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Abstract.  Cloud computing is a powerful technology that in the last decade revolu-
tionised computing and storage in particular for Industry and Private Sectors. Today,
large investments are ongoing to build Cloud Infrastructures at National or International
level (e.g. the European Open Science Cloud initiative). Also, scientists are approach-
ing commercial and private Clouds at different scales: single researchers test the Clouds
for small research projects, at the same time large international collaborations are eval-
uating Cloud technology to collect, process, analyse, archive and curate their data.

In this paper, we discuss the use of Cloud in Astrophysics at different scales using
some examples and we present future trends and possibilities that the use of Cloud
computing and its convergence with high performance computing will open: from high-
end data analysis to high performance data analytics, from scientific computing to data
analytics.

1. Introduction

The experience of large scientific instruments in the last years demonstrates how ex-
periments and observations are critically dependent on computing, data processing and
storage infrastructures and our ability to utilise them through codes and algorithms.

The explosive growth in data generation today happens (and will happen in the fu-
ture) in “edge environments”. These include major scientific instruments, experimental
facilities, and satellites, but also the incredible welter of digital data generators from In-
ternet of Things, social networking, smart cities and so on. The size and complexity of
data is so large to open new technical challenges in data acquisition from "the edge" to
data centers, data storage and post-processing. According to CISCO, by 2021, around
1000 Exabytes of data would be produced and stored in Cloud data centers and half of
them will be processed in Cloud in using high—end data analysis and analytics tools and
methodologies (CISCO 2020).

Also scientific experiments on large—scale instruments require significant data re-
duction, and updates of these instruments will produce orders of magnitudes more
data in the near future. For example, the National Institutes for Health’s Brain Ini-
tiative focuses on high—throughput x-ray tomography of whole mouse brains producing
hundreds of about 160TB size images to transport, reduce, analyse and store. Due to
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the size and complexity of those data, High Performance Computing (HPC) facilities,
methodology and algorithms have been already adopted for processing and analysis.

Also, in Astronomy and Astrophysics (A&A), new instruments (e.g. the Square
Kilometer Array — SKA —, the Cherenkov Telescope Array — CTA —, the Extremely
Large Telescope — ELT —, the James Webb Space Telescope — JWST —, the Euclid satel-
lite, the Low Frequency Array — LOFAR -) and the advent of multi-messenger astron-
omy require significant high—end data reduction with exascale computing resources and
methodologies typical of HPC environments (Taffoni et al. 2020b): distributed memory
systems, hard platform optimization, use of accelerators, HPC system SW and libraries
and more. At the same time accelerated Cosmological N-Body hydrodynamic codes
(e.g. OpenGADGET, GADGET4, RAMSES) can generate 20 petabytes of data out of
a single 100003 particles simulation to further post-process and compare with observed
data.

This will lead to the use of new infrastructures where exascale HPC and Clouds
will converge to answer new challenges of (Big-) data analysis and (Big-) data analytics
(HPDA). New technologies (e.g. containerization) are driving the convergence of these
“worlds” and the advent of Science Platforms (SPs) as a means to access data, storage
and computing (but also SW and algorithms) is facilitating the use of novel Cloud
infrastructures at different scales.

In this paper, we review the use of the Cloud in A&A with some examples and we
introduce new challenges in Cloud computing and HPC arising from the novel require-
ments for HDA and HPDA. We discuss the value of Cloud and HPC convergence and
we present the efforts in this direction based on novel Cloud models as Analytics-as-a-
Service or HPC-as-a-Service.

The paper is organized as follows. In Sect. 2 we summarize Cloud computing
concepts and deploying models used in science. We mainly focus our discussion on the
role of Commercial Clouds for science and engineering. Sect. 2.1 focuses on the use of
Public Cloud infrastructures by Astronomers with some practical example. In Sect. 3
we discuss the role of HPC and Clouds for scientific computing and data analysis and
the differences and analogies between the two platforms. The importance and role of
the Cloud and HPC convergence is discussed in Sect. 4, where we introduce a proof of
concept of HPC-as—a—Service Cloud. Finally, we discuss the role of Clouds and SPs to
facilitate the use of computing resources and storage for A&A.

2. Cloud Computing for science and technology

Cloud computing offers scalable, reliable, elastic computing and storage services. The
resources used for these services can be requested on—demand and metered so users
can be charged only for the resources they use. Data is stored closer to the computing
and analysis site and in such a way that it is device and location independent, thus
simplifying software (SW) development and data processing.

The Cloud services operated by Amazon, Google, Microsoft and other vendors
are commonly referred to as public Clouds (by analogy with the public utilities) or
even better as commercial Clouds. In contrast, a private Cloud is operated by a pri-
vate institution(s) to provide computing, storage, and other services to a more limited
audience, for example a company or a specific community (community Cloud) as the
Astrophysics one. Of particular interest for Astronomers is the case of Open Science
Clouds: Academic Clouds that embrace the Open Science concepts.
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More recently, containerization technologies enable developers to shape their ap-
plication’s computing environment and encapsulate SW that can be deployed on Cloud
infrastructures. Containerization also enhance scientific application portability, allow-
ing workflows and SW to be packaged, shared, and redeployed without complex and
often arduous configuration. Containers have emerged as a viable delivery platform for
SW also on HPC environments (Ruiz et al. 2015), demonstrating to lower the usage
barrier of complex HPC computing platforms and contributing to SW preservation and
experiment reproducibility (coupling a specific SW environment with data and com-
puting infrastructures). As we will discuss in Sect. 4, containerization technology is
playing a central role in the HPC and Cloud convergence.

2.1. Examples of Cloud Computing in Astronomy

Scientists are using commercial and private Clouds to explore scientific data and run
computer-based simulation and modeling (O’Driscoll et al. 2013; Hoffa et al. 2008;
Wiley et al. 2011) stimulating also the deployment of academic and Open Science
Clouds (European-Commission 2016).

The growing interest of the A&A community in Cloud computing is witnessed by
papers that discuss tests (Bertocco et al. 2018; Berriman et al. 2010; Landoni et al.
2019a; Sabater et al. 2017; Timmes et al. 2020) or production environments (Hay-
den 2021; Sciacca 2021) developed in the Clouds. What connects many of those
experiments is a similar use of the service model and approach: the development of
Infrastructure—as—a—Service (IaaS) Clouds (most often based on containers) for com-
puting, usually based on the use of spot instances. The spot instances represent Cloud
excess capacity which a Cloud provider need to have available for any surges in cus-
tomer demand. Public Cloud providers offer this excess capacity at a massive discount
to drive usage. The drawback in using of spot resources is that providers can terminate
spot instances with just a short term warning to reassign them to other customers.

The National Institute for Astrophysics in Italy promoted a Cloud test campaign
focused on two commercial Cloud Platforms, namely Google Cloud Platform and Ama-
zon Web Services (AWS), by offering to the Italian A&A community the possibility to
exploit the computational power of the two services. For the former, we have proposed
scenarios ranging from implementation of Workflow—as—a—Service aiming to offer re-
duction pipelines (in the context of Exoplanteray spectroscopy) in an on-demand fash-
ion to small HTC clusters with GPU capabilities (mainly devoted to Adaptive Optics
simulations). The platform has demonstrated to be resilient and scalable for HTC-based
projects offering a viable solution for real-life astronomical application while the per-
formance of HPC tasks were rather poor (Landoni et al. 2019b).

The experiments on AWS are still ongoing, although we already successfully
tested a number of HTC applications, frequently coupled with Containers and related
SW for their orchestration, like Amazon Batch. Among them, it is worth mentioning
the implementation of Windows-based high end—nodes for ray-tracing in the context of
the key project MAORY (Diolaiti et al. 2016) for the European Southern Observatory
ELT telescope. This scenario foresees the use of high—end Virtual Machines (up to 64
vCPU and 0.5TB of RAM) to perform optical and mechanical analyses for the MAORY
AO system, essentially triggered by project milestones (e.g. Design Reviews Phases).
This prototypical scenario is a common practice in the context of the design of astro-
nomical instrumentation and demonstrated that the use of Commercial Clouds (which
offers HTC capabilities in non-Unix environment) could greatly reduce the cost of the
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ownership (including licensing of non-Unix OS and SW) when the use of the resources
is sporadic, and strictly coupled with the phases of a project.

3. The divergence of HPC and Data Analysis Infrastructures

In the last decades HPC and high—end data analysis infrastructures evolved indepen-
dently driven by distinctly different optimization criteria to answer to different scientific
and technical requirements. While the high—end data analysis requirements and tech-
nologies evolved in the Cloud environment, the HPC community focused on theory and
numerical experiments (Asch et al. 2018).

Projected Performance Development
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Figure 1.  Time evolution of the performance of the 500 most powerful HPC plat-
forms expressed in Floating Point Operations per Seconds and measured with HPL
benchmark . Blue line and squares are the average resources’ performance, yellow
line and triangles are the first more powerful resource performance, green line and
circles are the overall performance of the whole 500 machines.

Major technical differences between the HPC and the data analysis ecosystems
include SW development paradigms and tools, virtualization and scheduling strategies,
storage models, resource allocation policies, and strategies for redundancy and fault tol-
erance. User requirements also differ. The HPC communities emphasize the efficiency
of their infrastructures: for example application execution efficiency, system utilization
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rate, and/or energy efficiency (Taffoni et al. 2019). On the other hand, Cloud and Big
data communities tend to emphasize user experience and scalability.

The data center is the core facility for both HPC and Cloud infrastructures. The
top500 project (https://top500.0rg) provides the performance of the 500 most
powerful HPC platforms as shown in Figure 1. It is not possible to find similar infor-
mation for public Cloud infrastructures, however we made an indirect estimate based
on power consumption of Cloud data centers.

Cloud infrastructures are based on coordinated distributed facilities called “re-
gions”. Each region is composed by multiple data centers in a redundancy group. To
optimize efficiency and management, redundancy groups are based on 3 data centers
minimum. For example, when Amazon AWS deploys a new region, it is usual that
three new data centers be opened. The size of each data center depends on a cost—
risk balance: the cost savings from scaling a single facility are logarithmic, whereas
the negative impact of blast radius is linear. For this reason, AWS currently elects to
build right around 32MW size facilities. Considering that the power consumption of
the Riken Fujitsu Supercomputer Fugaku is 30MW and its peak performance is 442
PFlop/s (Kodama et al. 2020), we can estrapolate that each AWS data center has more
than 100 PFlop/s computing capacity and more than 300 PFlop/s per region.

As the region scales, the number of data centers can easily escalate to far beyond
ten. AWS already has regions scaled far beyond 10 data centers of 32MW, conse-
quently we estimate that at least some AWS regions are able to offer more than Exascale
computing capacity.
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Figure 2.  OSU MPI benchmark (5.3.2) for interconnect latency using OpenMPI
4.0. We compare the results of a real cluster with Infiniband 54 Gbps HDR and
the 10 Gbps Ethernet, with the one of Azure HPC VM. Azure tests are executed on
two VM nodes equipped with 200 Gbps HDR Infiniband. The results on the Cloud
deployment are one order of magnitude higher (worst) than cluster Infiniband ones.

Even if from the hardware point of view the two environments are strikingly sim-
ilar, in HPC the focus is to offer a unique homogeneous platform within a shared
memory model, high performance interconnect and high performance parallel storage
and accelerators (e.g. graphic processing units, or vector processing units). Clouds
resources are designed for increasing proliferation of hardware, be it in processors,
memory size, disk size and capabilities, accelerators, field-programmable gate arrays
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(FPGAs), and more, to target divergent applications and computing scenarios. For
example, we are witnessing the emergence of numerous hardware and system architec-
tures for supporting deep learning based on FPGAs (Shawahna et al. 2018) used for
advanced data analysis and analytics. FPGAs are also used to accelerate computations
in numerical Astrophysics (Goz et al. 2020). Cloud infrastructures are designed to par-
tition the facilities to offer resources to a large number of heterogeneous customers,
including small and large enterprises more than offering a single supercomputer for
exascale applications.

4. Big data: the Convergence of HPC and Data Analysis Infrastructures

The value of HPC and high—end data analysis infrastructures (in particular Cloud) con-
vergence has been already recognized by different authors and authorities. In the Eu-
ropean Data Infrastructure and the European Open Science Cloud (EOSC) position
papers (Eudat et al. 2015) HPC has been completely absorbed into a broader digital
single market and only appears as a component in this global system. Similarly, USA,
Cina and Japan emphasized the importance of big data, data analysis, data analytics and
HPC ecosystem convergence (AAVV 2015).

To produce new scientific results, HPC facilities must become nodes of a more
complex network of Cloud resources able to support workflows consisting of multiple
and divergent applications (e.g. classical HPC, machine learning, data analysis and
visualization) to combine in the same environment both simulations and data reduction.
In this scenario, moving data from an infrastructure to another is unfeasible as well as
downloading data from the Cloud data lake to process with a custom SW: Astronomers
must move computation close to data.

Commercial Clouds already recognize the need to deploy HPC Cloud resources.
Microsoft Azure and AWS are offering Virtual Machines for High-Performance Com-
puting equipped with a low latency/high throughput interconnect and GPU accelerators,
on demand. The resources are accessible in a laaS mode, where users can deploy an
MPI based SLURM cluster with dynamic node allocation, to configure with their own
SW and libraries. The performance of such infrastructures are very close to the one of
a standard HPC Linux cluster (Figure 2).

4.1. A proof of concept of HPCaaS

An HPC-as—a—service (HPCaaS) approach enables an entire HPC facility up and run-
ning without the complexity of setting up a local HPC infrastructure, and to have it
running close to the data. However, such approach requires to move the computation to
the HPC platform itself, and there are a number of factors to consider in this respect.

First and foremost, the way in which to run and interact with the SW must not be
forced to a specific environment (i.e. a Jupyter Notebook), since it may greatly vary in
terms of usage patterns. Command line and GUI-based desktop applications are very
common in the HPC domain, and in particular for data processing pipelines and inter-
active data analysis. In second place, there must be a reliable and secure way to bring
and execute custom SW on the HPC platform, as the paradigm to move the compu-
tation close to the data does not (and should never) mean to restrict the computation
to the SW available on the platform. The third aspect to consider is how the growing
SPs concept relates a HPCaaS, as they usually target simpler use cases (i.e. use a data
analysis library inside a Jupyter Notebook environment).
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Software containerisation and microservices can provide a solution for these as-
pects. An architecture based on this approach has been proposed for the SP use-case in
this volume in (Russo 2021), and is reported here in figure 3.

Container R _
Registry Agent Scheduler
Computing element Backend
T TCP/IP Web UI
Microservice -
] Tunnel
Container
S . V.,
i User

Figure 3. A SP architecture for running containerised user task microservices.
This architecture is based on four main blocks: 1) a back-end with a web-based
user interface; 2) a scheduler; 3) an agent; and 4) a registry for the microservice

containers from where to pull them.

On top of this architecture, and in the framework of EU funded project ESCAPE,
we are developing a tool that is a proof of concept of a HPCaaS platform and that
respond to the requirements outlined in the previous paragraphs. The tool has been
designed to execute containerized workloads (in Docker or Singularity) on a number
of different computing elements that an organization can offer to the users, which can
select the most appropriate one based on their needs: single computing nodes, HTC and
HPC clusters, even public Clouds. Full remote desktop access, as well as web-based
applications and custom interaction modes (i.e. SSH) are supported. Users can set
up and run their own containers with their SW autonomously, as long as the container
expose a viable interface on a TCP/IP protocol, thus bringing great flexibility. See

Figure 4 for an example of a real user task.
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Image.

Createdat  Dec.9,2020,222p.m
Extra binds

18216811025
5200

Port

Figure 4.  Our prototype in action using Astrocook, a GUI-based quasar spectra

analysis SW, running on a HPC cluster.
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Emphasis should be given to the value of this approach to couple user’s own SW
with computing resources into a task and mask the complexity of the use of the re-
sources. Moreover, being a component of the ESCAPE SP (Bertocco 2021), that will
also offer a data lake, in the future we will be able also to couple SW, computing and
data. Our prototype is now used on our HPC clusters to make interactive data reduction
for the LOFAR Italian community or as shown here to make spectral analysis using the
Astrocook SW.

5. Conclusion and discussion

Cloud computing provides the infrastructure that is powering key digital trends such as
mobile computing, the Internet of Things, big data, and artificial intelligence, thereby
accelerating industry dynamics, disrupting existing business models, and fueling the
digital transformation.

Recently, we have seen a rapid growth of the use of Cloud computing also for sci-
entific research in particular in the field of high-end data analysis and analytics. Also,
the A&A community is approaching with success Cloud technologies, in particular in
the framework of IaaS or Container—as—a—service. On the other side, many applica-
tions and tools in Astronomy could be offered as SaaS, for example tools designed to
visualize astronomical images or to manipulate and visualize data (e.g. Aladin, Topcat,
Vizier, CASA). This could be particularly effective when SaaS applications access data
stored on Cloud based data lakes (e.g. EOSC data lake) or thought IVOA standards'. A
research activity focused on SaaS in A&A deserves further and significant investments.

The size and complexity of data produced on the “edge” by new instruments is
guiding scientific communities towards combining HPC and Cloud infrastructures, ap-
plications and methods into a common Cloud environment able to process large-scale
analysis pipelines for data generated by simulations, experiments or observations. Ex-
ascale supercomputers must be viewed as the most important nodes in the very large
network of heterogeneous computing and storage resources offered as Cloud services
for example using a HPC—as-a—Service model. This approach requires coupling com-
puting resources and SW into running tasks hiding all the complexity of setting up a
super computing cluster as we implement in our proof of concept in Sect. 4.1.

Cloud platforms (Commercial, but also Private and Open Science) require skills
and expertise far beyond the ones of Astronomers in particular for more complex set up
like a HPC cluster, however they can simplify the development of SP designed to offer
users a smoother experience when interacting with data and computing resources. The
SP provides the framework for combining computing resources with SW, tools and ser-
vices “marketplaces” or users custom SW, facilitating the achievement of “computing
close to data”. To obtain such infrastructure, it is necessary to implement data lakes at
the “bottom” of Cloud infrastructures.

Public Clouds are already offering some of the Data Lake capabilities based on
object storage or other kind of distributed file system like HDFS. However, a Data
Lake for science should integrate community (IVOA) standards for data annotation,
access and preservation and combine the capabilities of commercial data Clouds with
the requirements of the scientific communities. For example, a Data Lake should be

'https://www.ivoa.net
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able to facilitate data acquisition from the “edges” and their analysis. At the same
time they should manage the transition between cold data sets into hot data sets: data
set that suddenly become particularly interesting for the community and that therefore
require fast reprocessing and continuous access. This may happen in case of some
extraordinary Astrophysical event (e.g. a supernova explosion). A Data Lake should be
able to seamlessly manage this transition for example replicating the data to improve
availability or access from a large number of computing resources.

In conclusion, Commercial Clouds may become an important asset for scientific
research. Researchers have usually access to a set of resources: national computing
centres, institutional computing resources or private Clouds, local workstation and so
on. Commercial Clouds may become an addition to this portfolio, particularly useful if
we are able to identify what are the best use cases for their usage. This can be achieved
using specific Cloud Economy metrics, however as general rule, Cloud is cost-effective
when the use of the resources is sporadic and a limited amount of data is produced and
stored in the Cloud.

This is an approach that we are pursuing in INAF, where Astronomers may insti-
tutionally request access to national super computing center — CINECA —, HPC and
HTC local clusters — CHIPP — (Taffoni et al. 2020a) and AWS. INAF is offering these
resources to the Astronomers on a proposed based evaluation since 2018.

Acknowledgments. This work was supported by the European Science Cluster of
Astronomy and Particle Physics ESFRI Research Infrastructures project, funded by
the European Union’s Horizon 2020 research and innovation programme under Grant
Agreement no. 824064. We acknowledge the computing centre of INAF-Osservatorio
Astronomico di Trieste, (Bertocco et al. 2019) and the CHIPP project, for the avail-
ability of computing resources and support.

References

AAVV 2015, National strategic computing initiative executive or-
der, Tech. rep., Executive  Office of the U.S. President. URL
https://www.whitehouse.gov/the-press-office/2015/07/29/
executive-order-creating-national-strategic-computing-initiative

Asch, M., Moore, T., Badia, R., et al. 2018, The International Journal of High Performance
Computing Applications, 32, 435

Berriman, G. B., Juve, G., Deelman, E., Regelson, M., & Plavchan, P. 2010, in 2010 Sixth IEEE
International Conference on e-Science Workshops (IEEE), 1

Bertocco, S. 2021, in ADASS XXX, edited by J. E. Ruiz, F. Pierfederici, & P. Teuben (San
Francisco: ASP), ASP Conf. Ser.

Bertocco, S., Dowler, P., Gaudet, S., Major, B., Pasian, F., & Taffoni, G. 2018, Astronomy and
Computing, 24, 36

Bertocco, S., Goz, D., Tornatore, L., Ragagnin, A., Maggio, G., Gasparo, F., Vuerli, C., Taffoni,
G., & Molinaro, M. 2019, in Astronomical Data Analysis Software and Systems XXIX.
arXiv:1912.05340

CISCO 2020, Global Network Trends Report, Tech. rep., CISCO. URL https:
//www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/
networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_
MOFU-no-NetworkingTrendsReport-NB_rpten®18612_5.pdf

Diolaiti, E., Paolo, C., Abicca, R., et al. 2016, in Adaptive Optics Systems V, edited by
E. Marchetti, L. M. Close, & J.-P. VAéAl’ran, International Society for Optics and Pho-
tonics (SPIE), vol. 9909, 768


https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
arXiv:1912.05340
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf

62 Taffoni et al.

Eudat, Liber, OpenAIRE, Egi, & Geant 2015, European Open Science Cloud for research,
Tech. rep., European Commission. URL http://libereurope.eu/wp-content/
uploads/2015/11/0SC_Position_Paper-final-30.10.15.pdf

European-Commission 2016, European Open Science Cloud, Open Science — Research & Inno-
vationy, Tech. rep., European Commission. URL http://ec.europa.eu/research/
openscience/index.cfm?pg=open-science-cloul

Goz, D., leronymakis, G., Papaefstathiou, V., Dimou, N., Bertocco, S., Simula, F., Ragagnin,
A., Tornatore, L., Coretti, I., & Taffoni, G. 2020, Computation, 8, 34

Hayden, B. 2021, in ADASS XXX, edited by J. E. Ruiz, F. Pierfederici, & P. Teuben (San
Francisco: ASP), ASP Conf. Ser.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J. 2008, in
2008 IEEE Fourth International Conference on eScience, 640

Kodama, Y., Odajima, T., Arima, E., & Sato, M. 2020, in 2020 IEEE International Conference
on Cluster Computing (CLUSTER), 484

Landoni, M., Romano, P., Vercellone, S., Knddlseder, J., Bianco, A., Tavecchio, F., & Corina,
A. 2019a, The Astrophysical Journal Supplement Series, 240, 32

Landoni, M., Taffoni, G., Bignamini, A., & Smareglia, R. 2019b, in Astronomical Data Analysis
Software and Systems XXIX. arXiv:1903.03337

O’Driscoll, A., Daugelaite, J., & Sleator, R. D. 2013, Journal of Biomedical Informatics, 46,
774

Ruiz, C., Jeanvoine, E., & Nussbaum, L. 2015, in Euro-Par 2015: Parallel Processing Work-
shops, edited by S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E.
Gomez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes, J. Weidendorfer,
& M. Alexander (Cham: Springer International Publishing), 813

Russo, S. 2021, in ADASS XXX, edited by J. E. Ruiz, F. Pierfederici, & P. Teuben (San Fran-
cisco: ASP), ASP Conf. Ser.

Sabater, J., Sanchez-Expésito, S., Best, P, Garrido, J., Verdes-Montenegro, L., & Lezzi, D.
2017, Astronomy and computing, 19, 75

Sciacca, E. 2021, in ADASS XXX, edited by J. E. Ruiz, F. Pierfederici, & P. Teuben (San
Francisco: ASP), ASP Conf. Ser.

Shawahna, A., Sait, S. M., & El-Maleh, A. 2018, IEEE Access, 7, 7823

Taffoni, G., Becciani, U., Garilli, B., Maggio, G., Pasian, F.,, Umana, G., Smareglia, R., &
Vitello, F. 2020a, in Astronomical Data Analysis Software and Systems XXIX. arXiv:
2002.01283

Taffoni, G., Goz, D., Tornatore, L., Frailis, M., Maggio, G., & Pasian, F. 2020b, in Astronomical
Data Analysis Software and Systems XXVII, edited by P. Ballester, J. Ibsen, M. Solar,
& K. Shortridge, vol. 522 of Astronomical Society of the Pacific Conference Series, 49

Taffoni, G., Tornatore, L., Goz, D., Ragagnin, A., Bertocco, S., Coretti, 1., Marazakis, M.,
Chaix, F., Plumidis, M., Katevenis, M., Panchieri, R., & Perna, G. 2019, in 2019 15th
International Conference on eScience (eScience), 403

Timmes, F., Townsend, R., & Bildsten, L. 2020, arXiv preprints. arXiv:2001.02559

Wiley, K., Connolly, A., Gardner, J., Krughoff, S., Balazinska, M., Howe, B., Kwon, Y., & Bu,
Y. 2011, Publications of the Astronomical Society of the Pacific, 123, 366


http://libereurope.eu/wp-content/uploads/2015/11/OSC_Position_Paper-final-30.10.15.pdf
http://libereurope.eu/wp-content/uploads/2015/11/OSC_Position_Paper-final-30.10.15.pdf
http://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloul
http://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloul
arXiv:1903.03337
arXiv:2002.01283
arXiv:2002.01283
arXiv:2001.02559

