
1996Publication Year

2023-01-18T09:29:05ZAcceptance in OA@INAF

A work- and data-sharing parallel tree N-body codeTitle

BECCIANI, Ugo; Antonuccio-Delogu, V.; PAGLIARO, ANTONIOAuthors

10.1016/S0010-4655(96)00121-XDOI

http://hdl.handle.net/20.500.12386/32900Handle

COMPUTER PHYSICS COMMUNICATIONSJournal

99Number

ar
X

iv
:a

st
ro

-p
h/

96
08

18
8v

1
 2

8
A

ug
 1

99
6

A WORK- AND DATA SHARING

PARALLEL TREE N-BODY CODE

U. BECCIANI a,1, V. ANTONUCCIO-DELOGU a,1 and

A. PAGLIARO b,2

aOsservatorio Astrofisico di Catania, Città Universitaria, Viale A. Doria, 6 –

I-95125 Catania - ITALY

bIstituto di Astronomia, Università di Catania, Città Universitaria, Viale A.

Doria, 6 – I-95125 Catania - ITALY

Abstract

We describe a new parallel N-body code for astrophysical simulations of systems
of point masses interacting via the gravitational interaction. The code is based on
a work- and data sharing scheme, and is implemented within the Cray Research
Corporation’s CRAFT c© programming environment. Different data distribution
schemes have been adopted for bodies’ and tree’s structures. Tests performed for
two different types of initial distributions show that the performance scales almost
ideally as a function of the size of the system and of the number of processors. We
discuss the factors affecting the absolute speedup and how it can be increased with
a better tree’s data distribution scheme.

1 Physical motivation.

The role of N-body codes as helpful tools of contemporary theoretical cos-
mology can be hardly overemphasized. A cursory glance at the specialized
astrophysical literature of the last five years demonstrates that the results of
N-body simulations are often used to check cosmological models, eventually
to constrain the free parameters of these models which cannot be fixed either
theoretically or observationally. Despite their relevance, however, present-day
N-body codes can hardly allow one to deal with more than a few million
particles [14]. Even using the most simplifying assumptions, we observe in

1 Also: CNR-GNA, Unità di Ricerca di Catania
2 Partially supported by the HMC European Community Program TRACS at the
EPCC, UK

Preprint submitted to Elsevier Preprint 1 February 2008

http://arXiv.org/abs/astro-ph/9608188v1

our Universe structures ranging in mass from the size of a globular cluster
(106M⊙, where the symbol: M⊙ ≈ 1.98 · 1033g denotes the mass of the Sun),
up to clusters and superclusters of galaxies (1015 − 1016M⊙), spanning then
a range of at least 10 orders of magnitude. Now the “mass” resolution of a
simulation of a typical region of the Universe having mass M with Np parti-
cles is m = M/Np. So, for Np ≤ 107 and taking e.g. M = 1016M⊙ we have
m ≥ 109M⊙, i.e. 3 orders of magnitude larger than the minimum observed
mass. In order to fill this gap it would then be highly desirable to perform
simulations with 109 − 1010M⊙. Only codes running on parallel systems can
offer, in some future, the possibility of performing simulations with such a
large number of particles.
Among the current algorithms devised to simulate N-body systems of particles
interacting via long-range forces, the one based on the oct-tree decomposition,
devised by J. Barnes and P.Hut ([3]) bears at least two distinguishing computa-
tional features: it is highly adaptive and its complexity scales as O(Np log Np).
This scaling has been verified in serial implementations of the algorithm [9],
but it is not at all obvious that the same scaling will hold for parallel im-
plementations of the same algorithm. This would be true if the additional
communication overloads scale as the tree algorithm: which of course is not
true a priori and depends sensitively on the architecture and on the hardware
implementation.
Generally speaking, one could expect to meet different problems when one tries
to parallelize the Barnes-Hut algorithm on Massively Parallel (MP), shared-
memory/work systems than on Message Passing (MeP) ones. In the latter
case a convenient approach consists in modifying the original Barnes-Hut algo-
rithm in order to parallelize only the most time-consuming part of it [10,2,6]),
while in the former case it could prove more rewarding to exploit software and
hardware features of Massively Parallel systems [11,10]. Both approaches have
shown merits and disadvantages. Starting from the observation that the most
time-consuming part of the serial BH algorithm is tree’s traversal analysis,
Salmon [10] has introduced a strategy of work sharing based on the introduc-
tion of Locally Essential Trees, where each parallel “task” builds up a local
reduced oct-tree necessary to compute the evolution of its own particles. This
strategy is based on a spatial decomposition of the workload among the tasks,
and it is easy to implement under many popular parallelization environments
like PVM ([7]) and MPI. With this approach the average timestep execution
scales as Tstep ∝ Nα, with α ranging from 1.05 to 1.4 [10,2,5]). This rather
large variance depends on intrinsic factors (e.g. communication overheads, la-
tency bandwith) and on the complexity of the tree. It also affects the critical
issue of load balancing. However on MP systems, it proves possible to avoid
these complications and to start from the serial BH algorithm exploiting the
available compiler features on some MP systems which allow the programmer
to distribute work and/or data among the available Processor Elements (here-
after PEs).
In this paper we will discuss some of the problems and solutions we have

2

found in parallelizing a serial tree code for the Cray’s T3D system, within
the CRAFT programing environment. Our solutions can be easily exported to
other MP systems. The issue of portability is a central one in the development
of any simulation code. Warren & Salmon [11] have addressed this problem
by developing a small message passing library (called SWAMPY) which can
be implemented on few platforms, including some workstations, so that their
parallel tree code can be run on some MP as well as on a MeP architecture. We
have decided to follow a more standard strategy, namely to exploit some fea-
tures of the compilers which are available on many MP systems, and to avoid
as much as possible data communication. We then avoid the disadvantage of
dealing with a rather specialized library like SWAMPY. The disadvantage of
our approach lies in the fact that we have no control on the efficiency of the
Cray’s compiler directives. With the present work we hope to contribute to
the understanding of the tradeoff between these two different programming
styles.
The code described in this paper was builded starting from a f77 of a se-
rial Barnes-Hut TREECODE kindly provided to us by Dr. L. Hernquist. The
tests described in this paper were performed on a Cray T3D at the Cineca
(Casalecchio di Reno (BO) - Italy), a 128 DEC Alpha processor with 8 Mword
(64 bits) memory per processor and 9.6 GigaFLOPS peak performance and
on a similar system with 512 PEs at Edinburgh Parallel Computing Center
(EPCC). We have made an effort toward portability to other MPP systems
by trying to avoid using compiler directives which are too specific. This is
why we believe that the general strategy outlined in this paper can be easily
exported to other MPP systems. A similar work has been recently performed
on a Fortran 90 implementation of a direct summation N-body code [12].
In section 2 we describe our parallelization strategy. In section 3 we present
our results concerning the scaling and performance. Finally, in section 4 we
report our conclusions.

2 Parallelization issues

In our parallel implementation of the Barnes-Hut tree algorithm we have ex-
ploited both the Data Sharing and the Work Sharing programming models.
The flexibility of the CRAFT environment allows one to mix these two modes
in order to gain the maximum efficiency and speed-up.
A detailed description of the Barnes & Hut parallel algorithm can be found
elsewhere ([2,3]). In the following paragraphs we will shortly summarize the
algorithm main features, and we will describe the aspects concerning the par-
allelizzation issue. Apart from the initial and final I/O phases, which cannot
be parallelized on the T3D, we can distinguish three phases in our code struc-
ture: a) tree formation and cell properties calculation; b) tree’s inspection

3

TREEWALK

Compute FORCES

Advance body(i)

for i=1, N

Collect bodies from PEs
OUTPUT pos(i=1,N) , vel(i=1,N)

TREE

construction

DISTRIBUTE bodies

INPUT pos(i=1,N),
 vel(i=1,N)

Fig. 1. Block diagram of the Tree N-body code. Steps within the dashed region are
executed in parallel.

(treewalk), force evaluation and bodies positions’ update; c) Dynamic Load
Balance (DLB) .
In the following paragraphs we will describe these phases.

2.1 Optimization strategy.

Data distribution is a very crucial phase to obtain a high performance on Cray
T3D machine.
As a guideline we have attempted to share the arrays containing the bodies
properties among the available PEs in such a way that each PE works mostly
on bodies resident in its local memory, and at the same time, to have the
same workload for each PE. The CDIR$ SHARED directive of CRAFT allows
data to be shared among all available PEs. A data distribution strategy not
correctly tuned may affect greatly the global performance of the code.
Generally speaking the execution time of a parallel job (Tsol) can be considered
as the sum of a computational time (Tcomp) and of a communication time
(Tcomm). In turn, the term Tcomp is the sum of an operational time Tflop and
data access time Tda. There are also contribution from the time needed to
redistribute the work (Tdist), the time required to communicate data (Tdd)

4

and the time spent during synchronization (Tsync). Eventually we get:

Tsol = Tflop + Tda + Tdist + Tdd + Tsync (1)

The term Tflop decreases as the number of PEs involved in the parallel run
increases; the term Tda will greatly vary, depending on data distribution. In
our case we have no explicit message passing so the terms Tdist and Tdd are
negligible. Our goal is that of optimizing the data distribution to allow as
many PEs as possible to be active during the run, mainly on their locally
residing data, rather than to work on data located on other PEs, in order to
minimize the Tda term.
In order to achieve this target we have attacked the problem of data distribu-
tion from two sides: a) optimizing the distribution of bodies among PEs; b)
optimizing the distribution of the tree, i.e. of its cells.

2.2 Tree formation and cell properties.

The spatial domain containing the system is divided into a set of nested cubic
cells by means of an oct-tree decomposition.
At the beginning all the computational domain is enclosed within a cubic
region called root cell containing all the particles, which is divided into 8 sub-
cells. This step is repeated for each cell of the tree until one arrives to cells
containing only 1 body. This structure is the tree. For cells containing more
than one body (internal cells, hereafter icells), positions, sizes, total mass and
quadrupole moments are stored in corresponding arrays. For cells containing
only one body (terminal cells, hereafter fcell), on the other hand, only the
position of the cell is stored. Observe that only cells containing at least one
particle are kept in the tree, so at each new level of the hierarchy (i.e. at each
depth d of the tree) at most 23d new cells are added.
Making use of the work sharing model, all the available PEs contribute to
tree formation and to icells properties calculation. Parallelism is attained by
sharing the loops structures among the PEs. The CRAFT directive CDIR$
DOSHARED (ind1,[ind2, ind3,...]) mechanism allows one to share a do loop:
inside the shared loop each PE executes its assigned loop iteration, as in the
following example.

REAL pos(1024,3), pm1(8,3), cellsize(1024)
CDIR$ SHARED pos(:BLOCK(Np/Npes,:)), cellsize(:BLOCK)

ndim=3
CDIR$ DOSHARED (p,k) ON pos(p,k)

DO k=1,ndim
DO p=1,nsubset

5

pos(p,ndim)=pos(p,ndim)+pm1(j,ndim)*0.5*cellsize(p)
ENDDO

ENDDO

Each (k, p) iteration is executed only by that PE having in its own local
memory the pos(p,k) element. However, in order to compute forces on those
bodies residing on some particular PE, segments of the tree residing in some
other PEs need to be accessed. These remote-access operations will result in
a slowing down of the code; the actual amount will depend ultimately on
the average (over all bodies) length of the interaction list. Using Apprentice, a
performance analyzer tool designed for CRAY MPP, we have noted that about
65% of the work is performed in parallel by the available PEs. This fraction
tends to increase with increasing number of particles NP, for a fixed number
of processing elements, NPE, because having more particles allocated to each
processor the ‘granularity’ (i.e. the amount of computational work allocated to
parallel tasks), tends to increase. This will also result in a percentually lower
communication overhead.

2.2.1 Tree properties: data distribution

The data distribution scheme of the arrays containing the tree properties
(cells size, geometric and physical characteristics) was adopted after many
trials varying the number of bodies (from 1,000 up to 216,000), and using sev-
eral layout of data distribution. The optimal distribution was reached using
a fine tree data distribution with directives like: CDIR$ SHARED CELL-
SIZE(:BLOCK,:) as shown in fig. 3. Note that this distribution is different
from that of the bodies (figure 2): contiguous cells here are mostly distributed
in arrays ‘lay’ perpendicularly to the PEs’ distribution. The reason why this
distribution results in better performance can be easily understood when one
considers the cells’ spatial distribution. Cells are numbered progressively from
the root (which encompasses the whole system) down to the smallest cells
which enclose smaller and smaller regions of space. The first, say, 29 + 1 cells
(i.e. all the cells down to depth d = 3) are typically enough large to contain
many bodies, at least during the initial steps of a cosmological simulation,
when the configuration is almost homogeneous. This means that almost all
the bodies will have to inspect the first cells in the tree’s hierarchy: the typ-
ical timescale of this process will be determined by the access time of the
bodies residing in the farthest PEs. If all the cells were distributed in a fine
grained way, each PE on average will contain an equal amount of cells at
any level of the hierarchy (at least for those hypercube depths dhyp such that
dhyp ≫ ln2 NPE/3), so that on average each body will have the same access
time to the tree, independently of where its parent PE is located.
We do not claim that this is the optimal choice for mapping the tree onto the

6

PE 0 PE 1 PE 2

pos(1,1)
pos(1,2)
pos(1,3)

pos(2,1)
pos(2,2)
pos(3,3)

pos(128,1)
pos(128,2)
pos(128,3)

pos(129,1)
pos(129,2)
pos(129,3)

pos(130,1)
pos(130,2)
pos(130,3)

pos(256,1)
pos(256,2)
pos(256,3)

pos(257,1)
pos(257,2)
pos(257,3)

pos(258,1)
pos(258,2)
pos(258,3)

pos(384,1)
pos(384,2)
pos(384,3)

pos(8065,1)
pos(8065,2)
pos(8065,3)

pos(8066,1)
pos(8066,2)
pos(8066,3)

pos(8192,1)
pos(8192,2)
pos(8192,3)

PE 63

Fig. 2. Data distribution for 64 PEs, of an array pos(8192,3) containig bodies’
properties. Each PE has residing nearest bodies.

T3D’s torus. The problem of efficiently mapping domains onto an underlying
harware topology is stilll a matter of debate (see e.g. [8]).

2.3 Force calculation and system’s update.

This phase is consuming more than 80% of the total computational time in
the serial code. For each body, the calculation of the force is made through
inspection of the tree, forming an interaction cell list: in particular, one com-
pares the relative position of the cells of the tree with that of the body. Let
ri, r

(k)
c be the position vector of the i-th body and of the k-th cell, respectively.

We introduce some “distance” d(ri | r
(k)
c) between the body and the cell. This

could be the distance between the body and the center of mass of the given
cell. Considering the ratio zOC = l(k)/d(ri | r(k)

c) for 1 ≤ k ≤ Ncell, where
l(k) is the size of the k-th cell (assuming that k = 1 is the root cell), those
cells for which θ < zOC (where 0 ≤ θ ≤ 1) are considered too “nearby” to
the body, and are not added to the interaction cell list. This means that the
particle “sees” these cells as extended objects and one needs to “look inside”
the smaller cells contained within them. For each of these one recalculates
zOC and one checks whether it is larger or lesser than θ: cells which do not
satisfy the criterion and terminal cells (i.e. cells containing only one body) are
included in an interaction cell list. The calculation of the force is made using

7

this list, and at the end the bodies positions on each body and velocities are
advanced of one time step.
Each PE executes the routines for this segment separately in a parallel region
code, and mostly works on those bodies that are resident in the local memory,
as described in the data distribution phase (figure 2). Using this calculation
scheme, no specific sychronization mechanisms are needed. A dynamic load
balancing is active in this phase and can re-distribute the load between PEs.
Using Apprentice, we have noted that 100% of the work is performed in parallel
by the available PEs. At the end of this phase there is a specific synchroniza-
tion mechanism (CDIR$ BARRIER), before updating body position and start
the next step.

2.3.1 Bodies properties: data distribution

The arrays containing the bodies properties (position, mass, velocity, accelera-
tion) are spread in contiguos block, using the CDIR$ SHARED POS(:BLOCK(Np/Npes),:)
directive, as shown in figure 2. The initial conditions file, containing mass, po-
sition and velocity terms of the bodies, must be constructed in such a way that
bodies near in space are labelled with nearby integers, in order to increase the
probability that all nearby bodies lie on the same or very near PEs.
If necessary a sort of bodies position array and a memory array re-distribution
may be executed, to preserve these properties during the run.

2.4 Dynamical Load Balance

In an ideal situation during the run all PEs would perform the same work
consuming the same time. A load imbalance arises when one or more PEs,
most probably during the TREEWALK, spends more time than others PEs
(up to a fixed threshold); consequently all the code will run at the speed of
the slowest PE, and this will greatly affect the total performance of the run.
The workload depends strongly on bodies’ data distribution being uniform

or inhomogeneous: ultimately on the geometry and mass distribution of the
particles within the system, and can greatly vary during the run when clusters
of particles form.
The Dynamical Load Balance (DLB) routines that we have implemented help
us to avoid that during the run an imbalance situation arises.
The DLB structure is based on the assignment to each body of a PE executor
(PEX(i)): the PE that executes the force calculation phase for the body. At
the beginning, using the data distribution shown in figure 3, the PEX assigned
to each body is the PE where the body properties are residing.
When the bodies’ distribution evolves toward inhomogenous, clustered config-

8

cell(1,1)

cell(2,1)

cell(1,2)
cell(1,3)

cell(2,2)
cell(2,3)

...........

...........

......................

...........

...........

......................

...........

...........

......................

...........

...........

......................

PE 0 PE 1 PE 2 PE 63

cell(127,2)
cell(127,3)

cell(255,1)
cell(255,1)

cell(256,1)
cell(256,1)
cell(256,1)

cell(4,1)

cell(3,2)
cell(3,1)

cell(3,3)

cell(4,3)
cell(4,2)

cell(5,1)
cell(5,2)
cell(5,3)

cell(6,1)
cell(6,2)
cell(6,3)

cell(130,3)

cell(127,1)

cell(128,1)
cell(128,2)
cell(128,3)

cell(129,1)
cell(129,2)
cell(129,3)

cell(130,1)
cell(130,2)

cell(131,1)
cell(131,2)
cell(131,3)

cell(132,1)
cell(132,2)
cell(132,3)

cell(134,1)

cell(133,2)
cell(133,3)

cell(134,2)
cell(134,3)

cell(133,1) cell(255,1)

Fig. 3. Data distribution among 64 PEs of an array containing tree properties (cells
size, quadrupole moments).

urations, some PEs begin to consume a very high time to evaluate the forces
on the local bodies in comparison with other PEs, and a load redistribution
is performed at the end of each time-step by means of the following scheme.

2.4.1 Workload estimation.

Assuming to have K availables processors PE(L=1,...K), each having NK residing
bodies, the load of each processor is evaluated as:

W
(L)
LD =

NL∑

i=1

BDLD(L,i) (2)

where we have introduced the per-particle workload BDLD(L,i) defined as the
time spent to evaluate the force acting on the i-th body assigned to the L-th
PE (in cpu clock cycles). The average load after each timestep is then:

AV LD =

∑K
L=1 W

(L)
LD

K
(3)

9

Nj-M63PEX
reassigned

reassigned

Nj-Mo

PEX

bodies bodies

o bodiesM

PEX=PE0

o bodiesM

PEX=PE0
AssignedAssigned

PEX=PE63
Assigned

M63 bodies

PEX=PE1 PEX=PE2

M1 = Nj

Assigned Assigned

M2 = Nj

PE 1 PE 2

nbodies

PE 0

Nj

PE 63

Fig. 4. Dynamical Load Balance. PE executors assignment.

2.4.2 PEX(i) assignment.

Considering the NK bodies residing on PE(L)’s local memory an integer pointer
PEX =PE(j) to the processor is assigned to the first Mk bodies (Mk ≤ Nk),
where Mk is determined in such a way to fulfill the condition:

MK−1∑

i=1

BDLD(L,i) < AV LD ≤
MK∑

i=1

BDLD(L,i) (4)

(see figure 4). After these assignments, each PE has an estimated load not
very different from AVLD . There could still be NK − MK bodies which have
not been assigned to any PE other than that on which they are residing.

2.4.3 PEX reassignment.

During this phase each PE assigns a PEX to the Nk − Mk remaining bodies
(if any). Each PE follows this rule for the PEX assignment: for each of the
remaining bodies all the processors (including the processing one) are put on
a list, and the PEX is assigned to that PE having the smaller load.
In this way it turns out to be possible to minimize the Tsol in eq. 1 minimizing
the Tda term. The use of this technique of Load Balancing results in a gain
from 10% up to 25%.

10

2.5 Memory Requirements.

The memory requirements of the Tree N-body codes are generally large due
to the presence of arrays containing the particles and the tree cells properties.
In a Locally-Essential-Tree-based code, the larger part of the memory occu-
pancy is due to the dimension of arrays containing the local particles’ and
tree cells properties. Moreover a relevant part of memory occupancy must be
used for the additional arrays containing particles and cells imported from
other processors. This quantity increases with decreasing θ and is not a priori

predictable, so that all the arrays must be dimensioned for the worst case.
In our work-memory/shared code the memory occupancy is lesser, because
the absence of Locally Essential Trees reduces the replication of arrays. Let
Nbodies be the number of particles. The memory occupancy of our code is given
by:

M =
40Nbodies

NPE

+ 5
Nbodies

C
(5)

words (1 word=8 bytes) for each PE. In the above equation NPE is the number
of PEs involved in the simulation and C a factor depending on the length of
the interaction list formed by each particles during the tree traversal phase.
An upper minimum value for this latter quantity is N/10. Using this value of
C and for a total number of 256 PEs , it is possible to run a simulation with
about Nbodies ≈ 106 on resources like those offered by the CINECA T3D (128
PEs, 2 Gbytes RAM). In the nearest future, using the T3E machine with 16
Mword for each node, more than 20 million particles simulation may be run.
These figures may increase for C > 10, and this fact opens the possibility of
performimg simulations with 30-40 million particles even on MPP system hav-
ing a moderate amount of mass memory e.g. of the order of a few distributed
Gbytes.

3 Results

In order to compare the performance of our code in realistic situations we
have run tests for both homogeneous and inhomogeneous initial conditions
. At variance with the Molecular Dynamics case, the gravitational force in-
duces an irreversible evolution towards highly clustered configurations. From
the computational point of view this results into load imbalance, so a compar-
ison of the two cases provides information on the efficiency of the Dynamical
Load Balance procedure described before.
The central subroutine STEPSYS which advances the system’s positions and
velocities of one time step can be schematically decomposed into three main

11

0

0.0005

0.001

0.0015

Fig. 5. Scalability of the relative speedup for different partitions. Tstep is normalized
to the value measured for 1 PE.

phases: a) MAKETREE, where the oct-tree is builded; b) ACCGRAV, in
which each particle inspects the tree, builds up an interaction list, and the ac-
celeration on each particle is computed; c) STEPPOS and STEPVEL, where
the system is advanced. This latter step is executed in parallel by each PE.
Following Warren and Salmon [13], we present our results plotting the quan-
tity:

Tspeed =
TstepNPE

Nbodies
(6)

where Tstep is the normalized average execution time of STEPSYS over 10 time
steps (measured w.r.t. the serial case). In an ideal case, one would expect that
Tstep ∝ N−1

PE . For the serial code one also expects: Tstep ∝ NbodieslogNbodies. As
one can see from Fig. 5, the code scales very efficiently for large number of
particles: Tspeed reaches an asymptotic regime already at Nbodies ≈ 2 × 105.
It is interesting to observe that the asymptotic regime is reached also for
high granularity cases, i.e. for NPE = 8, 16. The same trend concerning the
scalability with Nbodies is observed for the scalability with NPE (Figure 6).
The anomalous behaviour of the run at 32k, visible also as a ‘shoulder’ at the
corresponding point in Fig. 5, is due to spurious cache effects.

In Figure 6 we plot the relative speedup Tspeed as a function of NPE for homo-
geneous inital conditions.

12

50 100
0

0.0005

0.001

0.0015

Fig. 6. Scalability of the relative speedup for different sizes of the running code.
Tstep is normalized as in Figure 5

Note that Tspeed provides a measure of the scalability of the code, not of its
absolute speedup. This latter is plotted in Figure 7 for the subroutine ACC-
GRAV. Note that measuring ACCGRAV we are in fact measuring the per-
formance of TREEWALK, the most time-consuming subroutine and the one
which is fully parallelized. But the performance is also influenced by other
factors, like those mentioned in section 2.1, which altogether act to reduce
the absolute speedup. We believe however that it would be prove possible
to increase futher the speedup with a dynamical tree allocation, and we are
working along this direction. It is interesting to observe that our results for
Tspeed are comparable to those obtained by Warren and Salmon [13] (their Fig.
8). We cannot say very much about their absolute speedups, because they do
not give any information about it.

As we mentioned at the beginning, Load Balancing is also necessary in or-
der to avoid the performance degradation one meets when the system starts
to cluster. In figure 8 we can appreciate how much this problem quantita-
tively affects . The quantity Tstep almost doubles when one passes to clustered
configurations, and also the steepness of the curves tends slightly to increase,
although not dramatically. This means that the scaling properties of the codes
keep almost unchanged with increasing clustering, and that even for highly
inhomogeneous configurations there is not a significant increase of the com-
munication overhead among the main sources of load unbalance.

13

0 50 100
0

10

20

30

40

Fig. 7. Speedup for ACCGRAV.

4 Conclusions

The work- and memory-shared Tree N-body code we have described in this
paper has some very interesting features. First, its memory occupancy is com-
paratively lesser than in a LET-based scheme, because in this latter some parts
of the local trees have to be replicated on other PEs. This reduced memory
occupancy results also in a reduced communication overhead, simply because
the structures relevant for the force calculation are already shared and they
have not to be exchanged as in the LET, message passing schemes. Being
based on a different algorithm, the scalability of our code cannot be a priori

assumed to be the same as for explicitly message-passing implementations as
those developed by many authors [10,2,11,13,5].

We observe however that as far as scalability (measured by Tspeed) is con-
cerned, our code performs very well, in a way very similar to that observed
in LET-based implementations. We think that a dynamical tree allocation,
i.e. a scheme in which the block distribution of the tree changes with time,
could increase the absolute speedup. The atomic, almost uniform distribu-
tion scheme we have adopted was motivated by the very good scalability, but
in very inhomogeneous situations it could happen that a body residing in a
given PE needs to access data from ‘deep’ cells lying on some far PE. Due to
synchronization mechanisms this can occasionally result in a general slowing
down of the code.

14

0

0.005

0.01

0.015

0.02

Fig. 8. Performance degradation with increasing clustering.

Our main purpose in this paper was to try to understand with specific tests
these problems and how they affect the relative performance of different parts
of the code. In a forthcoming paper [1] we will discuss a Load Balancing scheme
based on a dynamic data sharing distribution scheme.

Acknowledgements

The tests quoted in this paper were performed on the Cray T3Ds at CINECA,
Casalecchio di Reno (Bologna), ITALY and at Edinburgh Parallel Computing
Center, Edinburgh, UNITED KINGDOM. We have benefitted from the sup-
port from prof. G. Erbacci (CINECA). AP benefitted of a TRACS EC grant at
EPCC, and wishes to thank S. Paton (Cray Research Corp.) for some helpful
discussions during his stay in Edinburgh.

References

[1] V. Antonuccio-Delogu, U. Becciani, G. Erbacci and A. Pagliaro, in preparation

(1996)

15

[2] Antonuccio-Delogu, V. and Becciani, U., ”A Parallel Tree N-Body Code for
Heterogeneous Clusters”, in: J. Dongarra and J. Wasniewsky, eds.,Parallel

Sciebtific Computing - PARA ’94 (Springer Verlag: 1994), 17

[3] J. Barnes and P. Hut, Nature 324 (1986) 446

[4] Cray Research Inc., ”Cray MPP Fortran Refeference Manual SR-2504 6.1 (1994)

[5] J. Dubinski, ”A Parallel Tree Code”, submitted to New Astronomy (1996)

[6] Gouhong Xu, ”A new parallel N-body gravity solver: TPM”, Astrophys. J. Supp.

97 (1995) 884

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam,
”PVM 3 User’s Guide and Reference Manual”, ORNL/TM-12187, September
1994

[8] V. Lamsani, L. Bhuyan and D. Scott Linthicum, Parallel Computing 21 (1995)
993

[9] L. Hernquist, Astrophys. J. Suppl. 64 (1987) 715

[10] J.K. Salmon, ”Parallel hierarchical N-body methods”, Ph. D.. Thesis,
unpublished (California Institute of Technology: 1991)

[11] J.K. Salmon and M.S. Warren, ”Skeletons from the Treecode closet”, J. Comp.

Phys. 111 (1995) 136

[12] L. Stiller, L.L. Daemene and J.E. Gubernatis, J. Comp. Phys. 115 (1994) 550

[13] M.S. Warren and J.K. Salmon, ”A portable Parallel N-body code”, unpublished

, (California Institute of Technology: 1995)

[14] W.H. Zurek, P.J. Quinn, J.K. salmon and M.S. Warren, Astrophys. J 431 (1994)
559

16

