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and Francesco Fidecaro

The Einstein Telescope (ET) is a proposed next-generation, underground gravitational-wave (GW) detector
to be based in Europe. It will provide about an order of magnitude sensitivity increase with respect to currently
operating detectors, and furthermore, extend the observation band towards lower frequencies, i.e., down to
about 3 Hz. One of the first decisions that needs to be made is about the future ET site following an in-depth
site characterization. Site evaluation and selection is a complicated process, which takes into account science,
financial, political, and socio-economic criteria. In this paper, we provide an overview of the site-selection
criteria for ET, provide a formalism to evaluate the direct impact of environmental noise on ET sensitivity, and
outline the necessary elements of a site-characterization campaign.

I. INTRODUCTION Modern particle detectors are located underground to reduce
the natural background. Sites of new ground-based tele-

The environment surrounding modern fundamental  Scopes have to be chosen carefully to enable excellent seeing

physics experiments assumes an increasingly important role
with great impact on infrastructure, cost, and science. In
experiments to search for rare particle interactions like the
neutrino-less double-beta decay or interactions with dark
matter, the local radioactive environment and particle back-
grounds can limit the sensitivity of the experiments [1H6].

conditions and to avoid light pollution [7HI1l]. Sometimes,
the environment can even form an essential component of
the experiment itself like in large-scale neutrino detectors
[i2] 13]. Even at CERN, where the direct impact of the
environment can be corrected by feedback and plays a minor
role, environment-dependent aspects of infrastructure



lifetime are of great importance and need to be analyzed
[14]. Site characterization and selection is therefore of great
value in large modern fundamental-physics experiments and
can crucially influence their future scientific output.

The environment plays an even more important role for
gravitational-wave (GW) detectors. For the LIGO and Virgo
detectors, the site conditions were assessed especially with
respect to the feasibility of the construction, but also the im-
portance of having an environment with weak seismic distur-
bances was emphasized [15l[16]. Ground motion, sound, and
other environmental noises can directly affect the sensitivity
and duty cycle of a GW detector [17]. For Einstein Telescope
(ET), general site conditions concerning, for example, geol-
ogy and ground water can have a great impact on construc-
tion cost, infrastructure lifetime, and environmental noise. A
preliminary seismic assessment of numerous sites in Europe
was carried out as part of the ET Conceptional Design Study
[18,[19]. One of the goals of ET is to extend the frequency
band of ground-based GW observations down to a few Hertz
[20], which amplifies the importance of environmental noise.
Seismic fields were given special attention since the main en-
vironmental noise predicted to set a low-frequency limit to
ET’s bandwidth is from gravity perturbations produced by
seismic fields [21][22]]. Among the environmental noises, ter-
restrial gravity perturbations, if they limit the detector sen-
sitivity, require a complicated mitigation method [22]]. Sup-
pressing terrestrial gravity perturbations is the main motiva-
tion to construct ET underground and therefore determines
a large fraction of the cost.

Two candidate sites were chosen to be subject to a detailed
site-characterization: north of Lula in Sardinia (Italy), and the
Meuse-Rhine Euroregion. It is the responsibility of the ET
collaboration to present an evaluation of the two sites. A site
evaluation needs to consider the impact of site conditions on:

« Detector sensitivity

« Detector operation and duty cycle

« Infrastructure lifetime

« Site-quality preservation

« Construction and maintenance cost

« Socio-economic impact of ET

Individual environmental properties such as local geology,
topography, and seismic activity can be relevant to more than
one of these criteria. While it is helpful to introduce these
categories for a detailed discussion, the ultimate question is
what the achievable quality of a detector is in terms of sen-
sitivity, duty cycle, and its socio-economic impact integrated
over the lifetime of the infrastructure for a given amount of
invested money. There is no algorithm nor theory to fully
answer the question, but discussions leading to a site selec-
tion must be oriented towards an answer to this simply stated
problem.

The goal of this paper is to help prioritizing the criteria
and to facilitate the site selection. A complete description of
site-selection criteria as quantitative measures, for example,
to estimate cost and social impact is well beyond the scope of

this article. Instead, we provide a summary of the respective
site properties that will have to be studied for site selection.
We limit the quantitative analysis to aspects that have a di-
rect impact on ET’s sensitivity, i.e., the calculation of envi-
ronmental noise, neglecting relations that exist between all
criteria due to financial constraints.

In section[lI] we discuss general site conditions related to
geology, ground water, etc. In section [[I} we describe envi-
ronmental noises and how to estimate associated ET instru-
ment noise. Since site characterization plays such an impor-
tant role, we summarize the targets of a site-characterization
campaign in section[[V]jand how to obtain the required infor-
mation.

II. SITE CONDITIONS

In this section, we discuss the site-selection criteria from
an infrastructural and geological point of view. This should
include all the possible parameters that have an impact on the
excavation costs and construction timeline, detector opera-
tion, underground facility access convenience, safety of the
workers in the underground environment and detector life-
time that we assume to be at least 50 years. The parameters
related to the underground facilities have been grouped in
terms of geological conditions, hydrogeological conditions,
and geotechnical conditions. Another section concerns sur-
face conditions, infrastructures, and societal aspects.

The main goal of site selection, site characterization, facil-
ity layout, and identification of applied construction meth-
ods is to find a location that allows for the construction of
ET so that it can achieve its science goals and operate effec-
tively for its proposed lifetime. The technical and cost as-
pects, nevertheless, can only be optimized together, as a re-
sult of a multi-component decision-making procedure, bal-
ancing among sensitivity, cost and technical risk analyses.
The most reasonable solution for the selected site, the ba-
sic design and the planned construction methods should en-
sure optimization both for technical readiness and the overall
costs (both for construction and operation phases) of the fa-
cility.

A. Geological conditions

The challenges related to the construction of a deep (down
to 300 m) and long (more than 30 km of total tunnel length
and experimental halls) infrastructure such as ET are many
and most of them are related to the difficulty to anticipate the
geological conditions (structures, faults, lithology, fractures,
alteration, short- and long-term water ingress, ...) at depths
and their corresponding hazards over large scales [23]. Con-
struction planning needs to consider structural information,
geological, rock mechanical and behavior models including
maps and cross-sections with an estimate of uncertainties,
and to estimate risks of geological hazards (i.e. tunnel sta-
bility, environmental impact such as ground water lowering
and subsidence, karst, earthquakes). This process should use



the most advanced combination of methods to predict the
geological and rock-mechanical conditions [24], and the im-
pact underground construction will have on it. For example,
changes in groundwater conditions have been induced by un-
derground construction.

Seismicity plays a large role in the duty factor of large
ground-based, gravitational-wave experiments [25]. Spe-
cific aspects of geology in relation to seismicity are site ef-
fects and seismic microzonation [26]. We can have vari-
ations of seismic amplitude at small scales due to filter-
ing, attenuation, and amplification [27, 28]. Filtering is the
frequency-dependent transmission of seismic waves, for ex-
ample, through stratified geology. Amplification under “sta-
ble conditions” is the effect of the interference of seismic
waves trapped within geological bodies bounded by large
seismic impedance contrasts (soft soil/bedrock, soil/free sur-
face, etc.). The dimension of geological bodies and discon-
tinuities to be analyzed for characterizing the relevant phe-
nomena are of the order of the seismic wavelengths, which
can range from several tens of meters to several kilometers
depending on frequency and ground properties. The rate of
attenuation, typically expressed as the attenuation factor Q,
depends on a variety of ground properties such as the elastic
properties, degree of fracturing, presence of ground water,
fluid pressure and porosity. While the impact of site effects
is straight-forward to understand with respect to ground vi-
bration, and therefore to detector control and seismic isola-
tion, a more detailed understanding of the geology leading to
site effects would be required for models of seismic terrestrial

gravity noise (see section [[II A).

B. Hydrogeological conditions

Hydrogeological conditions govern the groundwater flow.
Water inflow into tunnels, shafts and larger cavities is an
important factor during the construction phase as well dur-
ing the exploitation phase. Depending on the permeability,
the accumulated water inflow rates can be high requiring a
tunnel drainage system designed for pumping water back to
the surface [29]. Pumping is associated with ambient noise
and the source of noise is at the depth of ET. Zones where
large short and long-term inflow rates are expected might be
treated with cement injections to decrease their permeability
and thus reduce the accumulated water ingress significantly.
If a water-drainage system employs pumps, they might be
a significant source of infrastructure noise affecting the GW
detector. Water flow as part of a drainage system inside tun-
nels might potentially act as a source of gravity noise [30].
Groundwater constitutes a possible hazard scenario for deep
infrastructures [31]].

Hydrogeological data must be collected at the relevant
scale (typically meter to decameters) corresponding to the
different lithological facies (i.e., nature of the geological for-
mations) that can be potentially encountered. Hydrogeo-
logical data can be provided at the intact rock scale (a rock
specimen that does not contain any fractures/joints) and on
the rock-mass scale (a volume of jointed rock). Since flow

in the underground is often controlled by flow in fractures,
the permeability is typically higher on the rock-mass scale.
Hydraulic conductivity and storativity as well as water pres-
sures or piezometric heads, are the most important param-
eters and variables determining the quantity of groundwa-
ter to be potentially drained by underground galleries and
cavities. As hydraulic conductivity in a rock mass is highly
dependent on faulting, local degree of fracturing, fracture
connectivity and fracture apertures must be considered. An-
other big issue is certainly the depth-dependent values for
hydraulic conductivity in a given lithology. Due to poten-
tially depth-dependent hydraulic data, it is required to ob-
tain these data from packer tests along the trajectory of well-
bores down to the target depth of ET. Tunneling induced,
transient pore-pressure changes cause a poro-elastic effect in
the reservoir and may lead to surface subsidence. In karstic
limestones, the hydrogeological parameters are quite hetero-
geneous, with the hydraulic conductivity varying locally by
several orders of magnitude leading to a poor ‘representativ-
ity’ of most of the field and borehole in situ tests and mea-
surements. For any hydrogeological context, the acquired
values from future field tests would need to be processed with
care, and conservative assumptions would be needed for all
future hydraulic and stability calculations. Variables and pa-
rameters to account for are [32H34]):

« Water quantity and quality variables:

— Water pressures / piezometric heads

— Solutes concentrations (hydrochemistry)
« Hydrogeological parameters:

— Hydraulic conductivity
— Porosity
— Storativity

— Effective drainage porosity
All those data are to be integrated in:
« Hydrogeological models:

- Hydrogeological maps and cross-sections

— 3D conceptual model of groundwater flow
« Hydrogeological hazard assessment:

— In the construction phase (transient)

— In the exploitation phase (assumed steady state)

C. Geotechnical conditions and infrastructure

The general aim of rock-mechanical data acquisition is to
understand and forecast the behavior of the host rock mass
and the variability of the parameters/processes/phenomena
as a function of rock types, weathering level, parting, lateral
and vertical position, anisotropy, etc. This makes it possi-
ble to develop a robust hazard catalogue for risk assessment



and counter-measure design, to reduce the uncertainties in
rock mechanical data for static calculations, and to ensure
the technical/economic optimization of the facility. In addi-
tion, rock mechanical parameters have an influence on seis-
mic noise, specifically its attenuation from the surface to the
underground location of ET. Some of the important geome-
chanical parameters and features to consider include:

« Faults and fractures

« Rock mechanical data:

— Elastic parameters (static and dynamic Young’s
modulus and Poisson’s ratio of the intact rock,
and the rock mass)

— Strength parameters (uniaxial and triaxial com-
pressive strength, tensile strength, shear strength
of intact rocks and discontinuities)

« In-situ stresses
« Rock-mass characterization

« Geomechanical hazards, e.g., squeezing, wedge failure,
unravelling, face stability, swelling, subsidence, and
other hazards related to the excavation method

The detailed design of the ET infrastructure will be based on
rock-mass characterization, which includes the spatial distri-
bution of rock-mass types along the ET alignment, stress in-
formation, excavation method, excavation geometry and re-
lated hazard scenarios.

Radioactivity is to be considered for the safety of the work-
ers at underground sites [35]. The primary radioactive el-
ements in the Earth’s crust that leads to human exposure
are potassium, uranium, thorium, and their radioactive de-
cay products (e.g. radium, radon) [36]. The majority of the
dose to the lung arises from exposure to the short-lived decay
products of radon and thoron. Radon and thoron are ubiqui-
tous in the air at ground level and are significant contribu-
tors to the average dose from natural background sources of
radiation. In homes, in underground mines and in other sit-
uations where radon (and thoron) may be present and where
ventilation may be limited, the levels of these radionuclides
and their decay products can accumulate to unacceptably
high levels. Soils and rocks are often the main sources of
radon. In unsaturated soils or rocks, radon moves in gaseous
form through pores and fractures. In saturated zones, radon
moves in solution into groundwater to underground open-
ings, such as mines and caves, and to buildings. For under-
ground facilities it is important to consider the contribution
from the outdoor environment through the ventilation sys-
tem and from building materials. While most building mate-
rials produce small amounts of radon, certain materials can
act as significant sources of indoor radon. Such materials
have a combination of elevated levels of 2?°Ra (the radioac-
tive parent of radon) and a porosity that allows the radon
gas to escape. Examples are lightweight concrete with alum
shale, phosphogypsum and Italian tuff. EURATOM estab-
lishes reference levels for indoor radon concentrations and
for indoor gamma radiation emitted from building materi-
als. Recent epidemiological findings from residential studies

demonstrate a statistically significant increase of lung cancer
risk from prolonged exposure to indoor radon at levels of the
order of 100 Bq/m? [37].

D. Surface infrastructure and societal aspects

Even though ET’s main infrastructure will lie under-
ground, surface conditions are very important to the project.
Parts of the infrastructure will be located at the surface,
including operations buildings, underground access, poten-
tially a visitor center and guest houses. Seismic disturbances
created by regional infrastructure, e.g., traffic and industry,
can still interfere with the operation of the detector and pro-
duce sensitivity limitations. The excavation of caverns and
tunnels will produce a large amount of waste rock, which
needs to be disposed. In summary, important surface site cri-
teria affecting detector construction are

« Main and secondary road and railway networks and
their typical load

Existing utilities and technological networks in the
area (power, gas, data, water supply, sewage systems)

Presence and classification of wells and water uptake
systems

Site availability and acquisition costs

« Constraints on the surface access locations to the un-
derground infrastructure, which must also consider
safety access along arms

« Environmental restrictions (waste control especially
with respect to rock disposal, water control, soil con-
servation, nature and landscape conservation, environ-
mental impact)

« Legal issues must be considered for what concerns the
authorization procedures and the analysis of territorial
constraints.

For the support infrastructures, we identify the following pa-
rameters:
« Site accessibility

« Accommodations for resident staff (housing, schools,
shopping, etc.)

« Accommodations for visiting staff (hotels, transporta-
tion, etc.)

« Local technical support (qualified vendors, mainte-
nance, fabrication, etc.)

« Site utilities installation (power, water, etc.)
Surface parameters that are important to detector operation:
« Climate and environmental risks (earthquakes, floods,
wind speeds, precipitation, lightning rate)
« Cost of power

« Heating and cooling requirements of underground cav-
erns (in combination with humidity control)



» Maintenance requirements
« Travel time and costs for visiting staff

+ Cost and quality of living

In addition, societal and economic considerations reported
in a socio-economic impact assessment can lead to important
distinctions between sites. While a comprehensive discus-
sion of the relevant aspects of these assessments is beyond
the scope of this paper [38] [39]], certain aspects are directly
relevant to the involved scientists. Most importantly, the re-
lation between the local population and a scientific project
can be crucial for the realization of a project. The spread of
misinformation and the disregard of local interests has led
to construction delays or even shut-down of experiments in
the past [40H42]]. Early outreach activities before the start of
construction help to correctly inform local people and to un-
derstand the relation of the local population to the planned
experiment, and thereby give the possibility to address issues
before final decisions about the construction plan are taken.

E. Infrastructure lifetime and cost factors
1. Tunneling costs

Tunneling differs from the construction of other infras-
tructure in many ways. The main issues that distinguish tun-
nels from other infrastructure arise from the risk involved
with excavation through unknown ground conditions and
the numerous individual cost drivers that contribute to the
overall cost. These cost drivers include, but are not limited to
the following direct and indirect factors,

« Excavation volume (i.e., tunnel length and diameter)
+ Ground conditions and related uncertainties
« Ground behavior

« Excavation method

« Tunnel depth

» Support requirements

« Final lining design

« Water ingress and tunnel drainage system

« Environmental aspects

« Labour cost

« Health and safety regulations

« Market competition

« Government and public support

« Contract type

« Cost of bidding

Geology can range from soft to hard rocks and can include
shear zones. A site investigation must be completed dur-
ing the initial design stages of a project to account for and
plan for various ground conditions, and to estimate costs.

Varying geologies necessitate different methods of excava-
tion, which include drill and blast, roadheaders, and tunnel
boring machines (TBMs). In addition to all of these vari-
ables, tunneling is also affected by many indirect factors of-
ten related to the country of construction as each differs in
its labour costs, health and safety regulations, environmental
regulations, level of market competition, client knowledge,
and amount of government and public support. Varying con-
tract types such as design and construct (D&C); design, build,
operate (DBO); build, own, operate (BOO); and public private
partnerships (PPP) are also common in different countries
and affect the cost of bidding and financing. It should also
be mentioned that excavation cost for ET can be greatly re-
duced if topography of a site makes it possible to have most
of the vacuum pipes above ground. Only the test masses are
required to be located sufficiently deep underground.

2. Lifetime

The ET infrastructure should have a lifetime greater than
50 years. Parameters to be considered in this respect concern
stability and corrosion:

« Differential deformations within the rock mass includ-
ing dislocation on active faults or subsidence across
each of the 10km arms need to be sufficiently small.
Requirements need to be set across short distances (the
extent of vacuum pipe modules) to limit stress on weld-
ing lips (a few mm of differential motion per 15 m seg-
ment is the limit for Virgo), and across long distances
to constrain the position of the optical axis.

« Atmospheric corrosion is influenced by average and
peak humidity in the caverns and tunnels, the pH of
ground and condensation water, and by the presence
of chemical elements (in particular chloride if stainless
steel will be used for the pipes) [43]

Microbiologically Influenced Corrosion [[44]

« AC-induced corrosion due to nearby high voltage elec-
tric power lines [45]].

The preservation of the site quality in terms of environmen-
tal seismic disturbances over the entire ET lifetime is also im-
portant. Regional environmental seismic noise can increase
due to the emergence of new industry and traffic including,
for example, wind farms, rail service, industry, and mining.
This can impact detector sensitivity and operation. Exten-
sive studies of existing and potential future regional sources
of seismic disturbances were carried out for the LIGO, Virgo,
and GEO600 detectors [46-50]. Hence, the question arises
if there are characteristics of a site that make it more likely
that site quality can be maintained. Similar studies will also
be vital for the ET site selection. In addition, agreements with
local authorities, made before site selection, that stipulate a
minimum distance between major noise sources and ET are
mandatory. The higher the quality of a site, the more effort
needs to be done to maintain its quality, but one can expect
that noise-exclusion areas are easier to obtain in less popu-
lated regions.



III. ENVIRONMENTAL NOISE MODEL
A. Seismic field

Sufficiently strong seismic disturbances can reduce the
duty cycle of a detector by causing intermittent failures of the
interferometer control systems. Such an event is referred to
as a lock loss. The main source of seismic disturbances caus-
ing these failures are earthquakes [25][51]], but even a strong
local, anthropogenic source might cause lock loss. However,
since the underground environment and the maintenance
of a low-noise area around ET (see section will pro-
vide a certain level of protection from anthropogenic sources,
and due to recent progress with providing early warnings of
earthquakes to gravitational-wave detectors and with the de-
velopment of control strategies to counteract the impact of
strong ground motion [52] 53], one might expect that the re-
duction of the duty cycle of ET by seismic disturbances will
be modest. More important is the generation of noise in the
detector data by ambient seismic fields.

Seismic displacement of the Earth’s surface or under-
ground can couple to the detector output via different mech-
anisms. First, seismic ground motion can cause noise in GW
data through scattered light, which means from stray light
interacting with structures that are weakly isolated or not at
all isolated from ground motion [54], or by directly displac-
ing the test masses due to the residual low-frequency seis-
mic noise that passes through the seismic-isolation system
[55]). Furthermore, seismic noise complicates the controls of
the seismic filter chain, giving rise to additional control noise
[56H58]]. Last, the seismic displacement and density fluctua-
tions of the ground medium due to seismic-wave propagation
can couple to the test masses through gravitational forces and
introduce noise in the GW data. This noise is referred to as
Newtonian noise (NN) or gravity-gradient noise [59]].

Seismic fields can be described as solutions to the elastic
equation of a medium [60]. This equation can under certain
assumptions be cast into the form of wave equations, and so-
lutions to these equations traveling through Earth are known
as body waves. Based on the particle motion and the direc-
tion of propagation of the body waves, they can be catego-
rized into P-waves (compressional waves) and S-waves (shear
waves). However, when the medium is bounded, other wave
types are generated, which travel along the surface of the
medium and are known as surface waves. Depending on the
polarization of the particle displacement they can be catego-
rized into Rayleigh and Love waves. Unlike Rayleigh waves,
Love waves cannot exist in a homogeneous half-space and
require a layered geology.

Seismic displacement is a combination of both body and
surface waves. The ratio between the body-wave and the
surface-wave content essentially depends on the type of
sources (point or line sources), location of sources (surface
or underground), damping coefficient of the propagation
medium (intrinsic attenuation) and the distance of the obser-
vation point from the source [61]. In a homogeneous half-
space, amplitudes of body waves decay as 1/r in the inte-
rior of the medium and with 1/ r? at the surface, and surface

waves decay with 1/4/r in the far field of sources, where
r is the distance from the source. Hence, considering only
geometric attenuation, body-wave amplitude decays faster
as compared to surface waves when moving away from the
source. However, the intrinsic attenuation of wave ampli-
tudes is a frequency-dependent phenomenon and expressed
as exp(—mfx/(Qv)) where v represents the wave velocity at
frequency f, x the propagation distance, and Q represents
the quality factor of the medium [62]]. Consequently, in a
multilayered medium where surface-wave dispersion is ob-
served [63], high-frequency surface waves with wavelengths
much shorter than body waves undergo larger attenuation
than body waves. Hence, what type of wave dominates sur-
face displacement depends not only on source characteristics,
but also crucially on the distance to the sources [[64} [65]].

The Einstein Telescope design sensitivity (see below, fig-
ure [3) is expected to be susceptible to NN below a few tens
of Hz. Seismic noise sources active in this frequency band
are both natural and anthoprogenic in origin. Anthropogenic
sources include traffic (trains and cars), and local human ac-
tivities, whereas common natural sources are fault ruptures,
atmospheric pressure fluctuations, wind interacting with the
surface, and ocean waves. The global ambient seismic noise
comprising of high and low noise models are shown in figure
based on studies by Peterson, 1993 [66]. Primary micro-
seisms in the frequency band below 0.1 Hz due to interaction
of ocean waves with sea floor are attributed mostly to activa-
tion in shallow sea [67]. In the frequency band 0.1 to 0.4 Hz,
the secondary microseisms dominate the noise spectrum.
They occur at twice the frequency of ocean waves originat-
ing from the non-linear interaction of standing ocean waves
causing a pressure wave propagating towards the ocean floor
[68]. As shown in figure (1} a falling seismic-noise amplitude
is observed from 0.5 to 1.5Hz. An increase in noise ampli-
tude in this band is observed during storms or other extreme
meteorological conditions.

At frequencies greater than 1.5 Hz, seismic noise originat-
ing from human activities contributes significantly. This in-
cludes noise originating from roads, bridges, industries and
use of machinery near the site. Figure [2(a) and (b) show the
spectrograms of the ground velocity measured underneath
a bridge (1.5km away from the Virgo Central Building) and
at the Virgo Central Building (CEB), respectively. In the fre-
quency band 2 to 4 Hz, imprints of the ground velocity mea-
sured underneath the bridge are observed in the measure-
ments at the Virgo CEB [69)]. In the high frequency band
above 5Hz, local sources at the detector site start to con-
tribute leading to transients from human activity, and also
several high-frequency stationary sources of noise like air
conditioners, chillers, and mechanical vacuum pumps (e.g.,
turbomolecular pumps and scroll pumps), which are used for
operation of a GW detector, are important on-site sources of
noise and must be accounted for while computing the asso-
ciated NN.

The seismic-noise budget for ET (presented below in figure
includes mechanical coupling through the isolation system
using a model developed for ET’s Conceptual Design Study
[18], and NN from surface and body waves. The seismic-
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FIG. 2. (a) Spectrogram of seismic ground velocity measured un-
derneath a bridge 1.5 km away from the Virgo Central Building. (b)
Spectrogram of seismic ground velocity measured at the Virgo Cen-
tral Building during the same period as in (a). Seismic noise below
4Hz is observed to be well correlated between the two sites.

noise model requires an estimate of underground seismic dis-
placement and ground tilt. Underground seismic displace-
ment is modeled as a sum of two components: surface dis-
placement assumed to be dominated by Rayleigh waves at-
tenuated with depth, and body-wave displacement. The at-
tenuation of Rayleigh-wave displacement with depth is cal-
culated using a dispersion curve of Rayleigh waves. Here, we
model it as

c(f) =2000m/s-e~//*H2 £ 300m/s, (1)

While this model does not represent a specific site, it yields
realistic values for the frequency range 1 Hz to 100 Hz, which
might well be representative of some site [70]. Estimation

of underground displacement from Rayleigh waves is based
on equations that can be found, for example, in [71]]. The
body-wave seismic spectrum is assumed to be independent of
depth. This is not strictly guaranteed since reflection of body-
waves from the surface can cause depth-dependent ampli-
tudes, and seismic amplitudes can always vary strongly in the
vicinity of dominant nearby sources, but whenever the body-
wave field is composed of many waves at all frequencies from
distant sources, then the assumption of a depth-independent
spectrum should be at least approximately valid. Our fiducial
seismic spectra used for noise projections in Figure [3| cor-
respond to 5 times the New Low-Noise Model (NLNM) [66]
for the body-wave spectrum, and the logarithmic average of
the NLNM and New High-Noise Model for the Rayleigh-wave
vertical surface-displacement spectrum. The logarithmic av-
erage produces a spectrum that lies in the middle between
the low-noise and high-noise models when plotted with log-
arithmic scale, which is representative of the noise at a typical
remote surface site. The tilt spectrum can be estimated from
the displacement spectra by multiplication with 27 f/v(f),
where v is the speed of Rayleigh or body waves. Note that
this method would underestimate ground tilt at the surface
where direct forcing of objects and atmosphere can produce
large tilts in addition to the tilt associated with seismic waves
[72], but it is approximately valid underground.

The underground seismic displacement and tilt spectra are
passed through a model of a 17 m isolation system (similar in
design to the Virgo Superattenuator [73]). Here, we assume
that ground tilt, and horizontal and vertical displacements
are uncorrelated, but this is mostly to simplify the calcula-
tion and has a minor impact on the seismic noise in ET. Fi-
nally, it is assumed that seismic noise entering through dif-
ferent test masses is uncorrelated above 3Hz. This should
reflect the real situation since seismic waves at 3 Hz have at
most a length of 1 — 2 km, while the separation of test masses
is 10km [74]. As a caveat, the triangular configuration of
ET might lead to some correlation of environmental noise
between test masses of different interferometers. While this
does not influence the noise model, it might well be an im-
portant fact for GW data analysis.

When estimating NN for ET, it is again important to con-
sider contributions from Rayleigh waves and body waves.
Here, one also needs to know what the relative contribution
of shear and compressional waves to the body-wave field is.
We assume that p = Sp(&y; f) /Sow (&x; f) = 1/3 of the seismic
spectral density from body waves is produced by compres-
sional waves (P waves), where &, is the horizontal displace-
ment along the arm, i.e., we assume that all three body-wave
polarizations carry the same average displacement power.
Furthermore, it is assumed that the body-wave and Rayleigh-
wave fields are (3D and 2D) isotropic. This is certainly an
invalid approximation, but it would be misleading to assume
any specific form of anisotropy, since anisotropy will be dif-
ferent at different sites, different for each vertex of the de-
tector, and different for each wave type. Anisotropies have
a significant impact on NN spectra, and how they enter the
NN estimate also depends on the details of the model [22].
In principle, seismic NN can be low in one of the three de-



tectors forming the ET triangle if all seismic waves near the
vertex travel in a direction right between the directions of its
two arms, and perpendicular to the arms at their ends. How-
ever, this still leads to seismic NN in the other two detec-
tors, and since it requires plane-wave propagation, sources
of these waves must be sufficiently distant, and it is highly
unlikely that all relevant distant sources line up in this way.
The NN estimate calculated for a highly anisotropic field at
one of the LIGO sites lies within a factor 1.5 of the isotropic
model at all frequencies [75].

Rayleigh waves produce NN through rock compression,
cavern-wall displacement, and through surface displacement.
All three effects are added coherently using equations (36),
(62), and (94) in [22]]. This leads to the following strain spec-
tral density:

4

Sth(f) = (zn/\fzyGPO,surf)Z%(f)‘%év;f)W' (2

Here, S(&y;f) is power spectral density of vertical surface
displacement from Rayleigh waves, ¥ a parameter with val-
ues in the range 0.5-1 quantifying the partial cancellation of
NN from surface displacement and compression of the soil
by Rayleigh waves, po surf is the mass density of the surface
medium, L the length of ET’s detector arms, and Z(f) de-
scribes the NN reduction as a function of detector depth A:

ro(f) =kr(f)(1-8(f)) 3)
sn(f) = —kr(f) (1 + &(f)) exp(—kr(f)h)

bu(f) = 3(2kr(f)exp(—qp(f)h) (4)
+8(f)as(f)exp(—gs(f)h)) 5)
Z(f) = (sn(f)+bu(f))/ro(f)I? (6)

where kg is the wave number of Rayleigh waves, gp(f) =
27 f\[ IR =13, as = 2af\/ 130N~ 1/3(f).
and §(f) = \/qp(f)/qs(f). Here, it is crucial to use an accu-

rate dispersion model vg(f) for the Rayleigh waves since it
has an important impact on how NN decreases with increas-
ing depth h. Compressional and shear-wave speeds vp, vs, if
not provided independently, must be adapted to the Rayleigh-
wave dispersion using estimates of the Poisson’s ratio or
making ad hoc assumptions of the ratio between Rayleigh-
, shear-, and compressional-wave speeds. This is neces-
sary since the Rayleigh waves sample rock at varying depth
depending on frequency with different effective shear- and
compressional-wave speeds of the sampled rock mass (un-
less the ground is homogeneous). Note that the limit # — 0
does not mean Z(f) — 1 since the contribution from cavern
walls must be subtracted from the underground contribution
bi(f) to get a meaningful surface limit (which means to re-
move the factor 2/3 and the second term in the brackets).
Body waves produce NN through displacement of cavern
walls (shear and compressional waves) and through com-
pression of rock (compressional waves). Both contributions
are added coherently using equation (62) in the 2019 version
of [22Z]. The contribution of normal surface displacement
by body waves can typically be neglected in the frequency

range 3 Hz-20 Hz. This can be inferred from seismic obser-
vations showing that seismic surface spectra are significantly
stronger in this band than underground measurements at the
same location (as evidenced by many past observations in-
cluding studies carried out by the GW community [19] [76]]).
Therefore, seismic NN from normal surface displacement is
dominated by Rayleigh waves between 3 Hz and 20 Hz. Cor-
relations between shear and compressional waves (and also
with Rayleigh waves) are also neglected. Note that simple
reflection of body waves from the surface causes scattering
into different wave types potentially causing such correla-
tions, but this should have a minor influence on the NN spec-
tral density, which is a long-time average, i.e., averaged over
many waves. The body-wave NN spectrum then reads [21]]
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where Spw(&y; f) is the power spectral density of body-wave
displacement along the direction of the arm, and pg g is the
mass density of the rock in the vicinity of the cavern. When
evaluating these NN models for a specific site, minor estima-
tion errors are to be expected from simplifying assumptions
of soil/rock density including seasonal variations of moisture
content.

The main optics of ET would be shielded from seismic
noise above 3 Hz. However, parts of the interferometer that
interact with the laser beam and which are not suspended
from superattenuators are possible sources of scattered-light
noise. Due to the motion of a scatterer, the scattered light
adds noise to the GW strain data. Noise from scattered light
was for example reported in [17, 54} [77]]. In the following,
we briefly describe the main effects, but we do not include
this noise in Figure [3 since it is very hard to foresee how
much noise from scattered light will contribute. It is possible
though that during much of the ET commissioning process,
scattered-light noise will be the main environmental noise.

Overall, GW detectors are designed such that only a tiny
fraction of the optical power can introduce noise by scatter-
ing. If the scatterer vibrates with a displacement amplitude
Oxs(t) along the beam direction, then the scattered light’s
phase changes by

80(r) = T 8xelr) ®

where A is the laser wavelength. The spectral density of
equivalent GW strain noise S”.(f) introduced by the scat-
tered light can be obtained as a product of a transfer function
T (f) with an effective vibration spectrum (as power-spectral
density — PSD) [[77]:

SN =T pSD | = sin(Fowetn) | 0

The transfer function describes the optical response of the
detector to scattered light entering at a specific location of
the detector generally including radiation-pressure coupling.
Equation (9) can be split into two cases depending on the



magnitude of the motion of the scatterer. For small bench
motion such that 8x,(f) < 4’1—” ~ 1077 m, Eq. @)
as S".(f) = |T(f)]*S(Sxs; f). However, for larger bench
motion (8xs(t) > 107" m), the induced strain noise S”.(f)
follows Eq. (9) and is nonlinear in the vibration amplitude
Oxsc. This is typically observed at frequencies between 10 and
20 Hz due to near-field influence of the mechanical sources of
noise or due to microseismic activity at frequencies < 1Hz.
Although the microseismic activity is not in the detection
band, its effect can be visible due to up-conversion [78]. As
for the Advanced Virgo interferometer, there were several in-
stances of scattered light noise in its observation band, which
were identified and mitigated, and it is expected to remain
an important issue at low frequencies in the future. In most
cases, sources of noise were devices like cooling fans and vac-
uum pumps operating in proximity of back-scattering light
spots inside the power-recycling vacuum chamber [[79].

linearizes

B. Atmospheric fields

Atmospheric fields constitute the most complex of all en-
vironmental noise sources. This is due to the interaction be-
tween surface and atmosphere, and the many different pro-
cesses that can drive atmospheric perturbations [80]. The
main coupling mechanism of the atmosphere with the de-
tector output is through vibrations that it causes of ground
and infrastructure through pressure fluctuations or forcing
of surface structure by wind, and by direct gravitational cou-
pling [22] [8T]]. As the indirect vibrational noise is already
discussed in Section we can focus here on the gravi-
tational coupling, which gives rise to so-called atmospheric
Newtonian noise (NN).

There are two main types of gravitational coupling. First,
acoustic fields produce density perturbations in the form of
propagating and standing waves. These perturbations are
distinct from any others since they exist even in the absence
of wind. The main practical complication in the modeling
of acoustic gravitational noise is to procure a sufficiently ac-
curate model of acoustic spatial correlations, which depends
on the source distribution and possible acoustic scattering.
So far, numerical simulations have only been able to include
major geometric constraints like the separation of acoustic
fields into outdoor and indoor contributions [82]]. This is im-
portant since the sound level inside LIGO and Virgo build-
ings (and to be expected as well for the ET caverns) is much
higher than the ambient acoustic noise outside. Responsible
for the excess noise inside buildings are sources like pumps,
ventilation systems, etc. For ET, it will be important to avoid
any major acoustic noise below 30 Hz in its caverns, but some
mitigation can be achieved by noise cancellation using micro-
phones [22]. External sources of acoustic noise include tran-
sients from thunderstorms and other weather related sources,
noise from traffic, planes, and people. Atmospheric sources
that have an effect on the detector can be located far from
the detector since acoustic waves are known to propagate
over long distances in the atmosphere with weak damping
of their amplitude.

The acoustic NN model in Figure [3[ uses a sound spec-
trum representative of a remote surface site with a value of
8pam(3Hz) = 5.7-103Pa/v/Hz and Spym(10Hz) = 1.4 -
1073 Pa/v/Hz [83]. The coupling model is calculated sepa-
rately for two incoherent contributions from the atmosphere
and the cavern using the same sound spectrum. The cavern
sound spectrum might well be higher if it will not be possible
to separate noisy machines from the experimental halls that
contain the test masses. Calculating the isotropic average of
equation (132) in [22] and subsequently the corresponding
strain noise from the perturbation of the gravity potential,
one obtains the atmospheric acoustic NN as strain spectral
density,
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where ¢; = 340m/s is the speed of sound, py the mean air
density, pg the mean air pressure, ¥ = 1.4 air’s adiabatic coef-
ficient, L = 10km the length of a detector arm, / the detector
depth (assumed to be 300 m), and %, (x) is the isotropically
averaged coupling coeflicient:

T

Fiso ()C) 4

(Los(x) =L (x) + L(x)/x+3L_2(x)/x), (11)
where I,(-) is the modified Bessel function of the first kind,
and L,(-) is the modified Struve function. For x > 1, it can be
numerically problematic to evaluate these functions, but for
such values the coupling coefficient can be obtained by using
the approximation

Fiso(x) = 3/x*. (12)

Note that even though the gravity perturbation of every spe-
cific sound plane wave decreases exponentially with a func-
tion of depth £, the isotropic average produces a polynomial
suppression for sufficiently large depth. This is because the
exponential suppression of NN from a single plane wave with
depth is determined by the horizontal wave number [22],
which can be very small depending on the wave’s direction
of propagation practically leading to very weak suppression
for waves at close to normal incidence to the surface.

The second contribution, again assumed to be produced by
an isotropic sound field, comes from the cavern. It increases
with the cavern radius R, and for R < ¢;/(27f). Evaluating
the integral in equation (132) of [22] not over a half space, but
a spherical volume, the cavern contribution takes the form

2
St () = (2290200} 4 (1 — sine(2xfR/c,))> (13)
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Strictly speaking, this expression is accurate only for a half-
spherical cavern shape with the test mass at its center, but it
still serves as a useful estimate as one can expect that de-
viations from spherical ceilings can be accounted for by a
suitable redefinition of the parameter R, and multiplying by
a frequency-independent geometrical factor, which does not



change the order of magnitude of the noise. These correc-
tions are likely minor compared with other corrections, e.g.,
from anisotropy of the sound field. In this paper, we use a
cavern radius of 15 m.

With respect to the acoustic NN model shown in Figure
more realistic estimates will likely be smaller since the
isotropic plane-wave field assumed in this model yields rel-
atively large spatial sound correlations. Sound scattering or
complex source distributions reduce spatial correlations, and
therefore increase suppression of gravitational coupling with
distance to the atmosphere. We also note that cancellation of
atmospheric acoustic NN is highly challenging. Microphones
are subject to wind noise produced by wind-driven turbu-
lence around microphones [84], but since air flow will be con-
trolled underground, wind noise will not interfere with the
cancellation of cavern acoustic NN. Alternative technologies
like LIDAR are not yet sensitive enough to monitor acous-
tic fields in the ET band. Hence, significant contributions of
atmospheric acoustic NN are to be avoided.

The second type of gravitational coupling between atmo-
sphere and test masses is wind driven. In the ET observation
band, atmospheric temperature and humidity fields, which
are both associated with a corresponding density field, can
be considered stationary in the absence of wind (or generally,
when using the Lagrangian description of a fluid). However,
when wind is present, then advected gradients in the density
field appear as fast fluctuations at a fixed point. The gravi-
tational coupling depends on the product 27 fd /v, where v
is the wind speed, and d is the (shortest) distance between
test mass and the moving air. In the simplest case of smooth
airflow, the suppression with distance is exponential, i.e.,
the coupling contains the factor exp(—2mfd/v) [81], which
means that any form of wind-driven coupling is negligible in
ET with d being a few 100m. When vortices form around
surface structures, then the suppression with distance would
not be exponential anymore, but it can still be argued that
coupling remains negligible in ET [85]. Therefore, we have
neglected the wind-driven gravitational noise in Figure[3] but
for relatively shallow detector depth of 100 m or less, it might
become important, and advection noise should be included.
Cancellation of advection NN is conceivable. This is because
the density perturbations associated with temperature and
humidity fields are large compared to the density pertur-
bations associated with sound. LIDAR can in fact produce
three dimensional tomography of temperature and humidity
fields [86H88]]. In addition, Doppler LIDAR can provide three-
dimensional scans of the velocity field [89]. This information
combined is all that is required to estimate and subtract the
associated NN.

C. Electromagnetic field

Electromagnetic (EM) disturbances can be produced in
many ways including natural sources and self-inflicted noise
from electronics [17]. The latter includes cross-coupling be-
tween electronic/magnetic components of the detector like
connectors, cables, coils, and permanent magnets, transients
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from overhead power lines, and noise from the mains power
supply (50 Hz in Europe). Natural sources include transients
from lightning, but also permanent fluctuations from Schu-
mann resonances, which are pumped by electric discharges
all over the world [90]. The EM fluctuations do not necessar-
ily need to occur in the GW detection band since they can also
interfere with detector control relying on signals at MHz, or
non-linear couplings can produce up- and down-converted
noise. Some of the EM noise can also depend on the environ-
ment, e.g., especially underground it is possible that magnetic
properties of the surrounding rock lead to (de)amplification
of natural field fluctuations [91]), which can also change with
moisture content and temperature of the rock.

It is clear that due to the large variety of sources, fluc-
tuations should be expected to vary significantly over all
time scales from very brief, strong transients, to yearly sea-
sonal cycles of, for example, Schumann resonances and local
changes in rock properties. As we will show, if field fluctu-
ations in the environment (natural or produced by the elec-
tronic infrastructure) of ET were as they are today at existing
detectors, and if these fluctuations coupled as strongly with
the detector output as they do in existing detectors, then ET’s
main environmental noise would likely be of electromagnetic
origin.

Two strategies can in principle greatly reduce problems
arising from EM disturbances: (1) electronics are designed to
minimize EM coupling between its components and with the
environment as much as possible, (2) electronics are designed
to produce the weakest possible EM disturbances. If this is
achieved successfully, probably as a result of a long-lasting
detector commissioning process, then the remaining prob-
lem is the unavoidable coupling to natural fluctuations, for
example, because of magnetic components of the actuation
system. Among all sources, the Schumann resonances play
an important role since they can lead to correlated noise in a
global detector network [92]]. It was proposed to apply noise-
cancellation techniques to reduce noise from Schumann res-
onances [93].

For the model shown in Figure 3| we used a fit to the
natural background of magnetic fluctuations associated with
Schumann resonances [94]],

B=6-10""/\/f/10HzT/vHz, (14)

which is about two orders of magnitude weaker than the ac-
tually measured magnetic fluctuations inside the Virgo build-
ings [95]. The coupling of these fluctuations with the detec-
tor output is taken from Virgo measurements [96] (similar
coupling obtained at LIGO [97]),

¢=3.3-10"%/(f/10Hz)** m/T, (15)

lowered by the (foreseen) ratio of test masses between Virgo
and ET, 42/211 [20] [98]], which assumes that magnetic noise
enters as test-mass displacement noise. Other coupling
mechanisms, less well understood, might be important. It
is also assumed that magnetic noise from Schumann reso-
nances does not experience significant common-mode rejec-
tion due to potential differences in the coupling strength at



different test masses. We use the same spectrum of magnetic
fluctuations and the same coupling at all test masses.

D. Environmental noise as site-selection criterion

It is difficult to anticipate the full impact environmental
noise will have on ET. A feasible task, which is also most im-
portant to ET’s science potential, is to evaluate the direct en-
vironmental impact on detector sensitivity. Doing this for the
two candidate sites with the equations provided in this paper,
one values the site more highly that produces less environ-
mental noise. A summary of selection parameters is shown in
figure[3lusing couplings and noise models given in the previ-
ous sections. However, the detector commissioning needs to
address a much wider class of coupling mechanisms and en-
vironmental influences typically involving detector control,
but also, for example, up-conversion of low-frequency seis-
mic motion in scattered-light noise. These forms of environ-
mental noise depend strongly on the mechanical and optical
engineering, like the implementation of baffles to block stray
light or reduction of readout noise of optical sensors used
for control, which is why we have not attempted to include
these contributions in our noise budget. They will certainly
have to be addressed in the technical design of ET. Gener-
ally, there is the expectation that modern control and envi-
ronmental monitoring techniques involving machine learn-
ing and robotics might eventually play an important role in
providing enhanced immunity of a detector to environmental
influences [53} [99H101]].

The approach here is to consider the simplified problem of
direct environmental coupling, and therefore to use a noise
budget as in figure [3| to evaluate a site. In this sense, it is
favorable to choose a site with lowest levels of environmental
disturbances (low seismic and acoustic noise, weak wind, ...),
but other factors may be important.
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FIG. 3. Example of an ET environmental-noise budget together with
the latest ET sensitivity model [[20]]. Dashed lines indicate noise lev-
els without the required additional noise mitigation (factor 3 in all
three cases), for example, by noise cancellation. It is assumed that
the detector depth is 300 m.

Concerning the underground NN estimates, it is favorable
to have strong suppression with depth. In the case of seismic

11

NN, this would be the case if the speed of Rayleigh waves is
low. However, there is a trade-off since low-speed sites also
typically show higher levels of seismic noise [60], because a
seismic source exerting a force onto the ground creates dis-
placement amplitudes propotional to 1/(pc?), where p is the
density of the ground, and ¢ stands for the compressional or
shear-wave speeds. The two effects compensate to some ex-
tent. At sites with homogeneous geology, stiffer rock leads
to an overall advantage in terms of underground NN, but soil
layering can provide additional NN reduction underground
so that it is not immediately clear if ultimately a typical low-
speed or high-speed site is favorable. The best way to decide
is by directly comparing NN estimates; dispersion curves and
seismic spectra are its two most important ingredients. We
note that seismic speed has no significant impact on body-
wave NN.

It can be argued that some short-comings of a site in terms
of seismic NN can be compensated by NN cancellation. This
is certainly true, but unlike for surface detectors, cancellation
of NN from a body-wave field is much more challenging as
shown in [21]], where a factor 2 — 3 of robust noise reduc-
tion was demonstrated in a simulation with 15 seismometers
per test mass in a plane, isotropic, body-wave field. Based
on these results, it is realistic to assume that for a factor 3
NN reduction in ET, a few tens of seismometers would be
required per test mass (ET has 12 test masses in total signifi-
cantly affected by NN) deployed in boreholes some of which
being a few 100 m deeper than the detector. Such a system
would be a larger and more costly effort. The most challeng-
ing part would be to determine where to drill the boreholes
and where to place the seismometers to achieve an effective
NN reduction.

Concerning atmospheric, acoustic NN, there is currently
no known technology to reduce it by noise cancellation as
discussed in section therefore one must avoid that it
contributes significantly to the ET detector noise. It is also
unlikely that the acoustic field at candidate sites will be
known in sufficient detail to make precise estimates of how
deep the detector needs to be. Therefore, a safety margin
needs to be calculated for the detector depth based on prop-
erties of the acoustic field at each candidate site to avoid any
potential issue with atmospheric, acoustic NN. At depths of
~300m, the properties of the atmosphere would not con-
tribute to the site-selection criteria anymore.

It is important to stress again that ET is to be understood
as an infrastructure that will host a variety of detector con-
figurations throughout its projected lifetime. Reaching the
environmental noise as shown in figure 3| will likely be a pro-
cess taking many years and potentially requires major detec-
tor upgrades, but at the same time, one should not consider
the predicted environmental noise as ultimate infrastructural
limitation. For all noises, there may be ways of mitigation be-
yond the spectra shown here, but it is not possible to produce
reliable predictions when the required technologies may be-
come available.



IV. SITE CHARACTERIZATION AND MEASUREMENTS
A. Seismic field

A series of surface and downhole geophysical measure-
ments need to be performed for accurate seismic noise char-
acterization of the site in addition to providing information
for geological prediction. Since seismic noise plays such a
central role to environmental noise modeling, and since it
has a large impact on detector infrastructure, some measure-
ment targets must be met, while others are less important.
We therefore divide the targets into "necessary” and "useful”.
The main targets of seismic measurements are (1) to analyze
the wavefield in terms of wave propagation (dispersion, di-
rection, amplitude) and where possible to identify local seis-
mic sources, (2) to estimate the composition of the seismic
field in terms of body waves and surface waves, (3) to as-
sess the temporal variability of seismic sources or the seismic
field. Most of this information is essential input to the noise
models presented in section In addition, source identifi-
cation will help to determine the size of the source-exclusion
area needed around ET vertices.

1. Necessary measurements

a. Long-duration measurements These measurements
are aimed at characterizing the seasonal variability of the
seismic ground motion spectrum [[76} [102H105]. Apart from
variations in amplitude and peak-frequency of the oceanic
microseism (0.07 — 0.5 Hz), the temporal variation of anthro-
pogenic noise is of utmost importance since it lies within ET’s
detection band. Seismic ground motion measurements on the
surface and underground need to be carried out with high-
class broadband, tri-axial seismometers. Downhole measure-
ments must be carried out at depths representative of the fu-
ture detector depth. The underground measurements must
also be synchronized in time between themselves and with
the surface measurements to obtain the cross-correlation be-
tween the two observations. Three-component measure-
ments are also needed for computing the spectral ratio of the
horizontal to vertical ground motion (H/V) at the site [106]].
The H/V ratio at the site can be used to infer source mech-
anisms of the noise at the site as well as information about
shallow geology, for example, the basement-resonance fre-
quency at site and the depth to bedrock [107]].

b. Short-duration measurements These measurements
can assess more detailed spatial variations of the seismic field,
as well as provide a more complex characterization of the
seismic field requiring seismic arrays, for example, to infer
about the body to surface wave content of the seismic noise
and the propagation characteristics like the surface-wave dis-
persion and its propagation direction. Hence, as a second en-
deavor, seismic-array measurements need to be carried out
in areas surrounding the detector vertices.

Seismometers are to be chosen according to the ambient
seismic-noise spectrum and should achieve a signal-to-noise
ratio better than 10 between 3 and 10 Hz [[108]]. If sensitivi-
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ties are lower, analysis results can be strongly biased by the
array’s inability to provide data for correct parameter esti-
mation of waves from short-lived seismic sources. Signal-to-
noise ratios of 10 and higher can always be achieved in sur-
face measurements, but it might be impossible at some fre-
quencies for underground array measurements at very quiet
sites. In such cases, the SNR threshold can be reduced to 7
profiting from the higher level of stationarity of the seismic
field [[109].

The minimum and the maximum array aperture would be
based on a priori estimates of Rayleigh-wave speeds in the
same frequency band. Asten & Henstridge, 1984 [110] pro-
posed that within a given frequency band for stochastic anal-
ysis, the maximum sensor separation dpax should be at least
greater than the maximum wavelength of interest A« and
the minimum sensor separation dp,j, must be less than half
the minimum wavelength A;,. The second condition follows
from the Nyquist criterion to avoid spatial aliasing at smaller
wavelengths. Following the above two conditions for design-
ing surface-seismic arrays, we propose surface seismome-
ters to be installed approximately along rings of increasing
radii and equally spaced in azimuth in each ring. Studies
by Kimman et al., 2012 [111]] and Koley et al., 2018 [112],
which use the concept of theoretical array response [113],
have shown useful applications of such array geometries for
ambient noise studies. The main target of the array measure-
ments would be estimation of the surface wave dispersion
curve, characterization of seismic sources, unravelling the
anisotropy of the seismic field, and estimation of the modal
content of the seismic noise. A minimal measurement period
of several weeks is recommended for understanding the diur-
nal and the weekly variation in the seismic noise properties.

2. Other interesting measurements

« Underground measurements at all three foreseen ver-
tex locations using high-class broadband sensors.
These measurements should at least be carried out for a
few weeks. The main purpose is to characterize spatial
variations of the seismic field underground.

« Three-dimensional array measurements around tenta-
tive locations of detector vertices between 3 Hz and
10Hz. Highest quality seismometers preferably with
self-noise below Peterson’s global low-noise model in
the relevant frequency band are to be used at least for
the underground seismometers. Some analysis results
would greatly improve by using three-axis seismome-
ters. The data can be used to provide an accurate pre-
diction of seismic Newtonian noise using detailed in-
formation about the seismic field in terms of polar-
izations, propagation directions and seismic speeds of
all wave types, scattering from the surface, etc. Since
such array measurements are very costly, they should
be planned with seismologists to maximize the science
output and be carried out for a year or longer. It is op-
portune to make use of existing underground infras-
tructure [76]].



3. Seismic Methods

a. Passive seismic Under a deterministic approach, the
ambient seismic wavefield may be treated as a combination of
plane waves, whose apparent velocity and direction of prop-
agation may be conveniently retrieved using array process-
ing schemes such as the frequency-wavenumber power spec-
tral analysis [114} [115]. This method can be applied to: (i)
human noise frequency band (1-10Hz), which allows pen-
etration depths on the order of 20-500 m ; (ii) microseismic
noise frequency band (0.1-1 Hz), whose corresponding pen-
etration depths are on the order of 500-10000 m. The main
advantage of studying the ambient field is that costly active
sources are not needed. However, the method requires long-
duration recordings in order to explore the full spatial dis-
tribution of noise sources. Another challenge coming with
analyses of the ambient field is the separation of wave po-
larizations, which is important, for example, for certain tech-
niques to determine velocity profiles.

The properties of the seismic noise over the 1-10 Hz fre-
quency band at the vertices are conveniently retrieved using
an array of seismometers. Array analysis allows to (i) derive
the kinematic properties (i.e., direction-of-arrival, apparent
velocity) of the noise wavefield, so to get inferences on the
location of the main source(s), and (ii) to get information on
the surface-wave dispersion function, to be finally inverted
for a shallow 1D model of the shear-wave velocity at the site.
By applying the A/4 rule, these signals are correctly sampled
by arrays whose apertures (largest inter-station distance) are
about 80 m. Sampling different frequency ranges would re-
quire different apertures.

For a target wavelength, in principle only three seismome-
ters are sufficient for retrieving the kinematic properties of
the incoming wavefield. Nonetheless, the higher the num-
ber of seismometers, the better will be the precision in the
estimate of those parameters. In addition, if a large num-
ber of instruments is available, one may attempt to deploy
an array whose density and aperture are appropriate for the
entire wavelength range of interest. The high cost of high-
sensitivity seismometers poses however limitations on the
number of instruments to be employed. Thus a reasonable
compromise could be the installation of a 8-10 element ar-
ray. The installation can be replicated at the three different
vertices, or the same array moved in between the three ver-
tices allowing 10-15 days of recording at each site. An ex-
act determination about the time duration of recording may
be provided only after a characterisation on the location and
temporal variability of the main noise sources.

b. Active seismic A survey based on reflec-
tion/refraction seismology can provide seismic-wave
velocity profiles or geometrical information about subsur-
face structures [[116]]. In its simplest form, the active survey
is done deploying geophones evenly spaced along a line on
the surface, and the seismic source can be a vibroseis truck
or an excavator. Often, explosives are deployed in shallow
boreholes. These sources produce body and surface waves,
which can be studied individually. As a rule of thumb, a
velocity profile can be obtained to a depth corresponding
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to a quarter of the length of the line connecting the seis-
mometers. The optimal spacing between seismometers
depends on the targeted spatial resolution, which should be
similar to the length of the shortest waves in the frequency
band of interest, i.e., higher spatial resolution is required to
characterize near-surface soil determining the propagation
of slow Rayleigh waves, and relatively low resolution is
acceptable to characterize deeper rock, where fast body
waves dominate.

B. Atmospheric fields

The importance of characterizing atmospheric fields for
site selection depends on the depth of the future detector.
Avoiding atmospheric NN is one of the main motivations to
construct ET underground. Already at 100 m depth, atmo-
spheric acoustic NN is likely insignificant [49], but as ex-
plained in Section |} suppression of acoustic NN with depth
strongly depends on the anisotropy of the acoustic field, and
more detailed numerical studies are required to determine
the minimum depth, at which acoustic NN can be safely ne-
glected. Suppression of acoustic NN with depth also depends
on two-point spatial correlations, which are influenced by
source distributions and scattering of acoustic waves. There-
fore, when the considered detector depth is such that a sig-
nificant contribution from atmospheric, acoustic NN cannot
be ruled out, sound spectra, propagation directions and spa-
tial correlations measured with microphone arrays are im-
portant site-characterization targets. These should be de-
ployed at the surface of all foreseen vertex locations, and the
required number of microphones for the analysis of the am-
bient acoustic field is the same as for the seismic measure-
ments, i.e., several tens of sensors are recommended, but a
handful of sensors is already sufficient to carry out velocity
measurements and to determine propagation directions.

Good quality acoustic measurements are challenging in
open environments due to wind noise. The usage of wind
shields, and averaging microphone signals over some num-
ber of nearby microphones are straight-forward strategies to
lower wind noise [117, [118]. The impact of wind noise on
sound spectra can always be assessed by calculating cross-
spectral densities between two nearby microphones.

Another measurement target is average wind speed since
it is the main parameter influencing the suppression of advec-
tion NN with depth. It is also important to consider the sur-
face structure and whether wind might lead to vortices of the
right scale that could lower the suppression of advection NN
with depth. The best way to estimate advection NN at a site
is to deploy a LIDAR system. It can be used to make volumet-
ric measurements of temperature, humidity, and wind fields
[86-89], but different LIDAR systems are sensitive to differ-
ent variables, which means that several LIDAR systems may
be used. Again, deployment of such a system should be at
the foreseen vertex locations, and to carry out velocity, tem-
perature and humidity measurements for as long as possible
(ideally a year), but even brief measurements would provide
a wealth of data useful to improve advection NN models.



C. Electromagnetic field

As we have seen in Section [IIl] the electromagnetic field,
especially fluctuations of the magnetic field, play a very im-
portant role in ET, and they require attention. It is however
difficult to assess this form of environmental noise in advance
since the EM field will likely be dominated by sources in-
stalled with the detector and its infrastructure. The main mo-
tivation to carry out measurements of the (electro)magnetic
field as part of a site-selection campaign is to make sure that
there is not an abundance of EM transients from local sources
like nearby power lines or transformer stations. These mea-
surements should be carried out at all three foreseen vertex
locations.

The Schumann resonances have similar spectra every-
where on Earth, which means that they are a minor item of
site evaluation. A characterization of local, natural sources
such as lightning strikes can be done, but is not likely to sig-
nificantly contribute to the science criteria for site selection.
If underground measurements are possible, then a compar-
ison of surface and underground Schumann resonances can
reveal local magnetic amplifications by the surrounding rock.
For the observation of Schumann resonances, high-quality,
induction-coil magnetometers are required, ideally buried to
avoid noise from wind-induced vibrations.

D. Geotechnical, geographic, and other surveys

Geotechnical investigations are key to any tunnel con-
struction, typically contributing 2% - 7% to the total con-
struction cost [29]. It is largely based on analyses of the sur-
face, e.g., outcrops, and of drill cores at the construction site.
For deep sites, it has to be accompanied by geophysical stud-
ies, for example, to investigate sub-surface geology and re-
duce the uncertainty of the geological models. Exploratory
boring averages about 1.5m of borehole per tunnel meter
[29]. Detailed information of (hydro)geological and ground-
water conditions are essential to plan the construction and
estimate the construction cost, and to foresee potential is-
sues with the presence of water and water handling during
detector operation. Possible values of rock permeability to
water span ten orders of magnitude, which makes groundwa-
ter conditions especially difficult to predict [119]]. Conditions
can also change significantly with season. Incompleteness of
information can lead to delays in construction and increased
cost, sometimes even to major construction failure [120]. A
thorough geotechnical survey is necessary for a smooth con-
struction process, but it never provides a guarantee against
unforeseen problems since geological conditions can change
over small distances. A historical collection of tunnel con-
struction cost can be found in Rostami et al [121]].

However, since these investigations are very costly, they
cannot be carried out in their full extent at both ET candidate
sites. Instead, in preparation of a site selection, only a small
number of boreholes can be realized to provide enough infor-
mation for a site selection, not for a detailed cost estimate and
construction planning. The information provided by these
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preliminary geotechnical investigations include stratigraphy,
elevation of the groundwater table, limited information on
rock quality, and some idea of how these parameters vary
over the area of interest. This information can help to refine
models of environmental noise, but also provide important
input for approximate construction cost estimates.

Another set of site studies concerns the collection of al-
ready available data or potentially easily retrievable data
about weather, geomorphology, a geodatabase, orthophotos,
digital elevation models, land use, parks and protected ar-
eas, hazard maps, and hydrology of the region. Data can also
be available about crustal deformation and ground stability,
e.g., subsidence and shear, from past DInSAR analyses [122]],
or installations of GNSS stations [123]. Some understanding
of ground stability is of course crucial for site selection. Ad-
ditional hydrological data can be obtained by groundwater
well extraction, piezometers, and pumping tests.

V. CONCLUSION

This paper provides an overall assessment of site-selection
criteria for the proposed next-generation, underground GW
detector ET, and gives guidelines for site-characterization
campaigns and noise modeling. Its main purpose is to inform
the ET and broader science communities about the main chal-
lenges in the preparation of a site selection. It is important
to understand how strongly the quality of the ET infrastruc-
ture in terms of lifetime and science potential depends on
site conditions. Early understanding of the short-comings of
a site can help to devise technological solutions to overcome
certain limitations.

The very large number of individual site parameters
demonstrates the complexity of a site evaluation. Detector
lifetime, operation and sensitivity are of prime interest to the
project, but construction and operation cost might be the de-
cisive factors for site selection. Given the scale of the invest-
ment, it is also clear that the socio-economic impact of ET
will be considered and will play an important role.

As for many other modern experiments in fundamental
physics, the environment can have a significant impact on the
science potential of the ET research infrastructure. In fact,
the main reason to construct ET underground, and therefore
the main contribution to construction cost, is to avoid envi-
ronmental noise from terrestrial gravity fluctuations associ-
ated with atmospheric and surface seismic fields. However,
even underground the observation band of ET can be limited
by environmental noise, which means that noise modeling
forms an essential part of the site evaluation. We presented
a formalism to project observations of environmental noise,
such as seismic displacement and acoustic noise, into ET in-
strument noise, and we conclude that all forms of ambient
noise can potentially limit ET sensitivity.

The advantage of having a high-quality, low-noise site
means that more care needs to be taken to preserve site qual-
ity over the envisioned 2 50 years of ET lifetime. This can
be achieved by negotiating kilometer-scale protective areas
around the three vertex locations of ET preventing, for ex-



ample, new industry, roads or railways to introduce distur-
bances.

All these considerations are key to the planning of a site-
characterization campaign and to obtain a site evaluation. In
the end, the value of a site will not only depend on its proper-
ties, but also on the proposed solutions to address challenges
specific to a site.
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