
2022Publication Year

2022-11-14T10:59:41ZAcceptance in OA@INAF

Rosetta: A container-centric science platform for resource-intensive, interactive
data analysis

Title

Russo, S. A.; BERTOCCO, SARA; Gheller, C.; TAFFONI, GiulianoAuthors

10.1016/j.ascom.2022.100648DOI

http://hdl.handle.net/20.500.12386/32721Handle

ASTRONOMY AND COMPUTINGJournal

41Number

Astronomy and Computing 41 (2022) 100648

a

b

c

a
N
r
t
a
a

o
A
A
s
t
e
2
t
c
o
v
o
a

–

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Rosetta: A container-centric science platform for resource-intensive,
interactive data analysis
S.A. Russo a,c,∗, S. Bertocco a, C. Gheller b, G. Taffoni a
INAF (Italian National Institute for Astrophysics) – Astronomical Observatory of Trieste, Italy
INAF (Italian National Institute for Astrophysics) – Institute of Radioastronomy, Bologna, Italy
Department of Mathematics and Geosciences, University of Trieste, Italy

a r t i c l e i n f o

Article history:
Received 2 May 2022
Accepted 26 August 2022
Available online 14 September 2022

Keywords:
Science platforms
Data analysis
Reproducibility
Software containers
Big data
HPC

a b s t r a c t

Rosetta is a science platform for resource-intensive, interactive data analysis which runs user tasks
as software containers. It is built on top of a novel architecture based on framing user tasks as
microservices – independent and self-contained units – which allows to fully support custom and user-
defined software packages, libraries and environments. These include complete remote desktop and
GUI applications, besides common analysis environments as the Jupyter Notebooks. Rosetta relies on
Open Container Initiative containers, which allow for safe, effective and reproducible code execution;
can use a number of container engines and runtimes; and seamlessly supports several workload
management systems, thus enabling containerized workloads on a wide range of computing resources.
Although developed in the astronomy and astrophysics space, Rosetta can virtually support any science
and technology domain where resource-intensive, interactive data analysis is required.

© 2022 Published by Elsevier B.V.
1. Introduction

Data volumes are rapidly increasing in several research fields,
s in bioinformatics, particle physics, earth sciences, and more.
ext generation sequencing technologies, new particle detectors,
ecent advances in remote sensing techniques and higher resolu-
ions in general, on both the instrumental and the simulation side,
re constantly setting new challenges for data storage, processing
nd analysis.
Astrophysics is no different, and the upcoming generation

f surveys and scientific instruments as the Square Kilometer
rray (SKA) (Dewdney et al., 2009), the Cherenkov Telescope
rray (CTA) (Acharya et al., 2013), the Extremely Large Tele-
cope (ELT) (De Zeeuw et al., 2014), the James Webb Space
elescope (Gardner et al., 2006), the Euclid satellite (Laureijs
t al., 2012) and the eROSITA All-Sky Survey (Merloni et al.,
012) will pile up on this trend, bringing the data volumes in
he exabyte-scale. Moreover, numerical simulations, a theoretical
ounterpart capable of reproducing the formation and evolution
f the cosmic structures of the Universe, must reach both larger
olumes and higher resolutions to cope with the large amount
f data produced by current and upcoming surveys. State of the
rt cosmological N-body hydrodynamic codes (as OpenGADGET,

∗ Corresponding author at: INAF (Italian National Institute for Astrophysics)
Astronomical Observatory of Trieste, Italy.

E-mail address: stefano.russo@inaf.it (S.A. Russo).
ttps://doi.org/10.1016/j.ascom.2022.100648
213-1337/© 2022 Published by Elsevier B.V.
GADGET4 Springel et al., 2020 and RAMSES Bleuler and Teyssier,
2014) can generate up to 20 petabytes of data out of a single
simulation run, which are required to be further post-processed
and compared with observational data (Springel et al., 2018;
Ragagnin et al., 2017; Taffoni et al., 2019; Habib et al., 2016).

The size and complexity of these new experiments (both ob-
servational and numerical) require therefore considerable storage
and computing resources for their data to be processed and an-
alyzed, and possibly to adopt new approaches and architectures.
High Performance Computing (HPC) systems including Graphical
Processing Units (GPUs) and Field Programmable Gate Arrays
(FPGAs), together with the so called ‘‘bring computing close to
the data’’ paradigm are thus becoming key players in obtaining
new scientific results (Asch et al., 2018), not only by reducing the
time-to-solution, but also by becoming the sole approach capable
of processing datasets of the expected size and complexity.

In particular, even the last steps of the data analysis pro-
cesses, which could be usually performed on researchers’ work-
stations and laptops, are getting too resource-intensive and are
progressively required to be offloaded to such systems as well.

Although capable of satisfying the necessary computing and
storage requirements, these systems are usually hosted in remote,
dedicated computing centers and often managed with queue
systems, in order to dynamically share their resources across
different users and to optimize the workload and the through-
put. This can strongly complicate the user interaction, requiring

remote connections for shell and graphical access (as SSH and X

https://doi.org/10.1016/j.ascom.2022.100648
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2022.100648&domain=pdf
mailto:stefano.russo@inaf.it
https://doi.org/10.1016/j.ascom.2022.100648

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

p
s
l
w
w
c
r

d
D
A
a
a
o

S

b
f
N
g
e
a
t
v
t

t
u
c
f
f
i
i

i
g
c
L
a
c
c

s
(
C
s
i
J

i
a
t
c
2
J
w
m

i
o
a
s C

i

c

rotocol forwarding), careful data transfer and management, and
cheduler-based access to computing resources which strongly
imits interactive access to the system. Bringing along the soft-
are required for the analysis can be even more challenging, and
ithout proper setup (in particular with respect to its dependen-
ies) it can not only fail to start or even compile, but also severe
eproducibility issues can arise (Bhandari Neupane et al., 2019).

To address these challenges, we see an increasing effort in
eveloping the so called science platforms (Taffoni et al., 2020;
esai et al., 2019; Cui et al., 2020; Taghizadeh-Popp et al., 2020).
science platform (SP) is an environment designed to offer users
smoother experience when interacting with remote computing
nd storage resources, in order to mitigate some of the issues
utlined above.
In science and, more specifically, in astronomy, a number of

Ps have been designed and developed over the past years.
CERN SWAN (Piparo et al., 2018) represents CERN’s effort to

uild towards the science platform paradigm. SWAN is a service
or interactive, web-based data analysis which makes Jupyter
otebooks widely available on CERN computing infrastructure to-
ether with a Dropbox-like solution for data management. How-
ver, as of today, this solution does not provide support for
pplications other than the Jupyter Notebooks and a built-in shell
erminal, does not allow using custom or graphical software en-
ironments and requires heavy system-level integration in order
o be used on top of existent computing resources.

ESA Datalabs (Arviset et al., 2021) is a science platform specific
o astronomy and astrophysics. Similarly to CERN SWAN, it allows
sers to work on ESA’s computing infrastructure using interactive
omputing environments as Jupyter Lab and Octave (or to choose
rom pre-packaged applications as TOPCAT). Datalabs is mainly
ocused on enabling users to gain direct access to ESA’s datasets,
t does not support using custom software environments, and it
s not an open source project.

The Large Synoptic Survey Telescope (LSST) developed a sim-
lar science platform (Jurić et al., 2017), based on a set of inte-
rated web applications and services through which the scientific
ommunity will be able to ‘‘access, visualize, subset and analyze
SST data’’. The platform vision document does not mention
pplications other than the Jupyter Notebooks, nor support for
ustom or graphical software environments, and refers to its own
omputing architecture.
There are also a number of initiatives entirely focussing on

upporting Jupyter Notebooks on cloud and HPC infrastructures
such as Nicklas et al., 2018; Mendez et al., 2019; Milligan, 2018;
astronova et al., 2018), which might fall in our SP definition to
ome extent, and in particular in Astronomy and Astrophysics
t is worth to mention SciServer (Taghizadeh-Popp et al., 2020),
ovial (Araya et al., 2018) and CADC Arcade (Major et al., 2019).

Lastly, it has to be noted that the private sector is mov-
ng fast with respect to resource-intensive and interactive data
nalysis, mainly driven by the recent advances in artificial in-
elligence and machine learning. In this context, we want to
ite Google Colab (Bisong, 2019) and Kaggle Notebooks (Kaggle,
018), which are built around heavily customized versions of the
upyter Notebooks, and Azure Machine Learning (Chappell, 2015),
hich provides a nearly full-optional SP specifically targeted at
achine learning workflows.
While on one hand all of the above mentioned SPs do make

t easier to access and use remote computing resources, on the
ther, since they are mainly focused on web-based and integrated
nalysis environments built on top Jupyter Notebooks or similar
oftware, they also introduce two main drawbacks:

1. users are restricted in using pre-defined software pack-
ages, libraries and environments, which besides constrain-
ing their work can also lead to reproducibility issues, and
 c

2

2. graphical software environments as remote desktops and
GUI applications are supported only to a limited extent, if
not completely unsupported.

Moreover, the deployment options for most of the SPs devel-
oped today rely on technologies originating from the IT industry
(e.g. Kubernetes) and require deep integration at system-level,
which is often hard to achieve in the framework of HPC clusters
and data-intensive system. This is not only because of technolog-
ical factors and legacy aspects, but also because of a generalized
pushback for exogenous technologies from some parts of the
HPC community (Crafts, 1990; Gorda, 2021; CERFACS COOP-Algo
Team, 2021; Dursi, 2021).

In this paper we present a science platform which aims at
overcoming these limitations: Rosetta. Built on top of a novel
architecture based on framing user tasks as microservices – in-
dependent and self-contained units – Rosetta allows to fully
support custom software packages, libraries and environments,
including remote desktops and GUI applications, besides standard
web-based analysis environments as the Jupyter Notebooks. Its
user tasks are implemented as software containers (SUSE, 2022),
which allow for safe, effective and reproducible code execu-
tion (Boettiger, 2015), and that in turn allows users to add and
use their own software containers on the platform.

Rosetta is also designed with real-world deployment scenarios
in mind, and thus to easily integrate with existing computing and
storage resources including HPC clusters and data-intensive sys-
tems, even when they do not natively support containerization.

Although astronomy remains its mainstay (Rosetta has been
developed in the framework of the EU funded project ESCAPE1),
Rosetta can virtually support any science and technology domain.

This paper is organized as follows. In Sections 2–4, we discuss
the architecture of the Rosetta platform, its implementation and
the security aspects. This is followed, in Section 5, by an overview
of the platform from a user prospective. Next, we present the
deployment and usage scenario in a real production environment
and a few use cases we are supporting (Section 6), leaving the last
section to conclusions and future work.

2. Architecture

Rosetta’s architecture is entirely designed to provide simpli-
fied access to remote and possibly dynamically allocated comput-
ing and storage resources, without restricting the users to a set
of pre-defined software packages, libraries and environments. It
unfolds in two main components: the platform architecture and
the task orchestration architecture.

The platform architecture follows a standard approach where
a set of services implement the various functionalities, and it is
schematized in Fig. 1. These comprise a web application service
for the main application logic and the web-based UI, a database
service for storing internal data and a proxy service for securing
the connections. The web application service functionalities can
be further grouped in modules which are responsible for manag-
ing the software containers, interacting with the computing and
storage resources, orchestrating the user tasks, handling the user
authentication and so on.

In particular:

• Software functionalities allow to track the software contain-
ers available on the platform, their settings and container
registries2;

1 ESCAPE aims to address the open science challenges shared by SKA,
TA, KM3Net, EST, ELT, HL-LHC, FAIR as well as other pan-European research
nfrastructures as CERN, ESO, JIVE in astronomy and particle physics.
2 A container registry is a place where container images are stored, which

an be public or private, and deployed both on premises or in the Cloud. Many
ontainer registries can co-exist at the same time.

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

n
b
a
p
t
p
a
A
f
c
o
R
t
r
J
n
s

c
t
n
a
t
i
i

c
r
(

Fig. 1. Rosetta main architecture. The first level of abstraction consist in the
proxy, database and web application services. The web application service is
further break down into its main components (software, computing, storage,
tasks and account) together with their real world counterparts, some examples
of which are given in the right part of the figure.

• Computing functionalities allow to interact with both stan-
dalone and clustered computing resources, hosted either on
premises (e.g. via Openstack) or on cloud systems (e.g. on
Amazon AWS);

• Storage functionalities allow browsing and operating on lo-
cal and shared file system (as Ext4, NFS, BeeGFS);

• Task functionalities allow submitting and stopping tasks as
well as viewing their logs, by interacting with the computing
resources workload management systems (WMSs) as Slurm
and Kubernetes and/or their container engines (e.g. Docker,
Singularity, Podman);

• Account functionalities provide user account and profile
management features including user registration, login and
logout, supporting both local and external authentication
(e.g. OpenID Connect, Shibbolet).

Rosetta’s task orchestration architecture follows instead a
ovel, microservice-oriented architecture (Russo et al., 2021)
ased on software containers. Microservices (Newman, 2015)
re independent, self-contained and self-consistent units that
erform a given task, which can range from a simple func-
ionality (e.g. serving a file to download) to complex computer
rograms (e.g. classifying images using a neural network). They
re interacted with using a specific interface, usually a REST
PI over HTTP, which is exposed on a given port. Microservices
it naturally in the containerization approach, where each mi-
roservice runs in its own container, isolated from the underlying
perating system, network, and storage layers. User tasks in
osetta are thus always executed as software containers, and
reated as microservices. Rosetta can therefore stay agnostic with
espect to the task interface, some examples of which include a
upyter Notebook server, a web-based remote desktop or a virtual
etwork computing (VNC) server, but also a secure shell (SSH)
erver with X protocol forwarding is a perfectly viable choice.
One of the main features of this approach, where user tasks are

ompletely decoupled from the platform, is to make it possible for
he users to add their own software containers. There is indeed
o difference between ‘‘platform’’ and ‘‘user’’ containers, as long
s they behave as a microservice. Rosetta users can thus upload
heir own software containers on a container registry, add them
n the platform by setting up a few parameters (as the container
mage and the interface port), and then use them for their tasks.

In order to make use of this architecture for user tasks or-
hestration, Rosetta needs to be able to submit to the computing
esources a container for execution, and to know how to reach it
i.e. on which IP address). These functionalities are standard and
3

Fig. 2. Rosetta user task orchestration using the computing resource’s WMS and
a direct connection to the task interface through a TCP/IP tunnel.

Fig. 3. Rosetta user task orchestration using the agent and the proxy service on
top of a TCP/IP tunnel for connecting to the task interface.

built-in in most modern container orchestrators (e.g Kubernetes),
however as mentioned in the introduction Rosetta has been de-
signed to also support computing resources not natively support-
ing containerized workloads (e.g. HPC clusters and data-intensive
systems). On these computing resources, also depending on the
WMS and container engine used, some key features might not
be available, as full container-host filesystem isolation, network
virtualization and TCP/IP traffic routing between the containers.
To work around these missing features, Rosetta relies on an agent,
which is a small software component in charge of helping to
manage the task container life cycle. Its main features comprises
setting up the environment for the container execution, managing
dynamic port allocation, reporting the host IP address to the
platform, and running the container itself. The agent internal logic
is described more in detail in Section 3.4.

When a container is started, its interface has to be made ac-
cessible by the user. This is achieved first by making the interface
port reachable on the internal network between the computing
resource and Rosetta, and then by exposing it to the outside
world through Rosetta itself, thus making it accessible by the
user. The first step can make use of simple TCP/IP tunnels as well
as more sophisticated techniques usually available in modern
container orchestrators and WMSs, while the second one can be
accomplished either by directly exposing the task interface as-is
or by relaying on a proxy service, which also allows to enforce
access control and connection encryption.

Once tasks are executed and their interfaces made accessible,
no further operations are required, and the users can be looped
in. A diagram of this flow is presented with two examples: the
first using a WMS supporting containerized workloads with direct
connection to the task interface (Fig. 2), the second using the
agent to run the task container and relaying on the proxy for
connecting to the task interface (Fig. 3).

3. Implementation

Rosetta is entirely built using open-source technologies, in
particular Python and the Django web framework, and released
as an open source project.3 Other technologies include HTML

3 https://www.ict.inaf.it/gitlab/exact/Rosetta

https://www.ict.inaf.it/gitlab/exact/Rosetta

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

f
t
D
t
R
b
c
t
o
b
t

b
s
r
d
w
i
A

3

c
a
c
c
r

f
a
c
o
v

p

D

Fig. 4. The Rosetta Django ORM schema, showing the various models and their
relationships. Some minor and less relevant models as the user profile, the login
tokens and the key pairs have been excluded for the sake of simplicity.

and JavaScript for the UI, Postgres for the database4 and Apache
or the proxy. The platform services (not to be confused with
he user tasks software containers) are containerized using the
ocker engine and using Docker Compose as the default orches-
rator.5 Besides the web application, database and proxy services,
osetta includes an optional container registry service, which can
e used to store software containers locally, and a test Slurm
luster service for testing and debugging. Rosetta deployment
ools provide a set of management scripts to build, bootstrap and
perate the platform and a logging system capable of handling
oth user-generated and system errors, exceptions and stack
races.

The web application functionalities are handled with a com-
ination of Django object–relational mapping (ORM) models and
tandard Python functions and classes. The ORM schema, which
epresents how the ORM models are actually stored in the
atabase, is summarized in Fig. 4. In the following subsections
e will describe their implementation according to the grouping

ntroduced in Section 2: Software, Computing, Storage, Tasks and
ccount.

.1. Software

Software lives in Rosetta only as software containers. Software
ontainers are represented using a Django ORM model which acts
s a twin of the ‘‘real’’ container, providing metadata about the
ontainer itself. Rosetta relies on Open Container Initiative (OCI)
ontainers, which must be stored on an OCI-compliant container
egistry.

The Container ORM model has a name and a description
ields to represent the container on Rosetta, and a series of
ttributes to identify its image: the registry (to set on which
ontainer registry it is hosted), the image_name (to locate it
n the registry) and the image_tag (to set a specific container
ersion).
The image_arch, image_os and image_digest attributes

rovide instead more fine-grained control in order to uniquely

4 The database service can be replaced by any other database supported by
jango.
5 Other orchestrators can be supported as well, e.g. Kubernetes.
4

identify the image, and should be used in production environ-
ments. A container image is indeed uniquely identified on an OCI
registry only if using, besides its name, either a triplet of tag,
architecture and OS or an image hash digest (usually generated
with SHA-256). This is because on OCI registries, multiple images
can be assigned to the same tag, in order to enable multi-OS and
multi-architecture support. Moreover, it has also to be noted that
while a tag can be re-assigned, a digest is an immutable identifier
and ensures reproducibility.

Containers can be registered in Rosetta as platform containers
or user containers. A platform container is not associated with
a specific user and thus available for all of them, while a user
container belongs to and is accessible by a specif user only,
according to its user attribute. Containers can also be shared
within (and made accessible only to) a specific group.

An interface_port attribute lets Rosetta know on which
port the container will expose its interface, and the
interface_protocol sets the corresponding protocol (e.g.
HTTP, SSH, VNC etc.). The interface_transport (defaulted to
TCP/IP) can be used to cover non-standard scenarios (e.g. if using
UDP).

Since as explained in Section 2, the container interfaces are
made accessible to the outside world, they need to be secured.
For this to happen, Rosetta allows to set up a one-time password
or token at task creation-time to be used for accessing the task
interface afterwards. Task interfaces can get password-protected
in two ways: by implementing a password-based authentica-
tion at task-level, or by delegating it to the proxy service. In
the first case, the container must be built to support this fea-
ture and must be registered on the platform with the extra
supports_interface_auth attribute set to True. Rosetta can
then forward the password or token to the container via an
environment variable. Instead, if the container makes use of an
HTTP-based interface, it can delegate its access control to the
proxy service, and just expose a plain, unprotected interface over
HTTP. In this case, Rosetta will set up the proxy service in order
enforce user authentication when accessing the task interface,
and encrypt it using SSL. Delegating the task authentication to
the proxy service is the default method for HTTP-based interfaces,
since it is far more secure than leaving the authentication to be
implemented at task-level, as it will be discussed in Section 4.

In order to support container engines missing port mapping
capabilities, Rosetta provides a mechanism to let containers re-
ceive instructions on which port to start their interface on. As
already mentioned in Section 2, while most industry-standard
container engines can autonomously manage TCP port mapping
between containers and their host to avoid conflicts with ports
already allocated (either by another service, by another con-
tainer or by another instance of the same container), some of
them cannot (e.g. Singularity). In this case, the Rosetta agent
can provide a specific port to the container where to make
its interface to listen on, which is chosen between the free
ephemeral ports of the host and passed to the container via an
environment variable. To let Rosetta (and the agent) know that
a given container supports this mechanism, its extra attribute
supports_custom_interface_port must be set to True (and
the interface_port attribute is then discarded).

Rosetta comes with a number of a base containers for GUI ap-
plications, generic remote desktops and Jupyter Notebooks which
can be easily extended to suit several needs:

• JupyterNotebook, the official Jupyter Notebook container
extended to support custom interface ports;

• GUIApplication, a container built to run a single GUI appli-
cation with no desktop environment;

• MinimalDesktop, a desktop environment based on Fluxbox
where more than one application can be run in parallel;

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

m
o
i
l
o
t

3

d
p
h
e

r
a
r
i
c
l
h
t
t
r
i
i
r

i
r
S
a
S
s
e
R
t
R
f
r
S
w
e
n
w
a
f
C

a
T
s
S
u
o
i
A
u
a

o

i
i
w
t

c
t
s
(
a

o
t
s
h
m
v
r
i
i
t
c
a

a
p
d

r
t
r
s
t
b

t
S
s
a
h

3

a
a
a
s
t
m
s
g
c
t
w
t
(
i
c
a
o
l

o
u
c

• BasicDesktop, a desktop environment based on Xfce for
tasks requiring common desktop features as a file manager
and a terminal.

The GUIApplication and Desktop containers make use of Kas-
VNC, a web-based VNC client built on top of modified versions
f TigerVNC and NoVNC which provides seamless clipboard shar-
ng between the remote application or desktop and the user’s
ocal desktop environment, as well as supporting dynamic res-
lution changes in order to always fit the web browser window,
hat are essential features in the everyday use.

.2. Computing

Computing resources are divided in two main types: stan-
alone and clusters. The first ones may or may not have a WMS in
lace, while the second ones always do. If a computing resource
as no WMS, the task execution is synchronous, otherwise the
xecution is asynchronous and the tasks are queued.
The Django ORM model class used to represent computing

esources is named Computing, and it includes a type, a name
nd a description fields for identifying a specific computing
esource within Rosetta. A set of attributes describe how to access
t and to submit user tasks: the access_mode specifies how the
omputing resource is accessed (i.e. over SSH, using a command
ine interface (CLI), or a set of APIs); the auth_mode specifies
ow the platform gets authorized on the computing resource;
he wms specifies the WMS in place (or if there is none) and
he container_engine specifies which container engines (and
untimes) are available. With respect to the container_engine,
f the WMS natively supports containerized workloads and there
s no need of running tasks using a specific container engine or
untime, then it can be just set to the value ‘‘internal’’.

Some example combinations of these attributes are reported
n Table 1, where each row corresponds to a physical computing
esource. The first row represents a classic HPC cluster using
lurm as WMS and Singularity as container engine, and requiring
n accredited cluster user to submit tasks over SSH using the
lurm command line interface. The second row represents the
ame cluster but supporting, besides Singularity, also the Docker
ngine with both runC and Kata runtimes, in order to allow
osetta (or its users) to chose the best one for a given task. The
hird row represents yet the same cluster but accessed over Slurm
EST APIs using JSON web tokens (JWT) for authentication. The
ourth and fifth rows represent instead standalone computing
esources, using the Docker container engine, and accessed using
SH as a standard user for the fourth and the Docker REST APIs
ith a platform certificate for the fifth. The sixth, seventh and
ight rows all use computing resources managed with Kuber-
etes, and in the eight row the container runtimes available
ithin Kubernetes are explicitly stated. The last row is instead
n example using Fargate, a hosted container execution service
rom Amazon Web Services (AWS) built on top of their Elastic
ontainer Service (ECS), and accessed using its proprietary APIs.
When deploying Rosetta on a commercial cloud infrastructure

s AWS or Google Cloud Platform (GCP), there are two options.
he first one is to treat such infrastructures as transparent, and
imply use standard (i.e. not proprietary) access modes as SSH,
lurm, or Kubernetes. In this case there is no difference between
sing Rosetta with computing resources deployed on premises
r on such commercial cloud systems. The second option is to
nstead integrate at a deeper level, using AWS or GCP proprietary
PIs and/or clients to automatically start new virtual machines
pon request, or to use some of their native scheduling systems,
s the last example of Table 1.
The implementation work to support all of the combinations

f access and authentication modes, container engines and WMSs
5

s still ongoing, as we privileged SSH and Slurm since they fit well
n the application scenarios we encountered so far. However, we
anted to lie down a general framework in order to easily expand
he platform in future.

The Computing model describes the computing resource ar-
hitectures as well, and in particular the arch attribute defines
he native architecture (e.g. amd64, arm64/v8), the
upported_archs attribute lists extra supported architectures
e.g. 386 on amd64 architectures) and the emulated_archs
ttribute lists the architectures that can be emulated.
Computing resources can be also assigned to a specific group

f users, using the group attribute which, if set, restricts access to
he group members only, and the conf attribute can be used to
tore some computing resource-specific configurations (e.g. the
ost of the computing resource). Lastly, the Computing ORM
odel implements an additional manager property which pro-
ides common functionalities for accessing and operating on the
eal computing resource, as submitting and stopping tasks, view-
ng their logs, and executing generic commands. This property is
mplemented as a Python function which upon invocation instan-
iates and returns an object sub-classing the ComputingManager
lass, based on the computing resource type, access_mode,
uth_mode and wms attributes.
Computing resources which are accessed using SSH can be

ccessed both as a standard user (using its account on the com-
uting resource) or using a superuser (e.g. a ‘‘platform’’ user),
epending on the deployment requirements.
In order to access using a standard user on the computing

esource, Rosetta generates a dedicated private/public key pair,
he public key of which is required to be added on the computing
esource account by the user. To instead access using a ‘‘platform’’
uperuser (and thus using the same user for orchestrating all of
he user tasks), a dedicated account and key pairs are required to
e set up both on the computing resource and within Rosetta.
Accessing computing resources using SSH requires no integra-

ion with the existent infrastructure at all, provided that standard
SH is available and a container engine is installed. For this rea-
on, it perfectly fits our requirement of operating on HPC clusters
nd data-intensive systems where more complex integrations are
ard to achieve.

.3. Storage

Storage functionalities provide a way of defining, mounting
nd browsing data storages. A Storage is defined by a set of
ttributes, which include a name, a type, an auth_mode and
n access_mode. If a storage is attached to a computing re-
ource, then the computing attribute can be set. In this case, if
he storage and the computing resource share the same access
ode, the access_through_computing option can be ticked
o that Rosetta can just use the computing resource one. The
roup attribute, if set, specifies the set of users authorized to ac-
ess the storage. The base_path attribute sets the internal path
o the storage, and supports using two variables: the \$USER,
hich is substituted with the Rosetta internal user name, and
he \$SSH_USER, which is substituted with the SSH username
if the access method is based on SSH). The bind_path sets
nstead where the storage is made accessible within the software
ontainers. If a data storage is attached to a computing resource
nd its bind_path is set, it will be then made accessible from all
f the containers running on that computing resource, under the
ocation specified by the bind_path.

For example, a storage mounted on the /data mount point
f an SSH-based computing resource (and represented in Rosetta
sing generic_posix as type and SSH+CLI as access method)
ould have a base_path set to /data/users/\$USER and a

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648
Table 1
Examples of various combinations of computing resource attributes. In order to schedule containerized workloads on a given
computing resource, Rosetta needs to know how to access it (access_mode), how to get authorized (auth_mode), if and what
WMS to use (wms), and which container engines are available (container_engines), possibly with their runtimes.

Access_mode Auth_mode Wms Container_engines

Computing resource #1 SSH+CLI user keys Slurm Singularity
Computing resource #2 SSH+CLI user keys Slurm Docker[runC,Kata],Singularity
Computing resource #3 API JWT Slurm Docker,Singularity
Computing resource #4 SSH+CLI user keys none Docker
Computing resource #5 API platform cert. none Docker
Computing resource #6 CLI platform cert. Kubernetes internal
Computing resource #7 SSH+CLI platform keys Kubernetes internal
Computing resource #8 API platform cert. Kubernetes internal[runC,Kata]
Computing resource #9 API platform cert. Fargate internal
bind_path set to /storages/user_data, in order to separate
data belonging to different users at orchestration-level.

At the moment only POSIX file systems are supported, which
must be mounted on the various computing resources and that
are in turn exposed inside the containers using the standard bind-
ing mechanism offered by most container engines. Any filesys-
tem that can be mounted as such (e.g using FUSE) is therefore
automatically supported, as CephFS or Amazon S3.

We envision adding support for other storage types in future
releases, as for example object storages, but in this case accessing
the storage APIs is up to the application running inside the
container, and Rosetta can only act as a file manager. How to
provide access in a standardized way to non-POSIX file systems
within containers is indeed still an open theme.

Storage functionalities also include a set of APIs to provide
support for the file manager embedded in the Rosetta web-based
UI, which is built on top of the Rich File Manager6 open source
project. These APIs implement common functionalities (as get,
put, dir, rename etc.) to perform file management operations, the
internal logic of which depends on the storage type, making it
easy to expand them in the future.

3.4. Tasks

Tasks are represented using an ORM model and a set of states
(queued, running or stopped). Tasks running on computing re-
sources without a WMS are directly created in the running state,
while when a WMS is in place they are created in the queued
state and set as running only when they get executed. States
are stored in the state attribute of the Task model, which also
includes a name and the links with the software container and
the computing resource executing the task, plus its options (the
container, computing and computing_options attributes,
respectively). A set of other attributes as the interface_ip,
interface_port, tcp_tunnel_port and auth_token let
Rosetta know how to instantiate the connection to the task
(i.e. for setting up the tunnel and/or configuring the proxy ser-
vice).

Once a task starts on a computing resource, its IP address and
port are saved in the corresponding Task fields, and the task
is marked as running. If the task was queued, an email is sent
to the user with a link to the task, which is particularly useful
to let users immediately know when their tasks are ready, thus
preventing to waste computing time on shared systems. Task
functionalities also include opening the TCP/IP tunnel to the task
interface port and/or configuring the HTTP proxy service in order
to provide access to the task interface.

One of the main components of the task management func-
tionalities is the agent, which as introduced in Section 2 allows
to seamlessly support both WMSs not natively supporting con-
tainerized workloads and container engines missing some key

6 https://github.com/psolom/RichFilemanager
6

features. In other words, it makes all of the computing resources
behave in the same way from a Rosetta prospective. The agent is
implemented as a Python script which is served by the Rosetta
web application and that can run both as a superuser and as a
standard, unprivileged user. When it is required, Rosetta delivers
a bootstrap script on the computing resource which pulls and
executes the agent code. As soon as it gets executed, the agent
calls back the Rosetta web application and communicates the IP
address of its host. If the agent landed on a computing resource
using a container engine missing the dynamic port mapping
feature, then it also searches for an available ephemeral TCP/IP
port and communicates it to the web application as well. Lastly,
the agent sets up the environment for the user task container, and
starts it.

3.5. Account

Account and profile functionalities provide support for both
local and external authentication services (e.g. Open ID connect).
The accounts linking between local and external identities is
based on the user email address, which is the standard approach
in this kind of services.

Local and external authentication can co-exist at the same
time, provided that if a user originally singed up using an external
authentication service it will be then always required to log-in
using that service. If allowing to register as local users or to en-
tirely rely on external authentication is up to the administrators,
and can be configured in the web application service.

Rosetta provides both user-based and group-based authoriza-
tion, so that computing and storage resources, as well as software
containers, can be made available to specific users or subsets of
users only.

The user profile also supports some user-based configuration
parameters for accessing the computing resources (e.g. the com-
puting resource username if using an SSH-based access mode
with user keys). Other minor functionalities, as password recov-
ery, login tokens and time zone settings are provided as well.

4. Security

Security of computing systems and web applications is a wide
chapter and an extensive discussion on the topic is beyond the
scope of this article, however we wanted to mention the main
issues and how we took them into account.

The first layer of security in Rosetta consists in using software
containers for the user tasks. The base executable unit in Rosetta
is indeed the container itself, meaning that users have no control
outside of their containers at all: once a container is sent for
execution and Rosetta handles all the orchestration, the user is
dropped inside it and cannot escape.

For this reason, even if a container gets compromised, all
the other ones as well as the underlying host system do not

get affected. However, this statement is true in the measure of

https://github.com/psolom/RichFilemanager

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

w
p
t
p
i
a
K
h

u
d
t
o

d
f
a
f

c
f
r
b
m

r
a
i
a
C
p
d
p
s
a
c

a
b
c
b
t
t
a
s
i
i
f
t
i
a
s
d

m
t
l
i
a
p
a
p
f

hich the container engine can guarantee isolation and prevent
rivilege escalation. The Docker engine has an intrinsic issue with
his respect, as it makes use of a daemon running with superuser
rivileges. Podman, a nearly drop-in replacement for Docker, runs
nstead in user-space and prevents this kind of issues by design,
s well as Singularity. Other container engines as gVisor and
ata push security even further, providing respectively kernel and
ardware virtualization.
Moreover, when Rosetta is integrated on computing resources

sing SSH-based access, the administrators can opt for revoking
irect SSH user access on them, leaving Rosetta – and its con-
ainerized tasks – the only access point, thus greatly improving
verall security.
With respect to potential malicious software, the first line of

efense usually takes place in the container registry. Docker Hub,
or example, has a built-in security scanning system, and there
re a number of free and open source scanners that can be used
or on-premise container registries as Klar/Clair.7

Scanning for malicious software can also be done when exe-
uting task containers,8 but not all container engines support this
eature. Allowing only containers coming from registries which
un security scanning, or to implement these checks along the
uilding pipeline could be the best approach to protect against
alicious software in container images (Brady et al., 2020).
For what concerns software packages that can be installed at

untime inside the containers, Rosetta does not do any checking
s it would be technically very hard if not even impossible. This
s a common issue when giving users the freedom to download
nd execute code, including on commercial platforms as Google
olab and Kaggle. Even restricting user permissions would not
revent such issue, given that these packages can be always just
ownloaded and executed from a different location (e.g. a tem-
orary folder). Having users to download and execute malicious
oftware by mistake is therefore something very hard to prevent,
nd that has no simple mitigation approach unless relying on
lassic antivirus software which should run inside the containers.
As introduced in Section 2, since Rosetta user task interfaces

re made accessible to the outside world, they are required to
e secured, both in terms of access control and connection en-
ryption. With this respect, it is necessary to make a distinction
etween HTTP-based and generic task interfaces. HTTP-based
ask interfaces can rely on the authentication and SSL encryp-
ion provided by the proxy service, and can therefore just use
plain HTTP protocol. Generic task interfaces (e.g. a VNC or X

erver) are instead required to be secured at task-level, and it
s responsibility of the task container to enforce it. As explained
n Section 3.1, access control setup is in this case achieved by
orwarding to the task a one-time password set by the user at
ask creation-time, which is then to be used by the container
nterface to authenticate the user. Encryption has to be set up
t task-level too, and can be provided in first instance using self-
igned certificates, or implementing more complex solutions as
ynamic certificates provisioning.
An important detail in the task security context is that Rosetta

akes a strong distinction between standard and power users,
hrough a status switch in their profile. By default, only the
atter can set up custom software containers using generic task
nterface protocols other than the HTTP, since handling security
t task level (which is always required in this case) is error-
rone and must be treated carefully. Standard users can therefore
dd and use custom software containers for their tasks on the
latform only if using an HTTP-based interface, which is in turn
orced to be secured by the proxy service.

7 https://github.com/optiopay/klar
8 https://docs.docker.com/engine/scan/
7

For what concerns the tunnel from the web application service
to the tasks, this is protocol-agnostic (above the TCP/IP transport
layer) and is either accomplished by a direct connection on a
private and dedicated network (e.g. if using Kubernets) or using
an SSH-based TCP/IP tunnel using users’ public/private keys, as
explained in Section 2, and thus assumed safe.

In terms of web security, we considered potential security
risks originating from cross-site request forgery (CSRF), cross-
origin resource sharing (CORS), cross-site scripting (XSS), and
similar attacks. The same origin policy (SOP) of modern web
browsers is already a strong mitigation for these attacks, and all
the platform web pages and APIs (with a few exceptions for inter-
nal functionalities) uses Django’s built-in CSRF token protection
mechanism. However, the SOP policy has limitations (Schwenk
et al., 2017; Chen et al., 2018), in particular in our scenario where
users can run custom (and possibly malicious) JavaScript code
from within the platform, either using the Jupyter Notebooks or
by other means (e.g. by setting up a task serving a web page).

We therefore focused on isolating user tasks from the rest
of the platform even on the web browser side. Using the same
domain for both the platform and the user tasks (e.g. https://
rosetta.platform/tasks/1 is indeed definitely not a viable solution
as it does not allow to enforce the SOP policy at all). Also us-
ing dedicated subdomains (e.g. https://task1.rosetta.platform) has
several issues, in particular involving the use of cookies (Zalewski,
2012, 2009; Squarcina et al., 2021).

The secure-by-design, safe solution is to serve user tasks
from a separate domain (e.g. rosetta-tasks.platform). Then, each
task can have its own subdomain (as https://task1.rosetta-tasks.
platform) and stay separated form the main platform domain.
However, handling and securing subdomains like this requires
wildcard DNS services and SSL certificates, which for many insti-
tutional domains are not available (JupyterHub, 2016), including
ours. For this reason, in Rosetta we opted for an intermediate so-
lution: we serve user tasks from a separate domain (e.g. rosetta-
tasks.platform) assigning each of them to a different port, under
the same SSL certificate. In this way, the URL to reach the task
number 1 at https://rosetta-tasks.platform:7001 can be secured
by the same SSL certificate covering the URL for task number 2
at https://rosetta-tasks.platform:7002, but are treated as different
origins by web browsers. SSL certificates are indeed port-agnostic,
while the SOP (which basically involves the triplet protocol, host
and port for defining the origin) it is not, thus enabling web
browsers to enforce it between the task 1 and 2, and in general
securing all of the users tasks against each others. While this
approach might lead to some issues with institutional firewalls
blocking external port access beyond the standard 80 and 443
ports, we found it to be the right compromise in our environment.
Moreover, switching to serving each task from its own subdomain
is just a matter of a quick change in the Rosetta proxy service
configuration.

5. User experience

From a user prospective, Rosetta presents itself as a web ap-
plication with a web-based user interface (UI) that is shown upon
user login in Fig. 5. The UI, following the architecture presented
in Section 2, is organized in five main areas: the Software section,
where to browse for the software containers available on the
platform or to add custom ones; the Computing section, where
to view the available computing resources; the Storage section,
which provides a file manager for the various data storages; the
Tasks dashboard, where to manage and interact with the user
tasks, including connecting with them and viewing their logs; and
the Account pages, where to configure or modify user credentials
and access keys.

https://github.com/optiopay/klar
https://docs.docker.com/engine/scan/
https://rosetta.platform/tasks/1
https://rosetta.platform/tasks/1
https://rosetta.platform/tasks/1
https://task1.rosetta.platform
https://www.google.com/search?q=rosetta-tasks.platform&oq=rosetta-tasks.platform&aqs=chrome.0.69i59.674j0j7&sourceid=chrome&ie=UTF-8
https://task1.rosetta-tasks.platform
https://task1.rosetta-tasks.platform
https://task1.rosetta-tasks.platform
https://www.google.com/search?q=rosetta-tasks.platform&oq=rosetta-tasks.platform&aqs=chrome.0.69i59.674j0j7&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=rosetta-tasks.platform&oq=rosetta-tasks.platform&aqs=chrome.0.69i59.674j0j7&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=rosetta-tasks.platform&oq=rosetta-tasks.platform&aqs=chrome.0.69i59.674j0j7&sourceid=chrome&ie=UTF-8
https://rosetta-tasks.platform:7001
https://rosetta-tasks.platform:7002

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

S
s
h
p
T
o

b
o
n
u
e
c
n
T

a
p
w
t
u

t
i
a
l
o
t
e

Fig. 5. The Rosetta science platform main page and menu, which provides access
to its core functionalities.

Fig. 6. Software containers list. For each entry, a brief description is provided,
together with the container image name and a menu from which to select a
specific version. The ‘‘play’’ button will start a new task with the given software.

To run a typical analysis task, the user first accesses the
oftware section (Fig. 6) in order to choose (or add) the desired
oftware container. If adding a new software container, the user
as to set its registry, image name, tag, the container interface
ort and protocol, plus some optional advanced attributes (Fig. 7).
he new container will then be listed together with the other
nes so that the can be chosen for execution.
Once the software container is chosen, the user hits the ‘‘play’’

utton to create a new task. The platform will then ask the user
n which computing resource to run the task, and to set a task
ame. A one-time password token is also generated, which is
sually automatically handled by Rosetta and not required to be
ntered manually when connecting to the task (Fig. 8). For some
omputing resources, extra options as the queue or partition
ame, CPU cores and memory requirements can be set as well.
he task is then created and submitted.
As soon as the task is starting up on the computing resource,

‘‘connect’’ button in the task dashboard becomes active. At this
oint, the user can connect to the task with just one click: Rosetta
ill automatically handle all the tunneling required to reach the
ask on the computing resource where it is running, and drop the
ser inside it (Figs. 9 and 10).
Users can transfer files to and from the data storages (and

hus the tasks) using the built-in file manager (Fig. 11), which
s an effective solution for light datasets, analysis scripts, plots
nd results. Larger datasets are instead supposed to be already
ocated on a storage, either because the data repository is located
n the storage itself (in a logic of bringing the computing close to
he data) or because they have been previously staged using an
xternal procedures.
8

Fig. 7. Adding a software container. Besides a name and a description, key fields
are the container registry, image and tag, plus the interface port and protocol.

Fig. 8. Last step of new task creation, after selecting the software container and
a computing resource: the interface asks the user to enter a task name and
possibly other task parameters as the required number of CPUs, memory, or
queue name.

Fig. 9. A Rosetta user task running a GUI application from the CASA suite, in
a remote desktop environment. The remote desktop server is web-based, and
supports dynamic resolution changes and seamless clipboards sharing with the
client, allowing for a smooth user experience.

6. Deployment and use cases

Rosetta is deployed in production at the computing center of
INAF - Osservatorio Astronomico di Trieste (Bertocco et al., 2020),
using an external, aggregated authentication system named RAP
(Tinarelli et al., 2020) and serving a set of different users with
different software requirements.

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

s
d
a

f
a
A
n
A
y
a
f

c
t
s

6

a
P
f

f
t
(
v
t

Fig. 10. A Rosetta user tasks running a Jupyter Notebook, displaying a plot using
Numpy and Matplotlib. The authentication for the Notebook server is handled
by the Rosetta proxy service, which also secures the connection over SSL.

Fig. 11. The Rosetta built-in file manager, which allows for browsing data
torages and to upload or download data files. While not suitable for large
atasets, it is an effective tool for lighter ones as well as analysis scripts, plots
nd results.

To support our user community, we offer a pre-defined port-
olio of containerized applications that span from generic data
nalysis and exploration tools (as iPython, R and Julia) to specific
stronomy and Astrophysics codes. These include common astro-
omical data reduction software and pipelines as IRAF, CASA, DS9,
stropy, but also Cosmological simulation visualization and anal-
sis tools, and project-specific applications and codes. All of them
re listed in the Software section of Rosetta and are accessible
rom the users’ web browsers by running a task instance.

In the following we discuss more in detail four different use
ases among the various projects we support: the LOFAR pipelines,
he SKA data challenges, the Astrocook quasar spectral analysis
oftware, and the HPC FPGA bitstream design.

.1. The LOFAR pipelines

The software collection for the LOFAR community consists in
set of tools and pipelines used to process LOFAR data, as the
refactor and DDFacet data reduction codes (Tasse et al., 2018),
or which we created a set of software containers.

A typical run of the LOFAR data processing pipelines holds
or several days, and requires significant computing resources (in
erms of RAM, CPUs and Storage) to process terabytes of data
∼ 15TB). Several checks are necessary during a pipeline run to
erify the status of the data processing and the convergence of
he results.
9

In this context, we are using Rosetta to run the pipelines
within a software container that provides both the pipelines
themselves and visual tools to check the status of the processing
phase. Rosetta tasks run on an HPC cluster managed using the
Slurm WMS, which allocates a set of resources in terms of RAM
and CPUs as requested by the scientists in the task creation phase.
These tasks compete with other standard Slurm jobs running on
the cluster, thus ensuring an optimized allocation of the available
resources among all users.

Scientist running the pipelines in this mode are not required to
interact with the Slurm WMS or to manually deploy any software
on the cluster, instead they can just rely on Rosetta and update
the containers with new software if necessary.

The container source codes are available online as part of the
LOFAR Italian collaboration9 and once built are registered to an
INAF private container registry in order to account for both public
and private codes as required by the different LOFAR Key Projects
collaborations.

6.2. The SKA data challenges

INAF participated in the SKA Data Challenges10 as infrastruc-
ture provider. The purpose of these challenges is to allow the
scientific community to get familiar with the data that SKA will
produce, and to optimize their analyses for extracting scientific
results from them.

The participants in the second SKA Data Challenge analyzed a
simulated dataset of 1 TB in size, in order to find and characterize
the neutral hydrogen content of galaxies across a sky area of 20
square degrees. To process and visualize such a large dataset, it
was necessary to use at least 512 GB of RAM, and INAF offered a
computing infrastructure where such resources were available.

We used Rosetta to provide simplified access to this com-
puting infrastructure (an HPC cluster managed using the Slurm
WMS) and, as for the LOFAR pipelines use case, we provided a
software container that provided all of the tools and applications
necessary to complete the challenge (as CASA, CARTA, WSClean,
Astropy and Sofia) in a desktop environment.

Most notably, users were able to ask for specific computing
resource requirements when starting their analysis tasks (512 GB
of RAM, in this case), and the cluster parallel file system used to
store the dataset provided high I/O performance (> 4 GB/s) and
plenty of disk space, so that users could focus on the scientific
aspects of the challenge and not worry about orchestration and
performance issues.

6.3. The astrocook quasar spectral analysis software

Astrocook (Cupani et al., 2020) is a quasar spectral analysis
software built with the aim of providing many built-in recipes
to process a spectrum. While this software is not necessarily
resource-intensive in general, it can require quite relevant com-
puting power in order to apply the various recipes.

Astroccok comes as a GUI application with some common and
less common Python dependencies which are sometimes hard
to install (as Astropy, StatsModels and wxPython) and it is a
great example about how to use Rosetta in order to provide one-
click access to a GUI application which might require some extra
computing power.

Fig. 12 shows Astrocook running in a Rosetta task on a mid-
sized, standalone computing resource, and accessed using the
web-based remote desktop interface.

9 https://www.ict.inaf.it/gitlab/lofarit/containers
10 https://sdc2.astronomers.skatelescope.org/sdc2-challenge

https://www.ict.inaf.it/gitlab/lofarit/containers
https://sdc2.astronomers.skatelescope.org/sdc2-challenge

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

e
p
d

I
l
t
w

a
s
i
g
i
H

F
r
i
S
l
F

o
a
t
c
b
(
s

I
T
t
w
p
n

Fig. 12. The Astrocook quasar spectral analysis software running in a Rosetta
task on a mid-sized computing resource. The ‘‘Spectrum’’ and ‘‘Spectrum detail’’
windows are the main components of Astrocook, while the ‘‘Sessions’’ and
‘‘System table’’ windows recap the analysis steps and parameters.

6.4. The HPC FPGA bitstream design

Field Programmable Gate Arrays (FPGAs) can be used as accel-
rators in the context of physics simulations and scientific com-
uting and they have been adopted as a low-energy acceleration
evices for exascale testbeds.
One of these testbeds is ExaNeSt’s (European Exascale System

nterconnect and Storage) prototype (Katevenis et al., 2018), a
iquid-cooled cluster composed of proprietary Quad-FPGA daugh-
erboard computing nodes, interconnected with a custom net-
ork and equipped with a BeeGFS parallel filesystem.
To use this cluster it is necessary to re-engineer codes and

lgorithms (Taffoni et al., 2019, 2020; Goz et al., 2020): the
ubstantial programming efforts required to program FPGAs us-
ng the standard approach based on Hardware Description Lan-
uages (HDLs), together with its subsequent weak code portabil-
ty have long been the main challenges in using FPGA-enabled
PC clusters as the ExaNeSt’s prototype.
However, thanks to the High Level Synthesis (HLS) approach,

PGAs can be programmed using high level languages, thus highly
educing the programming effort and greatly improving portabil-
ty. HLS tools use high level input languages as C, C++, OpenCL and
ystemC which, after a process involving intermediate analysis,
ogic synthesis and algorithmic optimization, are translated into
PGA-compatible code as the so called ‘‘bitstream’’ files.
This last step in particular requires a considerable amount

f resources: 128 GB of RAM, extensive multi-threading support
nd 100 GB of hard disk space are the requirements for creating
he bitstream files for the above mentioned FPGA-enabled HPC
luster. Moreover, from a user prospective, the design of an FPGA
itstream requires the interactive use of several GUI applications
as nearly all the HLS tools) and to let the software work for
everal hours.
Rosetta was adopted as the primary tool for programming

NAF’s FPGA cluster prototype, and suited very well the use case.
hanks to enabling access to persistent, web-based remote desk-
ops with the required computing and storage resources, users
ere indeed capable of using HLS tools from their standard com-
uting equipment, and to let them work for as many hours as
eeded, even if disconnecting and reconnecting the day after.
10
7. Discussion

In designing and implementing Rosetta we faced two main
challenges: supporting custom software packages, libraries and
environments, and integrating with computing resources not na-
tively supporting containerized workloads.

We addressed the first challenge by developing a novel ar-
chitecture based on framing user tasks as microservices. This
allowed Rosetta to fully support custom software packages, li-
braries and environments (including GUI applications and re-
mote desktops) and together with software containers allowed
to ensure safe, consistent and reproducible code execution across
different computing resources.

With respect to the second challenge, it has first to be noted
that HPC clusters and data-intensive systems still rely on Linux
users for a number of reasons, including accounting purposes
and local permission management. This means that most of the
containerization solutions born in the IT industry, which assume
to operate as a superuser, are in general not suitable. For this
reason, the Singularity container engine was built to operate
exclusively at user-level, and quickly become the standard in the
HPC space.

However, Singularity is not designed to provide full isolation
between the host system and the containers, and by default
directories as the home folder, /tmp, /proc, /sys, and /dev
are all shared with the host, environment variables are exported
as they are set on host, the PID namespace is not created from
scratch, and the network and sockets are as well shared with
the host. Also, the temporary file system provided by Singularity
in order to make the container file system writable (which is
required for some software) is a relatively weak solution, since it
is stored in memory and often with a default size of 16MB, thus
very easy to fill up.

We therefore had to address all these issues before being able
to use Singularity as a container engine from Rosetta. In particu-
lar, we used a combination of command line flags (-cleanenv,
-containall, -pid) and ad-hoc runtime sandboxing for the
key directories which require write access (as the user home),
orchestrated by the agent. This step was key for the success of
our approach and proved to remove nearly all the issues related
to running Singularity containers on different computing systems.

Similarly, we had to work around a series of features lacking
in WMSs not natively supporting containerized workloads (as
Slurm), including container life cycle management itself, network
virtualization and TCP/IP traffic routing between the containers,
all solved using the agent as explained in the previous sections.

Once we were able to ensure a standardized behavior of con-
tainer engines and WMSs, we were able to make task execution
uniform across different kinds of computing resources, providing
the very same user experience. In this sense, Rosetta can be
considered as an umbrella for a variety of computing resources,
and can act as a sort of bridge in the transition towards software
containers.

8. Conclusions and future work

We presented Rosetta, a science platform for
resource-intensive, interactive data analysis which runs user
tasks as software containers. Its main characteristic lies in pro-
viding simplified access to remote computing and storage re-
sources without restricting users to a set of pre-defined software
packages, libraries and environments.

To achieve this goal, we developed a novel architecture based
on framing user tasks as microservices – independent and self-
contained units – which we implemented as software containers.
This approach allowed us to fully support custom software pack-

ages, libraries and environments, including remote desktops and

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

G
J
l
e
c

d
s
w
w

i
c
w
u

s
b
w
v

R
r
c

(
t
s
i
R

C

–
W

D

c
t

A

A
p
a
W
r
2
A

R

A

A

A

UI applications besides standard web-based solutions as the
upyter Notebooks. Moreover, adopting software containers al-
owed for safe, effective and reproducible code execution, and
nabled us to let our users to add and use their own software
ontainers on the platform.
We also took real-world deployment scenarios in mind, and

esigned Rosetta to easily integrate with existent computing re-
ources, even where they lacked native support for containerized
orkloads. This proved to be particularly helpful for integrating
ith HPC clusters and data-intensive systems.
We successfully tested Rosetta for a number of use cases,

ncluding the LOFAR data reduction pipelines at INAF computing
enters in the context of the ESCAPE project which funded this
ork, the SKA data challenges, and other minor use cases of our
ser community.
The benefits of seamlessly offloading data analysis tasks to a

ort of ‘‘virtual workstation’’, hosted on a computing system capa-
le of providing CPUs, RAM and storage resources as per requests
ere immediately clear, removing constrains and speeding up the
arious activities.
Although astronomy and astrophysics remains its mainstay,

osetta can virtually support any science and technology domain
equiring resource-intensive, interactive data analysis, and it is
urrently being tested and evaluated in other institutions.
Future work include adding support for distributed workloads

e.g. MPI, Ray) and for computing resources with mixed architec-
ures, developing a command line interface, integrating with data
taging solutions and continuing the implementation efforts for
ntegrating with current and new WMSs (e.g. Torque, Openshift,
ancher, Nomad, and more).

RediT authorship contribution statement

S.A. Russo: Conception and design of study, Acquisition of
data, Analysis and/or interpretation of data, Writing – original
draft. S. Bertocco: Writing – review & editing. C. Gheller: Writing
review & editing. G. Taffoni: Conception and design of study,
riting – original draft.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the European Science Cluster of
stronomy and Particle Physics ESFRI Research Infrastructures
roject, funded by the European Union’s Horizon 2020 research
nd innovation programme under Grant Agreement no. 824064.
e also acknowledge the computing center of INAF- Osservato-

io Astronomico di Trieste, (Bertocco et al., 2020; Taffoni et al.,
020), for the availability of computing resources and support.
ll authors read and approved the final manuscript.

eferences

charya, B., Actis, M., Aghajani, T., Agnetta, G., Aguilar, J., Aharonian, F., Ajello, M.,
Akhperjanian, A., Alcubierre, M., Aleksić, J., et al., 2013. Introducing the CTA
concept. Astropart. Phys. 43, 3–18. doi:10.1016/j.astropartphys.2013.01.007.

raya, M., Osorio, M., Díaz, M., Ponce, C., Villanueva, M., Valenzuela, C., Solar, M.,
2018. JOVIAL: Notebook-based astronomical data analysis in the cloud.
Astron. Comput. 25, 110–117.

rviset, C., Navarro, V., Basso, D., Alvarez, R., Basso, D., del Rio, S., Diego, M.,
Lopez-Caniego, M., Lousa Marques, A., Marinic, F., et al., 2021. ESA DATAL-
ABS: Towards a Collaborative E-Science Platform for ESA. LPI Contributions

2549, 7014.

11
Asch, M., Moore, T., Badia, R., Beck, M., Beckman, P., Bidot, T., Bodin, F.,
Cappello, F., Choudhary, A., de Supinski, B., et al., 2018. Big data and extreme-
scale computing: Pathways to convergence-toward a shaping strategy for a
future software and data ecosystem for scientific inquiry. Int. J. High Perform.
Comput. Appl. 32 (4), 435–479.

Bertocco, S., Goz, D., Tornatore, L., Ragagnin, A., Maggio, G., Gasparo, F., Vuerli, C.,
Taffoni, G., Molinaro, M., 2020. INAF trieste astronomical observatory infor-
mation technology framework. In: Astronomical Data Analysis Software and
Systems XXIX. In: Astronomical Society of the Pacific Conference Series, vol.
527, p. 303.

Bhandari Neupane, J., Neupane, R.P., Luo, Y., Yoshida, W.Y., Sun, R., Williams, P.G.,
2019. Characterization of leptazolines A–D, polar oxazolines from the
cyanobacterium leptolyngbya sp., reveals a glitch with the Willoughby–Hoye
scripts for calculating NMR chemical shifts. Org. Lett. 21 (20), 8449–8453.

Bisong, E., 2019. Google colaboratory. In: Building Machine Learning and Deep
Learning Models on Google Cloud Platform. Springer, pp. 59–64.

Bleuler, A., Teyssier, R., 2014. Towards a more realistic sink particle algorithm
for the RAMSES CODE. Mon. Not. R. Astron. Soc. 445 (4), 4015–4036. doi:
10.1093/mnras/stu2005, arXiv:1409.6528.

Boettiger, C., 2015. An introduction to Docker for reproducible research. Oper.
Syst. Rev. 49 (1), 71–79.

Brady, K., Moon, S., Nguyen, T., Coffman, J., 2020. Docker container security
in cloud computing. In: 2020 10th Annual Computing and Communication
Workshop and Conference. CCWC, IEEE, pp. 0975–0980.

Castronova, A.M., Doan, P., Seul, M., 2018. A general approach for enabling
cloud-based hydrologic modeling using jupyter notebooks. HydroShare.

CERFACS COOP-Algo Team, 2021. The counter-intuitive rise of Python in
scientific computing. https://web.archive.org/web/20210218084422/https://
cerfacs.fr/coop/fortran-vs-python. (Accessed 18 February 2021).

Chappell, D., 2015. Introducing azure machine learning. In: A Guide for Technical
Professionals. Sponsored By Microsoft Corporation.

Chen, J., Jiang, J., Duan, H., Wan, T., Chen, S., Paxson, V., Yang, M., 2018. We still
don’t have secure cross-domain requests: an empirical study of {CORS}. In:
27th {USENIX} Security Symposium. {USENIX} Security 18, pp. 1079–1093.

Crafts, R.E., 1990. Department of Energy High Performance Computing Act of
1989: Hearing Before the Subcommittee on Energy Research and Devel-
opment of the Committee on Energy and Natural Resources on S. 1976
to Provide for Continued United States Leadership in High Performance
Computing. Vol. 4. U.S. Government printing office, pp. 197–198.

Cui, C., Tao, Y., Li, C., Fan, D., Xiao, J., He, B., Li, S., Yu, C., Mi, L., Xu, Y., Han, J.,
Yang, S., Zhao, Y., Xue, Y., Hao, J., Liu, L., Chen, X., Chen, J., Zhang, H.,
2020. Towards an astronomical science platform: Experiences and lessons
learned from Chinese virtual observatory. Astron. Comput. 32, 100392. doi:
10.1016/j.ascom.2020.100392, arXiv:2005.10501.

Cupani, G., D’Odorico, V., Cristiani, S., Russo, S.A., Calderone, G., Taffoni, G.,
2020. Astrocook: your starred chef for spectral analysis. In: Software and
Cyberinfrastructure for Astronomy VI. Vol. 11452. International Society for
Optics and Photonics, p. 114521U.

De Zeeuw, T., Tamai, R., Liske, J., 2014. Constructing the E-ELT. The Messenger
158, 3–6.

Desai, V., Allen, M., Arviset, C., Berriman, B., Chary, R.-R., Cook, D., Faisst, A.,
Dubois-Felsmann, G., Groom, S., Guy, L., Helou, G., Imel, D., Juneau, S.,
Lacy, M., Lemson, G., Major, B., Mazzarella, J., Mcglynn, T., Momcheva, I.,
Murphy, E., Olsen, K., Peek, J., Pope, A., Shupe, D., Smale, A., Smith, A.,
Stickley, N., Teplitz, H., Thakar, A., Wu, X., 2019. A science platform network
to facilitate astrophysics in the 2020s. Bull. Am. Astron. Soc. 51, 146.

Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W., 2009. The square kilometre
array. IEEE Proc. 97, 1482–1496. doi:10.1109/JPROC.2009.2021005.

Dursi, J., 2021. HPC is dying, and MPI is killing it. https://web.archive.org/
web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-
killing-it. (Accessed 29 November 2021).

Gardner, J.P., Mather, J.C., Clampin, M., Doyon, R., Greenhouse, M.A., Ham-
mel, H.B., Hutchings, J.B., Jakobsen, P., Lilly, S.J., Long, K.S., et al., 2006.
The james webb space telescope. Space Sci. Rev. 123, 485–606. doi:10.1007/
s11214-006-8315-7.

Gorda, B., 2021. HPC in the cloud? Yes, No and in between. https://web.archive.
org/web/20210326114937/https://www.arm.com/blogs/blueprint/hpc-cloud.
(Accessed 26 March 2021).

Goz, D., Ieronymakis, G., Papaefstathiou, V., Dimou, N., Bertocco, S., Simula, F.,
Ragagnin, A., Tornatore, L., Coretti, I., Taffoni, G., 2020. Performance and
energy footprint assessment of FPGAs and GPUs on HPC systems using
astrophysics application. Computation (ISSN: 2079-3197) 8 (2), doi:10.3390/
computation8020034.

Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel, P.,
Morozov, V., Zagaris, G., Peterka, T., Vishwanath, V., Lukić, Z., Sehrish, S.,
Liao, W.-k., 2016. HACC: Simulating sky surveys on state-of-the-art super-
computing architectures. New Astron. 42, 49–65. doi:10.1016/j.newast.2015.
06.003, arXiv:1410.2805.

JupyterHub, 2016. Security overview. https://web.archive.org/web/
20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/

websecurity.html. (Accessed 27 November 2021).

http://dx.doi.org/10.1016/j.astropartphys.2013.01.007
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb2
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb2
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb2
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb2
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb2
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb3
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb4
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb5
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb6
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb7
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb7
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb7
http://dx.doi.org/10.1093/mnras/stu2005
http://dx.doi.org/10.1093/mnras/stu2005
http://dx.doi.org/10.1093/mnras/stu2005
http://arxiv.org/abs/1409.6528
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb9
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb9
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb9
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb10
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb10
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb10
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb10
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb10
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb11
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb11
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb11
https://web.archive.org/web/20210218084422/https://cerfacs.fr/coop/fortran-vs-python
https://web.archive.org/web/20210218084422/https://cerfacs.fr/coop/fortran-vs-python
https://web.archive.org/web/20210218084422/https://cerfacs.fr/coop/fortran-vs-python
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb13
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb13
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb13
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb14
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb14
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb14
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb14
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb14
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb15
http://dx.doi.org/10.1016/j.ascom.2020.100392
http://dx.doi.org/10.1016/j.ascom.2020.100392
http://dx.doi.org/10.1016/j.ascom.2020.100392
http://arxiv.org/abs/2005.10501
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb17
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb18
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb18
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb18
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb19
http://dx.doi.org/10.1109/JPROC.2009.2021005
https://web.archive.org/web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it
https://web.archive.org/web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it
https://web.archive.org/web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it
https://web.archive.org/web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it
https://web.archive.org/web/20211029041512/https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it
http://dx.doi.org/10.1007/s11214-006-8315-7
http://dx.doi.org/10.1007/s11214-006-8315-7
http://dx.doi.org/10.1007/s11214-006-8315-7
https://web.archive.org/web/20210326114937/https://www.arm.com/blogs/blueprint/hpc-cloud
https://web.archive.org/web/20210326114937/https://www.arm.com/blogs/blueprint/hpc-cloud
https://web.archive.org/web/20210326114937/https://www.arm.com/blogs/blueprint/hpc-cloud
http://dx.doi.org/10.3390/computation8020034
http://dx.doi.org/10.3390/computation8020034
http://dx.doi.org/10.3390/computation8020034
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://arxiv.org/abs/1410.2805
https://web.archive.org/web/20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/websecurity.html
https://web.archive.org/web/20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/websecurity.html
https://web.archive.org/web/20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/websecurity.html
https://web.archive.org/web/20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/websecurity.html
https://web.archive.org/web/20211127104158/https://jupyterhub.readthedocs.io/en/1.4.2/reference/websecurity.html

S.A. Russo, S. Bertocco, C. Gheller et al. Astronomy and Computing 41 (2022) 100648

J

K

K

L

M

M

M

M

N
N

P

R

R

urić, M., Ciardi, D., Dubois-Felsmann, G., 2017. LSST science platform vision
document. LSE-319, LSST.

aggle, 2018. How to use kaggle - notebooks. https://web.archive.org/web/
20211112085454/https://www.kaggle.com/docs/notebooks. (Accessed 24
November 2021).

atevenis, M., Ammendola, R., Biagioni, A., Cretaro, P., Frezza, O., Lo Ci-
cero, F., Lonardo, A., Martinelli, M., Paolucci, P.S., Pastorelli, E., Simula, F.,
Vicini, P., Taffoni, G., Pascual, J.A., Navaridas, J., Lujn, M., Goodacre, J.,
Lietzow, B., Mouzakitis, A., Chrysos, N., Marazakis, M., Gorlani, P., Cozzini, S.,
Brandino, G.P., Koutsourakis, P., van Ruth, J., Zhang, Y., Kersten, M., 2018.
Next generation of exascale-class systems: ExaNeSt project and the status
of its interconnect and storage development. Microprocess. Microsyst. (ISSN:
0141-9331) 61, 58–71. doi:10.1016/j.micpro.2018.05.009.

aureijs, R., Gondoin, P., Duvet, L., Criado, G.S., Hoar, J., Amiaux, J., Auguères, J.-L.,
Cole, R., Cropper, M., Ealet, A., et al., 2012. Euclid: ESA’s mission to map the
geometry of the dark universe. In: Space Telescopes and Instrumentation
2012: Optical, Infrared, and Millimeter Wave. Vol. 8442. p. 84420T. doi:
10.1117/12.926496.

ajor, B., Kavelaars, J., Fabbro, S., Durand, D., Jeeves, H., 2019. Arcade: An
interactive science platform in CANFAR. In: Teuben, P.J., Pound, M.W.,
Thomas, B.A., Warner, E.M. (Eds.), Astronomical Data Analysis Software and
Systems XXVII. In: Astronomical Society of the Pacific Conference Series, vol.
523, p. 277.

endez, K.M., Pritchard, L., Reinke, S.N., Broadhurst, D.I., 2019. Toward collabo-
rative open data science in metabolomics using jupyter notebooks and cloud
computing. Metabolomics 15 (10), 1–16.

erloni, A., Predehl, P., Becker, W., Böhringer, H., Boller, T., Brunner, H.,
Brusa, M., Dennerl, K., Freyberg, M., Friedrich, P., Georgakakis, A., Haberl, F.,
Hasinger, G., Meidinger, N., Mohr, J., Nandra, K., Rau, A., Reiprich, T.H.,
Robrade, J., Salvato, M., Santangelo, A., Sasaki, M., Schwope, A., Wilms, J.,
The German eROSITA Consortium, 2012. eROSITA science book: Mapping
the structure of the energetic universe. doi:10.48550/arXiv.1209.3114, arXiv:
1209.3114.

illigan, M., 2018. Jupyter as common technology platform for interactive HPC
services. doi:10.48550/arXiv.1807.09929, arXiv e-prints arXiv:1807.09929.

ewman, S., 2015. Building Microservices. O’Reilly Media, Inc.
icklas, J.W., Johnson, D., Oottikkal, S., Franz, E., McMichael, B., Chalker, A.,

Hudak, D.E., 2018. Supporting distributed, interactive Jupyter and RStudio
in a scheduled HPC environment with spark using open OnDemand. In: Pro-
ceedings of the Practice and Experience on Advanced Research Computing.
PEARC ’18, Association for Computing Machinery, New York, NY, USA, ISBN:
9781450364461, pp. 1–8. doi:10.1145/3219104.3219149.

iparo, D., Tejedor, E., Mato, P., Mascetti, L., Moscicki, J., Lamanna, M., 2018.
SWAN: A service for interactive analysis in the cloud. Future Gener. Comput.
Syst. 78, 1071–1078.

agagnin, A., Dolag, K., Biffi, V., Cadolle Bel, M., Hammer, N.J., Krukau, A.,
Petkova, M., Steinborn, D., 2017. A web portal for hydrodynamical, cosmo-
logical simulations. Astron. Comput. 20, 52–67. doi:10.1016/j.ascom.2017.05.
001, arXiv:1612.06380.

usso, S.A., Cupani, G., Bertocco, S., Molinaro, M., Taffoni, G., 2021. A
microservice-oriented science platform architecture. In: Ruiz, J.-E., Pierfed-
erici, F. (Eds.), Astronomical Data Analysis Software and Systems XXX.
In: Astronomical Society of the Pacific Conference Series, 532, ASP, San
Francisco, p. 23.
12
Schwenk, J., Niemietz, M., Mainka, C., 2017. Same-origin policy: Evaluation in
modern browsers. In: 26th {USENIX} Security Symposium. {USENIX} Security
17, pp. 713–727.

Springel, V., Pakmor, R., Pillepich, A., Weinberger, R., Nelson, D., Hernquist, L.,
Vogelsberger, M., Genel, S., Torrey, P., Marinacci, F., Naiman, J., 2018. First
Results from the IllustrisTNG Simulations: Matter and Galaxy Clustering. Vol.
475. (1), pp. 676–698. doi:10.1093/mnras/stx3304, arXiv:1707.03397.

Springel, V., Pakmor, R., Zier, O., Reinecke, M., 2020. Simulating cosmic structure
formation with the GADGET-4 code. doi:10.48550/arXiv.2010.03567, arXiv
e-prints arXiv:2010.03567.

Squarcina, M., Tempesta, M., Veronese, L., Calzavara, S., Maffei, M., 2021. Can I
take your subdomain? Exploring same-site attacks in the modern web. In:
30th {USENIX} Security Symposium. {USENIX} Security 21, pp. 2917–2934.

SUSE, 2022. Technology definitions - containers. https://web.archive.org/web/
20220112132030/https://www.suse.com/suse-defines/definition/containers/.
(Accessed 12 January 2022).

Taffoni, G., Becciani, U., Garilli, B., Maggio, G., Pasian, F., Umana, G., Smareglia, R.,
Vitello, F., 2020. CHIPP: INAF pilot project for HTC, HPC and HPDA. In:
Astronomical Data Analysis Software and Systems XXIX. In: Astronomical
Society of the Pacific Conference Series, vol. 527, p. 307.

Taffoni, G., Bertocco, S., Coretti, I., Goz, D., Ragagnin, A., Tornatore, L., 2020. Low
power high performance computing on arm system-on-chip in astrophysics.
In: Arai, K., Bhatia, R., Kapoor, S. (Eds.), Proceedings of the Future Technolo-
gies Conference (FTC) 2019. Springer International Publishing, Cham, ISBN:
978-3-030-32520-6, pp. 427–446.

Taffoni, G., Lemson, G., Molinaro, M., Schaaff, A., Morris, D., Meyer–Zhao, Z., 2020.
Science platforms: Towards data science. In: Astronomical Data Analysis Soft-
ware and Systems XXIX. In: Astronomical Society of the Pacific Conference
Series, vol. 527, p. 777.

Taffoni, G., Murante, G., Tornatore, L., Katevenis, M., Chrysos, N., Maraza-
kis, M., 2019. Shall numerical astrophysics step into the era of exascale
computing? In: Astronomical Data Analysis Software and Systems XXVI.
In: Astronomical Society of the Pacific Conference Series, vol. 521, p. 567.
doi:10.48550/arXiv.1904.11720, arXiv:1904.11720.

Taffoni, G., Tornatore, L., Goz, D., Ragagnin, A., Bertocco, S., Coretti, I., Maraza-
kis, M., Chaix, F., Plumidis, M., Katevenis, M., Panchieri, R., Perna, G., 2019.
Towards exascale: Measuring the energy footprint of astrophysics HPC
simulations. In: 2019 15th International Conference on EScience. EScience,
pp. 403–412. doi:10.1109/eScience.2019.00052.

Taghizadeh-Popp, M., Kim, J.W., Lemson, G., Medvedev, D., Raddick, M.J., Sza-
lay, A.S., Thakar, A.R., Booker, J., Chhetri, C., Dobos, L., Rippin, M., 2020.
SciServer: A science platform for astronomy and beyond. Astron. Comput.
33, 100412. doi:10.1016/j.ascom.2020.100412, arXiv:2001.08619.

Tasse, C., Hugo, B., Mirmont, M., Smirnov, O., Atemkeng, M., Bester, L.,
Hardcastle, M., Lakhoo, R., Perkins, S., Shimwell, T., 2018. Faceting for
direction-dependent spectral deconvolution. Astron. Astrophys. 611, A87.

Tinarelli, F., Zorba, S., Knapic, C., Jerse, G., 2020. The authentication and
authorization INAF experience. In: Astronomical Data Analysis Software and
Systems XXVII. Vol. 522. p. 727.

Zalewski, M., 2009. Browser security handbook. https://web.archive.org/web/
20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.
wiki. (Accessed 13 November 2021).

Zalewski, M., 2012. The Tangled Web: A Guide to Securing Modern Web
Applications. No Starch Press.

http://refhub.elsevier.com/S2213-1337(22)00063-4/sb27
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb27
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb27
https://web.archive.org/web/20211112085454/https://www.kaggle.com/docs/notebooks
https://web.archive.org/web/20211112085454/https://www.kaggle.com/docs/notebooks
https://web.archive.org/web/20211112085454/https://www.kaggle.com/docs/notebooks
http://dx.doi.org/10.1016/j.micpro.2018.05.009
http://dx.doi.org/10.1117/12.926496
http://dx.doi.org/10.1117/12.926496
http://dx.doi.org/10.1117/12.926496
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb31
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb32
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb32
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb32
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb32
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb32
http://dx.doi.org/10.48550/arXiv.1209.3114
http://arxiv.org/abs/1209.3114
http://arxiv.org/abs/1209.3114
http://arxiv.org/abs/1209.3114
http://dx.doi.org/10.48550/arXiv.1807.09929
http://arxiv.org/abs/1807.09929
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb35
http://dx.doi.org/10.1145/3219104.3219149
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb37
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb37
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb37
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb37
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb37
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://arxiv.org/abs/1612.06380
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb39
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb40
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb40
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb40
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb40
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb40
http://dx.doi.org/10.1093/mnras/stx3304
http://arxiv.org/abs/1707.03397
http://dx.doi.org/10.48550/arXiv.2010.03567
http://arxiv.org/abs/2010.03567
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb43
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb43
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb43
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb43
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb43
https://web.archive.org/web/20220112132030/https://www.suse.com/suse-defines/definition/containers/
https://web.archive.org/web/20220112132030/https://www.suse.com/suse-defines/definition/containers/
https://web.archive.org/web/20220112132030/https://www.suse.com/suse-defines/definition/containers/
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb45
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb46
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb47
http://dx.doi.org/10.48550/arXiv.1904.11720
http://arxiv.org/abs/1904.11720
http://dx.doi.org/10.1109/eScience.2019.00052
http://dx.doi.org/10.1016/j.ascom.2020.100412
http://arxiv.org/abs/2001.08619
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb51
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb51
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb51
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb51
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb51
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb52
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb52
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb52
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb52
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb52
https://web.archive.org/web/20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.wiki
https://web.archive.org/web/20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.wiki
https://web.archive.org/web/20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.wiki
https://web.archive.org/web/20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.wiki
https://web.archive.org/web/20211113072530/https://code.google.com/archive/p/browsersec/wikis/Main.wiki
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb54
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb54
http://refhub.elsevier.com/S2213-1337(22)00063-4/sb54

