
2020Publication Year

2022-12-16T10:43:44ZAcceptance in OA@INAF

CI-CD practices with the TANGO-controls framework in the context of the Square
Kilometre Array (SKA) telescope project

Title

DI CARLO, Matteo; Yilmaz, Ugur; Harding, Piers; BARTOLINI, MARCO; Le Roux,
Gerhard; et al.

Authors

10.1117/12.2559716DOI

http://hdl.handle.net/20.500.12386/32761Handle

PROCEEDINGS OF SPIESeries

11452Number

PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

CI-CD practices with the TANGO-
controls framework in the context of
the Square Kilometre Array (SKA)
telescope project

M. Di Carlo, U. Yilmaz, P. Harding, M. Bartolini, G. Le
Roux, et al.

M. Di Carlo, U. Yilmaz, P. Harding, M. Bartolini, G. Le Roux, M. Dolci, "CI-CD
practices with the TANGO-controls framework in the context of the Square
Kilometre Array (SKA) telescope project," Proc. SPIE 11452, Software and
Cyberinfrastructure for Astronomy VI, 114520G (13 December 2020); doi:
10.1117/12.2559716

Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

CI/CD practices with the TANGO-controls framework in the
context of the Square Kilometre Array (SKA) telescope

project

Di Carlo M.a, Yilmaz U.b, Harding P.b, Bartolini M.b, Le Roux G.c, and Dolci M.a

aINAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy
bSKA Organisation, Macclesfield, UK

cSKA South Africa, SA

ABSTRACT

The Square Kilometre Array (SKA) project is an international effort to build two radio interferometers in South
Africa and Australia to form one Observatory monitored and controlled from the global headquarters (GHQ)
based in the United Kingdom at Jodrell Bank. The project is now approaching the end of its design phase and
gearing up for the beginning of formal construction. The period between the end of the design phase and the
start of the construction phase has been called bridging and, one of its main goals is to promote some CI/CD
practices among the software development teams. CI/CD is an acronym that stands for continuous integration
and continuous delivery and/or continuous deployment. Continuous integration (CI) is the practice of merging all
developers local (working) copies into the mainline on a frequent basis (many times per day). Continuous delivery
is the approach of developing software in short cycles ensuring that it can be released anytime and continuous
deployment is the approach of delivering the software into operational use frequently and automatically. The
present paper analyses the decisions taken by the Systems Team (a specialized agile team devoted to developing
and maintaining the tools that allow continuous practises) together with SKA architects to promote the CI/CD
practices with the TANGO controls framework.

Keywords: CI/CD, SKA, TANGO, Continuous Integration, Continuous Delivery, Systems Team, TANGO
controls framework, Bridging, Software Development

1. INTRODUCTION

When creating releases for the end-users, every large software endeavour faces the problem of integrating the
different parts of the software solution and bringing them to the production environment where users work.
The problem arises when many parts of the project are developed independently for a period of time and when
merging them into the same branch, the process takes more than what was planned. In a classic Waterfall
Software Development process this is usual, but the same also happens when following the classic Git Flow, also
known as feature-based branching, which is when a branch is created for a particular feature. Considering, for
example, one hundred developers working in the same repository each of them creating one or two branches.
When merging it can easily lead to conflicts and it becomes impossible, for a single developer, to solve all of them
thus creating a delay in publishing any release (in literature this is called ”merge hell”). This problem becomes
evident especially working with over a hundred repositories with different underlying technologies. Therefore,
it is essential to develop a standard set of tools and guidelines to systematically manage and control different
phases of the software development life cycle throughout the organisation.

In the Square Kilometre Array (SKA) project, The selected development process is SAFe Agile (Scaled Agile
framework) that is incremental and iterative with a specialized team (known as the Systems Team) devoted to
supporting the Continuous Integration, Continuous Deployment, test automation and quality.

Further author information: (Send correspondence to Di Carlo M.)
Di Carlo M.: E-mail: matteo.dicarlo@inaf.it
Dolci M.: E-mail: mauro.dolci@inaf.it
Harding P.: E-mail: P.Harding@skatelescope.org
Bartolini M.: E-mail: M.Bartolini@skatelescope.org
Yilmaz U.: E-mail: u.yilmaz@skatelescope.org

Software and Cyberinfrastructure for Astronomy VI, edited by Juan C. Guzman, Jorge Ibsen, Proc. of SPIE
Vol. 11452, 114520G · © 2020 SPIE · CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2559716

Proc. of SPIE Vol. 11452 114520G-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

1.1 TANGO-controls Overview

One of the decisions taken by the SKA project is the adoption of the TANGO-controls1 framework which is a
middleware for connecting software processes together mainly based on the CORBA standard (Common Object
Request Broker Architecture), to control physical hardware elements. The standard defines how to exposes the
procedures of an object within a software process with the RPC protocol (Remote Procedure Call). The TANGO
framework extends the definition of an object with the concept of a Device which represents a real or virtual
device to control. This exposes commands (that are procedures), and attributes (like the state) and allows both
synchronous and asynchronous communication with events generated from the attributes (for instance a change
in an attribute value can generate an event). Fig. 1 shows a module view of the framework.

Figure 1. TANGO-Controls simplified data model.

1.2 Continuous Integration (CI)

CI refers to a set of development practices that requires developers to integrate code into a shared repository
several times a day. Each check-in is then verified by an automated build, allowing teams to detect problems as
early as possible with early feedback about the state of the integration. According to Martin Fowler,2 there are
a number of best practices to implement to reach CI:

� Maintain a single source repository (for each component of the system) and try to minimize the use of
branching, in favour of a single branch of the project currently under development.

� Automate the build (possibly build all in one command).

� Together with the build, auotmated tests must also be run in order to make the software self-testing (testing
is crucial because all the benefits of CI come only if the test suite is of sufficient quality).

� Every commit should build on an integration machine: the more the developers commit the better it is
(common practice is at least once per day).

Proc. of SPIE Vol. 11452 114520G-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

� Frequent commits reduce the number and size of potential conflicts: as the developer workflow is reconciled
on short windows of change.

� The mainline must always be stable: If as a consequence of the integrated commit a build fails then it
must be fixed immediately, as the mainline must always be in a stable state for production deployment.

� Keep the build fast so that a problem in integration can be found quickly.

� Multi-stage deployment: every software build must be tested in different environments (testing, staging
and so on).

� Make it easy for anyone to get the latest executable version: all programmers should start the day by
updating the project from the repository.

� Everyone can see what’s happening: a testing environment with the latest software should be running.

1.3 Continuous Delivery and Continuous Deployment (CD)

Continuous delivery3 refers to an extension of CI that corresponds to automating the delivery of new releases of
software in a sustainable way. The release frequency can be decided according to the business requirements but
the greatest benefit is reached by releasing as quickly as possible. The deployment has to be predictable and
sustainable, irrespective of whether it is a large-scale distributed system, a complex production environment,
an embedded system, or an app. Therefore the code must be in a deployable state. Testing is one of the most
important activities and it needs to cover enough of the codebase. While it is often assumed that frequent
deployment means lower levels of stability and reliability in the systems, this is not the reality and, in general,
in software, the golden rule is “if it hurts, do it more often, and bring the pain forward” (,3 page 26).

There are many patterns around deployment and, nowadays, all of them are related somehow to the DevOps
culture. According to ,4 ”DevOps is the outcome of applying the most trusted principles from the domain
of physical manufacturing and leadership to the IT value stream. [...] The result is world-class quality, relia-
bility, stability, and security at an ever lower cost and effort; and accelerated flow and reliability throughout
the technology value stream, including Product Management, Development, QA, IT Operations, and Infosec”.
Practically it corresponds to an increased collaboration between development (intended as requirements analysis,
development and testing) and operations (intended as deployment, operations and maintenance) within IT. In
the era of mainframe applications, it was common to have the two areas managed by different teams with the
end result of having the development team with low (or zero) interest in the operational aspects (managed by a
different team) and vice versa. Having a shared responsibility means that development teams share the problems
of operations by working together in automating deployment operations and maintenance, and in return opera-
tions have a deeper understanding of the applications being supported. It is also very important that teams are
autonomous: they should be empowered to deploy a change to production with no fear of failures. This is only
possible by supplying the necessary testing/staging platform and required infrastructure tools so that developers
can engage with the platforms. It is also necessary to architect applications and deployment processes so that
they can be rolled out and reverted if required. Moreover, automation is one of the key elements in implementing
a DevOps strategy, as it allows the teams to focus on what is valuable (code development, test result, etc. and
not the deployment itself) and it reduces human errors. The importance of those practices can be summarized
in reducing risks of integration issues, of releasing new software and overall in having a better software product.
Continuous deployment goes one step further as every single commit (!) to the software that passes all the stages
of the build and test pipeline is deployed into the production environment (preferably automatically).

2. CONTAINERISATION

The system engineering development process has been adopted in the initial design phase of the SKA project
to reduce the complexity by dividing the project into simpler and easier to resolve elements. For every element
of the system, an initial architecture has been developed, which comprises the software modules needed which
corresponds to a repository (each of them is a component of the system).

Proc. of SPIE Vol. 11452 114520G-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Since all components need to be deployed and tested together, the first decision taken is on how they need to
be packaged. A container is a standard run-time unit of software that packages up code and all its dependencies
so that the component runs quickly and reliably across different computing environments. A Docker container
image is a lightweight, standalone, executable package of software that includes everything needed to run an
application: code (or more generally binary), runtime, system tools, system libraries and settings.

The final product will be a containerized application which will be running in a system for managing these
kinds of applications. Specifically the selection made for SKA is Kubernetes (K8s) for container orchestration5

and Helm Charts6 for declaring runtime dependencies for K8s applications. In K8s all deployment elements are
resources, that are abstracted away from the underlying infrastructure implementation. For example these may
be a Service (network configuration), a PersistentVolume (file-system type storage) or a simple Pod which is
the smallest deployable unit of computing consisting of one (or more) container(s). The resources reside in a
cluster (a set of machines connected together) and share a predefined network (for service discovery), storage and
other resources like computing power. On the other hand, helm is a tool for managing Kubernetes deployments
with charts where a chart is a package of pre-configured Kubernetes resources, married to run-time instance
configuration. Namespaces are an important concept in Kubernetes where they are used to create a logical
separation of resources within a shared ulti-tenant environment. The Namespace enforces a separate network
and set of access rights enabling a virtual private space for contained deployment.

The SKA repository SKA-docker7 contains the definitions of a containerized TANGO environment and two
Helm Charts: tango-base and archiver. The first one enables the installation of the base services for a TANGO
environment such as the MariaDB service container, DatabaseDS service container, and the TANGO test device.
The archiver enables the HDB++8 application which is composed of a MariaDB service container, a configuration
manager and an event subscriber. Tango-base and the archiver provide the basic services and tools for developers
to easily develop their own tango device servers and applications while maintaining a consistent environment.
This project represents the base images from where all repositories in the SKA telescope group can extend from
in order to create their docker images to be used in any helm chart. Fig. 2 shows a diagram for this project.
The TANGO-controls becomes a layer inside the base images and every ska module inherits from those images,
specifically from the TANGO python image.

Figure 2. SKA-Docker repository

Every Helm Chart contains at a minimum the information concerning the version of the docker image and
the pull policy (retrieval rule for the image) for the deployment. It also contains the necessary information to
correctly initialize the TANGO database (configuration of devices) and how it is exposed to other applications
for discovery in the cluster.

Throughout the SKA repositories, Makefiles are selected as an abstraction and organisation layer to eliminate
language-specific scripts for building, testing and deployment and to promote ease of use in CI/CD. The use of a
Makefile in each project simplifies the work of containerisation and, overall, the automation of the code building,
testing and packaging processes. In fact, with one single command, it is possible to compile the project, generate

Proc. of SPIE Vol. 11452 114520G-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

the docker image and test it by dynamically installing the related Helm Chart for that purpose. The Makefile
also enables the publishing of the docker images and Helm Charts to the SKA artefact repository and, in general,
it also promotes the reusability of same build toolchain in different environments such as local development and
CI/CD lifecycle.

3. SUB-CHARTS ARCHITECTURE

3.1 Introduction to Helm

A chart can have one or more chart dependencies, called sub-charts. According to the Helm documentation:

� a sub-chart is stand-alone (cannot depend on a parent chart),

� a sub-chart cannot access the values of its parent,

� a parent sub-chart can override values for its sub-charts and

� all charts (parent and sub-chart) can access the global values.

Let’s consider two charts, A and B where A depends on B. The file Chart.yaml for the chart A will specify
the dependency and in the values file it is possible for chart A to override any value of chart B. Fig. 3 shows how
to do it.

Figure 3. Chart A parent of chart B

It is also important to consider the operational aspects of using dependencies which state that when Helm
installs/upgrades a chart, the Kubernetes objects from the chart and all its dependencies are

� aggregated into a single set; then

� sorted by type followed by name; and then

� created/updated in that order.

This means that if chart A defines the following K8s resources:

� namespace “A-Namespace”

� statefulset “A-StatefulSet”

� service “A-Service”

and chart B defines the following K8s resources:

Proc. of SPIE Vol. 11452 114520G-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

� namespace “B-Namespace”

� statefulset “B-ReplicaSet”

� service “B-Service”

Then the result of the helm install command for chart A will be:

� A-Namespace

� B-Namespace

� A-Service

� B-Service

� B-ReplicaSet

� A-StatefulSet.

3.2 Architecture

Since an helm chart can be in a dependency relationship with another chart, this concept can be used for
integrating the various SKA elements which comprise the SKA MVP Product Integration (SKAMPI9) in a
composable way that represents the bulk of the effort for integrating all the SKA software sub-systems. Fig. 4
shows a simplicistic view of the above concept and it is easy to see how it resemble a hierarchy.

Figure 4. SKAMPI

Taking into consideration the operational aspect of the helm dependencies describe in section 3.1, the selected
helm sub-charts architecture enables a single-level hierarchy with a parent chart, called an umbrella, that pulls
together the charts of the hierarchy. While SKAMPI is the composition of the entire hierarchy, it is possible
to think of different umbrella charts for other purposes like integration testing between a select few elements of
the hierarchy. Fig. 5 shows the umbrella chart concept: the blue umbrella chart is the entire hierarchy while
the red and green ones are for other purposes. This means that every SKA element can perform its integration
testing just creating an umbrella chart with the sub-elements needed for its integration.

4. PIPELINE

In order to bring everything together for a complete CI/CD toolchain, GitLab10 has been selected. The data
model for a generic SKA software is shown in figure 6.

The entry point of the diagram is the Pipeline that is composed of many jobs (i.e. shell scripts). This has
been standardised for each project regardless of the artefact each project delivers so that the same standardised
steps for code/configuration and helm charts are followed:

� Linting, where code is analysed against a set (or multiple sets) of coding rules in order to check if it follows
the best practices decided;

Proc. of SPIE Vol. 11452 114520G-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 5. The umbrella chart concept

Figure 6. Pipeline definition data model.

� Build, where code is compiled and a docker image is created;

� Test, where the compiled package (and docker image) are tested; tests are grouped into Fast / Medium /
Slow / Very Slow categories.

� Publish, where the code artefacts are published;

� Pages, where test results, documentation and logs are published (note: the name comes directly from the
GitLab technology).

The pipeline is respected as the main hub of the software development in which code is built, tested, verified,
published and integrated. The above steps are used in local development (as same shell scripts are available thanks
to the Makefile targets), merge workflow, QA, integration and release. Moreover, by having an almost identical
platform environment for different stages of the software lifecycle, sufficient differences between development and
operations are eliminated.

Fig. 7 shows (without a specific formalism) the run-time behaviour of the selected technologies working
together. At the centre of the diagram, there is a Kubernetes cluster defined for every project in the SKA

Proc. of SPIE Vol. 11452 114520G-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

telescope group (and called syscore). Outside the K8s cluster, there are the GitLab code repositories and
Pages10 (part of GitLab which represent a generic artefact used for storing pipeline artefacts such as test result),
the Nexus Artifact repository11 to store packaged code artefacts, the ELK stack (Elasticsearch, Logstash and
Kibana)12 for logging, prometheus13 for metric collection and Ceph14 for a distributed storage solution. Inside
the cluster, in an isolated K8s Namespace, there are the GitLab runners related K8s resources which check every
30 seconds, if there are pending pipelines triggered manually or pulled by the resources. If the runner finds a
pipeline, it creates a K8s Pod for each job defined in the configuration file (and part of the git revision). Each
created Pod can (potentially) deploy a (umbrella) chart needed for the specific testing of the repository in an
isolated Namespace (i.e. an isolated environment). The deployment installed can then be tested and the result
of the job will be reported to GitLab producing artefacts that will be stored in the correct artefact repository.
During any stage of the pipeline, jobs could also download required dependencies from the artefact repository.
Depending on the type of job, the pipeline is also used for deploying the permanently running version of SKAMPI
or any other resources that are needed. syscore Kubernetes cluster is also equipped with monitoring solutions
to examine the health and performance of the cluster and any resources that are deployed in it. Storage and
logging solutions are also integrated to provide a consistent logging and distributed storage framework for the
resources as needed. Finally, this architecture for creating temporal k8s resources for the pipeline steps (testing,
building, packaging, etc.) ensures that necessary environments for the jobs are always clean (not affected by the
previously run pipelines).

Figure 7. CICD at run time

5. TESTING

The most important best practice for CI is testing so the main question now is how a generic component of the
SKA can be tested within the above architecture? In the SKA, testing has been split into two distinct types:
pre-deployment and post-deployment tests. The deployment happens when a runner executes a job with an
environment keyword. By doing so, the job is linked to the K8s cluster syscore through GitLab configuration.
While the pre-deployment tests (namely unit tests) are all made without the real system online (using stubs and
mocks), the other tests (namely integration and system tests) need more than one live system component to be
up and running as the tests are mostly using other services and applications. The SKA is composed of many
different modules, each of them with its own repository and different requirements for the components needed

Proc. of SPIE Vol. 11452 114520G-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

for its integration and system testing. For each of them, an umbrella chart has been introduced which enabled
the specific component to be deployed together with its dependencies. Specifically, to enable the GitLab pipeline
to deploy and test the chosen component each repository must:

� contain at least one helm chart

� have an environment

� have a Makefile for K8s testing

The test job, introduced in section 4, is composed of the following steps (all made with the help of a Makefile):

� install: installs the chart (with the sub-charts needed) in the Namespace specified in the environment

� wait: wait for every container to be running

� test:

– Create a container in the Namespace specified in the environment

– Run pytests inside the above container

– Return the results of the tests

� post test: delete all resources allocated for the tests

The artefacts are the output of the tests and it will have the report both in XML and JSON but also other
information like the pytest output so that thw next steps (mostly packaging and releasing) in the pipeline can
be run.

6. DEVELOPMENT WORKFLOW

There are two important assumptions behind understanding the SKA development workflow: the master branch
shall always be stable and branches shall be short-lived. With the term stable, it means that the master branch
always compiles and all automated tests run successfully. This also means that every time a master branch
results in a condition of instability, reverting to a condition of stability shall have precedence over any other
activity on the repository (and by the responsible developers). As a result, the selected development workflow
for SKA is the following:

� A developer takes a copy of the current code base on which to work

� Work is started on a new branch based on the story being implemented

� As the developer advances in the implementation commits are done on the local git repo.

� Unit tests are written and run in the development environment until successfully executed

� Once the tests pass the developer pushes the changes into a remote branch

� The CI server (GitLab)

– Checks out changes when they occur

– Runs static code analysis and provide feedback to the developer

– builds the system and runs unit and integration tests on the branch

– Provide feedback to the developer about the status of the tests (fail or success)

– Provide feedback about coverage metrics

Proc. of SPIE Vol. 11452 114520G-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

� Once all tests execute successfully on the branch, the developer makes a pull request (i.e. Merge Request
in GitLab terms) for merging the changes into master.

� As part of the pull request, the code is reviewed and approved by other developers.

� Code is merged into the master branch

� Then, the CI server (GitLab)

– Runs the whole pipeline again including all the tests on the master branch

– Releases deployable artefacts for testing (reports, code analysis, etc.)

– Assigns a build label to the version of the code it just built (i.e. docker image version)

– Alerts the team if the build or tests fail which fixes the issue asap

– Publishes the successfully build artefacts to the artefact repository

7. CONCLUSION

The majority of the decisions taken by the Systems Team follow the workflow as described by the Continuous
Integration process outlined in Martin Fowler’s paper and inspired by the state-of-the-art industry practices
of.2–4 In particular:

� For each component of the system, there is only one repository with minimal use of branching that is
short-lived;

� build, tests and publish of artefacts are automated with the use of few commands;

� Every commit triggers a build in a different machine (a container within the K8s cluster);

� Once the artefacts are built (docker images, helm charts, etc.), the repository SKAMPI will create auto-
matically a new deployment of the system and more tests are done at that level (i.e. system tests);

� Having a common repository (Nexus and GitLab page) for the code artefacts and the test results artefacts
make it very easy to download the latest changes from every team and for each component to enable fast
development;

� The integration environment is accessible for every developer and, is deployed in a unique Namespace in a
K8s cluster.

In addition, with the new sub-charts architecture, integration testing is done within the repositories of teams
and brought in to the SKAMPI integration testing repository when a new version is created. This enables
developers to test not only their own work in isolation but also their work in conjunction with the developments
contributed by other teams.

ACKNOWLEDGMENTS

This work has been supported by Italian Government (MEF - Ministero dell’Economia e delle Finanze, MIUR -
Ministero dell’Istruzione, dell’Università e della Ricerca).

Proc. of SPIE Vol. 11452 114520G-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

REFERENCES

[1] “Tango-controls framework.” https://www.tango-controls.org/. (Accessed: 5 October 2020).

[2] Fowler, M., “Continuous integration.” https://martinfowler.com/articles/continuousIntegration.

html. (Accessed: 5 October 2020).

[3] J. Humble, D. F., [Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment
Automation], Addison-Wesley Professional (2010).

[4] at all, G. K., [The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in
Technology Organizations] (2016).

[5] “Kubernetes.” https://kubernetes.io/. (Accessed: 12 October 2020).

[6] “Helm.” https://helm.sh. (Accessed: 5 October 2020).

[7] “Ska-docker repository.” https://gitlab.com/ska-telescope/ska-docker. (Accessed: 5 October 2020).

[8] “Hdb++.” https://tango-controls.readthedocs.io/en/latest/tools-and-extensions/archiving/

HDB++.html. (Accessed: 12 October 2020).

[9] “Skampi - ska mvp prototype integration.” https://developer.skatelescope.org/projects/skampi/

en/latest/index.html. (Accessed: 12 October 2020).

[10] “Gitlab.” https://gitlab.com/. (Accessed: 7 October 2020).

[11] “Nexus.” https://www.sonatype.com/nexus/repository-pro. (Accessed: 3 November 2020).

[12] “Elasticsearch.” https://www.elastic.co/. (Accessed: 3 November 2020).

[13] “Prometheus.” https://prometheus.io. (Accessed: 4 November 2020).

[14] “Ceph storage.” https://ceph.io/. (Accessed: 4 November 2020).

Proc. of SPIE Vol. 11452 114520G-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

