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Abstract

We report on a simple, inexpensive readout for torsion pendulums, suitable for
robust applications like teaching-lab equipment or monitoring of large amplitude
oscillations. A short light pulse is recorded every time a reflective band on
the pendulum inertial member passes in front of the sensor, an infrared LED
pair (emitter-receiver). Simple algebraic manipulations on the time series of
these pulses arrival times allow to extract the resonant frequency as well as
the decay time of the pendulum. This readout is insensitive to the amplitude
of oscillation and is therefore suitable for monitoring torsional oscillations of
large amplitude, where traditonal readouts like optical levers or autocollimators
encounter dynamic range limitations.
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1. Introduction and Motivation

The torsion pendulum is still, after over two centuries from its conception,
a widely used instrument to measure and characterize weak forces or torques
[1, 2, 3]. The dynamics of a torsion pendulum, like any second-order system, is
described by just three parameters: the moment of inertia of its inertial member
I0, the torsion constant of the suspending fiber κ, and the dissipation time con-
stant τ (or the quality factor Q); these parameters need to be evaluated with a
precision that directly feeds into the error budget of the experiment. The torsion
constant is usually derived by measuring the pendulum resonant frequency, or
oscillation period T, via the basic relation (2π/T )2 = κ/I0. However, there are
instances, in some sophisticated devices, where this is not so straightforward,
and the torsion constant of the fibers must be characterized on a separate test
bench: this happens when the inertial mass has a complex shape or, relevant to
our research, in the case of a double pendulum.
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In a double pendulum, like the PETER [4, 5] apparatus, designed to simul-
taneously measure one component of both force and torque acting on its inertial
member (often referred to as Test Mass), two torsion fibers are deployed in cas-
cade, producing two coupled torsional modes: in this case, disentangling the
coupled resonant frequencies to derive the fiber constants is not a simple task,
as inversion of the eigenfrequency equation is not unique. We were therefore
forced to separately measure the torsional constant of each fiber (in our case,
100 and 25 µm in diameter), in order to obtain a full characterization of the
apparatus. Therefore, we developed a simple apparatus, to the purpose of char-
acterizing Tungsten fibers, that were then deployed in the composite, double
torsion pendulum PETER. In this paper we describe such apparatus that, de-
spite its extreme simplicity, has some interesting features worth reporting.

The instrument described here can measure resonant frequency and decay
time of torsion pendulums with simple geometries and well characterized mo-
ments of inertia. Then, as taught in freshman physics labs, the torsion constant
can be derived, with an uncertitude of few parts per thousand, by linear fitting
of the T−2 vs I0 data. Conversely, the decay time of pendulums with same
inertial member and fibers was used to evaluate different types of fasteners for
the fiber. In this paper, we briefly describe the simple experimental apparatus.
We then show how to extract, from the series of time stamps, both the oscil-
lation period and the decay time. We discuss the pros and cons of performing
the measurements with either two sensors or a single sensor. Some additional
features, like the monitoring of the fiber unwinding, are also discussed before
the conclusions.

Figure 1: The largest (200 mm diameter) and heaviest (0.843 kg) inertial member, suspended
to a 100 µm W wire inside the vacuum chamber. The hairline is visible on the right of the
disc edge.

2. Apparatus

The pendulum is hosted in a vacuum chamber, whose main experimental
space has cylindrical shape, with horizontal axis, and a a useful vertical clear-
ance of roughly 40 cm. A horizontal opening carries a clear, see-through window.
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On the top flange an O-ring sealed rotary feedthrough (quick-connector) sup-
ports a rod where the top end of the fiber is suspended (the so-called φ-top).
The quick-connector allows rough rotation, from outside the vacuum, of the
fiber suspension point, thus actuating oscillations around the z (vertical) axis,
the φ degree of freedom. The opposite end of the fiber is connected to the center
of an inertial member of simple shape: typically a right cylinder, threaded M4
on its center. Sizes and materials of the pendulum loads vary depending on the
thickness of the fiber under test: the safe load varies from about 0.12 kg for the
thinnest (25 µm) fiber we tested, to over 1.5 kg for the thickest (100 µm). We
used Brass, Aluminum, Delrin, in cylinders and discs with diameters varying
from 15 to 250 mm.
The lateral surface of the cylindrical load is spray-painted black, and a thin (1
mm wide) strip of alluminized mylar, the hairline marker is added along a gen-
eratrix. The paint adds 0.1-0.3 g depending on the area of the lateral surface of
the test-mass: in the worst case, it accounts for less than 0.2% of the total mass,
and modifies by less than a percent the moment of inertia. The hairline marker
has an estimated mass of less than 0.05 g, and the asymmetry introduced to the
cylindrical mass distribution (it is stuck to one side) is well below those given
by machining tolerances.
Accounting for all measuring and machining errors, material inhomogeneity and
the contribution of paint, the moment of inertia of these loads were computed
with an uncertainty always smaller than 2 % and, for the larger loads, ap-
proaching 0.1 %. It is certainly possible to improve the accuracy with selected
materials and more accurate measuring tools.

Figure 2: Schematic diagram of the apparatus, within the vacuum chamber.

We have used and compared different methods of fastening the fiber at its
ends: beside the traditional gluing and clamping to brass hollow pins (similar
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to those used in wire chambers), we successfully tested a new method based on
a small Al vise-like block: the fiber is threaded into a soft Cu tube (0.2 mm
inner diameter) and positioned between two jaws of the block (see fig.2): two
M3 screws fasten together the two parts, squeezing the soft tube and blocking
the fiber.

Figure 3: Squeezing blocks used to terminate the W fibers

The readout is composed by a a pair of infrared diodes (a LED emitter+
a Photodiode as receiver) contained in a single package[6] where they are po-
sitioned 3.9 mm apart. Two such packages are assembled at short horizontal
distance (4 mm) on a board. Three wires plus ground are sufficient to bias two
LEDs and extract the signals of the respective receivers, as shown in fig.(3).
The LED board is positioned some 15 - 20 mm from the pendulum edge, at the
same vertical height and with azimuthal position roughly at the center of the
torsional oscillation. The pendulum is set in motion via the φ-top and when the
allumined strip passes in front of the LEDs, a peak of reflected light is collected
by the receiver, providing a time series of ”stroboscopic” measurements (two
per period) of the oscillation.
Due to its simplicity, and to the absence of dissipating components, this cir-
cuit works well, even for weeks, in our vacuum enviroment of about 0.5 mPa.
This is a clear advantage over more sophisticated, linear readouts, like optical
levers [7] or commercial autocollimators [8], that usually require optical ports
or fiber coupling to an external source. The outputs of both sensors are then
digitized by an Arduino card, sampling at frequencies up to 50 Hz: these rates
are largely sufficient as we aim to measure resonant frequencies of the order
of few mHz. The time series, and their time base are transferred via UBS to
a PC and stored. Although we chose to trigger DAQ via an external signal
generator, we have verified the internal clock of the Arduino card to disagree
with the higher quality external clock by no more than 500 ppm. Measurements
were taken with chamber pressure p < 10−3Pa; we found out, however, that

4



residual air still exerted a marginal effect on dissipation processes, expecially on
pendulums with large diameter loads.
The whole apparatus (excluding PC, vacuum gear and signal generator) is thus
assembled with a cost of about 30 e, making it also suitable for teaching labs,
where torsion pendulums are always popular, and can be operated in air.

Figure 4: The readout: two pairs (emitter+receiver) of LEDs are biased to 5V via the J1
coax, and the signals extracted via the two J2 cables.

3. Data processing and parameters evaluation

In all our measurements, we manually set the pendulum in motion via the
external rotary feedthrough and then observed the free evolution of its oscilla-
tions, as described by the well known equation for a simple harmonic oscillator:

d2θ

dt2
+

2
τ

dθ

dt
+
κ

I0
θ = 0 (1)

Therefore, we measured two dynamic parameters related to free oscillations of
torsion pendulums: the natural frequency f0 = 1

2π

√
κ
I0

(rather than resonant

frequency), inverse of the free oscillation period T , and the amplitude decay time
τ . A better way to compare features of pendulums with vastly different periods
is to express its dissipation through the dimensionless quality factor Q = πf0τ .
In all instances, the pendulums had a Q factor exceeding a few thousands, i.e.
high enough to make the difference between natural and resonant frequency
(that is O(Q−2) [9]) completely negligible.

From either of the two time series, one for each sensor, we can recover with
some simple manipulations both the resonant frequency and the decay time of
the pendulum. The recorded output of the two sensing LEDs appears as shown
in fig.4.

5



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

k = t / T 

de
te

ct
ed

 s
ig

na
l  

(A
.U

.)

time  [periods]

Figure 5: Each sensor (blue or red) detects the passage of the pendulum and a pulse is recorded.
The order of pulse arrival depends on the sense of oscillation, but the pulse separation in time
is the same

3.1. Measurement of the period of oscillation T
Determination of the resonant frequency is trivial and only requires one

channel: each sensor detects two peaks every oscillation period T : these two
signals are equally spaced at T/2 only if the detector is positioned exactly at
the center of the oscillation, which is hardly ever the case. An offline analysis
with a peak-finding routine provides a set of time stamps for the passing time
of the pendulum hairline marker in front of the sensor. We shall separately
consider the two sets of peaks that happen at times tk = k ·T/2 with k even (or
odd) integer. All peaks belonging to each set are separated in time by a whole
period T: tk+2 − tk = T ; an average over the several hundreds values recorded
in a typical overnight run yields a value of T with an uncertainty of 0.1% or
better.
In some cases, when dissipation is relevant, it can be shown (see Appendix)
that the two evaluations of the oscillation period (k odd or even) exhibit a
splitting; the true value of the period T can be recovered by averaging over the
two determinations. Usually, for slow decay, τ � T , this splitting is negligible.

3.2. Q measurement with two sensors
Evaluation of the decay time constant requires both channels and a little

more subtlety: To this purpose, consider a generic damped oscillation of period
T = 2π/ω for the angular coordinate of the hairline sight of the pendulum:

θ(t) = Asin(ωt+ φ)e−t/τ (2)

Our readout consists of two emitters + sensors separated by a small angular
distance ∆θ: as seen from the oscillation axis, this is, roughly, the sensors
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separation d divided by the distance from the suspending fiber: for our widest
test mass: ∆θ = d

amax
= 4/140 ∼ 30 mrad.

Due to their different position, the two sensors detect the passage with a time
difference ∆t.
As ∆θ � 1 (small separation between the two sensors), this delay can be related
to the pendulum velocity by

∆θ = θ̇∆t. (3)

Being the left hand side of the relation a constant, as the velocity decreases due
to damping, the time delay ∆t is bound to increase: this allows us to measure
the damping time τ

We evaluate the time derivative of θ(t) at the times of detection tk = k · T
of either channel, with the additonal assumption that both sensors are close to
the center of oscillation: this implies φ ' 0 :

θ̇(kT ) = Ae−kT/τ [ωcos(ωkT )− 1
τ
sin(ωkT )] (4)

The hypotesis of being close to the center (sin(kωT ) ' 0, cos(kωT ) ' 1),
as well as the small damping (ω � 1/τ), allows us to neglect the second term
with respect to the first:

θ̇(kT ) ' ωAe−kT/τ (5)

We now combine eq.(3) and (5), keeping in mind that ∆θ is a constant, for
any k-th detection pulse, as well as for an initial (zeroth) one:

∆θ = Ae−kT/τω∆tk = Aω∆to (6)

A final, simple manupulation yields T/τ as the slope of a logarithmic regression:

ln
{∆tk

∆t0

}
=
T

τ
k (7)

Recalling a definition of Q = πτ/T , it is immediate to recognize that the
inverse slope of the regression is just Q/π.

We remark that the same data provide two time series (see fig. 5a) with
opposite slopes, depending on wheter we consider measurements in the clockwise
direction (tk from sensor A lags that from sensor B) or conterclockwise (sensor
B lags sensor A). Apart from the sign, the two time series follow the same
exponential law, as shown in fig. (5b).

This method is straightforward and accurate, however, as can be seen in
fig.(4), the peaks are not sharp: in some cases, even worse than shown here,
this can lead to errors in the determination of the occurrence time tk of the
light peak. Indeed, the secondary peak is the result of a cross-talk from one
sensor (say detector A) sensing the light emitted by the other LED (say B), due
to the proximity of the mounting and the wide angle of emission. We managed
to obtain better time resolution by removing (or blinding) one set and using
just one LED pair, as described in the next section.
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Figure 6: Plot of the time delay between signals in the two sensors ∆tk = tk+1 − tk vs the
number of oscillations k. In the top pane the two series (k odd and k even) are shown. In the

bottom pane, the linear regression fit on the ln ∆tk
∆t0

shows, as described by eq. 7, a slope of

a = 6.27 · 10−3, yielding Q = π/a = 500 .

3.3. Q measurement with a single sensor
Also with a single emitter-sensor pair it is possible to measure the decay

time τ , using the asymmetry between the two ”semiperiods” that arises if the
sensor is not exactly placed at the center of oscillation, but with an angular
offset s. The times of detection tk are defined by the roots of the equation:

A sin(ωtk) e−tk/τ = s (8)

Fig.6 shows a graphic representation of the problem where, without loss of
generality, we chose s > 0; we now derive an approximate solution1 for tk in
two steps:

step 1: no damping. With the sensor centered (s = 0), the detection times tk
are obviously given by ωtk = kπ; consider now the presence of a small angular
offset s� A, and still no damping: we can approximate the sine near ωt = kπ

1A solution with a better degree of approximation is given in the Appendix, but we show
here a ”zeroth order” derivation that provides a correct value with an intuitive approach
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Figure 7: Threshold crossing: if peak detection is set at a threshold s > 0 (red line), the
detection time is alternatively before (k even) or after (k odd) the time of zero crossing kT/2,
by a small time offset δ = ±(T/2π)(s/A)

with its argument:

ωtk = kπ ± s

A
; tk = k

T

2
± T

2π
s

A
(9)

It can be seen, from fig.(6) that the time of threshold crossing happens a little
earlier (k even, negative sign in eq.9) or a little later (k odd, ”+” sign) than
the half periods kT/2. This offset time is indeed given by: δ ≡ ±(T/2π)(s/A)
and has, in absence of damping, a constant value. Consider the time intervals
between two successive light peaks: they are alternatively longer and shorter
than half period, by an amount 2δ; call them T±k = tk+1 − tk = T/2 ± 2δ. In
the case shown in fig.6, we have T+

k for k odd, but this depends on the sign of
the offset s and on the phase of the oscillation.

Define now the ratio Rk between each time interval and the entire oscillation
period T:

R±k =
T±k
T

=
1
2
± 2δk

T
=

1
2
± s

πA
(10)

step 2: introduce damping. We finally take into account the decay of the os-
cillation by substituting the constant amplitude A with Ak = A0 e

−kT/2τ into
eq.(10). By taking the logarithm, we promptly derive:

ln|R±k −
1
2
| = ln(

s

πA0
) +

kT

2τ
(11)
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Figure 8: Evaluation of both the oscillation period and the decay time with a single sensor.
The splitting of the period measurement is due to unsufficient sampling frequency. In the
lower pane, the slope has been reversed, in intuitive accordance with a decay.

While both R− and R+ can be separately used for evaluating he decay time,
the combination |R+

k − R
−
k | = 2s/πAk has proven to provide linear fits with

marginally better correlation. Again, the logarithm of the quantity on the left
hand side of eq.(11) grows linearly with k, with a slope T/2τ = π/2Q. An
example of this regression is shown in fig.(7)

3.4. Unwinding
Unwinding is a well known feature of metallic torsion fibers, where the equi-

librium position of the pendulum (i.e. Asin(φ)) slowly changes with time until
a stationary situation is reached; this drift can last a few days and it usually
takes place when the fiber is freshly loaded. When this happens, the center of
oscillation of the pendulum drifts during the measurement, i.e. s→ s(t) in eq.8.
This mimicks, to the purpose of the tk series, the effects of an additional decay.
When this happens, evaluation of the period of oscillation still gives accurate
results, provided that the two different determination (k odd and k even) are
averaged, thus canceling the systematic offsets. However, the calculations de-
scribed in previous sections to determine the Q factor no longer hold; indeed,
the decay is not even exponential, exhibiting slow oscillations around a spurious
decay. This behaviour is displayed in the numerical simulation of fig.8, while
fig.9 shows the behaviour of a real measurement with unwinding.
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Figure 9: Numerical simulation of an oscillation in the presence of unwinding. The first pane
shows the angular position θ(t) (see eq.2) with unitary amplitude A. The oscillation period
(second pane), determined as described in sect. 3.1, averaging the two determinations, yields
an accurate result (T=400 s). As expected, Q evaluation fails: the third pane shows an
estimated Q of 140, while the input value was 4000.

4. Applications and Conclusions

We have used the apparatus and the method described above to characterize
Tungsten fibers of various sizes; both the torsion constant (via the oscillation
period) and the internal friction (via the decay time) were measured. Results are
summarized in table 1. Due to the very low eigenfrequencies of these oscillations,
a typical data taking would last overnight. Two different methods are described
to measure the decay time of the pendulums: while the method with two emitter-
sensor pairs is simple in the algorithm and provides redundant information, we
found that the single emitter-sensor readout provides in the end more reliable
results, due to the absence of secondary, ghost peaks.

We have also used this apparatus to test a new way of connecting the fiber
both to the suspension point and to the inertial load, as described in section 2.
As shown in table 1 the elastic constant is, as expected, unchanged; on the other
hand, measurements of the the decay time did not provide conclusive evidence:
we gathered data on a dozen of different pendulums, with Q measurements vary-
ing in the 1500 - 5000 range, depending on the size of the inertial member, fiber
thickness, but also on the residual pressure inside the vacuum chamber that
was most likely the limiting factor. The effect of air damping on the pendulums
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Figure 10: Actual measurement of period and Q of an oscillation in the presence of unwinding.
The lower x axis is espressed in DOY (Day Of Year), as recorded for the raw data

[10] is an interesting investigation, that is however beyond the purpose of this
note. Therefore, we could detect no clear effect of improvement or deterioration
of the dissipation due to the new vise clamps. We have described how, with
a very basic apparatus and some simple manipulations, a readout for torsion
pendulums can be assembled. We believe this set-up can have applications in
cases where large amplitude of oscillations must be recorded, where budget is a
concern and in student labs.

Appendix - Determination of the oscillation period

We look for a better solution of eq.8; to this purpose we distinguish between
the actual oscillation period T, to be determined, and its experimental evalu-
ation Tmeas. We expect the detection times tk to be close to multiples of half
periods:

ωtk = kπ + η |η| � 1 (12)

Substituting this into eq.8 and approximating to first order in η we obtain:

±η(1− η

2Q
)e−kπ/2Q ' s/A (13)

This second degree equation has only one root satisfying |η| � 1, that is: ηk =
±s/A · ekπ/2Q. With this value, eq.12 reads:

tk = k
T

2
± Ts

2πA
ekπ/2Q (14)
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Table 1: Values of torsional constant, scaled to a 1 m length, for Tungsten wire of several
diameters φ. The values reported in second column are measured with a standard pin-clamping
of the wire ends, while in the last column the measurements were taken with the news pressing
vises. The data reported are compatible,within the experimental errors, with the well known
scaling law. κ ∝ φ4 (see e.g. eq. 5.2 in ref.[2])

Wire Torsion constant κ
diameter (10−9Nm/rad)
φ (µm) pin squeeze vise clamp

25 5.7± 0.1 6.0± 0.1
50 87.5± 3 89± 2
80 591± 5 585± 5
100 1319± 12

The exponential term grows with k (i.e. with time), but remains negligible as
long as k � Q. When we now evaluate the oscillation period by computing the
difference between even or odd tk’s, we get:

Tmeas = tk+2 − tk = T ± Ts

2πA
ekπ/2Q(eπ/Q − 1) ' T (1± s

2AQ
ekπ/2Q) (15)

Although the evaluation of Tmeas gives two different (and slowly diverging)
values, the true oscillation period T can be recovered by averaging the two
determinations. In most cases, both s/A � 1 and 1/Q � 1 and therefore the
second term is uninfluential, so that T = Tmeas.
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