideal’ 
tation as B ideal ( ν, θ , φ), where ν is the frequency, θ is the zenith angle,
nd φ the angle around the zenith pole, and the the simulated power
eam of a particular realization of a perturbed station as B perturbed ( ν, θ ,
). Instead of modelling the perturbed beams themselves, we model 
heir residuals , i.e: 

B( ν, θ, φ) = B perturbed ( ν, θ, φ) − B ideal ( ν, θ, φ) . (1) 

 particular model of the residuals will be represented as ̂  �B , where
e use subscripts to denote the basis used (see next subsection).
ote that the residual of residuals is equi v alent to the residual in the
odelled beam, i.e. �B − ̂ �B ≡ B perturbed −( B ideal + ̂

 �B ). For visu-
lization purposes, in Fig. 2 we show the ideal beam, B ideal (left-hand
anel), an example realization of B perturbed (middle panel) from the 
roken + offset data, and the corresponding � B (right-hand panel)
t ν = 150 MHz within angular difference, ( θ x , θ y ) = ±10 ◦ from the
ointing direction. By comparing Figs 2 to A2 , we have shown that
aving either a regularly spaced or a pseudo-random station does 
ot affect the main results of this paper because the levels of error
n the beam are comparable in both cases, both in the mainlobe and
idelobe. In any case, as we highlighted previously, our purpose here
s to illustrate the approach of empirically characterizing systematics 
o be used in forward models, and not to have ultrarealistic examples
f any specific systematic. 
To quantify the beam errors we calculate the fractional residual, 

 = | � B | / B ideal for each model in the data sets, and then compute
he mean and standard deviation of X o v er all realizations at
ach frequency, ν. We present the sample mean (top panels) and
ample standard deviation (bottom panels) at 150 MHz for the 
hree sets in Fig. 3 . For the broken + offset (left panels) data
ets, the mainlobe areas are mostly unaffected by the different 
ntenna configuration as shown by σ ( X ) that is consistent with 0,
lthough the sidelobes can differ by as much as 100 per cent near
he nulls. In contrast, the impact of the antenna offsets (middle
anels) is very large, with errors exceeding 100 per cent around
he nulls and in the side-lobes. Interestingly, the residuals in the
roken-only (right-hand panels) data set are intermediate between 
he ones in the offset-only and broken + offset. This could im-
ly that the impact of ‘breaking’ and ‘offsetting’ can partially 
ompensate for one another. Indeed, one might consider that the 
ositional offsets partially act to ‘fill the gaps’ left by the broken
ntennas, resulting in a net lower error when both effects are
t play. Nevertheless, to quantitatively understand such effects, a 
roper investigation with electromagnetic simulations needs to be 
onducted. 

.2 Perturbation basis set 

e utilize PCA and Kernel PCA to model the beam residuals, � B ,
rising from the different antenna configurations. We describe each in 
urn. These are applied to the 7000 samples in each of our three beam
rror training sets, and then tested on the remaining 3000 samples. 

.2.1 Principal component analysis (PCA) 

he goal of a traditional PCA is to reduce the dimensionality of a
ata set by performing a linear change of basis and determining the
xtent to which each eigenvector captures the variation within the 
ata set. The most significant basis vectors are termed the ‘principal
omponents’. Typically, a data set Y = ( y 1 , y 2 ,..., y n − 1 , y n ) is first
tandardized with respect to its mean and standard deviation, 

 = 

Y − μ( Y ) 

σ ( Y ) 
, (2) 
MNRAS 514, 4655–4668 (2022) 
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M

Figure 2. The ideal beam, B ideal ( ν) (left-hand panel), an example realization of B perturbed ( ν) (middle panel) broken + offset data, and the consequent � B ( ν) 
(right-hand panel) at ν = 150 MHz within angular difference ( θ x , θ y ) = ±10 ◦ from the pointing direction. The fractional error is of the same general magnitude 
as the fractional error using a pseudo-random station layout in Fig. A2 . 

Figure 3. Mean of the fractional residual, < X > (top panels), and their standard deviations, σ ( X ) (bottom panels), o v er the 10 000 realizations for the 
broken + of fset (left), of fset-only (middle), and broken-only (right) data sets at 150 MHz, where the maximum value for the colour-scale has been limited to 
100 per cent . 
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nd its covariance matrix, C ( Z ), is computed. The eigenvectors, v ,
nd eigenvalues, a , are then calculated following 

 v = a v . (3) 
NRAS 514, 4655–4668 (2022) 

c  
Finally, a are arranged in descending order, yielding principal
omponents in order of significance in which a feature vector
an be formed with some number of features or components, N ,
nd the reconstructed beam, ̂ �B N ;PCA = 

∑ N 

i a i v i . The principal
omponents have the limitation that they are linear transformations

art/stac1588_f2.eps
art/stac1588_f3.eps
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Table 1. The best set of parameters and kernels that gives the lowest MSE 

for each data set based on a simple, coarse Monte Carlo ‘grid-search’. The 
subscript ‘inv’ refers to the parameter and kernel for the inverse transform. 

Broken + Offset Broken only Offset only 

κ 54 2 79 
κ inv 1 1 23 
K tanh tanh tanh 

K inv poly rbf poly 

Figure 4. The mean of R N for the broken + offset (red), broken (blue), and 
offset (green) data sets with varying N (number of components) using PCA 

(dash lines) and KPCA (solid lines). 

d  

e  

w
l
N  

t

3
R

T
o  

r
〈  

(  

o  

l  

r  

(  

I  

t  

a
w  

t  

o
 

c  

2 KPCA essentially performs standard linear PCA in a non-linearly trans- 
formed space. While it is guaranteed to minimize the MSE in this space, it 
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f the input data set; non-linear transformations that require fewer 
erms to adequately describe the data may exist. 

.2.2 Kernel principal component analysis (KPCA) 

PCA extends the PCA method via non-linear transformations of the 
ata set. The data is first mapped to an arbitrary higher dimension,
ften referred to as the feature space , and then linear PCA is
erformed on this feature space. The feature space, ho we ver, does
ot need to be explicitly computed. Instead, it is sufficient to compute
he kernel, 

( y i , y j ) = ψ ( y i ) 
T ψ ( y j ) , (4) 

here ψ( y i ) is the non-linear transformation from real to feature
pace (Sch ̈olkopf, Smola & M ̈uller 1997 ). One downside of KPCA
s that a unique, one-to-one inverse relation that transforms ψ( y i )
ack to y i does non exist. Ho we ver, other methods such as ridge
egression (Hoerl & Kennard 1970a , b ) can be used for this purpose,
hich is what is being used here. For a simple introduction to KPCA,
e refer the reader to Appendix D . 
To model our data set comprised of � B ( ν), we developed SPAX , 1 

n efficient PCA and KPCA code that is GPU and CPU-optimized. 
he following kernels are available within SPAX for KPCA: 

( y i , y j ) = y T i y j [linear] (5) 

= tanh 
(
κy T i y j 

)
[tanh] (6) 

= 

(
κy T i y j + r 

)d 
[polynomial] (7) 

= exp 
(−κ[ | y i + y j | ] 2 

)
[radial basis] (8) 

= y T i y j / ( y 
2 
i · y 2 j ) [cosine] . (9) 

he kernels, K , regularization parameter, and hyperparameters κ , r ,
nd d are flexible; different kernels (and/or hyperparameter values) 
an be used for the transform and inverse transform, respectively, 
n order to impro v e the fit to the training data set. We perform
yperparameter optimization using a simple, coarse grid search, 
electing the parameter combination that minimizes the mean square 
rror (MSE) between � B and the reconstructed residual using N
eatures, ̂  �B N for all three frequencies. We note that reconstructing 
he beam error/residual is obtained by finding the best-fitting set 
f eigenvalues using the given eigenvector basis. Hyperparameter 
alibration is performed separately for all three data sets, and we 
llow the inverse kernel to be different from the transform kernel. 
ur course grid assumes integer values, with N = 10, d = 2,

nd r = 1 where applicable to reduce computation. The best set
f parameters that gives the lowest MSE for each data set are
resented in Table 1 , in which the subscript ‘inv’ refers to the
arameter for the inverse transform. We highlight that using more 
ophisticated hyperparameter Bayesian optimization should yield 
ven better results; we defer this to future work when we apply our
ethod to mock data. 
The relative performance of KPCA versus (linear) PCA can 

epend strongly on the processes which generate the data itself. 
n simplest terms, if the data itself is a linear combination of effects,
hen PCA is optimal. Ho we ver, if the data is inherently a non-linear
ransformation from a more compact basis, then KPCA may be 
etter in compressing the information content. In practice, if the 
 https:// github.com/dprelogo/ SPax 

i
j
o

ata are inherently most compact in a non-linear basis, we may
xpect KPCA to outperform (i.e. have a smaller MSE) linear PCA
hen reconstructing with a ‘small’ number of components. Ho we ver, 

inear PCA is guaranteed to achieve perfect reconstruction if using 
 → N dim 

(i.e. an MSE of close to zero), whereas KPCA is not, 2 and
herefore there may be a crosso v er at some N . 

 RESULTS:  H OW  WELL  IS  T H E  BEAM  E R RO R  

E C OV E R E D ?  

o decide how many components to include in the final reconstruction 
f the beam across all frequencies, we vary N and evaluate the
econstruction error R N ≡ | ̂  �B N − �B| . We present the mean, 
 R N 〉 (coloured lines) across the 3000 realizations of broken + offset
red lines), offset (green lines), and broken (blue lines) test data at
nly 150 MHz for simplicity for PCA (dash lines) and KPCA (solid
ines) in Fig. 4 . Although PCA yields lower values of the mean
econstruction error 〈 R N 〉 at N ≥ 50 for the broken + offset data set
red dash line), its decrease with the number of components is slow.
n contrast, with KPCA, 〈 R N 〉 decreases rapidly by N = 20 for both
he broken + offset and broken data sets and then plateaus somewhat
s N increases. This relative performance is in qualitative agreement 
ith our expectations from the previous section. On the other hand,

he offset only data set plateaus quicker with KPCA at N ∼ 10 with
nly a small impro v ement in 〈 R N 〉 . 
Since we want to model the beam error with the least number of

omponents possible, below we limit ourselves to the first N = 20
MNRAS 514, 4655–4668 (2022) 

s not guaranteed to minimize MSE in the space of the data. It is difficult to 
udge whether this is better or worse without understanding the natural basis 
f the data. 

https://github.com/dprelogo/SPax
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Figure 5. From left to right, the actual beam error ( � B ), the PCA-reconstructed beam error ( ̂ �B PCA ), the difference between the PCA-reconstructed and actual 
error ( ̂ �B PCA − �B), the KPCA-reconstructed beam error ( ̂ �B KPCA ), and the difference between the KPCA-reconstructed and actual error ( ̂ �B KPCA − �B) 
from one sample realization of the broken + offset data for all three frequencies. In this example, the standard deviation of the fractional difference between the 
reconstructed and actual error o v er all θ , φ and ν for PCA and KPCA is 344.1 and 114.68, respectively. 
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omponents for both PCA and KPCA for all data sets. We note that
ven though the reconstruction with KPCA for the offset only data
ives minimal improvement with N = 20 compared to N = 10, we
ave still chosen to use the former for simplicity. Hereafter, ̂  �B N= 20 

s referred to simply as ̂ �B and the PCA/KPCA reconstruction is
one on the full data set with all three frequencies. 
We illustrate the reco v ery of the beam error in Figs 5 –7 , for a

andomly chosen sample from each of our test sets. From left to
ight, we show the actual beam error ( � B ), the PCA-reconstructed
eam error ( ̂  �B PCA ), the difference between the PCA-reconstructed
nd actual error ( ̂  �B PCA − �B), the KPCA-reconstructed beam
rror ( ̂  �B KPCA ), and the difference between the KPCA-reconstructed
nd actual error ( ̂  �B KPCA − �B). Rows correspond to our three
requency bins. 

With 20 features, both PCA and KPCA can ef fecti vely reconstruct
 B of our sample from the broken + offset example shown in Fig. 5 ,

ncluding the frequency evolution of the features, the size of the
ainlobe, and the magnitude of the perturbation. All these result

n average difference of ≤| 10 −4 | . At 190 MHz, ho we ver, the model
eems to be slightly less sensitive to structures in the sidelobe region,
s is apparent in the middle and right-most panel on the bottom row,
specially with PCA. For reference, the distribution of the KPCA
igenvalues (which, as expected, follow a Gaussian distribution), are
resented in Fig. C2 in the Appendix. 
For the broken-only sample in Fig. 6 , both PCA and KPCA are

ble to capture the o v erall details of � B , including the evolution of
he features and the size of the mainlobe, as shown in the second
olumn from the left and fourth column from left in Fig. 6 . Ho we ver,
NRAS 514, 4655–4668 (2022) 
he error in the reconstruction can be up to an order of magnitude
igher with PCA and there are more small-scale features compared
o the reconstruction with KPCA. 

For the offset-only example shown in Fig. 7 , both PCA and
PCA perform worse than seen in the previous two examples. The

econstructions (second and fourth columns from left) somewhat
esemble the large-scale structures of � B , but instead of having two
arge ‘half-ring’ structures in the sidelobe, both PCA and KPCA

odel them as multiple radial features. Moreo v er, the reconstructed
rror can be up to two orders of magnitude higher than in the previous
xamples, as is evident in the third and right-most columns. 

To summarize, we present the mean and standard deviation of
 � B | and R 20 o v er the 3000 test realizations and all three frequencies
or the three test data sets with PCA and KPCA in Table 2 . Using
CA/KPCA, there is up to a factor of 10 reduction in beam error
ompared with the assumption of an ideal beam. The mean and
tandard deviation of R 20 vary from 10 per cent to almost 50 per cent
or the broken + offset and offset data sets, respectively. 

 I M PAC T  O F  BEAM  R E C O N S T RU C T I O N  O N  

H E  POWER  SPECTRUM  

lthough we have established that PCA and KPCA do a good job
n capturing the beam error from our data sets, the reconstruction is
ot perfect. Hence in this section, we investigate the impact of these
esidual errors on the reco v ery of the power spectrum, using a realistic
ky composed of the EoR signal and point-source foregrounds. 
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Figure 6. From left to right, � B , ̂ �B PCA , ̂ �B PCA − �B, ̂ �B KPCA , and ̂ �B KPCA − �B from one sample realization of the broken-only set for all three 
frequencies. In this example, the standard deviation of the fractional difference between the reconstructed and actual error o v er all θ , φ and ν for PCA and 
KPCA is 347.70 and 59.49, respectively. 

Figure 7. From left to right, � B , ̂ �B PCA , ̂ �B PCA − �B, ̂ �B KPCA , and ̂ �B KPCA − �B from one sample realization of the offset-only set for all three 
frequencies. In this example, the standard deviation of the fractional difference between the reconstructed and actual error o v er all θ , φ and ν for PCA and 
KPCA is 247.78 and 280.07, respectively. 
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Table 2. The MSE and standard deviation of MSE of � B and | ̂ �B − �B| 
with PCA and KPCA for the three test data sets across all three frequencies 
and pixels. 

Broken + Offset Broken only Offset only 

〈| � B |〉 3.7 × 10 −4 8.4 × 10 −4 5.8 × 10 −3 

σ ( | � B | ) 4.5 × 10 −4 2.3 × 10 −3 8.5 × 10 −3 

〈 R PCA 〉 4.4 × 10 −5 1.9 × 10 −4 2.0 × 10 −3 

σ ( R PCA ) 5.7 × 10 −5 1.9 × 10 −4 1.8 × 10 −3 

〈 R KPCA 〉 3.9 × 10 −5 1.7 × 10 −4 2.2 × 10 −3 

σ ( R KPCA ) 4.9 × 10 −5 3.9 × 10 −4 2.5 × 10 −3 
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Figure 8. The spectral behaviour of the residual between the ideal and 
perturbed beam generated by OSKAR with 128 frequency channels, � B fine 

for some values of ( θ , φ). Because � B fine is spectrally smooth, this justifies 
the interpolation of � B , ̂ �B KPCA , and ̂ �B KPCA . 
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.1 For egr ound model 

ollowing Nasirudin et al. ( 2020 ), we simulate extragalactic point-
ource foregrounds with a flux-density source count distribution with
he power-law relation 

d N 

d S 
( S , ν) = αS −β

ν

(
ν

ν0 

)−γβ

( Jy −1 sr −1 ) , (10) 

here d N /d S is the source spatial density per unit flux density, S ν
s the flux at a specific frequency ν, β is the slope of the source-
ount function, and γ is the mean spectral-index of point sources.
ased on an observational result from Intema et al. ( 2011 ), we set α
 4100 Jy −1 sr −1 , β = 1.59, and γ = 0.8 at ν0 = 150 MHz. Having

rawn source fluxes from the above distribution, we situate them
niformly randomly across the sky and bin them into a regular grid
hat matches the beam output from OSKAR . We sample the point
ources between S min = 50 μJy and S max = 50 mJy 3 at 150 MHz.
he observation consists of 128 linearly spaced frequency channels
etween 150 to 165 MHz. 

.2 Reionization model 

he differential brightness temperature, δT B , during the EoR can be
pproximated as 

T b ( z) ≈ 27 x HI (1 + δnl ) 

(
H ( z) 

d v/ d r + H ( z) 

)(
1 − T γ

T s 

)

×
(

1 + z 

10 

0 . 15 

�m 

h 

2 

) 1 
2 
(

�b h 

2 

0 . 023 

)
( mK ) , (11) 

here x HI is the neutral fraction, δnl is the evolved Eulerian over-
ensity, H is the evolving Hubble constant, d v/d r is the gradient of
he line-of-sight velocity component, T γ is the temperature of the
MB, T s is the spin temperature of neutral hydrogen (H I ), z is the

edshift, �m 

is the dimensionless matter density parameter, �b is the
imensionless baryonic density parameter and h is the normalized
ubble constant (Furlanetto, Oh & Briggs 2006 ). 
We use the efficient seminumerical EoR modelling tool, 21CM-

ASTV3 (Mesinger, Furlanetto & Cen 2011 ; Park et al. 2019 ; Murray
t al. 2020 ), to generate the light-cone of δT b during the EoR.
or a detailed description of the code and astrophysical model,
e refer readers to Mesinger et al. ( 2011 ), Park et al. ( 2019 ), and
urray et al. ( 2020 ). In our research, we use the default parameter

alues of 21CMFASTV3 , which are shown to reproduce current high- z
bservations (Park et al. 2019 ) and simulate the light-cone of a 512
NRAS 514, 4655–4668 (2022) 

 Choudhuri, Bull & Garsden ( 2021 ) found that the brightest sources to be 
articularly important in the presence of beam variations/non-redundancy, 
ut because we assume that brighter sources have been perfectly peeled from 

he observation, hence we only model those below the peeling threshold. 

V

T  

a  

w  

t  
pc h −1 box. This choice of parameters corresponds to a neutral
raction of 0.5 at z ∼ 6.5. Because the light-cone co v ers only ∼3.3 ◦

t 150 MHz, we tile it across the 20 ◦ mock sky and coarsen the grids
o match with the resolution of the beam. 

.3 Interferometric framework 

t wavelength, λ, the baseline displacement, u = ( u, v), is defined as
u = x /λ, where x is the physical displacement between the stations
n meters hence it is frequency dependent. The sky coordinate, l , is
efined as l = ( l, m ) = ( sin θ cos φ, sin θ sin φ). 
Using the flat-sky approximation, the visibility at frequency ν,

 ( u j , ν), for each baseline j is defined as 

 ( u j , ν) = 

∫ 
S( l , ν) B( l , ν) exp ( −2 πi u j · l )d l (Jy) , (12) 

here S ( l , ν) and B( l , ν) are the flux density of each point-source
nd the beam attenuation at l and ν. The observed interferometric
isibility is identical to the Fourier transform of the product of signal
nd the beam model under the flat-sky approximation. Here, we
ssume all stations have the exact same layout hence the same beam
nd that the beam databases from Section 2 with three frequencies
panning 150, 170, and 190 MHz have been linearly interpolated to
28 channels between 150 and 165 MHz. The interpolation of the
econstructed beam using only the three frequencies is moti v ated by
ur finding that the spectral behaviour of the residual between the
deal and perturbed beam generated by OSKAR with 128 frequency
hannels, � B fine is smooth in frequency, as shown for some ( θ , φ) in
ig. 8 . 
For computation purposes, we Fast Fourier Transform over the

D image to a regular-spaced 2D grid u k , and then interpolate
 ( u k , ν) from the regular 2D grid to the baselines u j . We then
pply a Blackman–Harris taper H ( ν) o v er the frequency axis, and
alculate the delay transform (i.e. Fourier transform of un-gridded
isibilities along the frequency axis), 

 ( u j , τ ) = 

∫ 
V ( u j , ν) H ( ν) exp ( −2 πi τ · ν)d ν ( Jy Hz ) . (13) 

he delay power spectrum is then calculated by cylindrically a ver -
ging the power of the visibilities within radial bin r = 

√ 

u 

2 + v 2 ,
hich is proportional to the angular mode, k ⊥ 

. We approximate
he delay power spectrum as the power spectrum, in which τ is

art/stac1588_f8.eps
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Table 3. The visibility simulation parameters 
used in this research. 

Parameter Value 

N sources 288 812 
N antennas; perturbed 255 
νrange 150–165 MHz 
N channel 128 
�νchannel 78.74 kHz 
N timestamp 1 
Pointing Zenith 
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roportional to the line-of-sight mode, k � . The conversion of the 
ower spectrum, r and τ to cosmological units are outlined in 
ppendix B . For reference, we calculate the wedge region given 
y 

 ‖ ≤ k ⊥ 

sin ( θFoV ) E( z ) 
∫ z 

0 d z 
′ /E( z ′ ) 

(1 + z) 
( h Mpc −1 ) , (14) 

here θFoV is the angular radius of the FoV (Th yag arajan et al. 2013 ;
illon et al. 2014 ). 
Table 3 provides a summary of the visibility simulation parame- 

ers, mainly the number of foreground sources, N sources , the number 
f antennas in the perturbed beam synthesis, N antennas; perturbed , the 
requency range, νrange , the number of frequency channels, N ν , the 
hannel width, �νchannel , and the number of timestamp, N timestamp . 
e note that because we have not included any thermal noise in this
ork, the total integration time is not rele v ant. 

.4 Impact of different beams on the power spectrum 

o understand the impact of beam errors on the reco v ery of the
ylindrical power spectrum (hereafter PS), we convolve our sky 
escribed in Sections 4.1 and 4.2 with the sample realization of
 perturbed shown in Fig. 5 . Following the steps outlined in Section 4.3 ,
e then simulate the effects of interferometric observation and 
igure 9. From left to right, the PS of cosmic signal, foregrounds, and both cosmi
he black dash line shows the extent of the wedge which is calculated following eq
alculate the respective PS. From left to right, the panels in Fig. 9
how the PS of a sky consisting of the cosmic signal, foregrounds,
nd both cosmic signal plus fore grounds, respectiv ely, that has been
onvolved with B ideal . In the foreground PS (middle panel), the well
nown key features shown in e.g. Dillon et al. ( 2014 ) and Barry et al.
 2016 ) are clearly visible, mainly the foreground dominated region
n dark blue where k ‖ ≤ 0 . 11 h Mpc −1 , the yellow-blue region of the
edge at k ⊥ 

≥ 0 . 1 h Mpc −1 , and the mostly red EoR window. 
Finally in Fig. 10 we present the fractional error in the PS of

he beam-convolved total signal (EoR + FG) with respect to the
deal PS from the third panel of Fig. 9 , i.e. � P / P ideal = [ P ( B ∗[FG
 EoR]) − P ( B ideal ∗[FG + EoR])]/ P ( B ideal ∗[FG + EoR]) for
 = [ B perturbed , B perturbed − ̂ �B PCA , B perturbed − ̂ �B KPCA ] (left-hand 

o right-hand panels, respectively). From the left-hand panel we see 
hat not accounting for beam errors mis-estimates the power spectrum 

hroughout k -space, with errors peaking at ∼10 per cent in the wedge
egion. Instead, modeling ̂  �B using either PCA or KPCA reduces the 
rror in the reco v ered power spectrum by o v er a factor of a hundred
n the EoR window and a factor of ten in the wedge (compare middle
nd right to the left-hand panel). 

Because the visibilities in the wedge are highly correlated, any 
eficit or surplus of beam attenuation with respect to B perturbed is
eflected in the entire wedge region. Indeed, as expected, beam 

rrors affect foregrounds more than the cosmic signal, even in 
he PS space. Ho we v er, there is some e xcess power close to the
orizon line on long baselines, in which the spur-like structure 
bo v e the horizon line seems to be caused by slight variations in
he true beam for different antennas. This could be caused by our
mall FOV coupled with the type of perturbations on these scales.
ecause we are less likely to capture the perturbations perfectly at

he edge of the FOV as shown in Figs 5 , 6 , and 7 , most of the
ifferences are clustered in the horizon thus potentially exacerbating 
he effect. 

Finally, we stress that this e x ercise is highly idealized, providing
nly a minimum estimate of the PS reco v ery error. In practice, we
ill not be able to fit the PCA and KPCA coefficients to the perturbed
MNRAS 514, 4655–4668 (2022) 

c signal and fore grounds, respectiv ely, for a mock sky convolved with B ideal . 
uation ( 14 ). 
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Figure 10. From left to right, the fractional difference between the PS of both cosmic signal and fore grounds convolv ed with B perturbed , B perturbed − ̂ �B PCA , 

and B perturbed − ̂ �B KPCA with respect to the PS of the same sky convolved with B ideal . 
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eam directly, as we have done here. Instead, eigenvalues would need
o be co-varied when performing calibration and inference. We defer
his analysis to future work. 

 C O N C L U S I O N S  

ome of the most important systematics in radio interferometry
rise from imperfect knowledge of the telescope beam. In this work,
e demonstrate an empirical approach to characterizing known

ources of beam errors. Focusing on offline and offset antennas for
n SKA-like beam, we generate thousands of realizations of beam
rrors. We use these realizations to define a beam error basis using
CA and KPCA. 
We demonstrate that both PCA and KPCA perform well in recov-

ring beam errors from offline and offset antennae. Compared with
ssuming an ‘ideal’ beam, using the top 20 components in either basis
an reduce the MSE by ∼tens–100 per cent o v er our test data sets. 

We demonstrate how this beam error characterization translates
o impro v ed power spectrum reco v ery. We generate a mock sky
omprised of point source foregrounds and the cosmic signal,
nd reco v er the c ylindrical po wer spectra assuming dif ferent beam
odels. For a random realization of beam error, we find that assuming

he ‘ideal’ beam results in PS errors that peak at ∼10 per cent
round the wedge region. Instead if either PCA or KPCA is used
o characterize the perturbed beam with 20 components, the PS error
s reduced by a factor of ∼10–100 throughout k -space. 

We stress that we did not include additional errors from, e.g.
alibration, in this work. We expect that fractional errors in sky-based
alibration will be much more sensitive to errors in the assumed
eam model, and these are further squared when propagated to
ower spectrum space. Depending on the spectral structure of these
alibration errors, inaccuracies as small as 10 −5 can be crippling to
 power spectrum estimation (Barry et al. 2016 ; Patil et al. 2016 ).
herefore, we expect improved beam characterization to be even
ore important when calibration is also included; we defer this to

uture work. 
NRAS 514, 4655–4668 (2022) 
Our general framework of using an empirical basis to characterize
ystematics should pro v e useful for an end-to-end inference pipeline
or 21-cm interferometry. The principal eigenvectors from PCA
nd KPCA can provide an optimal basis for systematics, with the
orresponding eigenvalues being co-varied together with cosmo-
ogical parameters when performing Bayesian inference. We will
emonstrate this in a follow-up work. 
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Figure A1. An example of a pseudo-random station layout. 

A
L

I  

r  

s
F  

b

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/3/4655/6608874 by C
N

R
 user on 04 August 2022
illon J. S. et al., 2014, Phys. Rev. D , 89, 023002 
ulwich F., Mort B. J., Salvini S., Zarb Adami K., Jones M. E., 2009,

Proceedings of Wide Field Astronomy & Technology for the Square 
Kilometre Array (SKADS 2009). Chateau de Limelette, Belgium, p. 31 

agnoni N. et al., 2021, MNRAS , 500, 1232 
urlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep. , 433, 181 
oerl A. E., Kennard R. W., 1970a, Technometrics, 12, 55 
oerl A. E., Kennard R. W., 1970b, Technometrics, 12, 69 

ntema H., Van Weeren R., R ̈ottgering H., Lal D., 2011, A&A , 535, A38 
acobs D. C. et al., 2017, PASP , 129, 035002 
i W. et al., 2019, ApJ , 887, 141 
ine J. L. B. et al., 2018, PASA , 35, e045 
ellema G. et al., 2013, Exp. Astron. , 36, 235 
ertens F. et al., 2020, MNRAS , 493, 1662 
esinger A., Furlanetto S., Cen R., 2011, MNRAS , 411, 955 
orales M. F., Wyithe J. S. B., 2010, ARA&A , 48, 127 
urray S. G., Greig B., Mesinger A., Mu ̃ noz J. B., Qin Y., Park J., Watkinson

C. A., 2020, J. Open Source Softw. , 5, 2582 
asirudin A., Murray S., Trott C., Greig B., Joseph R., Power C., 2020, ApJ ,

893, 118 
ewburgh L. B. et al., 2014, in Stepp L. M., Gilmozzi R., Hall H. J., eds,

Proc. SPIE Conf. Ser. Vol. 9145, Ground-based and Airborne Telescopes 
V. SPIE, Bellingham, p. 91454V 

ark J., Mesinger A., Greig B., Gillet N., 2019, MNRAS , 484, 933 
atil A. H. et al., 2016, MNRAS , 463, 4317 
ch ̈olkopf B., Smola A., M ̈uller K.-R., 1997, International Conference on

Artificial Neural Networks. Springer, Berlin, Heidelberg, p. 583 
utinjo A. T. et al., 2015, IEEE Trans. Antennas Propag. , 63, 5433 
utinjo A. T., McKinley B., Belostotski L., Ung D. C., Thekkeppattu J. N.,

2020, Union Radio-Sci. Int., 2 
warup G., Ananthakrishnan S., Kapahi V., Rao A., Subrahmanya C., 

Kulkarni V., 1991, Curr. Sci., 60, 95 
h yag arajan N. et al., 2013, ApJ , 776, 6 
ingay S. et al., 2013, PASA, 30, 21 
rott C. M. et al., 2020, MNRAS , 493, 4711 
an Haarlem M. P. et al., 2013, A&A , 556, A2 
ayth R. B. et al., 2018, Publ. Astron. Soc. Aust. , 35, e033 
PPENDI X  A :  P S E U D O - R A N D O M  STAT ION  

AYO U T  

n this section, we present some extra materials regarding a pseudo-
andom station layout that we have investigated in this work. Fig. A2
hows the OSKAR -generated beam using the layout shown in 
ig. A1 , along with a broken + offset perturbation on the same
eam and the difference between the two. 
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M

Figure A2. The beam using a pseudo-random layout, B random 

( ν) (left-hand panel), an example realization of broken + offset perturbation on the same beam 

B random; perturbed ( ν) (middle panel), and the consequent � B ( ν) (right-hand panel) at ν = 150 MHz. The fractional error is of the same general magnitude as the 
fractional error using a regularly spaced station layout in Fig. 2 . 
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Table C1. The OSKAR parameter input used in this research. 

Parameter Values 

FoV ( ◦) 20 
RA of Observation ( ◦) 0 
Dec of Observation ( ◦) −27 
Latitude of Telescope ( ◦) −27 
Longitude of Telescope ( ◦) 117 
Observation Time (UTC) 17:00:00 
Observation Date 1 August 2020 
Frequencies (MHz) [150, 170, 190] 

Figure C1. The SKA-like array layout. 
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PPENDIX  B:  U N I T  C O N V E R S I O N  

he conversion of δT B to S ( ν) (and vice versa) follows the Rayleigh–
eans law 

 ( ν) = 

(
2 k B ν2 δT B 

c 2 

)
× 10 26 ( Jy sr −1 ) , (B1) 

here k B is the Boltzmann constant. 
Under the assumption that τ is equi v alent to the Fourier counterpart

f the line-of-sight mode, η, both k ⊥ 

and k � are converted from r and
in Fourier dimensions following: 

 ⊥ 

= 

2 π | r | 
D M 

( z) 
( Mpc −1 h ) , (B2) 

nd 

 ‖ = 

2 πH 0 f 21 E( z) 

c(1 + z) 2 
τ ( Mpc −1 h ) (B3) 

rom Morales & Wyithe ( 2010 ). Here, z is the observation redshift,
 M 

( z) is the transverse comoving distance, H 0 is the Hubble constant,
 21 is the rest frequency of the 21-cm h ydrogen h yperfine transition
nd E ( z) is defined as 

( z) = 

√ 

�m 

(1 + z) 3 + �k (1 + z) 2 + �� 

, (B4) 

here �� 

, and �k are the dimensionless density parameters for dark
nergy and the curvature of space. 

PPENDIX  C :  E X T R A  MATERIALS  

n this section, we present some extra materials concerning the
esearch for interested readers. The parameter input used for OSKAR
s presented in Table C1 and the SKA-like station layout is shown in
ig. C1 . In addition, Fig. C2 shows the probability density functions
PDFs) of the first 20 components in the higher dimension space from
he KPCA, ordered from largest (top left panel) to smallest (bottom
ight panel) variance. 
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igure C2. The PDFs of the first 20 components in the higher dimension
pace from the KPCA, ordered from largest (top left panel) to smallest (bottom
ight panel) variance. 

PPENDIX  D :  K E R N E L  PCA  EXAMPLE  

he purpose of this simple example is to qualitatively describe the 
ain ingredients of the KPCA algorithm – in particular: data space –
 , feature space – ψ( y ), and tw o k ernels ( κ and ̃  κ) defining mappings
rom one to another. Moreo v er, we w ould lik e to show very different
oles the two kernels have in the process. 

In Fig. D1 , we show a bi-modal distribution (with the two modes
abeled ‘1’ and ‘2’). The horizontal axis represents data space. In
his simple example, we would like to use KPCA to accentuate the
i-modality of this distribution. 
We first pull samples from the distribution and use the kernel κ( y i ,

 j ) = ψ( y i ) · ψ( y j ) as a part of the KPCA algorithm. Here ψ( y ) is
n feature space, which is not directly accessible and can be infinite
imensional. Performing KPCA in this space and selecting the first 
 components amounts to selecting basis vectors in the feature space 

ollowing the largest variance of the samples. After fitting the data, 
his subset of a feature space ψ N is accessible and the mapping 
 N ( y) is known. 

1 Mapping to and from feature space 

 or the e xample abo v e, one can show the first component of the
eature space ψ 1 ( y ) (see Fig. D2 ). Samples from the modes in

igure D1. Initial distribution on which we w ould lik e to run a KPCA
lgorithm. 
igure D2. Mapping from data space to the KPCA feature space ψ N .
tarting from the top distribution in data space, points are transformed through

he learned function in the middle into the first component of the feature space,
hown on the right. Samples from two underlying distributions are denoted
ith different colours for better visualization. 

he distribution are distinguished by different colours, for bet- 
er visualization. Starting from the distribution on the top, we 
ass it through the (learned) transformation shown in the mid- 
le, getting the distribution on the right. As expected, the two
odes (blue versus orange) are much better separated in the 
rst component of the feature space, ψ 1 , than they were in data
pace, y . 

Contrary to linear PCA, ho we v er, an e xact inv erse transform to
eturn from ψ 1 back to data space generally does not exist. Therefore,
e define the inverse transform using kernel ridge regression. In 

inear ridge regression from ψ N back to y , we would minimize the
ean square error o v er the data: 

∑ 

i 

(
y i − w 

T ψ N 

)2 + 

λ

2 
|| w || 2 , (D1) 

here w are the weights and second term is a standard l 2 regulariza-
ion. Ho we ver , as the in verse function is highly non-linear, we firstly
ransform ψ N into another (possibly infinite) feature space φ, and 
earn the transformation ˜ w back to y . The minimization is then: 

∑ 

i 

(
y i − ˜ w 

T φ
(
ψ N 

))2 + 

λ

2 
|| ̃  w || 2 . (D2) 

ne can pro v e that the feature space φ does not have to be accessed
nd is only implicitly defined by the kernel ˜ κ

(
( ψ N ) i , ( ψ N ) j 

) = (
( ψ N ) i 

) · φ
(
( ψ N ) j 

)
. 

In Fig. D3 , we show the results of such procedure. We can see that
he learned mapping is indeed non-linear and the initial distribution 
s well preserved. Ho we ver , the in verse transform is not exact and
ifferences between distributions of initial and reco v ered samples 
an be clearly seen (Fig. D4 ). 
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Figure D3. Mapping from the feature space ψ N = ( ψ 1 , ψ 2 , ... ) back to the 
data space, y . Kernel ridge regression feature space φ is never accessed and 
only defined by the kernel ̃  κ . Samples from the two underlying modes are 
separated in colour for better visualization. 

Figure D4. Histogram of initial samples (marked with 1 and 2) and samples 
reco v ered after inverse transformation from ψ N to y (marked with 1 ∗ and 2 ∗). 
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