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ABSTRACT

Astronomy is undergoing through a methodological revolution triggered by an

unprecedented wealth of complex and accurate data. The new panchromatic, syn-

optic sky surveys require advanced tools for discovering patterns and trends hid-

den behind data which are both complex and of high dimensionality. We present

DAMEWARE (DAta Mining & Exploration Web Application & REsource): a

general purpose, web-based, distributed data mining environment developed for

the exploration of large data sets, and finely tuned for astronomical applications.

By means of graphical user interfaces, it allows the user to perform classification,

regression or clustering tasks with machine learning methods. Salient features

of DAMEWARE include its capability to work on large datasets with minimal

human intervention, and to deal with a wide variety of real problems such as

the classification of globular clusters in the galaxy NGC1399, the evaluation of

photometric redshifts and, finally, the identification of candidate Active Galactic

Nuclei in multiband photometric surveys. In all these applications, DAMEWARE

allowed to achieve better results than those attained with more traditional meth-

ods. With the aim of providing potential users with all needed information, in

this paper we briefly describe the technological background of DAMEWARE,

give a short introduction to some relevant aspects of data mining, followed by a

summary of some science cases and, finally, we provide a detailed description of

a template use case.

Subject headings: Data Analysis and Techniques
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1. Introduction

Astronomy has recently become a data rich science and not only data volumes and

data rates are growing exponentially, closely following Moore’s law (Szalay & Gray 2006)

but, at the same time, there are also significant increases in data complexity and data

quality. For instance, the data provided by the new panchromatic, synoptic surveys often

consists of tables containing many hundreds of parameters and quality flags for billions of

objects. These parameters are often highly correlated and carry redundant information

which introduce hard to disentangle ambiguities. In addition, most times, these tables are

plagued by a large fraction of missing (not a number or NaN) data which need to be taken

into account properly.

It is not just this new data abundance that is fueling this revolution, but also the

Internet-enabled data access and the extensive data re-use. The informational content of

the modern data sets is in fact so high as to render archival research and data mining

mandatory since, in most cases, the researchers who took the data tackle just a small

fraction of the science that is enabled by it. The main implication being that the same data

sets (or specific subsets of them) are often used by many different teams to tackle different

problems which were not among the main goals of the original surveys. This multiplication

of experiments requires optimal strategies for data extraction and transfer (from the data

repositories to the final user) and for data processing and mining.

A first response of the astronomical community to these challenges was the Virtual

Observatory (VO) which was initially envisioned as a complete, distributed (Web-based)

research environment for astronomy with large and complex data sets, to be implemented

by federating geographically distributed data and computing facilities, as well as the

necessary tools and related expertise (Brunner et al. 2001; Djorgovski et al. 2002). The

VO is nowadays a world-wide enterprise, with a number of national and international
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VO organizations federated under the umbrella of the International Virtual Observatory

Alliance (IVOA1). The VO implementation, however, has so far focused mainly on the

production of the necessary data infrastructure, interoperability, standards, protocols,

middleware, data discovery services, and has produced only a limited subset of data

exploration and analysis services. Very little has so far been done in the production of

tools capable to explore large data sets and to extract in a semiautomatic way, patterns

and useful information from a wealth of data which goes well beyond the capabilities of

individual analysis. This process is usually called either Knowledge Discovery in Databases

or Data Mining with very small if any, semantic differences between the two wordings.

In spite of the fact that in the last few years Data Mining (DM) seems to have become

immensely popular in the astronomical community (which has begun to label as data

mining any sort of data querying, data analysis or data visualization procedure), true Data

Mining -i.e. the extraction of useful information from the data with automatic methods-

is still quite uncommon. This is probably due to the fact that DM is a complex and non

deterministic process where the optimal results can be found only on a trial-and-error base,

by comparing the output of different methods and of different experiments performed with

the same method. This implies that, for a specific problem, DM requires a lengthy fine

tuning phase which is often not easily justifiable to the eyes of a non-experienced user.

Furthermore, in order to be effective, DM requires a good understanding of the mathematics

underlying the methods, of the computing infrastructures, and of the complex workflows

which need to be implemented. Most casual users (even in the scientific community) are

usually not willing to make the effort to understand the process, and prefer recourse to

traditional and less demanding approaches which are far less powerful but often much more

user friendly (Hey et al. 2009). This however, will become more and more difficult in the

1 http://ivoa.net

http://ivoa.net
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future when DM will become an unavoidable necessity.

Many Data Mining packages are nowadays available to the scientific community, from

desktop applications (i.e. packages to be downloaded and installed on user local machine)

to web-based tools (services and applications which can be remotely executed from a simple

browser). To the first group, to quote just a few, belong Knime2, Orange3, Weka4 and

RapidMiner5. While VOStat6 and the DAMEWARE7, described here, belong to the second

group. Many of these tools have been the subject of a review study carried out to determine

which of the wide variety of available data mining, statistical analysis and visualization

applications and algorithms could be most effectively used by the astrophysical community

(Donalek et al. 2011). The main result of this study being that most of these tools fail to

scale when applied even to moderately large (hundreds of thousands records) data sets.

DAMEWARE (DAta Mining & Exploration Web Application REsource) was conceived

and engineered in 2007 to enable a generic user to perform data mining and exploratory

experiments on large Data Sets (of the order of few tens of GBytes) and, by exploiting web

2.0 technologies, it offers several tools which can be seen as working environments where

to choose data analysis functionalities such as clustering, classification, regression, feature

extraction etc., together with models and algorithms. As it will be shown in what follows,

under DAMEWARE, any user can setup, configure and execute experiments on his own

data, on top of a virtualized computing infrastructure, without the need to install any

2http://www.knime.org/

3http://orange.biolab.si

4http://www.cs.waikato.ac.nz/~ml/weka/

5http://rapid-i.com/content/view/181/196/

6http://astrostatistics.psu.edu/vostat/

7http://dame.dsf.unina.it/dameware.html

http://www.knime.org/
http://orange.biolab.si
http://www.cs.waikato.ac.nz/~ml/weka/
http://rapid-i.com/content/view/181/196/
http://astrostatistics.psu.edu/vostat/
http://dame.dsf.unina.it/dameware.html
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software on his local machines.

DAMEWARE has been offered to the public since early 2012. During its commissioning

period, ended in August 2013, about 100 scientists from 27 different countries registered as

users and performed many different experiments. In the same period, the project web site

hosted ∼ 12, 000 independent accesses. Furthermore, the various functionalities and models

offered by DAMEWARE have been extensively tested on real scientific cases and the results

are discussed in 25 publications, among which are 10 refereed papers, 3 contributes to

volumes and 12 proceedings of international workshops.

This paper merges two aspects: first of all, it intends to provide a concise technical

description of DAMEWARE; second it provides the interested reader with a quick overview

of the functionalities and with a worked out template use case. In the next section

(Sect. 2) we describe the design and the architecture of DAMEWARE web application.

Sect. 3 gives the methodological background behind DAMEWARE while in Sect. 4 we

describe in some detail how DAMEWARE works, describing the data preprocessing

(Sect. 4.1), the experiments and the post reduction (4.2). In Sect. 5 we shortly outline

some previous applications of DAMEWARE which can be used by the interested reader to

better understand the potentialities of DAMEWARE and, in order to better exemplify the

workflow involved in a typical DAMEWARE experiment, in Sect. 6 we present, as template

use case, the evaluation of photometric redshifts for a sample of galaxies used by our team

for the PHAT1 contest (Hildebrandt et al. 2010; Cavuoti et al. 2012). Finally in Sect. 8 we

outline some key points of the discussion and draw some conclusions.

Readers who are not interested in the technical aspects and/or who have enough

experience in data mining can skip the first sections and move directly to Sect. 5 and 6.
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2. DAMEWARE design and architecture

From a technical point of view, DAMEWARE is what is called a Rich Internet

Application (RIA, Bozzon et al. 2010), consisting of web applications having the traditional

interaction and interface features of computer programs, but usable via web browsers.

The main advantage of using web applications is that the user is not required to install

program clients on his desktop, and has the possibility to collect, retrieve, visualize and

organize the data, as well as configure and execute the data mining applications through

his web browser. An added value of such approach is the fact that the user does not need

to directly access large computing and storage facilities, and can transparently perform his

experiments exploiting computing networks and archives located worldwide, requiring only

a local laptop (or even a smartphone or a tablet) and a network connection.

Most available web based data mining services run synchronously and this implies

that they execute jobs during a single HTTP transaction. In other words, all the entities

in the chain (client, workflow engine, broker, processing services) must remain up for the

whole duration of the activity; if any component stops, the context of the activity is lost.

Obviously, this approach does not match the needs of long-run tasks which are instead the

rule when dealing with large data sets. For this reason, DAMEWARE offers asynchronous

access to the infrastructure tools, thus allowing the running of activity jobs and processes

outside the scope of any particular web service operation and without depending on the

user connection status. In other words, the user, via a simple web browser, can access the

application resources and has the possibility to keep track of his jobs by recovering related

information (partial/complete results) at any moment without being forced to maintain

open the communication socket.

From the software development point of view, the baselines behind the engineering

design of DAMEWARE were:



– 8 –

• Modularity : software components with standard interfacing, easy to be replaced;

• Standardization: in terms of information I/O between user and infrastructure, as well

as between software components (in this case based on the XML-schema);

• Interoperability of data: obtained by matching VO requirements (standards and

formats);

• Expandability : many parts of the framework will be required to be enlarged and

updated along their lifetime. This is particularly true for the computing architecture,

framework capabilities, GUI (Graphical User Interface) features, data mining

functionalities and models (this also includes the integration within the framework of

end user proprietary algorithms);

• Asynchronous interaction: the end user and the client-server mechanisms do not

require a synchronous interaction. By using the Ajax (Asynchronous Javascript and

XML, described in Garrett 2005) mechanism, the web applications can retrieve data

from the server running asynchronously in background, without interfering with the

display and behavior of the existing page;

• Language-independent Programming. This basically concerns the APIs (Application

Programming Interface) forming the data mining model libraries and packages.

Although most of the available models and algorithms were internally implemented,

this is not considered as mandatory, since it is possible to re-use existing tools and

libraries, to integrate end user tools, etc. To this aim, the Suite includes a Java based

standard wrapping system to achieve the standard interface with multi-language

APIs;

• Hardware virtualization. DAMEWARE is independent from the hardware deployment

platform (single or multi processor, grid etc.).
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To complete this short summary, we wish to note that DAMEWARE also offers a

downloadable Java desktop application (called DMPlugin8), which allows the end users

to extend the original library of available data analysis tools by plugging-in, exposing to

the community and executing their own code in a simple way, just by uploading into the

framework their programs, without any restriction on the native programming language.

Furthermore the many-core -the new parallel processing paradigm recently replacing

the multi-core concept- hardware platform hosting the web application, supports the

possibility of running parallel programs (Barsdell et al. 2010), via a dedicated Graphical

Processing Unit (GPU, NVIDIA Corp. 2012) K20 device.

Finally, we wish to stress that, in order to be as user friendly as possible, special

care was given to the documentation, both technical and user oriented, which is accessible

through the website.

3. Data Mining & DAMEWARE

In order to better understand the problems related with data mining in general and

with astronomical data mining in particular, it is necessary to spend a few words on the

distinction between the well known concept of observed astronomical space and the so

called measurements astronomical parameter space as defined in (Djorgovski et al. 2012).

3.1. Preparing the data

Every astronomical observation, surveys included, covers some finite portion of the

Observable Parameter Space (OPS), whose axes correspond to the observable quantities,

8http://dame.dsf.unina.it/dameware.html#plugin

http://dame.dsf.unina.it/dameware.html#plugin
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e.g., flux wavelength, sky coverage, etc. (see below). Every astronomical observation or a

set thereof, surveys included, subtends a multi-dimensional volume (hypervolume) in this

multi-dimensional parameter space. The dimensionality of the OPS is given by the number

of characteristics that can be defined for a given type of observation. Along some axes, the

coverage may be intrinsically discrete, rather than continuous. An observation can be just

a single point along some axis, but have a finite extent in others. A correct characterization

of the OPS is useful for many applications but for the purposes of Data Mining, it is

necessary to introduce the quite different concept of Measurement Parameter Space (MPS).

Catalogs of sources and their measured properties can be represented as points (or vectors)

in the MPS. Every measured quantity for the individual sources has a corresponding axis

in the MPS. But differently from OPS, some can be derived from the primary measured

quantities; for example, if the data are obtained in multiple bandpasses, we can form

axes of flux ratios or colors; a difference of magnitudes in different apertures forms a

concentration index; surface brightness profiles of individual objects can be constructed and

parametrized, e.g., with the Sersic index; and so on. Some parameters may not even be

representable as numbers, but rather as labels; for example, morphological types of galaxies,

or a star vs. a galaxy classification. While OPS represents the scope and the limitations

of observations, MPS is populated by the detected sources and their measured properties.

It describes completely the content of catalogs derived from the surveys. Each detected

source is then fully represented as a feature vector in the MPS (features is a commonly

used computer-science term for what we call measured parameters here). Modern imaging

surveys may measure hundreds of parameters for each object, with a corresponding (very

high) dimensionality of the MPS which is a curse for any data mining applications and not

only because algorithms scale badly with an increasing number of features, but also because

for increasing number of dimensions the average density of information decreases (i.e. the

n-dimensional table becomes more and more sparsely populated) thus increasing the level
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of noise. In other words, to the contrary of what is normally perceived, an high number of

features is very often a nuisance rather than a help (Djorgovski et al. 2012).

Missing data or NaN, change the dimensionality of the affected records in the MPS, a

fact which is not easy to deal with any DM method. Astronomical data present a further

level of complexity since the missing information can be of two types. In the simplest case,

the missing data is truly a NaN: for instance objects which have not been observed in one

photometric band and therefore correspond to truly missing information. In the second

case, the missing data can be, for instance, an object which has been observed but not

detected in a given band. The non detection conveys some information on the physical

properties of the object itself and cannot be plainly ignored. In this case, it might be

convenient to substitute the missing data with some relevant information such as, in the

case of the previous example, an upper limit to the flux.

It may also happen that the information content in a single table is not homogeneous,

i. e. attributes may be of different types, such as numerical variables mixed with categorical

ones. This level of diversity in the internal information can also be related to different

format type of data sets, such as tables registered in ASCII code (ANSI et al. 1977), CSV

(Comma Separated Values, Repici 2010) or FITS (text header followed by binary code of

an image, Wells et al. 1981). In order to reach an efficient and homogeneous representation

of the data set to be submitted to ML systems, it is mandatory to preliminarily take care

of the data format, in order to make them intelligible by the processing framework. In

other words, it is crucial to transform features and force them into a uniform representation

before starting the DM process. In this respect real working cases are, almost always,

quite different among themselves. Let us, for instance, think of time series (coming from

any sensor monitoring acquisition) where data are collected in a single long sequence, not

simply divisible, or of raw data that could be affected by noise or aberration factors.
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Furthermore, most practical DM methods based on the ML paradigm, when dealing

with massive data sets make an intensive use of so-called meta-data,9 another category of

data representation, based on partial ordering or equivalently generalization/specialization

relations. Fields of a meta-data collection are composed of information describing resources

and quick notes related to the referred original data, able to improve their fast visibility and

access. They also provide the primary information retrieval, indexed through description

fields, usually formatted as records (pattern of labels).

Feature selection (Guyon & Elisseeff 2003) consists of identifying which among the

various input parameters (also called features in DM terminology) carry the largest amount

of information. This allows one to exclude from subsequent analysis the less significant

features with the twofold purpose of decreasing the dimensionality of the problem (thus

reducing the noise in the data), and of improving the performance in terms of computing

time. Feature selection requires a large number of independent experiments and a lengthy

comparison procedure. In practice specific combinations of input features are created and

submitted as independent runs of the method and only those combinations which do not

cause a significant loss in performance are maintained.

Many different approaches are possible and we shall not enter into any detail but the

interested reader can refer to: (Grzymola-Busse & Ming 2001; Piggott 2001 2001; Vashist

& Garg 2012) for the missing data problem and to (Liu 1998) for an in depth analysis of

the possible feature selection procedures.

One last consideration: in the case of massive data sets, the user can approach the

investigation by extracting randomly a subset (better several) of data and look at them

9A meta-datum - from the Greek meta, or over, after and the Latin datum or information.

- is the information that describes a whole set of data (Guenther et al. 2004).
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carefully in order to operate cleaning and to make decisions about patterns, features and

attributes to be organized for future experiments. The presence of domain experts of course

simplifies and reduces this time-consuming preliminary activity. In any case, the casual

user also needs to be aware that in any successful DM experiment a significant (large)

effort must be put into the pre and post data processing. The literature shows that at least

60% of the time required by a DM application goes for the data preparation and result

verification (Cabena et al. 1998).

From what has been said above it should have become clear that data mining

experiments require a delicate pre-processing phase aimed at: i) standardizing the input

features; ii) minimizing the effects of missing data; iii) reducing the dimensionality of the

MPS to a minimum set of independent axes (Reduced Parameter Space or RPS).

3.2. Machine learning paradigms and models

There are two standard machine learning paradigms (Duda et al. 2001): supervised

and unsupervised. In the supervised paradigm, the dataset needs to contain a sub set

of data points (or observations) for which the user already knows the desired output

expressed in terms of categorical classes, numerical or logical variables, or as a generic

observed description of any real problem. The objects with known output form the so

called knowledge base (KB), and provide some level of supervision since they are used

by the learning model to adjust parameters or to make decisions in order to predict the

correct output for new data. In other words, supervised tasks are the DM equivalent of

the usual classification tasks, where the user is required to divide a sample of objects (for

instance galaxies) into classes according to some predefined scheme (e.g. spirals, ellipticals,

lenticulars, etc) learned on the basis of templates or examples. This is why supervised

algorithms are also called classifiers. The outcome is usually a class or category of the
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examples. Its representation depends on the available KB and on its intrinsic nature, but

in most cases it is based on a series of numerical attributes, organized and submitted in

an homogeneous way. The success of the learning is usually evaluated by trying out the

acquired feature description on an independent set of data (also named test set), having

known output but never submitted to the model before. Some classifiers are also capable

of providing results in a more probabilistic sense, i.e. the probability for a data point to

belong to a given class. Finally, a classifier can also be used to predict continuous values, a

model behavior which is usually called regression (Duda et al. 2001).

Unsupervised algorithms, instead of trying to predict the membership of a datum to

one or another a priori defined class, try to partition the input RPS into disjoint connected

regions sharing the same statistical properties. Each connected region of the partitioned

RPS defines what we call a cluster of data points. In other words, unsupervised algorithms

do not learn from examples, but try to create groups or subsets of the data in which points

belonging to a cluster are as similar to each other as much as possible, by making as large as

possible the difference between different clusters (Haykin 1999). The success of a clustering

process can then be evaluated in terms of human experience, or a posteriori by means of a

second step of the experiment, in which a classification learning process is applied in order

to learn an intelligent mechanism on how new data samples should be clustered.

This basic distinction between supervised and unsupervised tasks is reflected in

DAMEWARE by the fact that the choice of any machine learning model is always preceded

by selecting its functionality domain. In other words, since several machine learning models

can be used in more than one functionality domain, its choice is defined by the context in

which the exploration of the data is performed. In what follows we shall adopt the following

terminology:

• Functionality : any of the already introduced functional domains, in which the
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user wants to explore the available data (such as feature extraction, regression,

classification and clustering). The choice of the functionality target can limit the

number of selectable data mining models.

• Data mining model : any of the data mining models integrated in the DAMEWARE

framework. It can be either a supervised machine learning algorithm or an

unsupervised one, depending on the available Knowledge Base (KB), i.e. the set of

training or template cases available, and on the scientific target of the experiment.

• Experiment : a complete scientific workflow (including optional pre-processing or

preparation of data and post-processing), starting from the choice of a combination of

a data mining model and the functionality.

• Use Case: for each data mining model, different running cases are exposed to the user.

These can be executed singularly or in a prefixed sequence. Being the models derived

from the machine learning paradigm, each one may require a sequence of training

(including validation), test and run use cases, in order to perform, respectively,

learning, verification and execution phases of the experiment.

The functionalities and models currently available in DAMEWARE are listed in Table

1. All models are based on the machine learning paradigms and can be grouped into neural

networks, genetic algorithms and other types of self-adaptive methods. In the category

of neural networks, specialized for regression and classification, we list several types of

Multi Layer Perceptrons (MLP, McCulloch 1943) with different learning rules: (i) Back

Propagation (MLPBP, Duda et al. 2001); (ii) Genetic Algorithm (FMLPGA), an hybrid

model, including genetic programming rules (Mitchell 1998), implemented on both CPU

and GPU platforms; (iii) Levenberg-Marquardt Optimization Network (MLPLEMON,

Levenberg 1944) and (iv) Quasi Newton Algorithm (MLPQNA, Shanno 1990).



– 16 –

Fig. 1.— The Resource Manager panel of the DAMEWARE Graphical User Interface, with

the three main areas, Workspace (left side), File Manager (right up) and My Experiments

(right down), showing the created workspaces, the uploaded data files and the performed

experiments, respectively.

Model Name Category Functionality

MLPBP Multi Layer Perceptron with Back Propagation Supervised Classification, regression

FMLPGA Fast MLP trained by Genetic Algorithm Supervised Classification, regression

MLPQNA MLP with Quasi Newton Approximation Supervised Classification, regression

MLPLEMON MLP with Levenberg-Marquardt Supervised Classification, regression

Optimization Network

SVM Support Vector Machine Supervised Classification, regression

ESOM Evolving Self Organizing Maps Unsupervised Clustering

K-Means Unsupervised Clustering

SOFM Self Organizing Feature Maps Unsupervised Clustering

SOM Self Organizing Maps Unsupervised Clustering

PPS Probabilistic Principal Surfaces Unsupervised Feature Extraction

Table 1: Data mining models and functionalities available in the DAMEWARE framework.

Column 1: acronym; column 2: extended name; column 3: category; column 4: functionality.
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(a)

(b)

(c)

Fig. 2.— Panel (a): histogram sample produced by the web application, showing the spec-

troscopic redshift distribution produced after the splitting of a dataset in two subsets with

the Split by Rows function. Panel (b): multi histogram sample showing the photometric dis-

tribution of several magnitudes for a given galaxy sample. Panel (c): 3D scatter plot sample

showing the distribution of redshift vs two photometric colors from several magnitudes.
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(a)

(b)

Fig. 3.— Panel (a): The Feature Selection option panel, used during the pre-processing

phase to extract specific columns from any data table file. Panel (b): the Split by Rows

option panel, used during the pre-processing phase to split any data table file into two

subsets.
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The neural networks for clustering are the Self Organizing Maps (SOM, Kohonen

2007), Evolving SOM (ESOM, Deng & Kabasov 2003) and Self Organizing Feature Maps

(SOFM, Kohonen 2007). These methods are capable to deal also with images (for instance

for pixel based clustering) in the most commonly used formats.

To the category of generic self-adaptive methods belong the Support Vector Machine

(SVM, Chang & Lin 2011) for regression and classification, the K-Means (Hartigan & Wong

1979) for clustering and the Principal Probabilistic Surfaces (PPS, Chang & Ghosh 2001)

for feature extraction.

Depending on the specific experiment and on the execution environment, the use of

any model can take place with a more or less advanced degree of parallelization. This

requirement arises from the fact that all models require the fine tuning of some parameters

that cannot be defined a priori, not even by an experienced user, thus causing the necessity

of iterated experiments aimed at finding the best combination.

However, not all the models could be developed under the MPI (Message Passing

Interface) paradigm (Chu et al. 2007) but some models, such as the FMLPGA, were the F

stands for Fast MLPGA, and a general purpose genetic algorithm were also implemented

on GPUs in order to speed up performance (Cavuoti et al. 2013a) moving from multi-core

to many-core architectures.

For what scalability is concerned, there are however two different issues: on the

one hand the fact that most existing ML methods scale badly (cf. Gaber et al. (2005))

with both increasing number of records and/or of dimensions (i.e., input variables or

features); on the other, the fact that datasets in the multi terabytes range are difficult if

not plainly impossible to transfer across the network from the hosting data centers to the

local processing facilities. During the development period (2008-2011) it become clear that

in order to deal with datasets in the Tera and multi-Terabyte range some changes to the
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original design had to be introduced even though the true bottle neck was, and still is,

in the fact that very large data sets cannot be transferred over the network and that, in

these cases, the whole web app had to be mirrored in the data centers. A crucial step in

this direction was the implementation of the already mentioned DMPlugin which allows a

generic user to configure the I/O interfaces between his own algorithm and the available

infrastructure by generating a wrapper Java which integrates the new model in the suite

without the need to know its internal mechanisms.

4. Using DAMEWARE

In this section we briefly outline the pre-processing and post-processing facilities

included in the DAMEWARE platform.

4.1. Submitting and preparing data

DAMEWARE input data can be in any of the following supported formats: FITS

(tabular/image), ASCII (ordinary text, i.e. space separated values), VOTable (VO

compliant XML documents), CSV (Comma Separated Values), JPG, GIF, PNG (image).

In the Graphic User Interface (GUI) the input data belong to a workspace created

by the user at the start of any experiment setup process. All data are listed in the File

Manager subwindow (visible in Fig. 1).

Dealing with machine learning methods, starting from an original data file, a typical

pre-processing phase consists of the preparation of several different files to be submitted

as input for training, testing and validation of the chosen algorithm. The pre-processing

features available in DAMEWARE are (cf. also Fig. 3a):
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(a) (b)

(c)

Fig. 4.— Panel (a): the selection of the desired couple Functionality-Model for the current

experiment. Panel (b): the train use case configuration panel for the MLPQNA selected

model. Panel (c): the Scatter Plot 2D panel, used during the post-processing phase to

visualize the scatter plot 2D of zspec vs photo-z. Empty circles are training objects while

filled dots are test objects.
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• Feature Selection: it allows the creation of a new file containing only user selected

columns from the original input file;

• Columns Ordering : it creates a new file containing the user specified order of columns;

• Sort Rows by Column: it allows the creation of a new file containing rows sorted on a

user selected row index;

• Column Shuffle: it creates a new file containing shuffled columns;

• Row Shuffle: it creates a new file containing shuffled rows;

• Split by Rows : it allows the creation of two new files containing the user specified

percentage of rows (the row distribution can be randomly extracted);

• Dataset Scale: it creates a new file with normalized values in a chosen range ([−1,+1]

or [0, 1]);

• Single Column scale: it allows the creation of a new file with the values of a selected

normalized column in a chosen range, leaving the rest of columns unchanged;

Other, less DM oriented, tasks need to be execute outside of DAMEWARE, using

programs such as TOPCAT (Taylor 2005).

4.2. Inspecting results

Any outcome of a machine learning based experiment, originates from an inductive

process, hence needs to be post-processed. Post-processing always helps to investigate,

as well as to fine tune, the acquired knowledge. It usually requires both statistics and

graphical representations. DAMEWARE provides both kinds of tools.
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For instance, classification confusion matrices (Brescia 2012b) and regression residual

analysis are the available statistical tools for supervised models. A series of graphical plots

enables instead the investigation of the outcome of unsupervised (clustering and feature

extraction) experiments as well as the inspection of particular trends of a generic data table

or the viewing of a generic astronomical image.

The graphical options selectable by the user are:

• multi-column histograms;

• multi-tab scatter plot 2D;

• multi-tab scatter plot 3D;

• multi-column line plot;

• visualization of the most common image types (gif, jpeg, fits, png).

Some examples of graphical output are shown, respectively, in Fig. 2 a,b,c and Fig. ??.

5. Scientific applications of DAMEWARE

During the development phase, DAMEWARE has been tested on many science cases

which have led to significant results, published in several scientific papers. In order to

better exemplify the potential application of DAMEWARE, in what follows we shall briefly

outline some recent applications and results.
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5.1. Classification tasks

A typical astronomical problem tackled in the past with automatic tools is the so

called star/galaxy classification task which, at least until the late 90’s should have been

more correctly described as disentangling unresolved (i.e. point like) and spatially resolved

(i.e. extended) objects. Nowadays, even though the basic problem is always the same,

the possibility to use multi-band information adds an additional level of complexity and

allows one to disentangle not only resolved vs unresolved objects, but also unresolved

extragalactic objects against unresolved galactic ones. We performed a particular S/G

classification experiment using DAMEWARE to identify candidate globular clusters in the

halo of the galaxy NGC1399, disentangling them from background galaxies and foreground

galactic stars. In this classification task, the KB consisted of a set of bona fide globular

clusters selected in a small portion of the field on the basis of color-color diagrams. This

selection criterion, while very effective, requires multi-band observations and high angular

resolution. The aim of our DM experiment was to use the KB to train a model to classify

candidate globular clusters using single band observations obtained with the Hubble Space

Telescope (thus covering a much larger field of view with respect to the multi-band data).

DAMEWARE allowed us to test and compare different DM models and to choose the

optimal one. In particular, three different versions of MLPs, genetic algorithms and SVM

were used on the same data set (Brescia et al. 2012). The best results were obtained

with the MLPQNA leading to a class accuracy of 98.3%, a completeness of 97.8% and a

contamination of 1.8%.

Another classification problem tackled with DAMEWARE was to disentangle on

photometric grounds only galaxies hosting active nuclei (AGN) from normal (i.e. non

active) ones and to try to separate AGNs into broad phenomenological types such as Seyfert

I, Seyfert II and LINERs (Cavuoti et al. 2013b). In this case, the KB was more complex
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since it was assembled from different catalogues (all built on the basis of spectroscopic

information). Also in this case DAMEWARE was used to test different classification

models (different implementations of MLP and SVM). More specifically, we addressed three

different classification problems: i) the separation of AGNs from non-AGNs, ii) Seyfert

I from Seyfert II, and iii) Seyfert from LINERs. In terms of classification efficiency, the

results indicated that our methods performed fairly well (∼ 76.5%) when applied to the

problem of the classification of AGNs vs non-AGNs, while the performances in the finer

classification of Seyfert vs LINERs resulted ∼ 78% and ∼ 81% in the case Seyfert I vs

Seyfert II. The relatively low percentages of succesfull classification are compatible with

what is usually achieved in the literature and reflect the ambiguities present in the KB. The

resulting catalogue, containing more than 3.2 million candidate AGNs is available on-line

on the VizieR service (Cavuoti et al. 2013c).

5.2. Regression for photometric redshifts

The evaluation of photometric redshifts (hereinafter photo-z) is among the first and

most common problems dealt by astronomers using machine learning or data mining

methods. Photometric redshifts offer a viable and less demanding in terms of precious

observing time, alternative to spectroscopy based techniques, to derive the redshifts of

large samples of galaxies. In practice, the problem consists of finding the unknown function

which maps a photometric set of features (magnitudes and/or colors) into the redshift

space and many different techniques and approaches have been developed (Hildebrandt et

al. 2010). When a consistent fraction of the objects with spectroscopic redshifts exists,

the problem can be approached as a DM regression problem, where the a priori knowledge

(i.e. the spectroscopic redshifts forming the KB) is used to uncover the mapping function.

This function can then be used to derive photo-z for objects which have no spectroscopic
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information.

Without entering into much detail, which can be found in the literature quoted below

and in the references therein, we just summarize a few salient aspects tested in many

experiments done on different KBs, often composed through accurate cross-matching

among public surveys, such as SDSS for galaxies (Brescia et al. 2014), UKIDSS, SDSS,

GALEX and WISE for quasars (Brescia et al. 2013), GOODS-North for the PHAT1 contest

(Hildebrandt et al. 2010; Cavuoti et al. 2012) and CLASH-VLT data for galaxies (Biviano

et al. 2013). Other photo-z prediction experiments are in progress as preparatory work for

the Euclid Mission (Laureijs et al. 2011) and the KIDS10 survey projects.

While referring the interested reader to the above quoted papers and to Sect. 6 for

details, we just notice that in all these experiments we exploited a DM functionality which

appears to be relevant for a better understanding of the feature selection possibilities offered

by DAMEWARE. In Brescia et al. 2013 it is exemplified how the use of feature selection,

outlined in Sect. 3, could be used to reduce the number of significant input parameters from

the initial 43 to only 15, with no loss in regression accuracy and with a huge improvement

in computing time.

6. A template science case

In this section, which must be regarded as a sort of a tutorial, we show how to use the

MLPQNA model in DAMEWARE to evaluate photometric redshifts for a sample of objects

which was available for the PHAT1 contest (Hildebrandt et al. 2010; Cavuoti et al. 2012).

According to Hildebrandt et al. (2010), due to the extremely small KB of spectroscopic

10http://www.astro-wise.org/projects/KIDS/

http://www.astro-wise.org/projects/KIDS/
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redshifts, PHAT1 provides a quite complex environment where to test photo-z methods.

The PHAT1 dataset consists of photometric observations, both from ground and space

instruments (GOODS-North; Giavalisco et al. 2004), complemented by additional data in

other bands derived from Capak et al. (2004). The final dataset covers the full UV-IR range

and includes 18 bands: U (from KPNO), B, V, R, I, Z (from SUBARU), F435W, F606W,

F775W, F850LP (from HST-ACS), J, H (from ULBCAM), HK (from QUIRC), K (from

WIRC), and 3.6, 4.5, 5.8, and 8.0 µ (from IRAC Spitzer). The photometric dataset was

then cross correlated with spectroscopic data from Cowie et al. (2004), Wirth et al. (2004),

Treu et al. (2005), and Reddy et al. (2006). Therefore, the final PHAT1 dataset consists

of 1984 objects with 18-band photometry and more than one quarter of the objects (515),

with accurate spectroscopic redshifts. Details about the machine learning model MLPQNA

used in this context, can be found in Cavuoti et al. (2012).

In the following we will just describe more practical aspects of the workflow along the

experiment development. Details and available data of the experiments can be found on

the DAME web site11.

All the following experiment phases are intended to be performed after having

successfully completed the access and preliminary steps on the DAMEWARE web

application:

1. Login into the web application using your username and the password obtained after

the registration procedure;

2. Create a new workspace using the specific button in the main GUI window (see

Fig. 1);

11http://dame.dsf.unina.it/dame_photoz.html#phat

http://dame.dsf.unina.it/dame_photoz.html#phat
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3. Upload the original data files containing the complete KB (it can be loaded from user

local machine or from remote web address by providing the URL);

Let us start from the construction of the knowledge base needed for training, validation

and test. For supervised methods it is common practice to split the KB into at least three

disjoint subsets: one (training set) to be used for training purposes, i.e. to teach the method

how to perform the regression; the second one (validation set) to check against the possible

loss of generalization capabilities (also known as overfitting); and the third one (test set)

needed to evaluate the performances of the model.

As a rule of thumb, these sets should be populated with 60%, 20% and 20% of the

objects in the KB. In order to ensure a proper coverage of the MPS, objects in the KB

are divided up among the three datasets by random extraction, and usually this process

is iterated several times in order to minimize the biases introduced by fluctuations in the

coverage of the PS. In the case of MLPQNA described here, we used the leave-one-out

k-fold cross-validation (cf. Geisser 1975) to minimize the size of the validation set. Training

and validation were therefore performed together using ∼ 80% of the objects as a training

set and the remaining ∼ 20% as test set (in practice 400 records in the training set and 115

in the test set).

To ensure proper coverage of the MPS, we checked that the randomly extracted

populations had a spec-z distribution compatible with that of the whole KB. The automated

process of cross-validation (K = 10) was then done by performing ten different training

runs with the following procedure: (i) the training set was split into ten random subsets,

each one containing 10% of the objects; (ii) at each run we used 9 of the small datasets for

the training and the remaining one for validation.

The second phase of the experiment consists of the analysis of data features and

missing data. As already mentioned, the presence of features with a large fraction of
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NaNs can seriously affect the performance of a given model and lower the accuracy or the

generalization capabilities of a specific model. It is therefore good practice to analyze the

performance of a specific model in presence of features with large fractions of NaNs. This

procedure is strictly related to the feature selection phase which consists in evaluating the

significance of individual features to the solution of a specific problem. We wish to recall

that, as a rule of thumb, “feature selection methods belong to two large families: “filter

modeling” and “wrapper modeling”. The first group includes methods based either on

specific models (such as Principal Component Analysis or PCA, etc.) or on statistical

filtering which require some a-priori knowledge on the data model, while the second group

uses the machine learning method itself to assess the significance of individual features.

It is also necessary to underline that especially in the presence of small datasets, there is

a need for compromise: on the one hand, it is necessary to minimize the effects of NaNs;

on the other, it is not possible to simply remove each record containing NaNs, because

otherwise too much information would be lost. Details of the data analysis and feature

selection performed on the PHAT1 dataset are described in Cavuoti et al. 2012.

The construction and manipulation of the data sets for the above phases can be

performed in DAMEWARE, after user access, through the data editing options presented

in Sect. 4.1.

Starting from the availability in any user workspace of the data sets (train and test

set) containing columns related to the input features (photometric magnitudes, colors or

fluxes of all selected/available bands) and reference output (spectroscopic redshift) for all

objects, the train and test phases can be done by performing the following series of steps:

1. upload in the created workspace the train, test and run data sets from the website12.

12http://dame.dsf.unina.it/dame_photoz.html#phat

http://dame.dsf.unina.it/dame_photoz.html#phat
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Here for run data set we mean the whole data set containing photometric information

only to which the network will be applied at the end of the training+test procedure.

2. create the files to be used for the train and test phases, by using the Feature Selection

option in the editing menu (enabled by clicking the Edit icon close to each file). In

particular the three columns labeled as ID, 18 − band and 14 − band, respectively,

should be removed in both train and test sets, because not involved as input features

in the experiment;

3. Create a new train experiment (by clicking the icon named Experiment close to the

workspace name). Select the desired ML model having the regression functionality

among those available in the experiment type list (in this case Regression MLPQNA),

(see for example the Fig. 4a);

4. Choose the use case train among those made available in the selected model list (the

train use case is always the first required for new experiments);

5. Configure all required model and experiment type parameters (you can also follow the

suggestions obtained by pressing the Help button, as shown in Fig. 4b). The optimal

setup of the parameters is usually found by following a trial and error procedure but,

in this case, if the user does not want to run the numerous experiment needed, he can

use the set of parameters defined in Cavuoti et al. 2012;

6. Launch the train experiment and wait until the status ended appears in the My

Experiments panel (after the launch the user can disconnect from the web application);

7. At the end of the experiment, move the internal configuration files of the trained model

(depending on the model used) from the experiment output list to the File Manager

area of the current workspace (by pressing the AddInWS button nearby). For instance,

if MLPQNA was selected, the weight file is named as mlpqna TRAIN weights.txt and
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the network setup file as [inputfilename] mlpqna TRAIN frozen net.txt, where the

prefix depends on the specific input file name;

8. Create a new test experiment in the same workspace and choose the use case test,

configure its parameters (a subset of those already used in the train setup with the

obvious difference that in this case the input must be the test set previously prepared

in the workspace and by selecting the weight and network setup files, obtained ath

the end of training) and launch it;

9. At the end of the test case experiment, move the output table file in the File Manager

area;

10. Evaluate the results by performing some post-processing steps. For instance:

• Visualize the scatter plot (zspec vs photo-z) by pressing the menu button Plot

Editor ;

• Select the sub-tab Scatter Plot 2D, load the input file, configure the plot options

and create it (an example is shown in Fig. 4c);

• Create a new statistics experiment by selecting the Regression-statistics

experiment option and launch it by submitting the test output file as input data

and columns 2 and 3 as references for the calculations;

• Download and visualize on your local machine the residual statistics output file;

In the case that the user has not adopted the suggested values but is trying to derive

the optimal setup on a trial-and-error basis, the whole procedure needs to be repeated

many times by varying the setup parameters and by comparing the resulted statistics.

After completing the sequence of train, test, statistics, plotting experiments, the user

can use the trained model to produce photo-z for the objects without spectroscopic redshift,
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i.e. the run set. To do this, he needs a third file containing the photometric only objects,

pruned of all the data with incomplete information and filtered accordingly to the same

photometric selection criteria mentioned above. Using the trained network, the user must

choose the use case run, configure its parameters (a subset of those already used in the

train and test setup with the obvious difference that in this case the input must be the run

set previously prepared in the workspace) and launch it. The output file will contain the

estimated photo-z for all given objects.

7. Future developments

As discussed in the previous sections, DAMEWARE is fully capable to deal with most

existing data sets but, due to the limitations imposed by data transfer over the network, it

is clear that the future of any DAMEWARE-like service will depend on the capability of

moving the data mining applications to the data centers hosting the data themselves.

The VO community has already designed web based protocols for application

interoperability (such as the Web Samp Connector), which solve some problems but still

require to exchange data between application sites (Derrierre et al. 2010; Goodman et

al. 2012). From a conceptual point of view, the possible interoperability scenarios are

(hereinafter DA stands for Desktop Application and WA for Web Application):

1. DA1⇔ DA2 (data + application bi-directional flow)

(a) Full interoperability between DAs;

(b) Local user desktop fully involved (requires computing power);

2. DA⇔ WA (data + application bi-directional flow)

(a) Full WA⇒ DA interoperability;
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(b) Partial DA⇒ WA interoperability (such as remote file storing);

(c) MDS must be moved between local and remote applications;

(d) user desktop partially involved (requires minor computing and storage power);

3. WA ⇔ WA (data + application bi-directional flow)

(a) Except from URI exchange, no interoperability and different accounting policy;

(b) MDS must be moved between remote apps (but larger bandwidth);

(c) No local computing power required;

All these mechanisms are however, just partial solutions since they still require to exchange

data over the web between application sites.

Building upon the DAMEWARE experience and in particular upon the experience

gained with the implementation of the DMPlugin resource, we decided to investigate a

new concept called Hydra13. Within this concept, we started by designing a prototype of

a standardized web application repository, named HEAD. A HEAD (Hosting Environment

Application Dock) cloud is in practice a group of standardized software containers of data

mining models and tools, to be installed and deployed in a pre-existing data warehouse. In

such scenario, the various HEADs can be different in terms of number and type of models

made available at the time of installation. This is essentially because any hosting data

center could require specific kinds of data mining and analysis tools, strictly related with

their specific type of data and specific knowledge search types. All HEADs, however, would

be based on a pre-designed set of standards, completely describing their interaction with

13The name was inspired by the Greek mythological monster called Lernaean Hydra, the

ancient nameless serpent-like water beast, with reptilian traits that possessed many inde-

pendent but equally functional heads
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external environment, application plugin and execution procedures and therefore would be

identical in terms of internal structure and I/O interfaces. If two generic data warehouses

host two different HEADs on their site, they are able to engage the mining application

interoperability mechanism by exchanging algorithms and tool packages on demand.

On a specific request, the mechanism will engage an automatic procedure which moves

applications, organized under the form of small packages (a few MB in the worst case),

through the Web from a HEAD source to a HEAD destination, installs them and makes the

receiving HEAD able to execute the imported model on local data.

Of course, such strategy requires a well-defined design approach, in order to provide a

suitable set of standards and common rules to build and codify the internal structure of

HEADs and data mining applications, such as for example any kind of rules like PMML,

Predictive Model Markup Language (Guazzelli et al. 2009). These standards can be in

principle designed to maintain and preserve the compliance with data representation rules

and protocols already defined and currently operative in a particular scientific community

(such as VO in Astronomy).

In order to fine tune the Hydra concepts, we recently approached the design and

development of a desktop application prototype capable to deal with general classification

and regression problems, but fine tuned to tackle specific astrophysical problems. The first

example being the PhotoRApToR14 (PHOTOmetric Research APplication To Redshifts)

App, freely downloadable at the DAMEWARE project website, for the supervised prediction

of photometric redshifts (De Stefano et al. 2014).

14http://dame.dsf.unina.it/dame_photoz.html#photoraptor

http://dame.dsf.unina.it/dame_photoz.html#photoraptor
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8. Conclusions

The DAMEWARE project started in 2007 and was released in 2013. These have been

momentous years for astronomy which has become a data rich science and is now coping

with data problems whose full extension could just be imagined a decade ago.

We therefore think it useful to briefly account for some lessons learned in the making

of a project which to our knowledge is among the very few projects aimed at providing

the astronomical community with a user friendly tool capable to perform extensive data

mining experiments on massive data sets. Some of the considerations below arise from the

experience gathered in answering frequent questions raised by the community of users and

might prove of general interest.

An important aspect, revealed through the DAMEWARE experience, regards the

computing latency time required by large data mining experiments. For instance, the

completion of the set of experiments described in Brescia et al. (2013) required several

weeks of computing time on a multicore processor.

The harder problem for the future will be heterogeneity of platforms, data and

applications, rather than simply the scale of the deployed resources. The goal should

be to allow scientists to explore the data easily, with sufficient processing power for

any desired algorithm to efficiently process it. Most existing ML methods scale badly

with both increasing number of records and/or of dimensionality (i.e., input variables

or features). In other words, the very richness of astronomical data sets makes them

difficult to analyze. This can be circumvented by extracting subsets of data, performing

the training and validation of the methods on these more manageable data subsets, and

then extrapolating the results to the whole data set. This approach obviously does not

use the full informational content of the data sets, and may introduce biases which are

often difficult to control. Typically, a lengthy fine tuning procedure is needed for such
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sub-sampling experiments, which may require tens or sometimes hundreds of experiments

to be performed in order to identify and optimize, for the problem in hand, the DM method

or its architecture and parameter setup.

The DAMEWARE resource was designed by taking all these issues into account,

thus including the parallel computing facilities, based on GPGPU hardware and

CUDA+OpenACC software paradigms (NVIDIA Corp. 2012), applied to most expensive

models, like hybrid architectures (neural networks with genetic algorithms). The speedup

gain obtained by executing such models on the parallel platforms ensures the scalability of

our algorithms and makes feasible the data mining process with them on huge data sets.

So far, all future astrophysical data mining resources require a massive exploitation of such

paradigms.

With the release of the current version, DAMEWARE has concluded the test phase

and has become fully operational. However, besides debugging and the addition of further

data mining models and methods, no major revisions and/or additions are foreseen.
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Fig. 5.— The output of the test experiment with also the residual statistics report. On the

right side the File Manager and the My Experiments areas are shown.
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