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We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with
component masses between0.2 M� –1.0 M� using data taken between September 12, 2015 and January
19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of
monochromatic (delta function) distributions of nonspinning (0.2 M� , 0.2 M� ) ultracompact binaries to be
less than1.0 × 106 GpcŠ3 yrŠ1 and the coalescence rate of a similar distribution of (1.0 M� , 1.0 M� )
ultracompact binaries to be less than1.9 × 104 GpcŠ3 yrŠ1 (at 90% confidence). Neither black holes nor
neutron stars are expected to form below� 1 M� through conventional stellar evolution, though it has been
proposed that similarly low mass black holes could be formed primordially through density fluctuations in
the early Universe and contribute to the dark matter density. The interpretation of our constraints in the
primordial black hole dark matter paradigm is highly model dependent; however, under a particular
primordial black hole binary formation scenario we constrain monochromatic primordial black hole
populations of0.2 M� to be less than 33% of the total dark matter density and monochromatic populations
of 1.0 M� to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds
from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and
EROS Collaborations.
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Introduction.—The era of gravitational wave astronomy
began with the observation of the binary black hole merger
GW150914[1]. Since then, four additional binary black
hole mergers[2–5] and one binary neutron star merger[6]
have been announced as of November 2017. Thus far,
Advanced LIGO and Advanced Virgo searches have tar-
geted binary systems with total masses from2–600 M�
[7,8], but the LIGO and Virgo detectors are also sensitive to
ultracompact binaries with components below1 M� if
the compactness (mass to radius ratio) is close to that of
a black hole. White dwarf binaries, while often formed with
components below one solar mass, are not sufficiently
compact to be a LIGO/Virgo gravitational wave source.
Neutron stars or black holes are sufficiently compact as
would be other exotic compact objects. Previous gravita-
tional wave searches for sub-solar-mass ultracompact bina-
ries used data from initial LIGO observations from February
14, 2003–March 24, 2005[9,10]. Advanced LIGO[11]
presently surveys a volume of space approximately 1000
times larger than the previous search for sub-solar-mass
ultracompact objects, therefore improving the chances of
detecting such a binary 1000-fold.

In conventional stellar evolution models, the lightest
ultracompact objects are formed when stellar remnants
exceed� 1.4 M� , the Chandrasekhar mass limit[12,13].
Beyond the Chandrasekhar mass limit, electron degeneracy
pressure can no longer prevent the gravitational collapse of
a white dwarf. The lightest remnants that exceed the
Chandrasekhar mass limit form neutron stars[14]. When
even the neutron degeneracy pressure cannot prevent
collapse, heavier stellar remnants will collapse to black
holes. Some equations of state predict that neutron stars
remain stable down to� 0.1 M� [15]; there is no widely
accepted model for forming neutron stars below� 1 M� ,
though a recent measurement does not exclude the pos-
sibility of 0.92 M� neutron star[16]. This result may be
due to the low inclination of the system. The lowest
precisely measured neutron star mass is1.174 M� [17].
Observationally, black holes appear to have a minimum
mass of� 5 M� with a gap between the heaviest observed
neutron star (� 2 M� ) and black hole masses[18–21].
Detecting ultracompact objects below one solar mass could
challenge our ideas about stellar evolution or possibly hint
at new, unconventional formation scenarios.

Beyond conventional stellar evolution, one of the most
prolific black hole formation models posits that primordial
black holes (PBHs) could have formed in the early
Universe through the collapse of highly overdense regions*Full author list given at end of the Letter.
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[22–26]. It has been suggested that PBHs could constitute a
fraction of the missing dark matter[23,26], though this
scenario has been constrained[27]. LIGO’s detections have
revived interest in black hole formation mechanisms and, in
particular, the formation of primordial black holes (PBHs)
[28–30]. Though there are proposals on how to distinguish
a primordial black hole distribution from an astrophysical
one [31–36], disentangling them is challenging when the
populations overlap in mass. Hence, detection of sub-solar-
mass ultracompact objects would provide the cleanest
signature for determining primordial formation. Still, recent
proposals for nonbaryonic dark matter models can produce
sub-solar-mass black holes either by allowing a lower
Chandrasekhar mass in the dark sector[37], or by trigger-
ing neutron stars to collapse into� 1 M� black holes[38].

This Letter describes a gravitational wave search for
ultracompact binary systems with component masses
between0.2 M� and 1.0 M� using data from Advanced
LIGO’s first observing run. No viable gravitational wave
candidates were identified. We briefly describe the data
analyzed and the anticipated sensitivity to sub-solar-mass
ultracompact objects, as well as the search that was
conducted, which led to the null result. We then describe
how the null result constrains the merger rate of sub-solar-
mass binaries in the nearby universe. We consider the
merger rate constraints in the context of binary merger rate
estimates most recently given by Sasakiet al. [29] thereby
constraining the fraction of dark matter density made up of
PBHs between0.2 M� and1.0 M� . Finally, we conclude
with a discussion of future work.

Search.—We report on data analyzed from Advanced
LIGO’s first observing run, taken from September 12,
2015–January 19, 2016 at the LIGO Hanford and LIGO
Livingston detectors. After taking into account data quality
cuts [39] and detector downtime, we analyzed a total of
48.16 days of Hanford-Livingston coincident data. The
data selection process was identical to that used in previous
searches[40].

During Advanced LIGO’s first observing run, each
LIGO instrument was sensitive to sub-solar-mass ultra-
compact binaries at extra-galactic distances. Figure1 shows
the maximum distance to which an equal-mass compact
binary merger with given component masses would be
visible at a signal-to-noise ratio of 8 in either LIGO
Hanford or LIGO Livingston.

The search was conducted using standard gravitational
wave analysis software[41–46]. Our search consisted of a
matched-filter stage that filtered a discrete bank of tem-
plates against the LIGO data. The peak SNR for each
template for each second was identified and recorded as a
trigger. Subsequently, a chi-squared test was performed that
checked the consistency of the trigger with a signal[42].
The triggers from each LIGO detector and gravitational
wave template were combined and searched for coinci-
dences within 20 ms. Candidates that pass coincidence

were assigned a likelihood ratioL that accounts for the
relative probability that the candidates are signal versus
noise as a function of SNR, chi-squared, and time delay and
phase offset between detectors. Larger values ofL were
deemed to be more signal-like. The rate at which noise
produced candidates with a given value ofL was computed
via a Monte Carlo integral of the noise derived from
noncoincident triggers, which we define as the false alarm
rate of candidate signals.

Our discrete bank of 500332 template waveforms[47]
conformed to the gravitational wave emission expected
from general relativity[48,49]. We use the 3.5 post-
Newtonian order TaylorF2 waveform to model the inspiral
portion of the binary evolution, which is constructed under
the stationary phase approximation[49]. The TaylorF2
waveform has been used in previous low-mass Advanced
LIGO and Advanced Virgo searches. The bank covered
component masses in the detector frame between
0.19–2.0 M� with 97% fidelity. While we restrict our
analysis of the search results to the subsolar region, we
have allowed for the possibility of high mass ratio systems.
Our template bank assumed that each binary component
has negligible spin. Relaxing that assumption is a direction
for future work, but is a computationally challenging
problem requiring resources well beyond those used for
this and previous LIGO analyses. We integrated the
template waveforms between 45–1024 Hz, with the longest
waveform lasting about 470 seconds. Advanced LIGO is
sensitive down to� 15 Hz, but integrating from that
frequency would have been too computationally burden-
some. Our choice to integrate from 45 to 1024 Hz
recovered 93.0% of the total possible SNR that integration

FIG. 1. Distance to which an optimally oriented and aligned
equal-mass ultracompact binary merger would produce at least
SNR 8 in each of the LIGO Livingston and LIGO Hanford
detectors as a function of component mass, based on the median
sensitivity obtained from our analyzed data.
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over the full band would have provided. Additional details
are described in Ref.[47].

No viable gravitational wave candidates were found. Our
loudest gravitational wave candidate was consistent with
noise and had a false alarm rate of 6.19 per year.

Constraint on binary merger rate.—We constrained the
binary merger rate in this mass region by considering nine
monochromatic mass distributions with equal component
masses and negligible spin. We constructed sets of simulated
signals with component massesmi � f 0.2; 0.3; …; 1.0gM�
distributed uniformly in distance and uniformly on the sky.
We injected 374480 simulated signals into the LIGO data
and conducted a gravitational wave search with the same
parameters as described earlier. We then calculated our
detection efficiency as a function of distance� i ðrÞ. This
allowed us to compute the volume-timehVTi that was
accessible for our search via

hVTi i ¼ T
Z

4� r2� i ðrÞdr; ð1Þ

whereT is 48.16 days. We then used the loudest event
statistic formalism[50] to compute an upper limit on the
binary merger rate in each mass bin to 90% confidence,

R 90;i ¼
2.3

hVTi i
: ð2Þ

We report the upper limits on the binary merger rate in Fig.2.
Several factors in our analysis could lead to uncertainty in

R 90 at the 25% level, including LIGO calibration errors and
Monte Carlo errors. However, these errors are far smaller
than potential systematic errors in the models we will be
considering in the next section, so we do not attempt to
further quantify them in this work.

Constraint on primordial black holes as dark matter.—
For an assumed model of PBH binary formation, the
constraint on the binary merger rate places bounds on
the total fraction of dark matter made of primordial black
holes,f . These bounds are derived from the expected event
rate for a uniform distribution of monochromatic PBHs
with massmi as considered above. The limits onf are
sensitive to the model of binary formation. Motivated by
previous LIGO searches[9] we follow a method originally
proposed by Refs.[51,52] and recently used to constrain
� 30 M� PBH mergers by Ref.[29].

We assume an initial, early Universe, monochromatic
distribution of PBHs. As the Universe expands, the energy
density of a pair of black holes not too widely separated
becomes larger than the background energy density. The
pair decouples from the cosmic expansion and can be
prevented from prompt merger by the local tidal field,
determined primarily by a third black hole nearest the pair.
The initial separation of the pair and the relative location of
the primary perturber determine the parameters of the initial
binary. From those, the coalescence time can be deter-
mined. Assuming a spatially uniform initial distribution of
black holes, the distribution of coalescence times for those
black holes that form binaries is

dP ¼
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wheretc is a function of the mass of the PBHs and the
fraction of the dark matter they comprise:
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This expression is evaluated at the time todayt0, then
multiplied by nBH the current average number density of
PBHs, to get the model event rate[29]:

R model ¼ nBH
dP
dt

�
�
�
�
t¼t0

: ð5Þ

Given the measured event rateR 90;i and a particular
mass, the above expression can be inverted to find a
constraint on the fraction of dark matter in PBHs at that
mass. The results of this calculation using the measured
upper limits on the merger rate are shown in Fig.3. A
discussion on how some assumptions of this model may
affect the constraints onf shown in Fig.3, are discussed in

FIG. 2. Constraints on the merger rate of equal-mass ultra-
compact binaries at the 9 masses considered. The gray region
represents an exclusion at 90% confidence on the binary merger
rate in units of GpcŠ3 yrŠ1. These limits are found using the
loudest event statistic formalism, as described inthe text andin
Ref.[50]. The bounds presented here are� 3 orders of magnitude
stricter than those found in the initial LIGO’s search for sub-solar-
mass ultracompact objects[9,10].
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Ref. [47]. The nondetection of a stochastic background
in the first observing run of Advanced LIGO[53] also
implies an upper limit on the merger rate and therefore
the PBH abundance. In particular, it is shown that the
nondetection of a stochastic background yields con-
straints that are about a factor of 2 weaker than the targeted
search[54–57].

These results are sensitive to the model of binary
formation as well as the mass distribution of PBHs. The
effects of initial clustering of PBHs is a current area of
research, though it appears that for the expected narrow
mass distributions of PBHs this effect is small in the mass
range we consider[64–66]. While the results presented here
to not take into account other effects on the binary
parameters[67], they provide a conservative estimate of
the bounds.

Conclusion.—We presented the first Advanced LIGO
and Advanced Virgo search for ultracompact binary merg-
ers with components below1 M� . No viable gravitational
wave candidates were found. Therefore, we were able
to constrain the binary merger rate for monochromatic
mass functions spanning from0.2 M� –1.0 M� . Using a
well-studied model from the literature[29,51,52], we
constrained the abundance of primordial black holes as a

fraction of the total dark matter for each of our nine
monochromatic mass functions considered.

This work was only the first step in constraints by
LIGO on new physics involving sub-solar-mass ultracom-
pact objects. The constraints presented in Fig.2 (and,
consequently, those that arise from the model of binary
formation we consider shown in Fig.3) may not apply if the
ultracompact binary components have non-negligible spin
since the waveforms used for signal recovery were gen-
erated only for nonspinning binaries. Future work may
either quantify the extent to which the present search could
detect spinning components, or expand the template bank
to include systems with spin. Third, we should consider
more general distributions of primordial black hole masses;
extended mass functions allow for the possibility of
unequal mass binaries, and the effect of this imbalance
on the predicted merger rate has not been quantified. We
also stress that our present results do not rule out an
extended mass function that peaks below0.2 M� and
extends all the way to LIGO’s currently detected systems
at or above30 M� . Each model would have to be explicitly
checked by producing an expected binary merger rate
density that could be integrated against Advanced LIGO
and Advanced Virgo search results. Extensions to more
general distributions have already been considered in the
literature[68].

The first two areas of future work are computational
challenges. Lowering the minimum mass and including
spin effects in the waveform models could easily increase
the computational cost of searching for sub-solar-mass
ultracompact objects by an order of magnitude each, which
would be beyond the capabilities of present LIGO data grid
resources.

Advanced LIGO and Advanced Virgo have not reached
their final design sensitivities. The distance to which
Advanced LIGO will be sensitive to the mergers of ultra-
compact binaries in this mass range should increase by a
factor of 3 over the next several years[69]. Furthermore, at
least a factor of 10 more data will be available than what
were analyzed in this work. These two facts combined
imply that the merger rate constraint should improve by� 2
orders of magnitude in the coming years.
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