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ABSTRACT

Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely.
Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio
timing solution.
Aims. The aim of this paper is to find a global mathematical description of Crab pulsar’s phase as a function of time for the complete
set of published Jodrell Bank radio ephemerides (JBE) in the period 1988−2014.
Methods. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the
whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions.
The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an
amplitude of only a few turns, which rapidly relaxes to the local braking index law.
Results. From our analysis, we demonstrate that the power law index undergoes “instantaneous” changes at the time of observed
jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant
braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6.
Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns
during the above period, in which the pulsar has made more than 2 × 1010 turns.
Conclusions. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the
pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar
with the surrounding environment.

Key words. pulsars: general – pulsars: individual: PSR B0531+21 – radiation mechanisms: general – stars: magnetic field

1. Introduction

Pulsars are rotating neutron stars with a magnetic field mis-
aligned with respect to their rotation axis. The periodic pulse
of light that we see is caused by a beam of radiation produced in
the magnetosphere and pointing in our direction at each rotation.
Such a rotating magnetic dipole loses energy at the expense of
its rotational energy so decelerates in time. The mechanism by
which this takes place has been investigated ever since the dis-
covery of pulsars but has not yet been completely understood.
The idea that the slowdown mechanism consists of a radiative
torque on a rotating magnetic dipole and of the torque by which
the pulsar drives the pulsar wind was proposed early (Goldwire
& Michel 1969), together with the idea that the braking torque
is described by a power-law relation between the frequency of
rotation f and its derivative: ḟ = −K f n.

The braking index n = f f̈ / ḟ 2 is expected to be three in the
case of braking by pure dipole radiation and one in the case
of a pulsar wind dominated torque (Michel & Tucker 1969).
This proposal has stimulated a long-lasting effort to determine
and classify pulsars by their braking indices. After 23 years
of observations of the Crab pulsar Lyne et al. (1993) found
that, between sudden jumps in rotational frequency (glitches),

the rotational slowdown is described well by a power law with
n = 2.51 ± 0.01. This braking index does not hint at any simple
model for the braking mechanism. Long-term well-defined val-
ues for the braking index have been confirmed for four other pul-
sars (Livingstone et al. 2007), and they consistently give n < 3,
suggesting that magnetic dipole radiation alone is not sufficient
to account for the observed spin-down.

The study of the pulsar braking mechanism is made difficult
by known irregularities in pulsar clocks, which take the form of
sudden jumps in rotational frequency (glitches) or more gradual
deviations from regular spin-down (timing noise). Recent sys-
tematic analyses of timing noise of the Crab and other pulsars
show that it is not random, as was assumed until quite recently
(Scott et al. 2003). The comparison of a large number of pulsars
has demonstrated that the evolution of the rotational phase of
young pulsars is dominated by long (∼1 yr) relaxation periods
following the occurrence of significant glitches, whereas older
pulsars show quasi-periodic behavior with phase modulations on
typical timescales between ∼1 and 10 yr (Hobbs et al. 2010).
Such quasi-periodic changes are sometimes correlated with dis-
crete variations in slowdown rate ḟ and pulse profile (Lyne
et al. 2010). These properties have been interpreted in terms
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of phenomena occurring in pulsar magnetospheres (Lyne et al.
2010). The periodically active pulsar PSR B1931+24, which
exhibits on- and of-switching of the radio emission and dras-
tic changes in braking torque, was proposed as a prototype of
a pulsar-magnetosphere interaction system, in which a varying
flow of charged particles drives the braking mechanism (Kramer
et al. 2006). Fluctuations in the size of acceleration gaps were
also considered as possible sources of variations in particle cur-
rent flow and braking torque (Cheng 1987).

Pulsar glitches have not been considered by most authors as
part of the same mechanism, but as a different phenomenon that
is connected with internal pulsar dynamics (Reichley & Downs
1969; Baym et al. 1969; Anderson & Itoh 1975; Ho & Andersson
2012). Indeed, the persistent increase in slowdown rate of the
Crab pulsar from 1969 through 1993 (Lyne et al. 1993) was in-
terpreted as being caused by a decrease in the moment of inertia
due to interaction of the internal superfluid core with the crust
of the neutronstar. An alternative explanation in terms of torque
increase was discarded, because it was expected to be accom-
panied by a change in the configuration of pulsar’s magnetic
field that would likely induce a change of pulse profile and of
the braking index. This was not found in measurements taken in
1969−1993 (Lyne et al. 1993).

In this paper we analyze the phase history of the Crab pulsar
and find a very accurate mathematical description of its behavior.
Such unifying description indicates that, in our opinion, glitches
and timing noise are part of the same braking mechanism that
undergoes sudden changes during glitches. Preliminary results
of this analysis were presented by one of us (AČ) at the Prague
Synergy 2013 Conference (“Interaction of a pulsar with the sur-
rounding nebula: the case of Crab”1).

Very recently, Lyne et al. (2015) have published results of a
similar analysis using 45 years of radio data on the rotational his-
tory of the Crab pulsar. We will compare their method with ours,
pointing out similarities and differences and, more important,
giving a different interpretation of the observed phenomenology.
The plan of the paper is as follows. Section 2 touches on ques-
tions raised by optical timing observations of the Crab pulsar
and their comparison with the Jodrell Bank radio ephemerides
(JBE2). Section 3 deals with phase analysis of JBE data and dis-
cusses the changing braking law index. Section 4 contains an
analysis of phase residuals and completes the description of the
evolution of rotational phase of the Crab pulsar. Conclusions fol-
low in Sect. 5. Some more technical details are presented in the
Appendix.

2. Optical timing of the Crab pulsar

During the period from the end of 2008 through the end of 2009,
which was characterized by the absence of significant glitches
in the JBE, we obtained three sets of high signal-to-noise ra-
tio optical observations of the Crab pulsar. The first set of data
was obtained in October 2008 with the ultra-fast photon counter
Aqueye (Barbieri et al. 2009), mounted on the Copernico tele-
scope at Asiago, while the second and third sets were taken with
a similar instrument, Iqueye (Naletto et al. 2009), mounted on
the ESO New Technology Telescope at La Silla in January and
December 2009.

We measured optical pulse arrival times during two-second
intervals by correlating the incoming photon rate with the

1 http://www.synergy2013.physics.cz/index.php/
programes
2 http://www.jb.man.ac.uk/~pulsar/crab.html

average pulse profile and define the starting point for the op-
tical phase at the maximum of the main pulse as defined by
the template. Optical phase residuals during a typical observa-
tion run are Gaussian-distributed with the width consistent with
photon-counting noise. In this way a typical one-hour observa-
tion yields a local phase model with statistical phase uncertainty
of ∼0.3 μs at Le Silla and ∼0.45 μs at Asiago (Germanà et al.
2012; Zampieri et al. 2014).

Since our data were taken with two different instruments at
very different locations on Earth, we chose to analyze them in-
dependently. Our analysis of optical data is illustrated in Fig. 1,
where JBE radio phase residuals (calculated as described in the
next section) are also shown. It turned out that the Iqueye data
fit a braking index model (BIM, see below) with an unexpect-
edly high precision, i.e. the frequency and frequency derivative
determined from January and December 2009 data are so tightly
constrained that essentially a single braking index law solution
with n = 2.437 also fixes the relative phase between January
and December (left panel in Fig. 1). This leads to a phase de-
scription with respect to which the optical data points deviate
by less then 10 μs. Thus, the 2009 n = 2.437 braking law solu-
tion appears to be a good baseline for measuring the 2009 Crab
phase noise, which is clearly detected at the microsecond level
during this quiet period of Crab history. The phase predicted by
this solution agrees (to within the well-documented 150−250 μs
radio phase lag) with radio ephemerides phase on the dates of
when we gathered our data and differs from radio ephemerides
on the whole interval by less than 3 ms (Zampieri et al. 2014).
The Asiago October 2008 data were added to the analysis af-
ter checking the consistency of our timing protocols on the two
sites and the equality of timing response of the two instruments.
These data are again consistent with radio ephemerides, but do
not follow the 2009 n = 2.437 braking index law as well, be-
cause they miss the prediction by almost 8 ms. It turns out that
our complete set of optical data can be fitted by a n = 2.476 brak-
ing index law with respect to which radio phase differs by less
than 4 ms in the whole 14-month interval (right panel in Fig. 1).
However, in this case the optical phase distinctly shows large ex-
cursions (up to 50 μs per day) with respect to this braking index
law. The good fit of our January and December data to the brak-
ing index law appears as a rare coincidence, but it stimulated us
to ask the question whether there may be a natural baseline with
respect to which pulsar phase noise should be measured and how
well and for how long a braking index law can approximate the
phase history of the Crab pulsar.

Our analysis leads to the following conclusions:

– The optical phase always leads the radio one. For three sets
of observations, the time lapse between optical measurement
and JBE reported radio phase (the latter refers to the center
of the main pulse) was between 160 and 260 μs (Germanà
et al. 2012; Zampieri et al. 2014). Therefore, there is no ev-
idence for any significant change in the delay between the
three epochs. Accurate estimates of the X-ray-radio delay
have been reported by Rots et al. (2004) (344 ± 40 μs) and
show that it does not change on a timescale of several years.
No other difference between optical and radio outside the
quoted interval of uncertainty has been found. We note that
this delay is also consistent with other recent measurements
performed in the optical band (e.g., Oosterbroek et al. 2006,
2008).

– A braking index law can reproduce the phase history during
the studied 14-month period to within one turn with a nar-
row range of braking parameters, yet residuals with respect
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Fig. 1. Residuals of optical and radio phase with respect to a BIM model. Left: best-fitting BIM to 2009 Iqueye data (n = 2.437). Right: best-
fitting BIM to 2008−2009 Aqueye and Iqueye data (n = 2.476). Optical residuals are plotted as red data points clustered at the time of optical
observations, while Jodrell Bank residuals (over the same interval of time) are represented by a gray line crossed by error bars at epoch dates of
JBE. Insets: zoom of average optical phase residuals during observation nights with 1σ error bars. The scales of the y-axis in the insets are very
different.

to such a description represent timing noise present on all
wavebands and thus most likely reflect genuine variations in
rotation of the Crab pulsar. This then motivates us to use JBE
data for studying the long-term intrinsic rotation properties
of the pulsar.

– The small residuals shown in the inset of lefthand part of
Fig. 1 are real and should be considered as typical of short,
daily timescale phase noise during a quiet glitch-less period
of pulsar history. They are shown again in Fig. 2, together
with polynomial fits through data points on the left, and
frequency and frequency derivative residuals corresponding
to these polynomials on the right. Thus, these data suggest
“typical” frequency noise on a daily scale at the level of
∼ 10−8 s−1 and “typical” frequency derivative noise on a
daily scale at the level of a few times 10−13 s−2. These es-
timates are in reasonable agreement with the difference in
frequency and frequency derivative derived from optical and
radio data (Zampieri et al. 2014) which are
January 15. 2009:
fopt− fradio = −5.64×10−9 s−1, ḟopt− ḟradio = 1.55×10−14 s−2;
and December 15. 2009:
fopt− fradio = −6.45×10−9 s−1, ḟopt− ḟradio = −6.86×10−15 s−2.

2.1. Braking index model implementation

The braking index model implies that the phase ϕ can be ex-
pressed as

ϕ(t) = c + a(1 + bt)s, (1)

where c is an integration constant that can be used to adjust
the initial phase, a and b are parameters that are related to the
age and frequency of the pulsar at t = 0, and s = n−2

n−1 is the
braking parameter. The frequency and its derivative are then
the following functions of time f = ϕ̇ = sab(1 + bt)s−1 and
ḟ = ϕ̈ = s(s − 1)ab2(1 + bt)s−2. The last equation leads to the
familiar form of the braking index law:

ḟ =
[
b(s − 1) (sab)

1
s−1

]
f

s−2
s−1 , (2)

therefore n = s−2
s−1 .

To compare our optical data with radio data as docu-
mented in JBE, we devised a numerical procedure that ex-
presses the phase as the number of turns that the pulsar has

made since the first pulse arrival time on May 15. 1988; i.e.,
φ(t) = 0 at MJD = 47 296.0000003712. More details are given
in Appendix A.

3. Braking episodes

That the phase history of the Crab pulsar can be approximated
by a BIM to within one turn during a 14-month period raises
the question of how long such a description can go on? This
idea can best be analyzed by using the publicly available JBE
Crab pulsar ephemerides since 1988 because they represent the
most complete and uniform description of Crab rotational his-
tory, which has been shown to be consistent with data in other
wavebands. As a first step in finding periods during which the
braking index may be sufficiently constant, we plot residuals of
JBE-published frequency derivatives with respect to frequency
derivatives predicted by a BIM with s = n−2

n−1 = 1/3 (n = 2.5)
and the parameters a and b in equation (1) chosen by a least
squares fit minimizing residuals ḟres = ḟJBE − ḟ . These residuals
are shown in Fig. 3.

The graph clearly shows that on average, the n = 2.5 braking
index law describes the 26-year phase history reasonably well.
However, large systematic changes in slope immediately after
some (major) glitches signal that during such periods, the brak-
ing index must be different from the average value. Therefore,
we divide the 26-year interval into ten subintervals, henceforth
called episodes (see Fig. 3), each corresponding to periods char-
acterized by the absence of pronounced changes in the braking
index. We expect that the phase history during an episode can be
largely approximated by a constant braking index law, as in the
case of the interval of comparison of optical and radio data. At
this stage in our discussion, the exact dates of the ten episodes
are not yet well defined. In the next sections we show how they
can be better constrained.

To be able to properly categorize a glitch as a discontinu-
ous change in frequency and frequency derivative, one would
need densely distributed high resolution optical data from such
an event. Unfortunately, they are not available yet. To get an idea
of how the spin-down behaves before and after the glitch event,
we used the public available data (Lyne et al. 1993)2 and built
the phase history since May 15, 1988, assuming that the phase
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Fig. 2. January (top) and December (bottom) 2009 optical residuals (Fig. 1) fitted to polynomials that reveal “typical” noise in pulsar frequency
and frequency derivative, as shown on the right, in solid line for frequency residuals (left scale) and dashed for frequency derivative residuals
(right scale).

prediction by the suggested third-degree polynomial is accurate
to a (small) fraction of a period during each ephemerides epoch
and that the phase is continuous between successive periods. We
built up a table of pulsar’s integer radio phase at the exact Julian
dates of pulse arrival times given by JBE. This table T is a table
of entries of main pulse arrival times and integer number of turns
the pulsar has made from the starting date. This table is broken
into ten episodes according to boundaries shown in Fig. 3 and
determined as explained below (see also Appendix A).

Inside each episode we seek a braking index law ϕ j(t) in the
same form as in Eq. (1) with s j as an additional fitting param-
eter. Our goal is to obtain the s j for the braking law that fits
the particular episode, in such a way that it gives the smallest
residuals over the whole episode. It turns out that this goal can
only be achieved by using data in the apparently quiet part of
the episode, disregarding scattered data immediately after the
glitch at the beginning of the episode. Data points whose phase
is not considered in the fit are colored black in Fig. 3 (we com-
ment on this choice below). In this way we obtain local fits
ϕ j(t) = c j + a j(1+ b jt)s j , valid on complete intervals of episodes
{T b

j , T
b
j+1}, where T b is the starting MJD for each episode.

These local fits are joined into a continuous curve Φ(t)
by choosing c j+1 in such a way that ϕ j+1(T b

j+1) = ϕ j(T b
j+1).

Residuals of the fit (R(t) = T − Φ(t)) are shown in Fig. 4 at all
data points, and the parameters of ϕ j(t), expressed as a Taylor
series expansion of Eq. (1), are given in Table 1. When varying
the parameters within the reported errors, the solution deviates

from the best fits by less than 0.001 turn3. The fits to those resid-
uals, discussed in the next section, are also shown as blue and
cyan curves on top of the R(t) dots in Fig. 4 (dots also include
black data points in Fig. 3). Residuals in Fig. 4 show that, dur-
ing each episode, it is possible to find a local braking law with
respect to which R (t) is never more than a few turns, even if the
pulsar makes billions of turns during the same period. It must
be emphasized that residuals that are as small as those shown
in Fig. 4 can only be obtained by fitting the phase on different
episodes T j with markedly different braking law indices, varying
from ∼2.1 to ∼2.6.

As already mentioned in the discussion of fitting optical data
(see Fig. 1), the precise value of the braking index on the episode
may depend on the selection of data points after the glitch.
Looking at Fig. 3, different choices for the black, green, and
red points can possibly be made. However, the requirement that
phase residuals be as small as only a few turns very clearly nar-
rows down an already narrow range of acceptable values of the
braking index for each episode. Finally, since Φ(t) is a contin-
uous function, the residuals R(t) must also be continuous at the
boundaries between episodes. This requirement narrows down
the dates of boundaries between episodes to values T b

j as listed
in Table 1.

3 As noted before, the split T = Φ(t) + R(t) between Φ and R is not
unique. The one presented here is the result of our attempts to find one,
where the contribution of R(t) is as small and regular as we can find.
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Fig. 3. Residuals of JBE frequency derivatives with respect to a constant braking index law fit with n = 2.5, calculated over the whole JBE interval
(from 1988 May through 2015 June 15th). The vertical gray lines denote the occurrence of glitches as reported by Espinoza et al. (2011)2 (see
Table A.1). Nine arrows delimit chosen episodes and are placed at times when (major) glitches appear to change the braking index. The two dashed
vertical lines mark the beginning and the end of the data set. The gray broken line indicates the second derivative of the continuous phase function
defined in the text. Points used for the fit with the braking law model ϕ j(t) are displayed in red and green, while points in black are excluded from
the fit, as explained in the text. Some post glitch residuals with the value below −0.5 × 10−12 s−2 go beyond the scale and are not shown.

4. The rotational phase history of the Crab pulsar

It is remarkable that the evolution of the rotational phase of the
Crab pulsar can be split into two parts: a regular phaseΦ(t) con-
sisting of a constant braking index during a given episode, but
different for each episode, and a small residual phase R(t) that,
during all this time, wanders by no more than 35 turns, to be
compared with the ∼2.5× 1010 turns the pulsar has made during
the 9800 days covered by the JBE (see Fig. 4).

According to the dates reported in JBE and in Espinoza
et al. (2014), jumps in braking index are clearly related to large
glitches (see Table A1), while small glitches do not leave a no-
table imprint on the curve R(t). To recover the significance of
small glitches from JBE, we calculated the second derivative of
the function Rs(t), which is constructed as a differentiable func-
tion from tabular values of R(t) by cubic spline interpolation.
The result is shown in Fig. 5 (left panel). In this representation,
small glitches, except possibly a few (n. 10, 11, 13), show up as
spikes barely above the general noise in R̈s(t). Only nine glitches
(n. 6, 7, 9, 14, 16, 20, 23, 24, 25) show second-derivative R̈s(t)
beyond 2 × 10−14 s−2, which is smaller than the second deriva-
tive of optical phase residuals derived from the January 2009
data (R̈Jan ≈ 10−13 s−2 see Fig. 2). All of them are clearly related
to a change in the braking index (Fig. 4). The righthand panel of

Fig. 5 shows phase residuals Rs(t), together with phase residu-
als calculated as suggested by explanatory notes of JBE. Breaks
(a few thousands of a turn) between the ephemerides dates, oc-
cur because the suggested expression for calculating the phase
increment,

ϕ(t) = ϕ(t0) +
1
P

(t − t0) − 1
2

Ṗ
P2

(t − t0)2 +
1
3

Ṗ2

P3
(t − t0)3, (3)

(P is the nominal period) does not yield an exact integer num-
ber of turns between two entries in Table T. We suspect that
the actual pulsar phase noise variation (Wong et al. 2001) is the
dominant cause for those phase residuals breaks. The truncated
Taylor series in Eq. (3) is probably not sufficient to take complete
account of phase noise variation. Intrinsic timing noise has also
been confirmed by optical observations (Fig. 2), and according
to Zampieri et al. (2014), the difference in frequency derivative
obtained from radio ephemerides and from optical observations
is consistent with the difference between the red and blue curve
in the righthand panel of Fig. 5.

The curves of residuals in Fig. 4 all have a characteristic
shape. It is customary to express functions describing sets of
data with a linear combination of a certain Hilbert space ba-
sis (eigenvectors) and natural to choose such a basis so that
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Table 1. Parameters of local fits for different j episodes, expressed in the form of a Taylor series of the form ϕ j(t) = ψ j+ν jt+ 1
2 ν̇ jt2+ 1

6 ν̈ jt3+ 1
24

...
ν jt4

where the coefficients are constrained to fit the braking index law: i.e., this expression is a Taylor series expansion of Eq. (1).

j T b
j [MJD] ψ j[109] δψ j ν j [ s−1] δν ν̇ j [10−10 s−2] δν̇ ν̈ j [10−20 s−3] δν̈

...
ν j [10−31 s−4] nj δn

1 47327 0.080308783914 1. 29.98335828167 3. –3.785953271 14. 1.223496 12. –6.3 2.559365 24.
2 47759 1.199168006987 1. 29.96923749017 1. –3.782862267 1.8 1.189028 0.52 –5.9 2.490158 1.1
3 48971 4.335378859396 1. 29.92968949582 0.9 –3.770288188 1.5 1.200702 0.40 –6.1 2.528066 0.85
4 50294 7.754097684269 1. 29.88667114924 0.8 –3.757375987 1.2 1.071861 0.29 –4.7 2.269065 0.61
5 51771 11.564963729546 1. 29.83880913666 4. –3.744175564 28. 0.9995258 32. –4.1 2.127468 67.
6 52080 12.361454906619 1. 29.82881752567 1. –3.742269975 2.9 1.068559 1.0 –4.7 2.275959 2.2
7 53049 14.857460749680 1. 29.79752549720 1. –3.735298384 3.2 1.119064 1.2 –5.3 2.389927 2.6
8 53962 17.206823673457 1. 29.76809511938 2. –3.726586977 6.9 1.160253 3.9 –5.7 2.487030 8.3
9 54584 18.806047084704 1. 29.74808502226 0.9 –3.720427194 1.6 1.180117 0.43 –6.0 2.536288 0.93

10 55874 22.119341521240 1. 29.70669287202 0.9 –3.708385813 1.8 1.169154 0.51 –5.9 2.525551 1.1

Notes. Quoted errors refer to the last reported digit. Time in the argument of ϕ j starts at 00 UT of the appropriate T b
j . The last two columns give

the corresponding values of the braking index and its error.
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Fig. 4. JBE phase residuals R(t) with respect to local fits ϕ j(t) calculated for the 10 chosen episodes (see Fig. 3). Gray vertical lines are plotted at
the dates of reported glitches (Espinoza et al. 2011). The braking index during episodes is shown in orange. Sinusoidal fits to residuals, discussed
below, are shown in blue and cyan to distinguish episodes. Gray points at the bottom show ten times the difference between R(t) and sinusoidal fits
Rj(t) at data points; the horizontal dashed lines bracket these final residuals with their standard deviation of 0.057 turns; the distribution of final
residuals has wider wings than a Gaussian.

the concrete experimental result can be described by the fewest
components. Having tried different possibilities (including the
widely used combination of sinusoids + decaying exponentials),
we find that the residuals can be described by only two complex
Fourier components:

R j(t) = Ψ j + A je
−λ j(t−T b

j ) sin
(
ω j(t − T b

j ) + δ j

)

+ A je
−λ j(t−T b

j ) sin
(
ω j(t − T b

j ) + δ j

)
. (4)

We believe that this mathematical approach leads to a simpler
description of pulsar noise. The coefficients are given in Table 2
and are sufficient to produce a fit of R(t) without systematic
trends in the residuals, as shown in gray at the bottom of Fig. 4.
The standard deviation of the distribution of phase residuals is
0.057. It can be compared with the standard deviation of the

set of fractional phase residuals between ephemerides epochs,
which is 0.063. The declared arrival-time uncertainty in JBE is
0.01 or 300 μs. The details of these fits, together with some other
pertinent information, are shown in Fig. 6. The ansatz in Eq. (4)
is purely mathematical and is an almost satisfactory description
of phase residuals R(t). A posteriori, we note that the first sinu-
soid has very low values of ω so is essentially a decaying com-
ponent, while in all episodes but one, the second sinusoid is not
damped.

It should be understood that glitches may not be modeled
exactly by our analysis because the time resolution of JBE data
is not sufficient to describe the exponential decay of a glitch
that lasts a few days (Wong et al. 2001). However, because
of all that has been said, the JBE data are reliable as to the
global phase behaviour and on timescales longer than about a
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Fig. 5. Left: second time derivative of the residual phase Rs(t), a third-order spline fit through phase residuals from Table T. The orange vertical
lines are drawn at dates of reported glitches and labeled according to Table A.1. Episodes are shaded intermittently as light gray and white. Right:
phase residuals as a function of time for a short interval during episode 3. The red line shows Rs(t), while the blue line is calculated as suggested
by explanatory notes of JBE (see text for details). Error bars show JBE quoted arrival-time uncertainties.

Fig. 6. Sinusoidal phase functions Rj(t) (red lines) that fit the JBE phase residuals (blue points) for episodes from j = 1 to 10 (the short episode 5
is included in the graph showing episode 6). Time on the abscissa is in MJD, and the scale is the same for all episodes. Green dots are numbered
as in Espinoza et al. (2011) at dates of published glitches with the ordinate as calculated from Rj(t). Ordinate scales are different and adjusted to
different amplitudes of oscillations. Each panel shows data of the complete episode and includes the first point of the next episode. The difference
between horizontal dotted lines represents a measure of the strength of the perturbation Rj(t) caused by the glitch. Dashed gray curves are the plots
of ϕ j(t) − ϕ j−1(t), to show the difference of phases between two contiguous episodes. Gray arrows point to dates of the >100 MeV X-ray flares
detected by Fermi (Abdo et al. 2011; Ojiha et al. 2013; Bühler et al. 2012) and AGILE (Tavani et al. 2011; Striani et al. 2013).

month. In this respect, the decaying component at the beginning
of several episodes resembles the usual after-glitch recovery
behavior frequently modeled in the literature through a single-
parameter exponential (e.g., Lyne et al. 2015, with a characteris-
tic timescale of 320 days).

Figures 4 and 6 clearly illustrate the meaning of the split of
the phase behavior into the braking index partΦ(t) and residuals
R(t). It is quite clear that toward the end of an episode, resid-
uals relax to the perfect braking law solution and eventually

oscillate for years by only a very small fraction of a turn. On
the other hand, as hinted in Fig. 6, the braking-law part of
an episode (ϕ j(t)) generally differs quite considerably from the
braking law of the previous episode (ϕ j−1(t)). In fact, if the dif-
ference ϕ j(t) − ϕ j−1(t) was plotted to the end of episodes, it
would reach values several tens or a hundred times the value
ΔN. An exception is the short episode 8, which follows a rela-
tively weak glitch. For this episode R(t) and ϕ j(t) − ϕ j−1(t) are
comparable, and therefore, the split between the braking index
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Table 2. Coefficients of the fitting function Rj(t) in Eq. (2).

j Ψ ω
[
day−1

]
λ
[
day−1

]
A δ ω

[
day−1

]
λ
[
day−1

]
A δ

1 –0.004 0.0345 –0.0209 0.0000254 –3.47 0.0236 0 0.034 –0.0955
2 –16.91 0.0010 0.0113 177.00 0.100 0.0091 0 0.153 –0.0392
3 –14.15 0.0010 0.0072 8.63 –0.282 0.0206 0 0.047 –2.9822
4 –22.98 0.0054 0.0092 14.4 0.621 0.0187 0.0018 0.320 2.7275
6 36.72 0.0037 0.0018 12.7 –2.46 0.0008 0 73.50 –2.3370
7 –22.35 0.0010 0.0321 217. –0.103 0.0213 0 0.066 0.5691
8 –20.78 0.0068 0.0075 1.36 –1.86 0.0306 0 0.029 –1.0713
9 –21.72 0.0072 0.0131 1.68 0.73 0.0163 0 0.098 –0.709

10 –29.65 0.0059 0.0102 16.1 0.48 0.0166 0 0.046 2.45

Fig. 7. Left: dispersion measure DM(t) (blue dots), braking index n(t − τ) for τ = 1100 days (continuous red line). The dashed red line shows n(t).
Right: correlation between braking index (n) and dispersion measure DM. The correlation coefficient is 0.7.

part and residuals is not as clear cut. Figure 6 also confirms that,
within limits allowed by the time resolution of available data, the
breaks between episodes occur on the dates of reported glitches.
It appears plausible to classify glitches into two groups: those for
which the change in the phase Φ(t) dominates residuals R(t) by
many factors of ten (6, 7, 9, 16, 20, 23, 24, 25) and those where
the integral change in ϕ j(t) − ϕ j−1(t) is comparable or insignifi-
cant with respect to the amplitude of R(t) (all other glitches be-
yond #6).

5. Discussion and conclusions

Our analysis shows that the phase evolution of the Crab pulsar
can be described as a series of constant braking-law episodes,
with the braking index changing abruptly after each episode in
the range of values between 2.1 and 2.6. Phase residuals with
respect to such a smooth phase description amount to only a few
turns in ∼109 turns executed during an episode. The split be-
tween the smooth braking-law-dominated part and residuals is
not mathematically unique, but requirements that phase residu-
als be as small as only a few turns and that the phase between
ephemerides epochs clearly converges to the characteristic brak-
ing index solution of the episode narrow the choice of braking
index parameters.

A similar conclusion concerning the behavior of the brak-
ing index has been recently obtained by Lyne et al. (2015) from
an independent analysis of 45 years of radio data on the ro-
tational history of the Crab pulsar. Results obtained from a fit

with a single Taylor series returns a behavior of f and ḟ (their
Figs. 1 and 2) very similar to the one shown in Fig. 3 (with a
best fitting n = 2.34). Variations in the braking index in the pe-
riod between 1996 and 2006, characterized by a high concen-
tration of glitches, were also noted by Lyne et al. (2015). While
they consider it a weak, unexplained effect on the background of
the previous rotational history (described by a simple slowdown
with braking index 2.519(2)), we offer here a different interpre-
tation that can account for the overall timing irregularities of the
Crab pulsar.

According to our interpretation, glitches and abrupt changes
in the braking mechanism may be part of the same physical pro-
cess that also drives semi-periodic timing noise between glitches
(Fig. 4). In fact, JBE data provide an interesting correlation of
the braking index and dispersion measure. Namely, the disper-
sion measure (as listed in JBE) follows the braking index with
a time delay of 1100+450

−250 days as shown in Fig. 7. The delayed
response of dispersion measure to the value of braking index
lends support to the idea of Anderson & Itoh (1975) that change
of the braking index has to do with a pulsar-wind-driving torque
and is also consistent with the idea that eddy currents threading
the pulsar nebula ionize it and thus inject varying amounts of
free electrons.

From this new perspective, glitches, timing noise, changes
in braking torque, and dispersion measure appear to be part
of a common mechanism that jumps between different brak-
ing modes. Distinctly long timescales of timing noise oscil-
lations suggest that the mechanism can hardly be connected
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to phenomena occurring within the pulsar. It appears plausi-
ble that the “instantaneous” change in braking torque is caused
by some instability, which varies the configuration of the ex-
ternal electromagnetic field and currents in the nebular plasma
through which the pulsar interacts with its nebula. Such an in-
teraction is needed in order to understand the acceleration and
energizing mechanisms of the pulsar nebula (Trimble 1968;
Weyler & Panagia 1978), such as the highly dynamical flow
of relativistic particles in the form of equatorial wind and po-
lar jets, as seen in Hubble Space Telescope and Chandra images
(Hester et al. 2002).

The possible occurrence of plasma instabilities causing “in-
stantaneous” changes in the braking mechanism is expected to
produce observable changes in radiation from the Crab nebula.
It is tempting to consider the possibility (Cerutti et al. 2014) that
plasma instabilities occurring through magnetic field line recon-
nection drive the recently observed gamma ray flares (Abdo et al.
2011; Tavani et al. 2011; Ojiha et al. 2013; Striani et al. 2013;
Bühler et al. 2012). Arrows in Fig. 6 point to instants when the
six observed flares occurred in the Crab nebula. The same mech-
anism, which also appears to be acting in the solar corona to
produce gamma ray flares (Ajello et al. 2014), may be able to
provide a sudden short release of braking torque by disconnect-
ing the magnetic field lines from the pulsar from those threading
the nebular plasma. The same mechanism may also be respon-
sible for sharp increases in dispersion measure (Fig. 7, left) by
emitting highly energetic particles into the neutral nebula, thus
ionizing it.

The back reaction of plasma instabilities on the pulsar, pos-
sibly associated to these flares, has not been studied yet, but it
does not seem to be simultaneous with the occurrence of the
flare (Weisskopf et al. 2013; Zampieri et al. 2013). In view of
the delayed correlation between dispersion measure and brak-
ing index, this appears understandable – perturbations caused
by magnetic reconnection travel long distances before reaching
the pulsar or before permeating the nebula. Nevertheless, the in-
terflare time inferred from numerical simulations (hundreds of
days) (Mignone et al. 2013; Porth et al. 2014; Cerutti et al. 2014)
appears to be broadly consistent with the timescales observed in
oscillations of JBE phase residuals. It is quite remarkable that
the occurrence of the reported gamma-ray flares is also consis-
tent with such a timescale.

Our ultra-fast optical observations of the Crab pulsar with
Aqueye and Iqueye stimulated the line of research presented
here. Future simultaneous radio and optical timing measure-
ments, as well as optical imaging and gamma-ray observations,
will be crucial for revealing the source of the braking mecha-
nism, in particular if it is located in the external electromagnetic
field through which the pulsar interacts with the surrounding
plasma, as suggested by our results.
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Appendix A: Crab phase data

We construct the decadal timing solution of the Crab pulsar as a
series of pairs Tj = {MJDj + (1/86400)TOAj, zj}, where MJDj is
the mean Julian date of the jth entry of JB ephemerides, TOAj is
the first arrival time of the pulse at MJDj (the tJPL entry in JBE),
and z j is the integer number of turns the pulsar has made from
the starting date May 15, 1988 (MJD1 = 47 296). Integers z j are
calculated by summing the integer number of turns N j that the
pulsar has made between MJD j−1 and MJD j (z j =

∑ j
k=1Nk). Nk

is calculated using the JB published values of frequency and fre-
quency derivative. Using the formula suggested by explanatory
notes to JBE, we calculate it as follows.

Let Δt = 43200
(
T j − T j−1

)
, and let ν j and ν̇ j be the fre-

quency and frequency derivative listed at the jth ephemerides
entry in JBE. Define P j = 1/ν j and Ṗ j = −ν̇ jν j

−2, then

ΔN =
(

1
Pi−1
+ 1

Pi

)
Δt −

(
Ṗ j−1

P j−1
2 − Ṗ j

P j
2

)
Δt2

2 +

(
Ṗ2

j−1

P j−1
3 +

Ṗ2
j

P j
3

)
Δt3

3 and

Nj = IntegerPart[ΔN]. The evaluation of ΔN in most cases yields
an integer, as it should. However, in 25 cases, almost all of them
occurring at the time of a glitch, the calculated number of turns
between successive TOA’s has a fractional part that is inconsis-
tent with the quoted TOA accuracy. The fractional phase errors
are shown in Fig. A.1.

Table A.1 lists all glitches reported in Espinoza et al. (2011)4

and the starting dates of episodes 2 to 10.

4 http://www.jb.man.ac.uk/pulsar/glitches.html

Table A.1. Numbers and dates of glitches (from Espinoza et al. 2011).

No Glitch Episode T b δ f / f
[MJD] no. [MJD] [10−9]

1 40 491.8 7.2
2 41 161.98 1.9
3 41 250.32 2.1
4 42 447.26 35.7
5 46 663.69 6.0

1 47 327
6 47 767.504 2 47 759 81
7 48 945.6 3 48 971 4.2
8 50 020.04 2.1
9 50 260.031 4 50 294 31.9

10 50 458.94 6.1
11 50 489.7 0.8
12 50 812.59 6.2
13 51 452.02 6.8
14 51 740.656 5 51 771 25.1
15 51 804.75 3.5
16 52 084.072 6 52 080 22.6
17 52 146.758 8.9
18 52 498.257 3.4
19 52 587.2 1.7
20 53 067.078 7 53 049 214
21 53 254.109 4.9
22 53 331.17 2.8
23 53 970.19 8 53 962 21.8
24 54 580.38 9 54 584 4.7
25 55 875.5 10 55 874 49.2

Notes. The MJD episode is the starting date of the episode as listed in
Table 1, and the last column quotes reported frequency jumps during
the glitch.
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Fig. A.1. Fractional part of calculated number of turns between successive TOAs’ fractional phase error. Vertical lines denote the dates of reported
glitches, starting from glitch No. 5 in Table A.1. Horizontal dashed lines are at ±0.062, the variance of the (wide winged) phase error distribution.
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